
Puncturable Key Wrapping and Its Applications

Matilda Backendal[0000−0002−8677−8301], Felix Günther[0000−0002−8495−6610], and
Kenneth G. Paterson[0000−0002−5145−4489]

Department of Computer Science, ETH Zurich, Zurich, Switzerland
{mbackendal,kenny.paterson}@inf.ethz.ch, mail@felixguenther.info

Abstract. We introduce puncturable key wrapping (PKW), a new cryp-
tographic primitive that supports fine-grained forward security proper-
ties in symmetric key hierarchies. We develop syntax and security def-
initions, along with provably secure constructions for PKW from sim-
pler components (AEAD schemes and puncturable PRFs). We show how
PKW can be applied in two distinct scenarios. First, we show how to use
PKW to achieve forward security for TLS 1.3 0-RTT session resump-
tion, even when the server’s long-term key for generating session tickets
gets compromised. This extends and corrects a recent work of Aviram,
Gellert, and Jager (Journal of Cryptology, 2021). Second, we show how
to use PKW to build a protected file storage system with file shredding,
wherein a client can outsource encrypted files to a potentially malicious
or corrupted cloud server whilst achieving strong forward-security guar-
antees, relying only on local key updates.

1 Introduction

Key wrapping. Key encryption, or key wrapping, is a mechanism often deployed
to build symmetric key hierarchies: systems in which the confidentiality and
integrity of multiple cryptographic keys are protected by a single (master wrap-
ping) key. The wrapped keys may in turn be used to secure data at a more
fine-grained level, e.g., at the level of individual files, messages, or financial trans-
actions. This hierarchical approach eases key management: it allows strong but
more expensive protection to be applied to a small number of wrapping keys
while limiting the security impact if individual wrapped keys are exposed. Key
wrapping is widely used in practice; specific schemes have been standardized by
NIST in [24]. Formal foundations for key wrapping were established in [47].

As a pertinent example, when using the pre-shared key (PSK) mode of
TLS 1.3 [45] for session resumption, new sessions between client and server are
protected by independent, symmetric keys (denoted PSK) established in an ear-
lier session. To reduce storage overhead, servers often use a long-term symmetric
encryption key to wrap PSKs into so-called tickets. These tickets are sent to the
client, thereby outsourcing the PSK storage from the server to the client.

Another example of key hierarchies is found in cloud storage systems, where
service providers encrypt data before storing it on their servers—so called en-
cryption at rest. The encryption is done to meet customer demand and regulatory

2 Matilda Backendal, Felix Günther, and Kenneth G. Paterson

requirements. To ensure good key-hygiene, best practices stipulate that separate
encryption keys be used for separate files (or even parts of large files). To this
end, cloud storage providers use a new data encryption key (DEK) to encrypt
each (part of a) file. The DEK is then wrapped using a key encryption key (KEK)
and stored together with the encrypted file. Here, using a key hierarchy also al-
lows for a form of key rotation, a process in which a key is replaced by a fresh
one, and the encrypted data is updated to be secured under the new key. The
technique used by all four of Amazon Web Services [4], Google Cloud [30], IBM
Cloud [34] and Microsoft Azure [42] is to rotate only the KEK rather than all of
the DEKs. This limits the amount of data that needs to be re-encrypted under
the new KEK to just the DEKs that were wrapped under the original KEK,
rather than the actual files themselves. This approach provides an efficient but
security-limited form of key rotation [25].

Forward-secure session resumption and puncturable encryption. Aviram, Gellert,
and Jager (AGJ) [1,2] observed that the key hierarchy induced by the ticketing
mechanism in TLS 1.3 PSK mode can be used to achieve forward security for
resumed sessions. By updating the Session Ticket Encryption Key (STEK) after
accepting the ticket of a resumed session, and deleting the corresponding PSK,
the confidentiality of the session is guaranteed even against an attacker who
later compromises the STEK. AGJ formalized this idea with their notion of
a forward-secure session resumption protocol. The per-session forward security
enjoyed by such a resumption protocol is reminiscent of the fine-grained forward
security achieved by puncturable encryption [31], and indeed, AGJ make use of
puncturable pseudo-random functions (PPRFs) [13,17,36] for their construction.
Their innovation naturally begs the question: Can puncturing be combined with
key hierarchies to bring fine-grained forward security also to other applications?
This work provides the affirmative response.

Our contributions. We investigate how puncturing can be combined with key
wrapping to provide fine-grained forward security in applications using a sym-
metric key hierarchy. To this end, we introduce a new cryptographic primitive
that we call puncturable key wrapping (PKW). We provide formal definitions, re-
lations between security notions, and an efficient, generic construction for PKW.
We also show how to use PKW in two sample applications: TLS ticketing (in-
spired by [2], but addressing several shortcomings of that work) and protected file
storage. We argue that, while PKW is closely related to existing primitives like
PPRFs, it provides a useful abstraction that more intuitively captures what is
needed for achieving fine-grained forward security in symmetric key hierarchies.
This makes building applications conceptually simpler and less error-prone.1

Puncturable key wrapping. A puncturable key-wrapping scheme provides the
basic functionality needed for a symmetric key hierarchy: algorithms to wrap

1 A broad analogy that readers may find useful: PKW is to PPRFs as AEAD is to
block ciphers.

Puncturable Key Wrapping and Its Applications 3

\\∗

PPRF fpr-rro$ fpr-ro$ fpr-1ro$

AEAD ind$-cpa ind$-cpaint-ctxt ind$-cpa

PKW find$-rcpa find$-cpaint-ctxt find$-1cpa

AEAD ind$-cpa int-ctxt ind$-cpa

PFS find$-rcpa int-ctxt find$-rcpa TLSMSKE

? ?

?†∗

+ +

10

+

9

+

+

15

++ +

14?† ?†

Fig. 1. Security notions and relations for PPRFs, puncturable key-wrapping (PKW),
protected file storge (PFS), and TLS ticketing (TLS). Confidentiality/forward security
notions are in rounded boxes, integrity notions in rectangular boxes. Solid lines indicate
implications, with numbers referencing the respective theorem in this paper (others
in [5]) and a plus + when combining several notions. Barred lines denote separations,
dotted lines trivial implications, and dashed lines non-tight implications. A star ? or
dagger † next to an arrow indicates that the implication holds if puncture invariance
(Defs. 2, 5), resp. consistency (Def. 6) is assumed; a ∗ indicates additional assumptions.

and unwrap data encryption keys under a master secret key. Additionally, a
puncturing algorithm allows the master secret key to be updated such that spe-
cific wrapped data encryption keys are rendered irrecoverable. Our PKW syntax
merges classical key wrapping/deterministic authenticated encryption [47] with
tag-based puncturable encryption [31]. The resulting primitive allows authen-
ticated headers and uses tags to enable fine-grained puncturing of ciphertexts.
The puncturing tags simplify the exposition of PKW and allow for versatile
treatments of the targeted applications: e.g., tags may be chosen via a counter
when keeping state or ordering is required, or as random strings when meta-data
privacy is a concern (cf. [7]). This contrasts with the foundational work on (non-
puncturable) key wrapping [47], where randomness needed for secure wrapping
is effectively extracted from the wrapped key in the SIV construction.

We introduce four different security notions for PKW schemes (see Figure 1),
three relating to confidentiality (find$-cpa: a classical “real-or-random” notion,
find$-rcpa: additionally allowing “real” wrappings, and find$-1cpa: a one-time
challenge notion) and one to integrity (of ciphertexts, int-ctxt). They are devel-
oped with an eye towards applications, catering to the needs of key hierarchies
found in cloud storage systems and the TLS ticketing mechanism. Hence, all
four are in a multi-key (or multi-user) setting [6]. We also provide a simple and
generic construction for a PKW scheme based on a PPRF and a nonce-based
AEAD [46] scheme. The core idea is to view the master key as the secret key of
a PPRF; wrapping of a selected data encryption key is performed by evaluating
the PPRF on the tag to generate a one-time AEAD key, and then using that
AEAD key to encrypt the data encryption key. PKW puncturing equates to

4 Matilda Backendal, Felix Günther, and Kenneth G. Paterson

PPRF puncturing. Depending on the precise assumptions made on the PPRF,
we reach our three different levels of confidentiality for the PKW scheme; the
integrity notion requires nothing further of the PPRF. In all cases, standard
multi-user notions of AEAD security suffice. Using a misuse-resistant AEAD
scheme [47] could further enable batch puncturing of wrappings under the same
tag. Full details of our treatment of PKW can be found in Section 3.

PPRFs. While the precise PPRF security notions we require resemble those in
prior work [13,17,36,48], they appear to be, strictly speaking, new. This shows
how an application-driven analysis can bring to the surface new requirements
on existing primitives. In Section 2 (see also Figure 1), we explore the relations
between our different PPRF notions and discuss possible instantiations, e.g.,
using the GGM construction for PRFs (as adapted to PPRFs in e.g. [36]).

To summarize, we obtain a generic instantiation of PKW, achieving a variety
of security notions from standard primitives (AEAD schemes and PRGs).

Application: Forward-secure session resumption. Equipped with our new prim-
itive, we revisit the idea of Aviram, Gellert, and Jager (AGJ) [2] for achieving
forward security for the zero round-trip time (0-RTT) data that is immediately
sent by clients in the TLS 1.3 PSK resumption mode. In Section 4, we show how
a find$-1cpa-secure PKW scheme can readily be deployed for TLS ticketing to
yield forward-secure TLS 1.3 0-RTT resumption that is secure in the sense of a
multi-stage key exchange (MSKE) protocol [27]; see also Figure 1. Using PKWs
in place of PPRFs (as in AGJ) permits us to take a more generic and abstract
viewpoint. This not only directly facilitates constructions offering differing func-
tionality and security guarantees, but also enabled us to identify and correct
some technical issues arising in the approach of AGJ.

In particular, building TLS ticketing from PKW allows us to seamlessly
switch to a more privacy-friendly approach, addressing an open problem in [2]:
by sampling tags randomly, we are able to make TLS tickets indistinguishable
from random, whereas the AGJ proposal uses a counter in the construction,
making their tickets potentially linkable to the time of issuance. Thus our ap-
proach can alleviate privacy concerns for TLS ticketing, e.g., regarding tracking
users on the web by passively observing network traffic.

The integration of a session resumption protocol into the TLS 1.3 resump-
tion handshake is described in [2, Section 4]. Rephrasing the AGJ proposal in
the language of puncturable key wrapping led us to discover conceptual and
technical issues in the security model, the proposed protocol, and the proof that
prevent the proposal of AGJ from being forward secure, as we discuss in Sec-
tion 4. Specifically, the security model used in [2] does not reflect the ticketing
mechanism of a key exchange protocol in how pre-shared secrets are sampled,
registered with parties, and potentially corrupted. Furthermore, the proposed
protocol encrypts the TLS resumption master secret RMS in the session ticket.
Since RMS is used to derive multiple PSK values, this violates forward security
(an adversary learning RMS from one ticket can use it to decrypt prior sessions
using a PSK derived from the same RMS). However, this can be easily fixed by

Puncturable Key Wrapping and Its Applications 5

ticketing the respective PSK instead of RMS. Finally, we identified overlooked
steps and missing underlying assumptions in the AGJ security proof, which were
surfaced when applying our PKW formalism. We address all these points in our
treatment of forward-secure session resumption for TLS 1.3, see Section 4.

Application: Protected file storage. As a second application example, we show in
Section 5 how our new PKW primitive can be used in an encrypted file storage
system to give forward security to deleted files. This application is motivated by
the current trust assumptions in cloud storage systems, where the confidentiality
of the stored data rarely extends to the service provider. Indeed, if the master
key in the key hierarchy is managed by the cloud, then the service provider can
trivially decrypt any file. The aim of our protected file storage (PFS) system is
to provide strong security guarantees for the user, even when encrypted files are
outsourced to a malicious or corrupted storage system.

