
Unconditionally Secure NIZK in the
Fine-Grained Setting

Yuyu Wang?1 and Jiaxin Pan??2

1 University of Electronic Science and Technology of China, Chengdu, China
wangyuyu@uestc.edu.cn

2 Department of Mathematical Sciences, NTNU - Norwegian University of Science and
Technology, Trondheim, Norway

jiaxin.pan@ntnu.no

Abstract. Non-interactive zero-knowledge (NIZK) proof systems are
often constructed based on cryptographic assumptions. In this paper, we
propose the first unconditionally secure NIZK system in the AC0-fine-
grained setting. More precisely, our NIZK system has perfect soundness
for all adversaries and unconditional zero-knowledge for AC0 adversaries,
namely, an AC0 adversary can only break the zero-knowledge property
with negligible probability unconditionally. At the core of our construction
is an OR-proof system for satisfiability of 1 out of polynomial many
statements.

Keywords. Non-interactive zero-knowledge, fine-grained cryptography,
AC0, unconditional security.

1 Introduction

Constructing non-interactive zero-knowledge (NIZK) proof systems [7] is one of
the central topics in cryptography, since NIZK is a fundamental primitive that
can convince a verifier the validity of a statement with minimum communication
round.

Most NIZK systems are constructed based on various cryptographic assump-
tions, such as Discrete-Logarithm-like (e.g., [10,11]) and Learning With Errors
(LWE, e.g., [17]) assumptions. Recent development of succinct NIZK systems
[8,16,6,2,9] even base their security on rather strong, non-falsifiable assumptions,
such as knowledge assumptions and assuming generic groups. Although there
are many cryptanalysis results on assumptions, such as Discrete Logarithm and
LWE, it is natural to consider whether it is possible to construct NIZK from
much mild assumptions.

? Supported by the National Natural Science Foundation for Young Scientists of China
under Grant Number 62002049 and the Fundamental Research Funds for the Central
Universities under Grant Number ZYGX2020J017.

?? Supported by the Research Council of Norway under Project No. 324235.

https://orcid.org/0000-0002-1198-1903
https://orcid.org/0000-0002-7459-6850
mailto:wangyuyu@uestc.edu.cn,jiaxin.pan@ntnu.no
mailto:wangyuyu@uestc.edu.cn,jiaxin.pan@ntnu.no

NIZK based on Mild Assumptions. Very recently, Wang and Pan [19] put
forth this direction in the fine-grained setting. Here fine-grained setting (or fine-
grained cryptography) [3] means that adversaries can only have bounded resources
and honest users have no more resources than adversaries. More precisely, the
work of Wang and Pan considers that all parties are in NC1. In this setting,
they obtained a NIZK system under a rather mild assumption, NC1 (⊕L/poly.
Their system is very efficient since only simple operations such as AND, OR, and
PARITY for bits are involved. The assumption, NC1 (⊕L/poly, also yields the
security of proof systems in [5,1,20].

However, in complexity theory, it has not been proven that NC1 (⊕L/poly,
although it is widely accepted. It is desirable to further push this direction and
study whether it is possible to construct an unconditionally secure NIZK system
in the fine-grained setting.

We suppose that in the classical setting it seems not possible to have uncon-
ditional security for NIZK. The reason is that for proving the zero-knowledge
property, the common reference string (CRS) is often related to the simulation
trapdoor, and given the CRS an (unbounded) adversary may recover the simula-
tion trapdoor and break the soundness. Meanwhile, it is promising to construct
unconditionally secure NIZK in the fine-grained setting, since it restricts the
capability of an adversary. However, this will also limit the resources of an honest
user, which makes it particularly difficult to instantiate a scheme. Our technical
goal is to resolve this tension.

1.1 Our Contributions

We consider the AC0-fine-grained setting, namely, all adversaries, honest provers,
and verifiers are in AC0. In this setting, we construct the first unconditionally
secure NIZK proof system for circuit satisfiability (SAT). More precisely, it is
perfectly sound and has zero-knowledge against any adversaries in AC0. Our
system only involves simple operations in GF (2) and does not require any
cryptographic group operations or assumptions such as Discrete Logarithm and
Factoring.

Our NIZK only supports statements verifiable in AC0 given witnesses, since if
a statement circuit is beyond AC0 then an honest prover in AC0 cannot decide
its truth with the witness. However, we stress that our method is not limited
to AC0 statements. For instance, if we allow polynomial-time honest provers as
in [1], our constructions naturally support statement circuits with polynomial-
size. Moreover, any polynomial-size statement circuit can be represented as one
verifiable in AC0. Specifically, if a witness contains the bits of all wires in the
circuit, then an AC0 algorithm can efficiently verify the validity of an input/output
pair of each gate in parallel and check whether the bit for the final output wire
is 1. In this sense, the prover of our NIZK works for any NP statement, given a
witness containing “enough information”.
Applications of Security against AC0. Security against AC0 naturally cap-
tures adversaries with limited resources. Moreover, an AC0-fine-grained NIZK

2

works well in systems requiring “online security”, where attacks are valid only
if they succeed immediately. For instance, our NIZK with composable zero-
knowledge against AC0 and perfect soundness can be used to protect secrets only
valuable in a short period of time. Also, its dual mode enjoys everlasting security.
Namely, its perfect zero-knowledge continuously prevents the adversary from
learning information on secrets and its soundness guarantees security in a system
requiring users to provide proofs in a short time.
Impacts of Our Work. Our work gives us interesting insights to the minimum
hardness assumptions required by NIZK and the landscape of AC0-fine-grained
cryptography. Before our work, it seemed that cryptographic assumptions, in
particular, those imply public-key encryption (PKE), were necessary for NIZK
in the standard model. Putting it in Impagliazzo’s view of complexity landscape
[14], NIZK seemed to be in the Cryptomania. Examples are Diffie-Hellman-based
NIZKs [10,11]. Even in the NC1-fine-grained setting, NIZK systems [19] require
the assumption NC1 (⊕L/poly, which implies PKE schemes [3].

Our work shows that those assumptions implying PKE are not necessary,
since in the AC0-fine-grained setting, it is not known whether there is a PKE
scheme yet. 3 Up until now, only “minicrypt primitives” such as one-way function,
weak pseudorandom function, secret-key encryption, and collision-resistant hash
function are known to exist [12,3] in this setting, and we were not aware of any
impossibility or possibility results showing that assumptions implying PKE are
necessary for NIZK, in particular, in the AC0-fine-grained setting, or not. As a
further direction left open, we will explore how to extend our techniques in the
classical setting and construct a NIZK from weaker assumptions (e.g., Discrete
Logarithms) that are not known to imply PKE.
Extensions. While all the aforementioned NIZKs are in the CRS model, we
can further extend them to the uniform random string (URS) model, where
a trust setup only samples public coins. We also prove that our NIZKs have
verifiable correlated key generations [10], which lead to a conversion from our
NIZKs to unconditionally secure non-interactive zaps [4] (i.e., non-interactive
witness-indistinguishability proof systems in the plain model) [10] against AC0.

1.2 Technical Overview

In this section, we give more details about our techniques. Our approach is
divided into three intermediate steps. We firstly construct a simple NIZK for
linear languages, and then compile it to an OR-proof scheme for 1-out-of-`
disjunction, where ` can be any polynomial. Both schemes run in NC0, which
is a subset of AC0. Thirdly, we use this OR-proof scheme to construct a NIZK
system for circuit SAT.

A main technical hurdle throughout our work is that in the AC0-fine-grained
setting, many standard operations, such as computing the sum of a polynomial
3 How to construct a provably secure PKE scheme in the AC0-fine-grained setting is
left as an open problem in [3].

3

number of random elements and multiplication of two random matrices, are not
allowed. These operations can be easily performed in NC1 and thus previous
fine-grained NIZKs under complexity assumptions [1,19] are not confronted with
this problem. As a result, it is more challenging to construct a NIZK (or any
cryptographic scheme, in general) in AC0, compared to the work of Wang and
Pan [19].
NIZK for Linear Languages in AC0. Our starting point is a simple NIZK that
is computable in NC0 and has perfect soundness and composable zero-knowledge
against adversaries in AC0 under no assumption. The linear languages we consider
are of the form

LM = {t : ∃w ∈ {0, 1}t, s.t. t = Mw},

where each row vector in M ∈ {0, 1}n×t is sparse. Here, by sparse we mean that
each row vector in M has only constant Hamming weight. This restriction is
inherent, since otherwise even the multiplication of M and w cannot be performed
in NC0. 4 However, this is still sufficient for our final NIZK for circuit SAT.

The technique behind our scheme is based on the fact that an AC0 adversary
cannot tell the parity of a random string with the size being the security parameter
λ [13,15]. For our purpose, we explain it as the indistinguishability between the
following distributions:

{Eλr̃|̃r $← {0, 1}λ−1}︸ ︷︷ ︸
=D0

and {Eλr̃ + eλλ |̃r $← {0, 1}λ−1︸ ︷︷ ︸
=D1

},

where eλλ ∈ {0, 1}λ denotes constant vector with the parity being 1 and Eλ ∈
{0, 1}λ×(λ−1) denotes a fixed constant matrix (see Section 2 for the formal defi-
nitions). More specifically, we prove that a vector sampled from D0 (respectively,
D1) is uniformly distributed conditioned on the parity being 0 (respectively 1).
A useful property of Eλ we will exploit is that each row and column vector in
it has constant Hamming weight, which implies that multiplication between Eλ

and r̃ or other matrices can be performed in NC0.
For the aforementioned linear language LM, we set the binding CRS as a vector

r sampled from D1. The prover computes C = MR and D = (R||w)
(

E>λ
r>
)
,

where R $← {0, 1}t×(λ−1), and the verifier accepts iff (C||x)
(

E>λ
r>
)