Using a PKW scheme, a client can locally encrypt files under separate data
encryption keys, wrap the DEKs with its master key (acting as a KEK) and then
outsource both the encrypted files and the wrapped keys to the cloud. In addition
to relieving the user of the need to store anything beyond the master key for the
PKW scheme, our PFS system also allows secure shredding of files: by puncturing
the master key such that a specific wrapped DEK is rendered irrecoverable,
the file encrypted by the DEK is made permanently inaccessible, even if the
ciphertext is not actually deleted by the cloud storage provider when the client
requests it to be. This means that a motivated attacker with access both to the
encrypted files and the secret key of the user will not be able to compromise
the contents of files that were shredded before the user key was compromised.
The system hence provides very strong forward security guarantees for shredded
files. Crucially in our approach, there is no need for the user to trust the storage
provider to actually delete the shredded files, an assumption which would seldom
hold in practice due to the presence of backups for disaster recovery purposes
(see, e.g., [30]) or bugs in the deletion process [44].

An additional feature of our PFS system is that, in line with current industry
practice, it supports key rotation at the KEK level. Key rotation extends the life-
time of encrypted data, overcomes usage limits of encryption through rekeying,
and supports forward security in practice. It is also important given that the
PKW schemes we build have a finite puncturing capability; KEK rotation is then
used to restore puncturing capability whenever needed. The multi-key aspect of
our PKW security notions readily supports this key rotation.

As core contributions here, we define a syntax for PFS and security notions
capturing confidentiality, forward security, and integrity of stored files in a PFS
scheme. We show how all of these notions can be achieved by building a PFS
scheme from a PKW scheme and an AEAD scheme in a natural and efficient
way. We actually provide two different routes to proving our main results on
the forward security of PFS, as represented in the first and third column in
Figure 1. These routes rely on different security assumptions on the underly-
ing cryptographic components, specifically the PKW scheme used, and result
in security theorems with different tightness properties—using a stronger PKW

6 Matilda Backendal, Felix Günther, and Kenneth G. Paterson

scheme yields a tighter proof of security for the PFS scheme. This in turn re-
lates to the properties required of the underlying PPRF in each of the two routes.
While the left, tighter, route requires a PPRF satisfying the strongest security
notion (fpr-rro$) as a basic building block—an assumption which, to the best of
our knowledge, generally relies on a non-tight (complexity-leveraging) reduction
to weaker PPRF notions—it asks less from the building blocks in terms of other
properties. Specifically, it avoids the technical requirements of puncture invari-
ance and consistency which we detail in Section 3 and that not all PPRFs may
provide, yet which are required for the right, less tight route. The two routes
hence show that secure PFS schemes can be constructed from different levels of
PKW (and PPRF) schemes; we see this as motivating future work on efficient
PKW (or PPRF) constructions that directly fulfill our strong security notions.

We stress that the aim of our PFS system is to showcase how integrating
PKWs into existing symmetric key hierarchies can improve security for the cryp-
tographic core of secure file storage systems. Building a full-blown system is left
to future work.

Further related work. The origins of forward security, in the context of key
exchange, date back to Günther [32] and Diffie et al. [23]. A helpful systemati-
zation is given by Boyd and Gellert [16].

Green and Miers [31] introduced puncturable (public-key) encryption as a
means of achieving fine-grained forward security. The ideas of [31] were applied
to 0-RTT key exchange and session resumption for TLS 1.3 in [33,22,2] as well as
symmetric key exchange [3,15]. The treatment of [15] is for general key exchange,
where both parties share a key to a PPRF and puncture it in a semi-synchronized
manner. By contrast, our approach to achieving forward security for TLS 1.3
PSK resumption mode using session tickets (in common with [2]) targets the
use of puncturable primitives in a “one-sided” setting, where only the server
holds the key and performs puncturing operations.

Puncturing techniques have further been used in the context of searchable en-
cryption [52,51]. Fine-grained forward security is also targeted in Derived Unique
Keys Per Transaction (DUKPT) [18]: keys are derived in a tree structure and
used in a one-time manner, with the aim of improving security against side-
channel attacks on weakly protected devices, e.g., payment terminals.

The idea of secure outsourced storage is not new. Blaze [10] designed a “Cryp-
tographic File System” already in 1993 to empower users to encrypt their files,
preventing remote file servers used for storage from gaining plaintext access to
user data. A rich body of work followed suit, improving on and expanding the
security guarantees in the direction of, for example, data integrity and file shar-
ing [43], group collaboration [26], access pattern and metadata hiding [20,19] and
minimizing trust assumptions [41]. There is also a plethora of services running
on top of existing storage systems, for example [39,14]. Key rotation for sym-
metric encryption is widely used by outsourced storage systems in practice, but
was only recently formally treated, see [25] and follow-up works [40,37] including
work using puncturing [50].

Puncturable Key Wrapping and Its Applications 7

Our approach to secure file storage shares the aim of removing the need to
trust the storage provider for confidentiality, but we specifically focus on adding
forward security for individual files. Boneh and Lipton [12] introduced the idea
of using key deletion to revoke access to encrypted files, with an emphasis on
file backup systems. Their proposal uses linear data structures to store keys, but
lacks the fine-grained forward security and key rotation our PFS scheme offers.

A more recent proposal, BurnBox [54], recognizing the difficulty of truly
secure file deletion, introduced self-revocable encryption to limit the power of
compelled searches of devices. BurnBox achieves fine-grained forward security
for deleted files via a tree-based key hierarchy, storing the root in erasable stor-
age. It further hides file metadata in a protected lookup table, an approach we
also suggest for our system. On the surface, these properties make BurnBox very
similar to our PFS concept. However, the main goal of BurnBox is not forward
security, but the much stronger notion of compelled access security, which en-
compasses temporarily revoking file access when device compromise is expected
and further goals such as deletion/revocation obliviousness and timing privacy.
This forces BurnBox to use highly application-specific approaches, rely on secure
storage, and compromise on efficiency (e.g., of file lookups, in favor of privacy).
In contrast, our approach is more generic, requires fewer assumptions, and can
directly benefit from optimizations of the underlying PKW or PPRF schemes.

Notation and conventions. For a string a ∈ {0, 1}∗, |a| denotes its bit length.
By x←$ S, we denote sampling x uniformly at random (u.a.r.) from a set S of
size |S|. For sets S1,S2, the shorthand S1

∪←− S2 denotes S1 ← S1 ∪S2. We write
X = (x1, x2, . . . , xn) for an n-tuple and X += x or X −= x for adding, resp.
removing, an element x to/from a list or set. By x‖y we denote the concatenation
of strings or lists x and y. For an algorithm A, we denote by y ← A(x1, . . . ; r)
running A on inputs x1, . . . and random coins r with output y; by y←$ A(x1, . . .)
running A on uniformly random coins. The distinguished output ⊥ indicates
rejecting; by convention we require that any algorithm on input⊥ also outputs⊥.

We use the game-playing framework of [8]. By Pr [G(A)⇒ x] we denote
the probability that game G interacting with adversary A outputs x; where
Pr [G(A)] is a shorthand for Pr [G(A)⇒ true]. In games, adversaries implic-
itly have access to all described oracles unless otherwise indicated, and integer
variables, strings, set variables and boolean variables are initialized, respectively,
to 0, the empty string ε, the empty set ∅, and false, unless otherwise specified.

2 Puncturable PRFs, Security Notions, and Relations

Puncturable PRFs (PPRFs) were conceived of independently in [13], [17] and
[36]. We recall the definition from Sahai and Waters [48], but restrict our atten-
tion to PPRFs with deterministic puncturing algorithms.

Definition 1 (PPRF). A puncturable pseudorandom function PPRF = (KeyGen,
Eval,Punc) is a triple of algorithms with three associated sets; the secret-key space
SK, the domain X and the range Y.

8 Matilda Backendal, Felix Günther, and Kenneth G. Paterson

– Via sk←$ KeyGen(), the probabilistic key generation algorithm KeyGen, tak-
ing no input, outputs the secret key sk ∈ SK.

– Via y/⊥ ← Eval(sk, x), the function evaluation algorithm Eval, on input the
secret key sk and an element x ∈ X outputs y ∈ Y or, to indicate failure, ⊥.

– Via sk′ ← Punc(sk, x), the deterministic puncturing algorithm Punc, on
input the secret key sk and an element x ∈ X outputs an updated secret key
sk′ ∈ SK.

For correctness we require that for all sk ∈ SK and all x, y ∈ X :

(1) Pr [Eval(sk0, x) 6= ⊥ | sk0←$ KeyGen()] = 1.
(2) If sk′ ← Punc(sk, x) and y 6= x, then Eval(sk, y) = Eval(sk′, y).
(3) If sk′ ← Punc(sk, x), then Eval(sk′, x) = ⊥.

Requirement (1) ensures that for any freshly generated secret key sk0 and for
any x ∈ X , Eval(sk0, x) will not be ⊥. Requirement (2) says that puncturing any
secret key sk on x only affects the evaluation of x. Requirement (3) demands
that the evaluation of a punctured point will always be ⊥.

Requirement (3)—which goes beyond prior PPRF definitions [48,2]—is needed
to achieve integrity in applications like TLS ticketing, as we shall see in Section 4.
Alternative to phrasing it as a correctness property, one could implicitly demand
it in the security games. We find the explicit requirement cleaner and argue
that it captures the intuitive understanding that PPRF function evaluation on
punctured points should “fail”. Alternative concepts such as private puncturable
PRFs [11] could achieve similar results, but are harder to construct.

Following [2], we define an additional property of PPRFs called “puncture
invariance” which demands that the scheme is insensitive to the order in which
punctures are performed. I.e., the puncturing operation is commutative with re-
spect to the resulting secret key. As noted in [2], this property enables reductions
that change the order of punctures without an adversary later compromising the
secret key noticing; this is necessary for example to have our single-challenge no-
tion (fpr-1ro$) imply our core PPRF notion (fpr-ro$), as we shall see.

Definition 2 (PPRF puncture invariance). A puncturable pseudorandom
function PPRF=(KeyGen,Eval,Punc) is puncture invariant if for all keys sk∈SK
and all x0, x1 ∈ X it holds that Punc(Punc(sk, x0), x1)=Punc(Punc(sk, x1), x0).

PPRF security. We define three security notions for PPRFs, all in the multi-
user setting [6], capturing the combined forward security and pseudorandomness
goals, or forward pseudorandomness (fpr) for short. Let us start with our core
forward pseudorandomness notion (fpr-ro$), given in Figure 2. It is an extension
of classical PRF security, where the adversary is given oracle access (Ro$-Eval)
either to the real function evaluated on a hidden key, or a lazily-sampled random
function. Forward security is captured through access to a puncturing oracle
(Punc) as well as corruption oracle (Corr), through which the adversary can
obtain secret keys that have been punctured on all challenge points.

Puncturable Key Wrapping and Its Applications 9

Game Gfpr-ro$
PPRF (A), Gfpr-rro$

PPRF (A) :

1 b←$ {0, 1}; u← 0; T[·, ·]← ⊥
2 b∗←$A()

3 Return b∗ = b

New():

4 u++; sku←$ KeyGen()

5 Cu, Eu,Pu ← ∅; corru ← false

Eval(i, x):

6 If x ∈ Ci then return ⊥
7 y ← Eval(ski, x)

8 Ei
∪←− {x}

9 Return y

Punc(i, x):

10 ski ← Punc(ski, x)

11 Pi
∪←− {x}

Ro$-Eval(i, x):

12 If x ∈ Ei or corri:

13 Return ⊥
14 y1 ← Eval(ski, x)

15 If y1 = ⊥: return ⊥
16 If T[i, x] = ⊥:
17 T[i, x]←$ Y
18 y0 ← T[i, x]

19 Ci
∪←− {x}

20 Return yb

Corr(i):

21 If Ci * Pi:

22 Return ⊥
23 corri ← true

24 Return ski

Game Gfpr-1ro$
PPRF (A):

1 b←$ {0, 1}; u← 0

2 b∗←$A()

3 Return b∗ = b

New-Ro$-Eval(x):

4 u++

5 sku←$ KeyGen()

6 y1 ← Eval(sku, x)

7 y0←$ Y
8 sku ← Punc(sku, x)

9 Return (sku, yb)

Fig. 2. Left: Games defining real-or-$ (fpr-ro$, without the boxed Eval oracle) and
real-and-real-or-$ (fpr-rro$, with A having access to Eval) forward pseudorandomness.
Right: Game defining one-time forward pseudorandomness (fpr-1ro$) PPRF security.
Grey code prevents trivial attacks.