= MD. For

each multiplication of matrices (or vectors) involved, one can see that either the
row vectors of the left hand side matrix or the column vectors of the right hand
side matrix have only constant Hamming weight. Hence, all the operations can
be performed in NC0. Roughly speaking, soundness follows from the fact that,
for a valid proof, either x being in the span of M or r being in the span of Eλ

must hold, while all r ∈ D1 are outside the span of Eλ. To prove zero-knowledge,
we switch the binding CRS to a hiding CRS by replacing the distribution of r
4 An NC0 circuit cannot compute the inner product of two vectors unless one of them
is sparse.

4

by D0. In this case, seeing C and D simultaneously reveals no information on w
except for x. Due to this CRS switching, we call this zero-knowledge composable,
and this change does not modify the view of an AC0 adversary.

OR-Proof for One Disjunction. Following a fine-grained version of the “OR-
proof techniques” [10,18], the above NIZK can be transformed to an OR-proof for
the 1-out-of-2 disjunction (namely, satisfiabilty of 1 out of 2 statements). Let r be
a binding CRS sampled from D1. Assuming the prover knows the witness w of
statement xj for some j ∈ {0, 1}, it generates a hiding CRS r1−j with a trapdoor
r̃1−j and a binding CRS rj such that rj = r− r1−j . Then the prover generates
proofs for xj and x1−j with w and r̃1−j respectively. The verifier receives r0
and generates r1 by itself for verification. Soundness follows from the fact that
for any pair of (r0, r1) such that r = r0 + r1, at least one of (r0, r1) must be a
binding CRS with the parity being 1. Composable zero-knowledge follows from
that switching the distribution of r to D0 leads both r0 and r1 to become hiding
CRSs.

OR-Proof for Multiple Disjunctions. While the above construction works
for the 1-out-of-2 disjunction, our NIZK for all AC0 circuit SAT requires 1-out-of-`
disjunction for any polynomial `. This is due to the fact that an AC0 circuit
may contain unbounded fan-in AND or OR gates. A natural idea is to let the
prover “split” r into ` CRSs (ri)i∈[`] instead of two, among which one is binding
and `− 1 ones are hiding. However, this will result in workload beyond AC0 for
both the prover and the verifier. Especially, a prover with a witness for the jth
statement will have to compute rj = r −

∑
i 6=j ri and the verifier will have to

compute r` = r−
∑`−1
i=1 ri. Neither of them can be performed in AC0.

To overcome the above problems, we develop a new framework of OR-proof
for multiple disjunctions. At the core of our framework is a verifiable “double
layer” sampling procedure.

In the first layer, we adopt a distribution, say D′0, which is the same as D0
except that it outputs vectors with size `. By running D′0 for λ − 1 times, we
immediately achieve a matrix in {0, 1}`×(λ−1), which can be parsed as ` random
vectors in {0, 1}λ−1 with the sum being a 0-vector. In the second layer, we sample
` vectors from D0, while using the vectors generated in the first layer as the
internal randomness. This results in ` random vectors conditioned on the sum
being a 0-vector and the parities being 0’s. Assuming that the witness for the
jth statement is known, we add the jth vector with the original CRS r from
D1 to obtain a binding CRS and use the rest `− 1 vectors as the hiding CRSs.
Notice that when switching r to a hiding CRS sampled from D0, the ` split CRSs
are all randomly distributed in D0 conditioned on the sum being r. In this case,
information on the index j is information-theoretically hidden, which preserves
the zero-knowledge.

For verification, we propose a method to extract a matrix from the internal
randomness used in the first layer. We then use the matrix as a witness to prove
that the sum of the CRSs generated by the prover is exactly r, via our NIZK for

5

linear languages. In this way, we can convince the verifier that at least one of the
CRSs must be binding, and thus soundness can be guaranteed.

In conclusion, the above sampling procedure gives rise to ways to split a CRS
into multiple ones and to convince the verifier that some of the resulting CRSs is
binding, while all the operations involved can be performed in AC0. Combining
this sampling procedure with our OR-proof for one disjunction, we achieve an
OR-proof for multiple disjunction, which plays a key component of our NIZK for
circuit SAT.

NIZK for Circuit SAT. We now give an overview on how we construct a NIZK
for all statements verifiable in AC0 (given a witness) by using our NIZK for linear
languages and our OR-proof.

For a valid witness, we extend it to contain bits of all wires in the statement
circuit and commit each bit wi as cmi = Eλri + twi, where ri is a random vector
in {0, 1}λ−1 and t $← D1 is in the CRS. For the final output, we commit it as t.
Note that the commitment is additively homomorphic and t is a commitment to
1. For each NOT gate with input commitments (cmi1, cmi2), we use the NIZK
for linear languages to prove that cmi1 + cmi2 + t is in the span of Eλ, i.e., it
commits to 0. For each AND gate with input commitments (cmij)j∈[`] and output
commitments cmi(`+1), we use an OR-proof for 1-out-of-(` + 1) disjunction to
prove that either both cmij and cmi(`+1) commit to 0 for some j ∈ [`] or cmij − t
commits to 0 for all j ∈ [`+ 1]. Proofs for OR gates are generated analogously.
Notice that when generating the proof of compliance for each AND (respectively,
OR) gate, the prover needs to find the index of the lexicographically first 0-bit
(respectively, 1-bit) of its input from the extended witness. While common ways
may go beyond AC0 due to the unbounded fan-in of each gate, we prove that this
can indeed be performed in AC0 by proposing concrete circuits (See Theorem 5
for details).

Due to the perfect soundness of the underlying OR-proof and NIZK for linear
languages, if there exist valid proofs for all gates, we can extract a witness leading
the circuit to output 1 by computing the parities of all commitments for the input
wires of the circuit. Notice that the statement here is information-theoretical,
and thus the extraction procedure is not necessarily runnable in AC0. Moreover,
when switching the distribution of t to D0, all the commitments are just random
vectors with parities being 0 and the proofs of the underlying NIZKs reveal no
useful information.

If we only treat statements verifiable in NC0, which consists only of fan-in 2
gates, rather than AC0, we can further reduce the proof size by instantiating the
underlying OR-proof with our warm-up construction for one disjunction.

Overview of Extensions. Due to the fact that a random string falls into D0
and D1 with half-half probability, we can also implement our construction in
the URS model by running it for multiple times in parallel. Composable zero-
knowledge of the resulting construction follows from that of the original NIZK
and statistical soundness follows from the fact that at least one CRS falls into
D1 with overwhelming probability.

6

Moreover, we can merge each CRS of all our NIZKs into one vector sampled
from D1. In this case, switching a binding CRS to a hiding one can be efficiently
done by changing a single bit, and for any two CRSs with the sum being a constant
vector where only one entry is 1, at least one of them must be binding. This
implies that our NIZKs have verifiable correlated key generation. Based on this
observation, we can convert our NIZKs into unconditionally secure non-interactive
ZAPs in AC0, following the conversion technique in [10].

2 Preliminaries

Notations. We note that all arithmetic computations are over GF (2) in this
work. Namely, all arithmetic computations are performed with a modulus of 2,
and addition and subtraction are equivalent. We write a $← A(b) (respectively,
a = A(b)) to denote the random variable output by a probabilistic (respectively,
deterministic) algorithm (or circuit) A on input b. By x $← S we denote the
process of sampling an element x from a set or distribution S uniformly at
random. By [n] we denote the set {1, · · · , n}. By negl we denote an unspecified
negligible function.

By x ∈ {0, 1}n we denote a column vector with size n, and by xi we denote
the ith element of a vector x. By x1◦· · ·◦x` for some `, we denote (x>1 , · · · ,x>`)>,
i.e., the concatenation of (xi)i∈[`].

For a matrix A ∈ {0, 1}n×t with rank t′ ≤ n, we denote the sets {y|∃x s.t. y =
Ax} and {x |Ax = 0} by Span(A) (i.e., the span of A) and Ker(A) respectively.
By A⊥ ∈ {0, 1}n×(n−t′) we denote a matrix of rank n− t′ in Ker(A>). Note that
for any y /∈ Span(A), we have y>A⊥ 6= 0. By A (respectively, A) we denote the
upper (n− 1)× t matrix (respectively, lower 1× t vector) of A.

By In we denote an identity matrix in {0, 1}n×n. By ein we denote the column
vector in {0, 1}n with the ith element being 1 and the other elements being 0. By
0 we denote a zero vector or matrix. By f in we denote the vector in {0, 1}n such
that the first i− 1 entries are 0’s and the other entries are 1’s. By En we denote
the following n× (n− 1) matrix, where the entries of the two main diagonals are
1’s and the other entries are 0’s.

En =

1
1 1

. . .
1 1

1

 ∈ {0, 1}n×(n−1).

One can check that f1
n ∈ Ker(E>n) and Enf in−1 = ein + enn for i ∈ [n− 1].

2.1 Circuits in AC0

We now recall the definitions of function family, NC0, and AC0.

7

Definition 1 (Function family). A function family is a family of (possibly
randomized) functions F = {fλ}λ∈N, where for each λ, fλ has a domain Df

λ and
a range Rfλ.