Our second, stronger notion, forward pseudorandomness with real evaluations
(fpr-rro$), in addition gives the adversary access to a real evaluation oracle
(Eval), capturing that real evaluations do not help distinguishing challenge
outputs (even post-corruption).

In our third, weaker notion, single-challenge forward pseudorandomness (fpr-
1ro$), the adversary only gets a single challenge evaluation under each key. The
challenge is obtained from oracle New-Ro$-Eval, which on input a domain
point x returns either the real function evaluation of x under the (unpunctured)
secret key (in the “real” world), or a string drawn u.a.r. from Y (in the “ideal”
world). Additionally the adversary obtains the secret key punctured on x. As
usual, the adversary wins if it can distinguish the real world from the ideal one.

Definition 3 (PPRF security (fpr-ro$, fpr-rro$, fpr-1ro$)). Let PPRF be
a puncturable pseudorandom function. We define the advantage of an adversary
A against the forward pseudorandomness X ∈ {fpr-ro$, fpr-rro$, fpr-1ro$} of
PPRF as AdvX

PPRF(A) = 2
∣∣Pr
[
GX

PPRF(A)⇒ true
]
− 1

2

∣∣, where game GX
PPRF(A)

is given in Figure 2.

Comparison to prior work. Our PPRF notions resemble those in prior work, but
also differ in several ways. For example, fpr-1ro$ is similar to the non-adaptive
notion in [48,2], but restricted to a single challenge. Through a multi-key hybrid
argument [6], their notion implies ours. The adaptive “rand” notion of [2] most

10 Matilda Backendal, Felix Günther, and Kenneth G. Paterson

closely corresponds to our fpr-rro$ notion, but our notion provides the adver-
sary with more flexibility by both allowing multiple real-or-random challenge
evaluations under each key (compared to a single evaluation under the single
key in [2]) and giving it access both to a separate puncturing oracle (the rand
experiment only punctures on the single challenge point) and corruption oracle,
thereby allowing multiple key compromises of keys punctured on points chosen
by the adversary. Our middle notion fpr-ro$ is, to the best of our knowledge,
new.

PPRF relations. Figure 1 (on page 3) shows the relations between our PPRF
security notions. The trivial implications (dotted lines) immediately arise from
restricting the adversary. As an example, fpr-rro$ implies fpr-ro$ because an
adversary against the fpr-rro$ security can simply ignore the Eval-oracle. Sim-
ilarly fpr-ro$ implies fpr-1ro$.

In the other direction, fpr-1ro$ implies fpr-ro$ for any puncture-invariant
PPRF PPRF. That is, for any adversary A against the fpr-ro$ security of PPRF,
there exists an adversary B running in approximately the same time as A such
that Advfpr-ro$

PPRF (A) ≤ qro$ · Advfpr-1ro$
PPRF (B), via a standard hybrid argument,

where puncture invariance ensures that reorderings of punctures do not affect
simulation of the later-corrupted secret key.

Via a non-tight reduction, we can also show that fpr-ro$ implies fpr-rro$ for
a puncture-invariant PPRF. This is again via a hybrid argument, which however
now involves guessing the input to the challenge query Ro$-Eval under each key
(so-called complexity leveraging [13,17]), resulting in reduction loss proportional
to the size of the PPRF domain.

Instantiations from the literature. One, by now folklore, way of building a PPRF
is to use the GGM PRF construction via a tree of pseudorandom-generator
(PRG) evaluations [29], extended with a puncturing algorithm, as first noted
by [13,17,36]. The core idea to enable puncturing on a domain point x in a
GGM PRF is to update the secret key, removing nodes on the path to x in
the PRG tree and adding all nodes on the co-path from the root to x. For
a more in-depth description and argument of security we refer to [2,36]. Note
that the GGM-based construction is correct and puncture invariant, and hence,
via our established relations, yields an fpr-ro$-secure PPRF. Additionally, for
this specific construction, adaptive security can be achieved with a loss factor
that is only quasi-polynomial in the input length, improving greatly over the
exponential loss of complexity leveraging [28]. An alternative construction for a
PPRF with security based on the Strong RSA assumption can be found in [2].

3 Puncturable Key Wrapping

We now present our core cryptographic primitive, puncturable key wrapping
(PKW). With puncturable key wrapping, we merge the notion of key wrap-
ping, originally extensively studied by Rogaway and Shrimpton [47], with tag-
based puncturable encryption [31], adapted to the symmetric setting, to capture

Puncturable Key Wrapping and Its Applications 11

forward security through puncturing. Puncturable key wrapping, beyond the
key K to be wrapped, hence takes a tag T used as a pointer for puncturing,
as well as optional associated header data H which is authenticated along with
the wrapped key (akin to associated data in AEAD). In the following, we give
syntax, security, and further notions for this new primitive.

Definition 4 (PKW scheme). A puncturable key-wrapping scheme PKW =
(KeyGen,Wrap,Unwrap,Punc) is a 4-tuple of algorithms with four associated sets;
the secret-key space SK, the tag space T , the header space H and the wrap-key
space K. Associated to the scheme is a ciphertext-length function cl : N→ N.

– Via sk←$ KeyGen(), the probabilistic key generation algorithm KeyGen, tak-
ing no input, outputs a secret key sk ∈ SK.

– Via C/⊥ ← Wrap(sk,T,H ,K), the deterministic wrapping algorithm Wrap
on input a secret key sk ∈ SK, a tag T ∈ T , a header H ∈ H and a key
K ∈ K outputs a ciphertext C ∈ {0, 1}cl(|K|) or, to indicate failure, ⊥.

– Via K/⊥ ← Unwrap(sk,T,H ,C), the deterministic unwrapping algorithm
Unwrap on input a secret key sk ∈ SK, a tag T ∈ T , a header H ∈ H and a
ciphertext C ∈ {0, 1}∗ returns a key K ∈ K or, to indicate failure, ⊥.

– Via sk′ ← Punc(sk,T), the deterministic puncturing algorithm Punc on in-
put a secret key sk ∈ SK and a tag T ∈ T returns a potentially updated
secret key sk′ ∈ SK.

Correctness of a PKW scheme intuitively demands that a wrapped key can be
recovered from its wrapping ciphertext unless the secret key has been punctured on
the tag used for the wrapping step, i.e., even if the secret key has been punctured
on other tags. Formally, we require that for all T ∈ T , H ∈ H, K ∈ K, and all
tuples T̄1, T̄2 ∈ T ∗ where T /∈ T̄1 and T /∈ T̄2,

Pr
[
Unwrap(sk\T̄1

,T,H ,Wrap(sk\T̄2
,T,H ,K)) = K | sk←$ KeyGen()

]
= 1.

Here sk\(T1,T2,...,Tn) = Punc(. . . (Punc(Punc(sk,T1),T2), . . .),Tn) is shorthand
for the secret key obtained via puncturing sk in order on T1, . . . ,Tn ∈ T .

Analogously to Definition 2 for PPRFs, we also define puncture invariance
for PKW schemes, demanding that the order of punctures does not affect the
resulting secret key.

Definition 5 (PKW puncture invariance). A puncturable key-wrapping scheme
PKW = (KeyGen,Wrap,Unwrap,Punc) is puncture invariant if for all keys sk ∈
SK and all tags T0,T1 ∈ T it holds that

Punc(Punc(sk,T0),T1) = Punc(Punc(sk,T1),T0).

Additionally, we introduce a property of PKW schemes which we call con-
sistency, inspired by the definition of consistent puncturable signature schemes
in [9]. A consistent PKW scheme is one for which the output of algorithm Wrap
only depends on the tag, header and wrap-key input, and not on the (puncturing)
state of the secret key—except for when the output is ⊥ due to puncturing.

12 Matilda Backendal, Felix Günther, and Kenneth G. Paterson

Game Gfind$-cpa
PKW (A), Gfind$-rcpa

PKW (A) :

1 b←$ {0, 1}; u← 0

2 b∗←$A()

3 Return b∗ = b

New():

4 u++

5 sku←$ KeyGen()

6 SPT,u,S$T,u,ST,u ← ∅
7 corru ← false

Wrap(i,T,H ,K):

8 If T∈ST,i then return⊥
9 C ←Wrap(ski,T,H ,K)

10 ST,i
∪←− {T}

11 Return C

Ro$-Wrap(i,T,H ,K):

12 If T ∈ ST,i or corri:

13 Return ⊥
14 C1 ←Wrap(ski,T,H ,K)

15 If C1 = ⊥ then return ⊥
16 C0←$ {0, 1}cl(|K|)

17 S$T,i
∪←− {T}; ST,i

∪←− {T}
18 Return Cb

Corr(i):

19 If S$T,i*SPT,i:

20 Return ⊥
21 corri ← true

22 Return ski

Punc(i,T):

23 ski ← Punc(ski,T)

24 SPT,i
∪←− {T}

Game Gfind$-1cpa
PKW (A):

1 b←$ {0, 1}; u← 0

2 b∗←$A()

3 Return b∗ = b

New-Ro$-Wrap(T,H ,K):

4 u++

5 sku←$ KeyGen()

6 C1 ←Wrap(sku,T,H ,K)

7 C0←$ {0, 1}cl(|K|)

8 sku ← Punc(sku,T)

9 Return (sku,Cb)

Fig. 3. Left and middle: Forward security and privacy find$-cpa (without access to
the boxed Wrap oracle) / find$-rcpa (with access to Wrap) of a puncturable key-
wrapping scheme PKW. Right: One-time privacy and forward security find$-1cpa se-
curity of a puncturable key-wrapping scheme PKW.
Grey code prevents trivial attacks and ensures that unique tags are used for wrapping.

Definition 6 (PKW consistency). A puncturable key wrapping scheme PKW =
(KeyGen,Wrap,Unwrap,Punc) is consistent if for all keys K ∈ K, all headers
H ∈ H, all tags (T1, . . . ,Tn) ∈ T ∗ and all T ∈ T \ {T1, . . . ,Tn} it holds that

Pr
[
Wrap(sk,T,H ,K) = Wrap(sk\(T1,...,Tn),T,H ,K) | sk←$ KeyGen()

]
= 1.

Puncture invariance and consistency guarantee a kind of indifference of the
PKW scheme with respect to puncturing, allowing sequences of punctures and
wrappings to be flexibly reordered without affecting the scheme’s future behav-
ior. As we shall see, these properties are important to consider when deploying
PKW schemes in, and proving the security of, higher-level applications.