Definition 2 (NC0). The class of (non-uniform) AC0 function families is the
set of all function families F = {fλ}λ∈N for which there is a polynomial p(·) and
constant d such that for each λ, fλ can be computed by a (randomized) circuit of
size p(λ), depth d, and fan-in 2 using AND, OR, and NOT gates.

Definition 3 (AC0). The class of (non-uniform) AC0 function families is the
set of all function families F = {fλ}λ∈N for which there is a polynomial p(·) and
constant d such that for each λ, fλ can be computed by a (randomized) circuit of
size p(λ), depth d, and unbounded fan-in using AND, OR, and NOT gates.

One can easily see that NC0 is a subset of AC0, and for any polynomial n = n(λ)
and x,y ∈ {0, 1}n where either x or y has only constant Hamming weight, the
inner product of x and y is computable in NC0.

Let {PARITYλ}λ∈N be the function family such that for all λ ∈ N, PARITYλ
on input any x ∈ {0, 1}λ outputs

∑λ
i=1 xi. The following theorem states that any

AC0 circuit has very small correlation with PARITYλ.

Theorem 1 ([13,15]). For any A = {aλ}λ∈N ∈ AC0 with size p and constant
depth d and any λ ∈ N, we have∣∣∣∣∣ Pr

x $←{0,1}λ
[aλ(x) = 1|PARITYλ(x) = 1]

− Pr
x $←{0,1}λ

[aλ(x) = 1|PARITYλ(x) = 0]

∣∣∣∣∣ ≤ 2−Ω(λ/ logd−1(p)).

One can see that for any polynomial p in λ, 2−Ω(λ/ logd−1(p)) = 2−Ω(λ/ logd−1(λ))

is negligible.

2.2 Proof Systems

Definition 4 (Non-interactive zero-knowledge (NIZK) proof). A C1-
NIZK for a family of relations {Rλ}λ∈N is a function family NIZK = {Genλ,
Proveλ,Verλ}λ∈N ∈ C1 with the following properties.
– Genλ returns a binding CRS crs.
– Proveλ(crs, x,w) returns a proof π.
– Verλ(crs, x, π) deterministically returns 1 (accept) or 0 (reject).
Completeness is satisfied if for all λ ∈ N, all (x,w) such that Rλ(x,w) = 1,

all crs ∈ Genλ, and all π ∈ Proveλ(crs, x,w), we have Verλ(crs, x, π) = 1.
C2-composable zero-knowledge is satisfied if there exists a simulator {TGenλ,

Simλ}λ∈N ∈ C1 such that for any adversary A = {aλ}λ∈N ∈ C2, we have

|Pr[1 $← aλ(crs)|crs $← Genλ]− Pr[1 $← aλ(crs)|(crs, td) $← TGenλ]| ≤ negl(λ),

8

and for all λ ∈ N and all (x,w) such that Rλ(x,w) = 1, the following distributions
are identical.

π $← Proveλ(crs, x,w) and π $← Simλ(crs, td, x),

where (crs, td) $← TGenλ.
Perfect soundness is satisfied if for all λ ∈ N, all crs ∈ Genλ, all x /∈ Lλ, and

all π, we have Verλ(crs, x, π) = 0.

URS Model. In the above definition, if Genλ only returns a public string
crs $← {0, 1}p(λ) uniformly at random for some polynomial p, then we say that
NIZK is in the URS model.
Non-Interactive Zap. A non-interactive zap is a witness-indistinguishable non-
interactive proof system in the plain model, where there is no trusted setup. The
definition is as follows.

Definition 5 (Non-interactive zap). A C1-non-interactive zap for a family
of relations {Rλ}λ∈N is a function family ZAP = {ZProveλ,ZVerλ}λ∈N ∈ C1 with
the following properties.
– ZProveλ(x,w) returns a proof π.
– ZVerλ(x, π) deterministically returns 1 (accept) or 0 (reject).
Completeness is satisfied if for all λ ∈ N and all (x,w) such that Rλ(x,w) = 1,

and all π ∈ ZProveλ(x,w), we have ZVerλ(x, π) = 1.
C2-witness indistinguishability is satisfied if for all λ ∈ N, all (x,w0,w1) such

that Rλ(x,w0) = Rλ(x,w1) = 1, and any adversary A = {aλ}λ∈N ∈ C2, we have

|Pr[1 $← aλ(x, π)|π $← ZProveλ(x,w0)]−
Pr[1 $← aλ(x, π)|π $← ZProveλ(x,w1)]| ≤ negl(λ).

Perfect soundness is satisfied if for all λ ∈ N, all x /∈ Lλ, and all π, we have
ZVerλ(x, π) = 0.

3 NIZK for Linear Languages

In this section, we propose an NC0-NIZK for linear languages with perfect
soundness and AC0-composable zero-knowledge. Before giving our construction,
we prove the following lemma, which says that the uniform distribution in and
out of the span of Eλ are indistinguishable for an AC0 adversary.

Lemma 1. For any A = {aλ}λ∈N ∈ AC0 and any λ ∈ N, we have∣∣∣∣∣ Pr
r $←{0,1}λ−1

[aλ(Eλr) = 1]− Pr
r $←{0,1}λ−1

[aλ(Eλr + eλλ) = 1]

∣∣∣∣∣ ≤ negl(λ).

Proof. We first note that for r $← {0, 1}λ−1, the first λ− 1 bits of y = Eλr + eλλb
are uniformly distributed for b ∈ {0, 1}, due to the fact that Eλ is of full rank.

9

Moreover, the last bit of y is uniquely determined by the first λ−1 ones conditioned
on PARITYλ(y) = f1

λ
>y = b. Thus, y is uniformly distributed conditioned on

PARITYλ(y) = b. Then Lemma 1 follows immediately from Theorem 1. ut
Our Construction. Let M be a matrix from {0, 1}n×t, where n = n(λ), t = t(λ),
and t′ = t′(λ) are polynomials in λ and the Hamming weight of each row vector
in M is constant. We define the associated language as

LM = {x : ∃w ∈ {0, 1}t, s.t. x = Mw}.

For the associated relation RM, we have RM(x,w) = 1 iff x = Mw. We give the
construction of a NIZK LNIZK for {LM}λ∈N and its simulator in Figures 1 and 2
respectively.

Genλ:
r̃ $← {0, 1}λ−1

r = Eλr̃ + eλλ ∈ {0, 1}λ
Return crs = r

Proveλ(crs,x,w):
R $← {0, 1}t×(λ−1)

C = MR ∈ {0, 1}n×(λ−1)

D = (R||w)
(

E>λ
r>

)
∈ {0, 1}t×λ

Return π = (C,D)

Verλ(crs,x, π):
Return 1 iff

(C||x)
(

E>λ
r>

)
= MD

Fig. 1. Definition of LNIZK = {Genλ,Proveλ,Verλ}λ∈N.

TGenλ:
r̃ $← {0, 1}λ−1

r = Eλr̃
Return crs = r and td = r̃

Simλ(crs, td,x):
R′ $← {0, 1}t×(λ−1)

C = MR′ − x · r̃>, D = R′E>λ
Return π = (C,D)

Fig. 2. Definition of the simulator {TGenλ, Simλ}λ∈N of LNIZK.

Theorem 2. LNIZK in Figure 1 is an NC0-NIZK with perfect soundness and
AC0-composable zero-knowledge.

Proof. Complexity. First, we note that in Figures 1 and 2, the Hamming weight

of each row vector in Eλ, M, and x and each column vector in
(

E>λ
r>
)
is constant. 5

Thus, the multiplication of matrices involved can be performed in NC0. Since
5 Notice that x can be treated as a matrix with row vectors with Hamming weight at
most 1.

10

addition of a constant number of matrices can be performed in NC0 as well, we
have {Genλ,Proveλ,Verλ,TGenλ,Simλ}λ∈N ∈ NC0.
Completeness. Completeness follows from the fact that for x = Mw, C = MR,

and D = (R||w)
(

E>λ
r>
)
, we have

(C||x)
(

E>λ
r>
)

= (MR||Mw)
(

E>λ
r>
)

= M(R||w)
(

E>λ
r>
)

= MD.

AC0-Composable Zero-Knowledge. The indistinguishability between CRSs
generated by Genλ and TGenλ follows immediately from Lemma 1.

For r = Eλr̃ ∈ TGenλ and x = Mw, we have MR = M(R + w · r̃>)− x · r̃>
and

(R||w)
(

E>λ
r>
)

= (R||w)
(

E>λ
r̃>E>λ

)
= (R + w · r̃>)E>λ .

Moreover, for R $← {0, 1}t×(λ−1), the distribution of R + w · r̃> is uniformly
random in {0, 1}t×(λ−1). Thus, for any valid statement, the simulator perfectly
simulates honest proofs, completing the proof of composable zero-knowledge.
Perfect Soundness. Recall that f1

λ denotes the vector consisting only of 1’s
and f1

λ ∈ Ker(E>λ). When r is generated as r $← Genλ, we have r /∈ Span(Eλ)
since f1

λ
>r = 1. Moreover, for any valid statement/proof pair (x, (C,D)) such

that (C||x)
(

E>λ
r>
)

= MD, we have M⊥>(C||x)
(

E>λ
r>
)

= 0, i.e., Eλ(C>M⊥) =

r(x>M⊥). When r /∈ Span(Eλ), we must have x>M⊥ = 0, which in turn implies
x ∈ LM, completing the proof of statistical soundness. Notice that in this part,
the arguments are information-theoretical and the equations are not necessarily
efficiently computable.