3.1 PKW Security

Confidentiality. Following Rogaway and Shrimpton [47], we adopt indistinguisha-
bility from random bits (ind$) as the appropriate notion to model confidentiality
for (puncturable) key-wrapping schemes. Our three confidentiality notions, for-
malized in Figure 3, capture forward security in the sense that the confidentiality
guarantees hold also after compromise of the secret key, given that it has been

Puncturable Key Wrapping and Its Applications 13

appropriately punctured prior to corruption to avoid trivial wins. As before, they
are all in the multi-key (or multi-user) setting [6].2

Our first security notion, which we call find$-cpa, can be viewed as a form
of ind$-cpa security adapted to the PKW setting. The adversary is given access
to a challenge wrapping oracle Ro$-Wrap, which on input a key index i, a
tag T, a header H and a key K chosen by the adversary, returns either an
honest wrapping of K under secret key ski, or a random bit-string of length
cl(|K |). Forward security is captured via a corruption oracle Corr which allows
the adversary to compromise the current version of a secret key ski, given that
all tags used in challenge queries under ski must be punctured on at the time of
corruption (via the puncturing oracle Punc). Focusing on fine-grained forward
security, we restrict the adversary to use tags only once for wrapping and call this
behavior tag-respecting (akin to a nonce-respecting adversary in authenticated
encryption); this enables puncturing of individual ciphertexts.3

Guided by the envisioned usage of puncturable key-wrapping schemes, our
second, stronger confidentiality notion, find$-rcpa, additionally gives the adver-
sary access to real wrappings that it does not have to puncture on via an ad-
ditional oracle Wrap. The rationale behind the notion is that although find$-
cpa provides forward security for all wrapped keys which have been punctured
on at the time of compromise, it does not capture the potential leakage from
unpunctured ciphertexts which the adversary gains insight into by corrupting.
That is, we would like to ensure that there is a form of independence across key
wrappings produced with distinct tags. This is motivated by what we believe
to be realistic attack scenarios for applications which use a PKW scheme for
key management—such as our protected file storage system (to be defined in
Section 5). In such a system, normal usage implies the existence of some un-
punctured ciphertexts (corresponding to non-shredded files) at any given time,
and hence in particular at the time of a key compromise. The idea of find$-
rcpa security is that compromising ciphertexts generated with tags that have
not been punctured on, should not give the adversary a higher advantage in
distinguishing challenge ciphertexts from random bits.

Lastly, we also introduce a one-time security notion, find$-1cpa, which only
provides the adversary with one challenge output and the punctured secret key,
per key. As we will see, together with puncture invariance and consistency, find$-
1cpa turns out to be sufficiently strong to achieve full security in the applications
we are interested in.

2 To focus on forward security, we separate confidentiality (with forward security) and
integrity (below) into distinct notions, contrasting with the combined notion in [47].
We give a combined notion in the full version [5], also capturing CCA-style active
attacks, and show that it is equivalent to the junction of our separate notions.

3 We note that a stronger formalization is possible where tag reuse is allowed: by stor-
ing and checking the whole tuple (T,H ,K) in the sets ST,i instead of only T, one can
demand wraps to look random except when this is impossible due to entirely repeat-
ing inputs. This could cater to applications interested in “batch puncturing” [31],
i.e., revoking access to multiple wrapped keys via a single puncturing call. Such
stronger notions would also require stronger building blocks, as we will see below.

14 Matilda Backendal, Felix Günther, and Kenneth G. Paterson

Game Gint-ctxt
PKW (A):

1 win← false; u← 0

2 A()

3 Return win

New():

4 u++; sku←$ KeyGen()

5 STHC,u,ST,u,SPT,u ← ∅

Punc(i,T):

6 ski ← Punc(ski,T)

7 SPT,i
∪←− {T}

Wrap(i,T,H ,K):

8 If T ∈ ST,i then return ⊥
9 C ←Wrap(ski,T,H ,K)

10 If C = ⊥ then return ⊥
11 STHC,i

∪←− {(T,H ,C)}; ST,i
∪←− {T}

12 Return C

Unwrap(i,T,H ,C):

13 K ← Unwrap(ski,T,H ,C)

14 If K 6= ⊥ and ((T,H ,C) /∈ STHC,i or T ∈ SPT,i):

15 win← true

16 Return K

Fig. 4. Integrity of ciphertexts of a puncturable key-wrapping scheme PKW. Grey code
prevents trivial attacks and ensures that tags are not repeated in wrap queries.

Definition 7 (PKW confidentiality (find$-cpa, find$-rcpa, find$-1cpa)).
Let PKW be a puncturable key-wrapping scheme. We define the advantage of an
adversary A against the forward indistinguishability X ∈ {find$-cpa, find$-rcpa,
find$-1cpa} of PKW as AdvX

PKW(A) = 2
∣∣Pr
[
GX

PKW(A)⇒ true
]
− 1

2

∣∣, where
GX

PKW(A) is defined in Figure 3.

Integrity. In addition to the confidentiality notions we also define (multi-key) in-
tegrity of ciphertexts (int-ctxt) for PKW schemes as shown in Figure 4. Here, the
adversary is given oracle access to wrapping (Wrap), unwrapping (Unwrap),
and puncturing (Punc). Its goal is to forge a ciphertext (together with a tag and
a header) that was not output by Wrap, or for which the tag was punctured
on via Punc, and that unwraps to something other than the error symbol ⊥.
Note that we particularly treat ciphertexts under punctured tags as valid forgery
attempts, even if previously output by Wrap. This ensures that after punctur-
ing on a tag, no ciphertext with that tag will be accepted any more, which is
sometimes referred to as replay protection.

Definition 8 (PKW integrity (int-ctxt)). Let PKW be a puncturable key-
wrapping scheme. We define the advantage of an adversary A against the in-
tegrity of ciphertexts of PKW as Advint-ctxt

PKW (A) = Pr
[
Gint-ctxt

PKW (A)⇒ true
]
,

where Gint-ctxt
PKW (A) is defined in Figure 4.

Notably, in the integrity setting, forging a valid ciphertext becomes trivial if
one would allow the adversary to compromise the secret key. Forward security
hence seems to only make sense in scenarios where two copies of the key are
available simultaneously, one “more punctured” than the other. The challenge
then would be to forge a ciphertext on a punctured tag T using access to the
compromised, more punctured key, such that the ciphertext unwraps under the
less punctured key (which has not been punctured on T). This could be inter-
esting, e.g., in a setting where punctured keys are distributed across servers. We
leave extending puncturing to the distributed setting as future work.

Puncturable Key Wrapping and Its Applications 15

Relations between PKW notions. We briefly explain how the PKW confidential-
ity notions are related. See Figure 1 for an overview of all security notions and
their relations, and the full version [5] for details and proofs. Beginning from
strong to weak: the trivial implications (dotted arrows) arise directly from re-
stricting the adversary. As an example, find$-rcpa implies find$-cpa because an
adversary against the find$-rcpa security can simply ignore the Wrap-oracle.

In the opposite direction the relations are more complex. Generally, find$-
1cpa does not imply find$-cpa. Showing the separation is straightforward: Mod-
ify any find$-1cpa secure scheme so that Wrap outputs a fixed string when
receiving an already-punctured tag as input. This makes challenge wraps on
punctured tags—which are available in the find$-cpa game, but not in find$-
1cpa—easily distinguishable. In contrast, for the special case of a PKW scheme
that is puncture invariant and consistent, and additionally for which attempting
to wrap using a punctured tag always results in ⊥ (i.e., Wrap(sk\T̄ ,T, ·, ·) = ⊥
if T ∈ T̄ ⊆ PKW.T)4, find$-1cpa implies find$-cpa via a hybrid argument.

Lastly, assuming a (forward) secure source of pseudorandomness, such as a
fpr-ro$ secure PPRF, find$-rcpa is strictly stronger than find$-cpa. The separa-
tion relies on the fact that in the find$-cpa game, an adversary must puncture
on all tags which have been used for wrapping before compromising the secret
key; a restriction which is not imposed on tags queried to oracle Wrap in the
find$-rcpa game. This can be used to construct a scheme which leaks a copy
of the original, unpunctured secret key when punctured only once on a hidden,
special tag T̂, which can only be learned by wrapping under a different, fixed
and publicly known tag T0. Tag T̂ is accessible to an adversary in the find$-
rcpa game via oracle Wrap, but not to a find$-cpa adversary. The latter can
learn T̂ only through a Ro$-Wrap call on T0, forcing it to also puncture on T0

and thereby destroying the key copy.

3.2 Instantiating PKW from PPRF and AEAD

Next, we give a generic construction of a PKW scheme, formalized in Fig-
ure 5. The construction uses an authenticated encryption scheme with associated
data AEAD to encrypt (wrap) keys, using a new AEAD key together with a fixed
nonce N0 for each key-wrap. The keys of AEAD are generated by a pseudoran-
dom function PPRF on input the wrap tag, the key of which is the secret key of
the PKW scheme. This allows AEAD keys to be “forgotten” via puncturing the
PPRF key, thereby rendering the key-wrap ciphertexts unrecoverable. The con-
struction is inspired by, and re-captures, the generic construction of a “0-RTT
session resumption protocol” by Aviram, Gellert, and Jager [2], with the differ-
ence that we use a nonce-based AEAD scheme, following practically deployed
schemes like AES-GCM or ChaCha20-Poly1305, rather than a probabilistic one.

The only technical requirement for our construction is that the range of PPRF
matches the key space of AEAD. The key space of the resulting PKW scheme is

4 The last assumption is necessary for the reduction to simulate a Ro$-Wrap challenge
query on an already punctured tag in the find$-cpa game.

16 Matilda Backendal, Felix Günther, and Kenneth G. Paterson

PKW[PPRF,AEAD]:

KeyGen():

1 Return PPRF.KeyGen()

Wrap(skp,T,H ,K):

2 ska ← PPRF.Eval(skp,T)

3 C ← AEAD.Enc(ska,N0,H ,K)

4 Return C

Unwrap(skp,T,H ,C):

5 ska ← PPRF.Eval(skp,T)

6 K ← AEAD.Dec(ska,N0,H ,C)

7 Return K

Punc(skp,T):

8 sk′p ← PPRF.Punc(skp,T)

9 Return sk′p

Fig. 5. The PKW[PPRF,AEAD] instantiation of a puncturable key-wrapping scheme
based on a puncturable pseudorandom function PPRF and a nonce-based AEAD
scheme AEAD (with N0 a fixed nonce in the nonce space of AEAD).

the key space of PPRF, the tag space the PPRF domain, the header space the
associated data space of AEAD, and the wrap-key space the message space of
AEAD. The ciphertext-length function cl for PKW is that of AEAD.

Our construction PKW[PPRF,AEAD] achieves puncture invariance and con-
sistency (given PPRF is puncture invariant), all levels of forward indistinguisha-
bility (find$-cpa, find$-rcpa, and find$-1cpa) given AEAD ind$-cpa security and
the corresponding strength (fpr-ro$, fpr-rro$, resp. fpr-1ro$) of the underlying
PPRF security, as well as integrity of ciphertexts (given PPRF fpr-ro$ security
and AEAD int-ctxt security). For space reasons, we only give security statements
for find$-cpa forward indistinguishability and integrity here, deferring the details
of the other results to the full version [5].

Theorem 9 (PKW[PPRF,AEAD] is find$-cpa secure). Let PKW[PPRF,AEAD]
be the PKW scheme in Figure 5. For every adversary A against the find$-cpa-
security of PKW[PPRF,AEAD] making at most qn, qro$, qcorr and qp queries
to oracles New, Ro$-Wrap, Corr and Punc, respectively, there exists adver-
saries Bpprf and Baead running in approximately the same time as A such that

Advfind$-cpa
PKW[PPRF,AEAD](A) ≤ 2 ·Advfpr-ro$

PPRF (Bpprf) + Advind$-cpa
AEAD (Baead).

Adversary Bpprf makes at most qn, qro$, qcorr , and qp queries to oracles New,
Ro$-Eval, Corr, resp. Punc. Adversary Baead makes at most qro$ queries to
oracles New and Ro$.

Proof. We first leverage the fpr-ro$ security of PPRF to replace the AEAD keys
by random ones, then in a second step apply ind$-cpa security of AEAD to
argue that wrapped PKW[PPRF,AEAD] ciphertexts are indistinguishable from
random. The first step consists of a game hop from the original find$-cpa game,
abbreviated G0, to a game G1 which replaces the outputs of PPRF by random
AEAD keys in the implementation of oracle Ro$-Wrap. We bound the differ-
ence |Pr [G0]− Pr [G1]| by the distinguishing advantage of an adversary Bpprf
against the fpr-ro$ security of PPRF (cf. Definition 3).