Putting all the above together, Theorem 2 immediately follows. ut
Remark. By replacing Genλ by TGenλ in LNIZK, we immediately achieve a
fine-grained NIZK with perfect zero-knowledge and computational soundness.
Similar arguments can also be made for our OR-proofs and NIZK for circuit SAT
given in the following sections.

4 NIZK for OR-languages
In this section, we extend the NIZK LNIZK in Section 3 to an OR-proof system. We
first give an efficient warm-up construction for 1-out-of-2 disjunction languages,
and then show how to extend it to a fully-fledged one for the disjunction of
polynomial number of linear languages.

4.1 A Warm-Up Construction
Let n0 = n0(λ), n1 = n1(λ), t0 = t0(λ), and t1 = t1(λ) be any polynomials in λ.
We define the following language

Lor
(M0,M1) = {(x0,x1) : ∃w s.t. x0 = M0w ∨ x1 = M1w},

11

where Mi ∈ {0, 1}ni×ti and the Hamming weight of each row vector in Mi is
constant for i ∈ {0, 1}. For the associated relation Ror

(M0,M1), we have Ror
(M0,M1)

((x0,x1),w) = 1 iff xj = Mjw for some j ∈ {0, 1}. The OR-proof and its
simulator are given in Figures 3 and 4 respectively. Roughly, the prover splits
the original binding CRS r into a binding one rj and a hiding one r1−j for some
j ∈ {0, 1}, and respectively uses the witness and trapdoor to generate proofs for
the two linear statements. The verifer on receiving r0 recovers r1 as r1 = r− r0
and executes the verification procedure.

ORGenλ:
r̃ $← {0, 1}λ−1, r = Eλr̃ + eλλ ∈ {0, 1}λ
Return crs = r

ORProveλ(crs, (x0,x1),w):
Let j ∈ {0, 1} s.t. xj = Mjw
Sample r̃1−j

$← {0, 1}λ−1 and compute r1−j = Eλr̃1−j and rj = r− r1−j
Sample R′1−j $← {0, 1}t1−j×(λ−1) and compute

C1−j = M1−jR′1−j−x1−j ·̃r>1−j ∈ {0, 1}n1−j×(λ−1),D1−j = R′1−jE>λ ∈ {0, 1}t1−j×λ

Sample Rj
$← {0, 1}tj×(λ−1) and compute

Cj = MjRj ,Dj = (Rj ||w)
(

E>λ
r>j

)
Return π = ((Ci,Di)i∈{0,1}, r0)

ORVerλ(crs, (x0,x1), π):
r1 = r− r0

Return 1 iff (Ci||xi)
(

E>λ
r>i

)
= MiDi for all i ∈ {0, 1}

Fig. 3. Definition of ORNIZKwm = {ORGenλ,ORProveλ,ORVerλ}λ∈N.

Theorem 3. ORNIZKwm in Figure 3 is an NC0-NIZK with perfect soundness
and AC0-composable zero-knowledge.

Proof. Complexity. First, we note that in Figures 3 and 4, the Hamming weight

of each row vector in Eλ, Mi, and xi and each column vector in
(

E>λ
r>i

)
is constant

for all i ∈ {0, 1}. Thus, the multiplication of matrices involved can be performed
in NC0. Also, addition of a constant number of matrices can be performed in NC0.
Hence, we have {ORGenλ,ORProveλ,ORVerλ,ORTGenλ,ORSimλ}λ∈N ∈ NC0.

12

ORTGenλ:
r̃ $← {0, 1}λ−1, r = Eλr̃
Return crs = r and td = r̃

ORSimλ(crs, td, (x0,x1)):
Sample r̃0

$← {0, 1}λ and compute r̃1 = r̃− r̃0, r0 = Eλr̃0, and r1 = Eλr̃1
For all i ∈ {0, 1}, compute

R′i $← {0, 1}ti×(λ−1),Ci = MiR′i − xi · r̃>i ,Di = R′iE>λ

Return π = ((Ci,Di)i=0,1, r0)

Fig. 4. Definition of the simulator {ORTGenλ,ORSimλ}λ∈N of ORNIZKwm.

Completeness. Completeness follows from the fact that for xj = Mjw, Cj =

MjRj , and Dj = (Rj ||w)
(

E>λ
r>j

)
, we have

(Cj ||xj)
(

E>λ
r>j

)
= (MjRj ||Mjw)

(
E>λ
r>j

)
= MjDj ,

and for C1−j = MR′1−j − x1−j · r̃>1−j and D1−j = R′1−jE>λ , we have

(C1−j ||x1−j)
(

E>λ
r>1−j

)
=((MR′1−j − x1−j · r̃>1−j)||x1−j)

(
E>λ
r>1−j

)
=MR′1−jEλ = MD1−j .