Adversary Bpprf draws a random bit b′ and acts as the challenger in game
G0. When b′ = 1 adversary Bpprf simulates the “real world” in the PKW game,

Puncturable Key Wrapping and Its Applications 17

wrapping the keys output by adversaryA. When b′ = 0, adversary Bpprf simulates
the “random world” and returns random strings in the ciphertext space of the
AEAD scheme in response to challenge queries from A. Finally, when adversary
A halts and outputs bit b∗A, adversary Bpprf returns 1 if b∗A = b′ and 0 otherwise.

Let b denote the random bit drawn by the challenger in the fpr-ro$ game.
When b = 1, adversary Bpprf simulates game G0 for A. When b = 0, the simula-

tion corresponds to game G1. This gives Advfpr-ro$
PPRF (Bpprf) = |Pr [G0]− Pr [G1]| .

It remains to bound Pr [G1(A)]. A straightforward reduction to the multi-

key ind$-cpa security of AEAD gives Pr
[

Gind$-cpa
AEAD (Baead)

]
= Pr [G1(A)] for an

adversary Baead which simulates game G1 for adversary A. Adversary Baead acts
as the challenger in the game, except for when adversary A makes a query to
oracle Ro$-Wrap. To respond to such a query Ro$-Wrap(j,T,H ,K), Baead
first queries oracle New to initiate a new AEAD key. Additionally it increments
an internal key counter i by one. It then issues a (single) query Ro$(i,N0,H ,K),
requesting the challenge to be under the new key. The assumption that adversary
A is tag-respecting ensures that this is a sound simulation.

Note that for all our forward indistinguishability results, one-time multi-user
AEAD security suffices, since the uniqueness of tags means that each AEAD en-
cryption is performed under a new key. If we wanted to allow tag-reuse to enable
batch puncturing (cf. Footnote 3), our PKW[PPRF,AEAD] scheme would need to
be instantiated with a misuse-resistant AEAD scheme [47] to achieve find$-cpa
security. Interestingly, this straightforward modification is insufficient for find$-
rcpa security: the reuse of tags across real and challenge wrap queries creates a
key commitment problem which breaks the reduction. This could potentially be
addressed in an idealized model, cf. [35], but we leave this to future work.

Theorem 10 (PKW[PPRF,AEAD] is int-ctxt secure). Let PKW[PPRF,AEAD]
be the PKW scheme in Figure 5. For every adversary A against the int-ctxt-
security of PKW[PPRF,AEAD] (Def. 8) making at most qw , qu, qp and qn to
oracles Wrap, Unwrap, Punc and New, respectively, there exists adversaries
Baead and Bpprf running in approximately the same time as A such that

Advint-ctxt
PKW[PPRF,AEAD](A) ≤ Advfpr-ro$

PPRF (Bpprf) + Advint-ctxt
AEAD (Baead).

Adversary Bpprf makes at most qw +qu, qp, and qn queries to oracles Ro$-Eval,
Punc, resp. New. Adversary Baead makes at most qw + qu, qw , and qu queries
to oracles New, Enc, resp. Dec.

Proof. We first apply the fpr-ro$ security of PPRF to replace all AEAD keys
by (consistent) random strings, denoting the original game as G0 and the mod-
ified one as G1. Somewhat similarly to the first step in the proof of Theo-
rem 9, a reduction Bpprf can bound the introduced difference as |Pr [G0(A)] −
Pr [G1(A)] | = Advfpr-ro$

PPRF (Bpprf). Here, Bpprf uses its challenge oracle Ro$-Eval
to request AEAD keys upon wrapping and unwrapping, and directly relays New
and Punc query from A to its own corresponding oracles. When A halts, Bpprf
checks and outputs 1 iff A produced a valid forgery; this yields the first bound.

18 Matilda Backendal, Felix Günther, and Kenneth G. Paterson

The second part of the proof now leverages the independent random AEAD
keys to reduce a forgery of A in G1 to an AEAD multi-key integrity forgery
via the following adversary Baead. Adversary Baead simulates G1 using its oracles
Enc and Dec to wrap, resp. unwrap. Each time A makes a wrap or unwrap
query under a new pair (i,T), Baead employs a new key index j in the int-ctxt
game which it tracks via some table T[i,T] = j. To track puncturing on (i,T),
Baead sets T[i,T] = ⊥ and responds with ⊥ to any subsequent Wrap/Unwrap
calls on (i,T). This way, Baead perfectly simulates game G1 for A. Additionally,
Baead wins game Gint-ctxt

AEAD precisely when adversary A submits a valid forgery
in G1, as the latter means A unwraps a not previously output ciphertext under
a non-punctured key (as otherwise that key was set to T[i,T] = ⊥, yielding ⊥
upon unwrapping), which translates to an AEAD forgery in Baead’s Dec call.
This completes the bound, as now Advint-ctxt

AEAD (Baead) ≥ Pr [G1(A)⇒ true].

4 TLS Ticketing

We now turn our attention to applications and begin with the Transport Layer
Security (TLS) protocol. We show how the ticketing approach taken in its re-
sumption handshake protocol can be instantiated with a PKW scheme, increas-
ing forward security of resumed sessions. A TLS connection between clients and
servers begins with the establishment of a shared symmetric key through a so
called handshake. For repeated connections, TLS offers a resumption handshake
mode with better performance, which bootstraps security from a pre-shared key
(PSK) established in a prior full handshake.

In order to enable a resumption handshake, the so-called “resumption master
secret” RMS is derived in a TLS 1.3 handshake and then used to derive (usually
multiple) pre-shared keys for later resumptions. For each such pre-shared key,
the TLS 1.3 server sends the client a unique nonce NT , and both derive the pre-
shared key as PSK← HKDF.Expand(RMS, "tls13 resumption"‖NT) using the
HKDF key derivation function [38]. The client will store all PSKs established,
but the server may outsource this storage to the client, e.g., by encrypting PSK
under a long-term symmetric key, the so-called Session Ticket Encryption Key
(STEK), and sending the resulting ciphertext (as the PSK identifier) to the
client. This process of outsourcing the server-side resumption state to the client
is commonly referred to as ticketing [49], and the identifier hence called a ticket.

One issue with TLS ticketing is that the tickets are generally not forward
secret: if an attacker compromises the STEK, it will be able to recover the PSKs
encrypted in prior resumption handshakes, thereby compromising the security
of the concerned sessions. While TLS 1.3 allows for ephemeral Diffie–Hellman
secrets to be mixed into the key derivation, the so-called “early” or “zero round-
trip time” (0-RTT) data that a client can send immediately does not enjoy this
protection, and hence would be exposed if the PSK were to be compromised.

Aviram, Gellert, and Jager (AGJ) [2] recently proposed an approach to
achieve forward-secure session ticketing, giving forward security even for 0-RTT
data, through what they call “session resumption protocols.” In this section we

Puncturable Key Wrapping and Its Applications 19

Client Server(holds ticketing key sk)prior full handshake

. . . establish RMS . . . establish RMS
pick unique NT

PSK← HKDF.Expand(RMS, "tls13 resumption"‖NT)

T←$ PKW.T
C ← PKW.Wrap(sk,T, ε,PSK)

ticket← (T,C)T
ic
ke
tG

en

NewSessionTicket : NT , ticket, . . .
(sent TLS-encrypted)

PSK← HKDF.Expand(RMS, "tls13 resumption"‖NT)

store (ticket : PSK) for resumption

PSK resumption handshake
(holds ticket, PSK) (holds sk)

ClientHello : ticket, . . .

(T,C)← ticket

PSK← PKW.Unwrap(sk,T, ε,C)

sk ← PKW.Punc(sk,T)S
er
ve
rR

es

use PSK for handshake . . . use PSK for handshake . . .

Fig. 6. Forward-secure TLS 1.3 0-RTT pre-shared key (PSK) resumption handshake
using a puncturable key-wrapping scheme PKW (bottom part), based on a session
ticket generated by the server and stored by the client in a prior full handshake (upper
part, in gray). The boxed sections can be read as the PKW-based instantiation of
a session resumption protocol [2], with tag sampling and wrapping corresponding to
ticket generation (TicketGen) and unwrapping and puncturing corresponding to session
resumption (ServerRes); the PKW key sk plays the role of the STEK.

revisit their approach and show how their session resumption mechanism can
be viewed more simply through the lens of puncturable key wrapping: First of
all, their construction is mimicked by our instantiation PKW[PPRF,AEAD] of a
PKW from a puncturable PRF and an AEAD scheme, when tags are chosen (and
sent as part of the TLS ticket) as counters. More importantly, capturing TLS
ticketing through the PKW scheme PKW[PPRF,AEAD] allows us to seamlessly
switch to a more privacy-friendly variant: by choosing the tags as random val-
ues, we make the entire TLS ticket random-looking. This avoids the potentially
traceable counter element in the AGJ [2] ticketing proposal, thereby addressing
privacy concerns for TLS ticketing, e.g., regarding tracking users on the web by
passive network observers (see [53] for a broader discussion).

When rephrasing the AGJ integration of a session resumption protocol into
the TLS 1.3 resumption handshake [2, Section 4.2, 4.3] as puncturable key
wrapping, we found conceptual and technical issues in their proposed proto-
col, the security model, and the proof. These prevent their proposal from being
(forward-)secure as-is. We rectify this situation through the following corrections:

1. Ticketing the right key. In AGJ, the TLS 1.3 resumption master secret RMS
is encrypted in the session ticket(s). However, RMS is used to derive multiple
pre-shared keys PSK for resumption. Ticketing RMS thus violates the goal
of forward security: an adversary learning RMS from one ticket can use that
value to decrypt prior sessions using a PSK derived from the same RMS.

20 Matilda Backendal, Felix Günther, and Kenneth G. Paterson

In our protocol integration (cf. Figure 6), we instead ticket PSK, not RMS,
following the TLS 1.3 RFC [45, Section 4.6.1].

2. Accurately modeling tickets and corruption. The security model in AGJ does
not reflect the ticketing mechanism of a key exchange protocol in how pre-
shared secrets are sampled, registered with parties, and possibly corrupted.
This leads to their model, strictly speaking, being unable to capture the
ticketing mechanism of TLS resumption.5 Only allowing server-side corrup-
tions, their model also fails to capture that an adversary might compromise
pre-shared secrets stored by clients.
In our security model, we integrate the protocol’s ticketing mechanism and
allow the adversary to corrupt both the ticketing mechanism keys of servers,
as well as stored secrets of clients.

3. Rectifying proof steps. The security proof for the protocol integration of
AGJ [2, Theorem 4] only uses part of the power of their session resumption
primitive (i.e., a single challenge where their primitive provides many), and
also misses some preliminary steps (esp. the necessity of puncture invariance
and consistency, which our PKW formalism brings to light).
In our proof, we add these missing steps and show that reducing to the
weaker one-time PKW security suffices for our integration.

4. Making underlying assumptions precise. The AGJ proof makes two unde-
fined assumptions on the underlying session resumption resp. PPRF scheme.
Formally, this leads to an issue with the security proof of their construction,
which in turn enables a theoretical violation of the formal integrity claims
on their protocol.
Through our formalism for puncturable key wrapping and PPRFs, we make
the necessary assumptions (puncture invariance for PKW, resp. demand-
ing ⊥ output after puncturing for PPRFs) visible and explicit.

Overall, our exposition stays close to the approach by AGJ, focusing on the
necessary corrections. We see this not only as an illustration that puncturable
key wrapping is readily applicable to achieve forward-secure 0-RTT session re-
sumption, but also that this conceptual framework helps to avoid errors when
integrating puncturing techniques into more complex applications. For space
reasons, we defer the technical details of our integration of PKW-based ticket-
ing into TLS as well as the accompanying revised security model, proof, and
discussion of assumptions to the full version [5].

5 Protected File Storage

We now turn our focus to our second application, file storage, and show how
a PKW scheme can be used to provide (forward) security for remotely stored

5 E.g., when setting up new pre-shared keys, their model takes the identifier psid of
the key as an adversary-provided input, while psid in fact corresponds to the ticket
(honestly) output by the protocol’s ticketing mechanism. This means that their model
is actually unable to capture how tickets are generated by (honest) servers.

Puncturable Key Wrapping and Its Applications 21

sensitive data. To this end, we design a protected file storage (PFS) system, which
provides an interface for local encryption, decryption, and secure file shredding to
a privacy-concerned user. The system is inspired by the internals of existing cloud
storage services, but the final primitive is oblivious to the actual relationship
between data owner and storage provider: in a PFS system, all trust lies with
the holder of the secret key. This means that our system can cater both to users
who wish to maintain control over the security of their data while offloading
storage, and to storage providers who perform data encryption as a service.

The PFS interface is aimed at the former case, and hence hides internals
of the system such as the key hierarchy to minimize the risk of involuntary
misuse by an end user. However, it is still designed to support commonplace
attributes of cloud storage systems, such as functionality for key rotation, as
well as additionally providing fine-grained forward security for deleted files. This
makes our approach conformable for use also by cloud service providers who wish
to enhance the security guarantees in their existing systems.

5.1 PFS Syntax

We envision a PFS system to be utilized by a user who holds a set of (plaintext)
files that they wish to protect and outsource the storage of. The user generates
a local secret key sk via the setup algorithm Setup(). They can then encrypt
and decrypt files via algorithms EncFile and DecFile, where encrypted files are
associated with an identifier id, a header h, and a ciphertext C , of which the user
stores h and C under the “filename” id at the storage service. (The user may
keep a local look-up table mapping human-readable filenames to identifiers id,
or decide to offload this table as yet another protected file to the storage service,
too. In the latter case, the user only needs to store the identifier of the mapping
file.) To shred a file, it suffices to locally run the algorithm ShredFile(sk, id) on
the file identifier to be shredded. This will ensure that the corresponding file is
irrecoverable (forward secure) from this point on; remote deletion at the service
provider is not required to ensure its forward security. Finally, a user may rotate
its secret key (e.g., for regulatory purposes or to refresh the key once its usage
limit has been reached), which is done through calling a RotKey algorithm, taking
the current list of file identifiers and headers as input and updating them with
new headers to be replaced at the storage provider.

Definition 11 (PFS scheme). A protected file storage scheme PFS = (Setup,
EncFile,DecFile,ShredFile,RotKey) is a 5-tuple of algorithms with four associated
sets; the secret key space SK, the file space F , the file identifier space I, and the
header space H. Associated to the PFS is a ciphertext-length function cl : N→ N.

– Via sk←$ Setup(), the probabilistic setup algorithm Setup, taking no input,
produces a secret key sk ∈ SK.

– Via (id,h,C)/⊥←$ EncFile(sk,F), the randomized file encryption algorithm
EncFile on input the secret key sk ∈ SK and a plaintext file F ∈ F produces
a file identifier id ∈ I, a header h ∈ H and a ciphertext C ∈ {0, 1}cl(|F|) or,
to indicate failure, ⊥.

22 Matilda Backendal, Felix Günther, and Kenneth G. Paterson

– Via F/⊥ ← DecFile(sk, id,h,C), the deterministic file decryption algorithm
DecFile on input the key sk ∈ SK, a file header h ∈ H, and a ciphertext
C ∈ {0, 1}∗ returns a file plaintext F ∈ F or, to indicate failure, ⊥.

– Via sk′ ← ShredFile(sk, id), the deterministic file shredding algorithm ShredFile
on input the secret key sk ∈ SK and a file identifier id ∈ I returns the up-
dated secret key sk′ ∈ SK.

– Via (sk′, (h′1, . . . ,h
′
`))/(sk′,⊥)←$ RotKey(sk, ((id1,h1), . . . , (id`,h`))), the ran-

domized key-rotation algorithm RotKey on input the secret key sk ∈ SK and
a list of file identifier-header pairs (id1,h1), . . . , (id`,h`) ∈ (I ×H)∗ returns
the potentially updated secret key sk′ ∈ SK and a sequence of updated headers
(h′1, . . . ,h

′
`) ∈ H∗ or, to indicate failure, ⊥.

5.2 Confidentiality and Integrity of PFS

A protected file storage scheme should provide confidentiality of the stored files,
including their metadata (file identifiers and headers), as well as forward secu-
rity when files have been shredded. Additionally, key rotation should allow the
scheme to recover from corruption, ensuring security of newly encrypted files.

We capture this form of confidentiality through the notion of forward indis-
tinguishability from random bits under real and chosen-plaintext attack (find$-
rcpa). In the find$-rcpa security game, given in Figure 7, the adversary is asked
to distinguish real from random outputs of a challenge real or $ encryption or-
acle Ro$-Enc. We emphasize that indistinguishability here encompasses both
the file ciphertext and metadata (i.e., identifier and header), encoding a strong
form of privacy. The game further allows the adversary to shred files (via the
oracle Shred) and to rotate keys (via RotKey), leading to an update of the
headers of all non-shredded files. We encode forward security via a Corr oracle,
through which the adversary may ultimately learn the user’s current secret key,
provided that it shredded all challenge files (to prevent trivial distinguishing at-
tacks) and does not make further challenge queries on that key. Furthermore, we
allow new challenge queries after a successful key rotation, which captures secu-
rity being regained after key rotation in which the adversary remained passive, a
form of post-compromise security [21]. In order to capture potential leakage from
unshredded files in the system which a real-world adversary would gain access
to when corrupting a user’s secret key, the game additionally includes a real
encryption oracle Enc, which provides the adversary with honest encryptions of
plaintexts of its choice that do not need to be shredded prior to corruption.

Definition 12 (PFS confidentiality (find$-rcpa)). Let PFS be a protected

file storage scheme and Gfind$-rcpa
PFS be the game defined in Figure 7. We de-

fine the advantage of an adversary A against the find$-rcpa security of PFS as

Advfind$-rcpa
PFS (A) = 2

∣∣∣Pr
[

Gfind$-rcpa
PFS (A)⇒ true

]
− 1

2

∣∣∣.
We also define integrity (of ciphertexts) for a PFS scheme, via the game in

Figure 8. The adversary’s goal here is to come up with a file tuple (id,h,C)
that was not output by the encryption oracle Enc, or has been shredded (using

Puncturable Key Wrapping and Its Applications 23

Game Gfind$-rcpa
PFS (A):

1 b←$ {0, 1}; sk←$ Setup()

2 R← (); Q ← ()

3 S$id ← ∅; corr← false

4 b∗←$A()
5 Return b∗ = b

Ro$-Enc(F):

6 If corr=true then return ⊥
7 (id1,h1,C1)←$EncFile(sk,F)

8 If (id1, h1,C1) = ⊥:
9 Return ⊥

10 id0←$ I; h0←$H
11 C0←$ {0, 1}cl(|F|)

12 R+= (idb, hb)

13 S$id
∪←− {idb}

14 Return (idb,hb,Cb)

Enc(F):

15 (id, h,C)←$ EncFile(sk,F)

16 Q += (id, h)

17 Return (id,h,C)

Shred(id):

18 sk ← ShredFile(sk, id)

19 R−= (id, ∗); Q −= (id, ∗); S$id ← S$id \ {id}

RotKey():

20 ((id1, h1), . . . , (id|R|,h|R|))← R

21 ((id|R|+1, h|R|+1), . . . , (id|R|+|Q|,h|R|+|Q|))← Q

22 If b = 0:

23 For i = 1 to |R| do h′i←$H
24 (sk, (h′|R|+1

, . . . , h′|R|+|Q|))←$ RotKey(sk,Q)

25 If (h′|R|+1
, . . . ,h′|R|+|Q|) = ⊥ then return ⊥

26 If b = 1:

27 (sk, (h′1, . . . ,h
′
|R|+|Q|))←$ RotKey(sk,R‖Q)

28 If (h′1, . . . , h
′
|R|+|Q|) = ⊥ then return ⊥

29 R← ((id1, h′1), . . . , (id|R|, h
′
|R|))

30 Q ← ((id|R|+1, h
′
|R|+1

), . . . , (id|R|+|Q|, h
′
|R|+|Q|))

31 corr← false

32 Return R‖Q

Corr():

33 If S$id 6= ∅ then return ⊥
34 corr← true

35 Return sk

Fig. 7. Confidentiality and forward security (find$-rcpa) game for a protected file stor-
age scheme PFS. Grey code prevents trivial attacks. Lists R and Q keep track of file
identifiers and headers currently in the system for the sake of key rotation.

oracle Shred), yet successfully decrypts (in the decryption oracle Dec). The
game further provides access to a key rotation oracle RotKey; in contrast to the
find$-rcpa game, this is strengthened to take adversarially-chosen file identifiers
and headers as input. This captures that a malicious storage service might inject
forged identifiers and headers into a user’s storage or omit files from key rotation.

Definition 13 (PFS integrity (int-ctxt)). Let PFS be a protected file storage
scheme and Gint-ctxt

PFS be the game defined in Figure 8. We define the advantage

of an adversary A against the int-ctxt security of PFS as Advint-ctxt
PFS (A) =

Pr
[
Gint-ctxt

PFS (A)⇒ true
]
.

5.3 Instantiating PFS from PKW and AEAD

We now construct a generic PFS scheme PFS[PKW,AEAD] from a puncturable
key-wrapping scheme PKW, which will handle the key management, and an au-
thenticated encryption scheme with associated data AEAD, handling the actual
file encryption. The construction, formalized in Figure 9, works as follows.

24 Matilda Backendal, Felix Günther, and Kenneth G. Paterson

Game Gint-ctxt
PFS (A):

1 sk←$ Setup()

2 S ← ∅; win← false

3 A()
4 Return win

Enc(F):

5 (id,h,C)←$ EncFile(sk,F)

6 S ∪←− {(id,h,C)}
7 Return (id, h,C)

Dec(id, h,C):

8 F ← DecFile(sk, id, h,C)

9 If (id,h,C) /∈ S and F 6= ⊥:
10 win← true

11 Return F

Shred(id):

12 sk ← ShredFile(sk, id)

13 S ← S \ {(id, ∗, ∗)}

RotKey(((id1, h1), . . . , (id`, h`))):

14 (sk, (h′1, . . . , h
′
`))←$ RotKey(sk, ((id1,h1), . . . ,

(id`, h`)))

15 If (h′1, . . . ,h
′
`) = ⊥ then return ⊥

16 Snew ← ∅
17 For (id,h,C) ∈ S do:

18 If ∃i ∈ {1, . . . , `} s.t. (id, h) = (idi, hi):

19 Snew
∪←− {(idi, h

′
i,C)}

20 S ← Snew
21 Return ((id1, h′1), . . . , (id`, h

′
`))

Fig. 8. Integrity of ciphertexts game for a protected file storage scheme PFS. Grey
code prevents trivial attacks.

Setup generates a PKW key sk, which—for reference to cloud storage and its
key-wrapping functionality—we refer to as the key encryption key (KEK).

EncFile first samples an AEAD “data encryption key” (DEK) and a file identi-
fier id at random, and wraps DEK under the KEK into a file header h, using
id as tag.6 It then AEAD-encrypts the file plaintext under DEK and a ran-
dom7 nonce N into a ciphertext C ; N‖C constitutes the PFS file ciphertext.

DecFile inverts file encryption by first unwrapping the DEK from the header
and then using it to decrypt the file ciphertext.

ShredFile punctures the KEK sk on a file identifier id, using the PKW punc-
turing algorithm. This effectively prevents future unwrapping of the DEK
wrapped with tag id, and hence file decryptions of files with this identifier.

RotKey first unwraps the DEKs in all headers it is handed, then samples a fresh
KEK to re-wrap them. The PKW tags are re-used in this process, ensuring
that encrypted files keep their identifiers across key rotations.

For PFS[PKW,AEAD], we establish confidentiality in Theorems 14 and 15
(below) and integrity (in the full version [5]). Notably, our two confidentiality
results follow different paths: Theorem 14 employs weak one-time (find$-1cpa)
PKW security in a hybrid together with puncture invariance and consistency.
Theorem 15 in contrast shows our construction achieves the same goal in a tight
manner if the underlying PKW scheme meets the stronger find$-rcpa notion.

6 Our construction leaves the PKW header empty. In practice, this field may be used
to authenticate control data of the DEK, such as expiration date or permitted usage.

7 Our construction only uses a single AEAD nonce N per any one data encryption
key DEK, which would allow using a fixed nonce. We still sample a random nonce
to enable file updates/re-encryption as a potential extension to our construction.

Puncturable Key Wrapping and Its Applications 25

Setup():

1 sk←$ PKW.KeyGen()

2 Return sk

EncFile(sk,F):

3 K ←$ {0, 1}k ; id←$ {0, 1}t

4 h← PKW.Wrap(sk, id, ε,K)

5 If h = ⊥ then return ⊥
6 N ←$ {0, 1}n

7 C ← AEAD.Enc(K,N , ε,F)

8 Return (id, h,N‖C)

DecFile(sk, id, h,N‖C):

9 K ← PKW.Unwrap(sk, id, ε, h)

10 F ← AEAD.Dec(K,N , ε,C)

11 Return F

ShredFile(sk, id):

12 sk′ ← PKW.Punc(sk, id)

13 Return sk′

RotKey(skold, (id1, h1), . . . , (id`, h`)):

14 sknew←$ PKW.KeyGen()

15 For i = 1 to ` do:

16 Ki ← PKW.Unwrap(skold, idi, ε, hi)

17 h′i ← PKW.Wrap(sknew, idi, ε,Ki)

18 If h′i = ⊥ then return (skold,⊥)
19 Return (sknew, (id1, h′1), . . . , (id`, h

′
`))

Fig. 9. Construction of a protected file storage scheme PFS[PKW,AEAD] from a punc-
turable key-wrapping scheme PKW and an AEAD scheme AEAD. The PKW scheme
has wrap-key space {0, 1}k and tag space {0, 1}t. The AEAD scheme has key space
{0, 1}k and nonce space {0, 1}n. Hence, for the resulting PFS scheme, I = {0, 1}t,
H = {0, 1}PKW.cl(k), and PFS.cl(|F|) = n + AEAD.cl(|F|).

While the latter notion is currently only known to be achievable from strong
(fpr-rro$) PPRF security, the route of Theorem 15 may still be interesting as it
does not require puncture invariance and consistency, properties which we expect
schemes with non-perfect correctness (e.g., employing Bloom filters), would not
achieve. We only give one proof sketch here and provide the full proofs in [5].

Theorem 14 (PFS[PKW,AEAD] is find$-rcpa secure, via PKW find$-1cpa).
Let PFS[PKW,AEAD] be the PFS construction in Figure 9 with file identifier
space I = {0, 1}t. If PKW is puncture invariant and consistent (Definitions 5
and 6), then for every adversary A against the find$-rcpa security (Defini-
tion 12) of PFS[PKW,AEAD] making at most qro$, qe, resp. m − 1 queries in
total to its oracles Ro$-Enc, Enc, and RotKey, and at most qs queries to or-
acle Shred between each query to the key rotation oracle RotKey, there exists
adversaries Bpkw and Baead running in approximately the same time as A such

that Advfind$-rcpa
PFS[PKW,AEAD](A) ≤ 2qro$

(
(2qs+qe+qro$−1)

2t +m ·Advfind$-1cpa
PKW (Bpkw)+m ·

Advind$-cpa
AEAD (Baead)

)
. Adversary Bpkw makes at most m queries to oracle New-

Ro$-Wrap. Adversary Baead makes one query each to its oracles New and Ro$.

Proof idea. The proof proceeds by a series of six game hops, starting with game
G0 = Gfind$-rcpa

PFS[PKW,AEAD]. Let Advi(A) := 2
∣∣Pr [Gi(A)]− 1

2

∣∣ for i ∈ {0, . . . , 6}. By

key phase we denote the period between two consecutive key rotation queries.

G0 → G1: We begin by excluding, via a bad event [8], that the (real- or ideal-
world) challenge file identifier coincides with one already shredded in the cur-

26 Matilda Backendal, Felix Günther, and Kenneth G. Paterson

rent key phase, since the output of wrapping with such an identifier as tag is
undefined and hence possibly distinguishable from the ideal-world behavior. The
probability of this happening is upper-bounded by 2qro$ · qs2t .

G1 → G2: We reduce the qro$ Ro$-Enc challenge queries to a single one via a
hybrid argument, yielding an adversary A′ making a single query to Ro$-Enc
and at most qe +qro$−1 queries to Enc, such that Adv1(A) = qro$ ·Adv2(A′).
G2 → G3: Next, we exclude that PKW tags used for the (at most qe + qro$− 1)
real encryption queries prior to the challenge query collide with the (single)
challenge tag, a bad event occurring with probability at most qe+qro$−1

2t .

G3 → G4: The challenger now guesses in which of the at most m key phases the
challenge encryption occurs; silencing the output otherwise loses a factor of m.

G4 → G5: We can now apply the find$-1cpa security of PKW through a reduc-
tion Bpkw to replace the header in the challenge encryption by a random string.
This step requires PKW’s puncture invariance and consistency to reorder the
challenge PKW wrap in the reduction; the latter makes at most m queries to
oracle New-Ro$-Wrap and yields |Pr [G4]− Pr [G5]| ≤ Advfind$-1cpa

PKW (Bpkw).

G5 → G6: Finally, we replace the challenge file ciphertext with a random string
via a reduction Baead to the AEAD scheme’s ind$-cpa security, which yields
|Pr [G5]− Pr [G6]| ≤ Advind$-cpa

AEAD (Baead). After this step, Adv6(A) = 0.

Theorem 15 (PFS[PKW,AEAD] is find$-rcpa secure, via PKW find$-rcpa).
Let PFS[PKW,AEAD] be the PFS construction in Figure 9 with file identifier
space I = {0, 1}t. For every adversary A against the find$-rcpa security (Defi-
nition 12) of PFS[PKW,AEAD] making at most qro$, qe, qcorr , resp. qrk queries
in total to its oracles Ro$-Enc, Enc, Corr and RotKey, and at most qs
queries to oracle Shred between each query to oracle RotKey, there exists ad-
versaries Bpkw and Baead running in approximately the same time as A such

that Advfind$-rcpa
PFS[PKW,AEAD](A) ≤ 2 ·

(
2qro$qs

2t + (qe+qro$)2

2t+1 + Advfind$-rcpa
PKW (Bpkw) +

Advind$-cpa
AEAD (Baead)

)
. Adversary Bpkw makes at most qrk+1, qro$(qrk+1), qe(qrk+

1), qcorr and qrk · qs queries to oracles New, Ro$-Wrap, Wrap, Corr and
Punc, respectively. Adversary Baead makes at most qro$ queries each to its ora-
cles New and Ro$.

6 Discussion and Future Work

Our approach to PKW integrates a flexible tag-based approach [31] with classical
key wrapping [47]. We build PKW generically from PPRF and AEAD, focus-
ing on applications which require fine-grained forward security. For applications
where batch puncturing might be useful, deploying nonce-misuse resistant AEAD
would allow tags to be reused, achieving a stronger version of our main find$-cpa
security notion. Interestingly, proving the (even stronger) find$-rcpa security of
such an instantiation runs into a key commitment problem; whether resolving

Puncturable Key Wrapping and Its Applications 27

this needs idealized models (cf. [35]) or can be done in the standard model is an
interesting open problem.

Our PKWs and the PPRFs they are built from are not private [11]; we could
potentially obtain improved privacy after client compromise for our PFS system
if they were, cf. [54]. Finding practically efficient private PPRFs and building
private PKW schemes from them is an open problem whose solution would have
immediate applications.

Our work on TLS session resumption assumes the server’s key is held and
operated on by a single server. Yet distributed server environments are common
in TLS deployments, to reduce latency and improve scalability. It would be useful
to extend our work to this setting. The challenge is to maintain appropriate
synchronization amongst the punctured keys held by the servers.

The applications we treat in this work are a sample from the set of possible
use-cases for PKW. They already demonstrate that it is a useful abstraction.
Examining further potential applications where puncturable key wrapping can
be integrated, such as in symmetric key exchange [15] and DUKPT [18], would
be interesting future work.

Acknowledgments. We thank the anonymous reviewers for their helpful com-
ments. Felix Günther has been supported in part by Research Fellowship grant
GU 1859/1-1 of the German Research Foundation (DFG).

References

1. Aviram, N., Gellert, K., Jager, T.: Session resumption protocols and efficient
forward security for TLS 1.3 0-RTT. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part II. LNCS, vol. 11477, pp. 117–150. Springer, Heidelberg (May
2019). https://doi.org/10.1007/978-3-030-17656-3_5

2. Aviram, N., Gellert, K., Jager, T.: Session resumption protocols and efficient for-
ward security for TLS 1.3 0-RTT. Journal of Cryptology 34(3), 20 (Jul 2021).
https://doi.org/10.1007/s00145-021-09385-0

3. Avoine, G., Canard, S., Ferreira, L.: Symmetric-key authenticated key exchange
(SAKE) with perfect forward secrecy. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS,
vol. 12006, pp. 199–224. Springer, Heidelberg (Feb 2020). https://doi.org/10.
1007/978-3-030-40186-3_10

4. AWS: Protecting data using client-side encryption. http://docs.aws.amazon.

com/AmazonS3/latest/dev/UsingClientSideEncryption.html
5. Backendal, M., Günther, F., Paterson, K.G.: Puncturable key wrapping and its ap-

plications. Cryptology ePrint Archive, Paper 2022/1209 (2022), https://eprint.
iacr.org/2022/1209

6. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (May 2000). https://doi.

org/10.1007/3-540-45539-6_18
7. Bellare, M., Ng, R., Tackmann, B.: Nonces are noticed: AEAD revisited.

In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol.
11692, pp. 235–265. Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/
978-3-030-26948-7_9

https://doi.org/10.1007/978-3-030-17656-3_5
https://doi.org/10.1007/978-3-030-17656-3_5
https://doi.org/10.1007/s00145-021-09385-0
https://doi.org/10.1007/s00145-021-09385-0
https://doi.org/10.1007/978-3-030-40186-3_10
https://doi.org/10.1007/978-3-030-40186-3_10
https://doi.org/10.1007/978-3-030-40186-3_10
https://doi.org/10.1007/978-3-030-40186-3_10
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
https://eprint.iacr.org/2022/1209
https://eprint.iacr.org/2022/1209
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/978-3-030-26948-7_9
https://doi.org/10.1007/978-3-030-26948-7_9
https://doi.org/10.1007/978-3-030-26948-7_9
https://doi.org/10.1007/978-3-030-26948-7_9

28 Matilda Backendal, Felix Günther, and Kenneth G. Paterson

8. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (May / Jun 2006). https://doi.org/
10.1007/11761679_25

9. Bellare, M., Stepanovs, I., Waters, B.: New negative results on differing-inputs
obfuscation. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 792–821. Springer, Heidelberg (May 2016). https://doi.org/10.
1007/978-3-662-49896-5_28

10. Blaze, M.: A cryptographic file system for UNIX. In: Denning, D.E., Pyle, R.,
Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93. pp. 9–16. ACM Press
(Nov 1993). https://doi.org/10.1145/168588.168590

11. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately.
In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 494–524. Springer,
Heidelberg (Mar 2017). https://doi.org/10.1007/978-3-662-54388-7_17

12. Boneh, D., Lipton, R.J.: A revocable backup system. In: USENIX Security 96.
USENIX Association (Jul 1996)

13. Boneh, D., Waters, B.: Constrained pseudorandom functions and their appli-
cations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 280–300. Springer, Heidelberg (Dec 2013). https://doi.org/10.

1007/978-3-642-42045-0_15

14. Boxcryptor: Boxcryptor security for your cloud. https://www.boxcryptor.com/
15. Boyd, C., Davies, G.T., de Kock, B., Gellert, K., Jager, T., Millerjord, L.:

Symmetric key exchange with full forward security and robust synchronization.
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol.
13093, pp. 681–710. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/
978-3-030-92068-5_23

16. Boyd, C., Gellert, K.: A modern view on forward security. Comput. J. 64(4), 639–
652 (2021). https://doi.org/10.1093/comjnl/bxaa104

17. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (Mar 2014). https://doi.org/10.1007/978-3-642-54631-0_29

18. Brier, E., Peyrin, T.: A forward-secure symmetric-key derivation protocol - how
to improve classical DUKPT. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 250–267. Springer, Heidelberg (Dec 2010). https://doi.org/10.

1007/978-3-642-17373-8_15

19. Chen, W., Hoang, T., Guajardo, J., Yavuz, A.A.: Titanium: A metadata-hiding
file-sharing system with malicious security. In: NDSS 2022. The Internet Society
(2022). https://doi.org/10.14722/ndss.2022.24161

20. Chen, W., Popa, R.A.: Metal: A metadata-hiding file-sharing system. In:
NDSS 2020. The Internet Society (Feb 2020)

21. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In:
Hicks, M., Köpf, B. (eds.) CSF 2016 Computer Security Foundations Symposium.
pp. 164–178. IEEE Computer Society Press (2016). https://doi.org/10.1109/
CSF.2016.19

22. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and appli-
cations to efficient forward-secret 0-RTT key exchange. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 425–455. Springer,
Heidelberg (Apr / May 2018). https://doi.org/10.1007/978-3-319-78372-7_14

23. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Designs, Codes and Cryptography 2(2), 107–125 (Jun 1992)

https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-662-49896-5_28
https://doi.org/10.1007/978-3-662-49896-5_28
https://doi.org/10.1007/978-3-662-49896-5_28
https://doi.org/10.1007/978-3-662-49896-5_28
https://doi.org/10.1145/168588.168590
https://doi.org/10.1145/168588.168590
https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://www.boxcryptor.com/
https://doi.org/10.1007/978-3-030-92068-5_23
https://doi.org/10.1007/978-3-030-92068-5_23
https://doi.org/10.1007/978-3-030-92068-5_23
https://doi.org/10.1007/978-3-030-92068-5_23
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-17373-8_15
https://doi.org/10.1007/978-3-642-17373-8_15
https://doi.org/10.1007/978-3-642-17373-8_15
https://doi.org/10.1007/978-3-642-17373-8_15
https://doi.org/10.14722/ndss.2022.24161
https://doi.org/10.14722/ndss.2022.24161
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1007/978-3-319-78372-7_14
https://doi.org/10.1007/978-3-319-78372-7_14

Puncturable Key Wrapping and Its Applications 29

24. Dworkin, M.: Recommendation for block cipher modes of operation: Methods for
key wrapping. NIST Special Publication SP 800-38F (2012), https://nvlpubs.

nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

25. Everspaugh, A., Paterson, K.G., Ristenpart, T., Scott, S.: Key rotation for au-
thenticated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III.
LNCS, vol. 10403, pp. 98–129. Springer, Heidelberg (Aug 2017). https://doi.

org/10.1007/978-3-319-63697-9_4

26. Feldman, A.J., Zeller, W.P., Freedman, M.J., Felten, E.W.: Sporc: Group collabo-
ration using untrusted cloud resources. In: OSDI 20210 (2010)

27. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC
protocol. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014. pp. 1193–1204.
ACM Press (Nov 2014). https://doi.org/10.1145/2660267.2660308

28. Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of
constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II.
LNCS, vol. 8874, pp. 82–101. Springer, Heidelberg (Dec 2014). https://doi.org/
10.1007/978-3-662-45608-8_5

29. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (ex-
tended abstract). In: 25th FOCS. pp. 464–479. IEEE Computer Society Press (Oct
1984). https://doi.org/10.1109/SFCS.1984.715949

30. Google: Encryption at rest in Google Cloud. https://cloud.google.com/

security/encryption/default-encryption

31. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: 2015 IEEE Symposium on Security and Privacy. pp. 305–320. IEEE
Computer Society Press (May 2015). https://doi.org/10.1109/SP.2015.26

32. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.J., Van-
dewalle, J. (eds.) EUROCRYPT’89. LNCS, vol. 434, pp. 29–37. Springer, Heidel-
berg (Apr 1990). https://doi.org/10.1007/3-540-46885-4_5

33. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full forward
secrecy. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS,
vol. 10212, pp. 519–548. Springer, Heidelberg (Apr / May 2017). https://doi.
org/10.1007/978-3-319-56617-7_18

34. IBM: Protecting data with envelope encryption. https://cloud.ibm.com/docs/
key-protect?topic=key-protect-envelope-encryption

35. Jaeger, J., Tyagi, N.: Handling adaptive compromise for practical encryption
schemes. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS,
vol. 12170, pp. 3–32. Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/
978-3-030-56784-2_1

36. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Sadeghi, A.R., Gligor, V.D., Yung, M.
(eds.) ACM CCS 2013. pp. 669–684. ACM Press (Nov 2013). https://doi.org/
10.1145/2508859.2516668

37. Klooß, M., Lehmann, A., Rupp, A.: (R)CCA secure updatable encryption with
integrity protection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I.
LNCS, vol. 11476, pp. 68–99. Springer, Heidelberg (May 2019). https://doi.org/
10.1007/978-3-030-17653-2_3

38. Krawczyk, H.: Cryptographic extraction and key derivation: The HKDF scheme.
In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Hei-
delberg (Aug 2010). https://doi.org/10.1007/978-3-642-14623-7_34

39. Lau, B., Chung, S.P., Song, C., Jang, Y., Lee, W., Boldyreva, A.: Mimesis aegis:
A mimicry privacy shield-A system’s approach to data privacy on public cloud. In:

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1007/978-3-662-45608-8_5
https://doi.org/10.1007/978-3-662-45608-8_5
https://doi.org/10.1007/978-3-662-45608-8_5
https://doi.org/10.1007/978-3-662-45608-8_5
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1109/SFCS.1984.715949
https://cloud.google.com/security/encryption/default-encryption
https://cloud.google.com/security/encryption/default-encryption
https://doi.org/10.1109/SP.2015.26
https://doi.org/10.1109/SP.2015.26
https://doi.org/10.1007/3-540-46885-4_5
https://doi.org/10.1007/3-540-46885-4_5
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-56617-7_18
https://cloud.ibm.com/docs/key-protect?topic=key-protect-envelope-encryption
https://cloud.ibm.com/docs/key-protect?topic=key-protect-envelope-encryption
https://doi.org/10.1007/978-3-030-56784-2_1
https://doi.org/10.1007/978-3-030-56784-2_1
https://doi.org/10.1007/978-3-030-56784-2_1
https://doi.org/10.1007/978-3-030-56784-2_1
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-642-14623-7_34

30 Matilda Backendal, Felix Günther, and Kenneth G. Paterson

Fu, K., Jung, J. (eds.) USENIX Security 2014. pp. 33–48. USENIX Association
(Aug 2014)

40. Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise security.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 685–716. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/
978-3-319-78372-7_22

41. Mahajan, P., Setty, S., Lee, S., Clement, A., Alvisi, L., Dahlin, M., Walfish, M.:
Depot: Cloud storage with minimal trust. ACM Trans. Comput. Syst. 29(4) (dec
2011). https://doi.org/10.1145/2063509.2063512

42. Microsoft: Azure Data Encryption at rest. https://docs.microsoft.com/en-us/
azure/security/fundamentals/encryption-atrest

43. Miller, E., Long, D., Freeman, W., Reed, B.: Strong security for distributed file
systems. In: Conference Proceedings of the 2001 IEEE International Performance,
Computing, and Communications Conference. pp. 34–40 (2001). https://doi.

org/10.1109/IPCCC.2001.918633

44. Nichols, S.: Dropbox: Oops, yeah, we didn’t actually delete all your files this bug
kept them in the cloud. https://www.theregister.com/2017/01/24/dropbox_

brings_old_files_back_from_dead/ (2017)
45. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446

(Proposed Standard) (Aug 2018), https://www.rfc-editor.org/rfc/rfc8446.

txt

46. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002. pp. 98–107. ACM Press (Nov 2002). https://doi.org/10.1145/
586110.586125

47. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (May / Jun 2006). https://doi.org/10.1007/11761679_23

48. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable en-
cryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC. pp. 475–484. ACM
Press (May / Jun 2014). https://doi.org/10.1145/2591796.2591825

49. Salowey, J., Zhou, H., Eronen, P., Tschofenig, H.: Transport Layer Security (TLS)
Session Resumption without Server-Side State. RFC 5077 (Proposed Standard)
(Jan 2008), https://www.rfc-editor.org/rfc/rfc5077.txt, obsoleted by RFC
8446, updated by RFC 8447

50. Slamanig, D., Striecks, C.: Puncture ’em all: Updatable encryption with no-
directional key updates and expiring ciphertexts. Cryptology ePrint Archive, Re-
port 2021/268 (2021), https://eprint.iacr.org/2021/268

51. Sun, S.F., Steinfeld, R., Lai, S., Yuan, X., Sakzad, A., Liu, J.K., Nepal, S., Gu,
D.: Practical non-interactive searchable encryption with forward and backward
privacy. In: NDSS 2021. The Internet Society (Feb 2021)

52. Sun, S., Yuan, X., Liu, J.K., Steinfeld, R., Sakzad, A., Vo, V., Nepal, S.: Practical
backward-secure searchable encryption from symmetric puncturable encryption.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 763–
780. ACM Press (Oct 2018). https://doi.org/10.1145/3243734.3243782

53. Sy, E., Burkert, C., Federrath, H., Fischer, M.: Tracking users across the web
via TLS session resumption. In: ACSAC 2018. pp. 289–299. ACM (2018). https:
//doi.org/10.1145/3274694.3274708

54. Tyagi, N., Mughees, M.H., Ristenpart, T., Miers, I.: BurnBox: Self-revocable en-
cryption in a world of compelled access. In: Enck, W., Felt, A.P. (eds.) USENIX
Security 2018. pp. 445–461. USENIX Association (Aug 2018)

https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1145/2063509.2063512
https://doi.org/10.1145/2063509.2063512
https://docs.microsoft.com/en-us/azure/security/fundamentals/encryption-atrest
https://docs.microsoft.com/en-us/azure/security/fundamentals/encryption-atrest
https://doi.org/10.1109/IPCCC.2001.918633
https://doi.org/10.1109/IPCCC.2001.918633
https://doi.org/10.1109/IPCCC.2001.918633
https://doi.org/10.1109/IPCCC.2001.918633
https://www.theregister.com/2017/01/24/dropbox_brings_old_files_back_from_dead/
https://www.theregister.com/2017/01/24/dropbox_brings_old_files_back_from_dead/
https://www.rfc-editor.org/rfc/rfc8446.txt
https://www.rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/11761679_23
https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1145/2591796.2591825
https://www.rfc-editor.org/rfc/rfc5077.txt
https://eprint.iacr.org/2021/268
https://doi.org/10.1145/3243734.3243782
https://doi.org/10.1145/3243734.3243782
https://doi.org/10.1145/3274694.3274708
https://doi.org/10.1145/3274694.3274708
https://doi.org/10.1145/3274694.3274708
https://doi.org/10.1145/3274694.3274708

	Puncturable Key Wrapping and Its Applications