AC0-Composable Zero-Knowledge. The indistinguishability between CRSs
generated by Genλ and TGenλ follows immediately from Lemma 1.

When the CRS is generated as r = Eλr̃ where r̃ $← {0, 1}λ−1, r0 and r1
generated by both ORProveλ and ORSimλ are uniformly distributed in Span(Eλ),
conditioned on r = r0 + r1. Moreover, we have

MjRj = Mj(Rj + w · r̃>)− xj · r̃>

and
(Rj ||w)

(
E>λ

r̃>j E>λ

)
= (Rj + w · r̃>j)E>λ

for xj = Mjw. Since the distribution of Rj + w · r̃>j for Rj
$← {0, 1}tj×(λ−1)

is uniform in {0, 1}tj×(λ−1), the simulator perfectly simulates honest proofs,
completing the proof of composable zero-knowledge.
Perfect Soundness. Recall that f1

λ denotes the vector consisting only of 1’s and
f1
λ ∈ Ker(E>λ). For r ∈ Genλ, we have f1

λ
>r = 1, i.e., r /∈ Span(Eλ). Hence, for a

13

valid statement/proof pair (x, π) where x = (x0,x1) and π = ((Ci,Di)i∈{0,1}, r0),

we must have rj /∈ Span(Eλ) and (Cj ||xj)
(

E>λ
r>j

)
= MjDj for some j ∈ {0, 1},

where r1 = r − r0. For such j, we have (M⊥
j)>(Cj ||xj)

(
E>λ
r>j

)
= 0, i.e.,

rj(x>j M⊥
j) = Eλ(C>j M⊥

j). Since rj /∈ Span(Eλ), we must have x>j M⊥
j = 0,

which in turn implies x ∈ Lor
M0,M1

, completing the proof of perfect soundness. No-
tice that this part of arguments is information-theoretical and thus the equations
are not necessarily computable in AC0.

Putting all the above together, Theorem 3 immediately follows. ut
Remark. As discussed in Section 1.2, the above construction can not be naturally
extended to 1-out-of-` disjunction for any polynomial `, due to the fact that
an AC0 algorithm cannot compute the sum of a polynomial number of random
vectors (even conditioned on the parity being fixed). Specifically, if we extend
the construction in a straightforward way, the prover and the verifier will have to
compute rj = r−

∑
i 6=j ri and r` = r−

∑`−1
i=1 ri respectively, while neither can

be performed in AC0. In the next section, we propose a new method to overcome
this problem.

4.2 A Fully-Fledged Construction

We now extend the warm-up OR-proof to a fully-fledged one for 1-out-of-`
disjunction.

Let ` = `(λ), (ni = ni(λ))i∈[`], (ti = ti(λ))i∈[`] be any polynomials in λ. We
define the following languages:

LE` = {Y :∃W ∈ {0, 1}(`−1)×λ, s.t. Y = E`W}.

and
Lor

(Mi)i∈[`]
= {(xi)`i=1 : ∃w ∈ {0, 1}ti , s.t.

∨
i∈[`]

xi = Miw},

where Mi ∈ {0, 1}ni×ti and the Hamming weight of each row vector in Mi is
constant for i ∈ [`]. One can easily see that {LE`}λ∈N is supported by our NIZK
for linear languages given in Section 3, since LE` is equivalent to the following
linear language:

L′E` = {(yi)i∈[`] :∃w ∈ {0, 1}(`−1)λ, s.t. y1 ◦ · · · ◦ y` = Mw}

where Y = (yi)i∈[`] and

M =

E` 0 · · · 0

0
.

...
...

. 0
0 · · · 0 E`

 ∈ {0, 1}`·λ×(`−1)λ

14

contains Eλ’s in the main diagonal and 0 in the other positions. Here recall
that y1 ◦ · · · ◦ y` denotes the concatenation of (yi)i∈[`]. It is easy to see that the
Hamming weight of each row vector in M is constant.

Let LNIZK = {Genλ,Proveλ,Verλ}λ∈N be a NIZK with a simulator {TGenλ,
Simλ}λ∈N for {LE`}λ∈N, we give an OR-proof for {Lor

(Mi)i∈[`]
}λ∈N and its simulator

in Figures 5 and 6 respectively.
Roughly, we adopt a verifiable sampling procedure with double layers to split

the original CRS into `− 1 hiding CRSs and one binding CRS. In the first layer,
we sample ` vectors with a trapdoor S, and in the second layer, we in turn use
the ` vectors as trapdoors to sample ` random hiding CRSs with the sum being
0, and add one of them with r to make it binding. Later, we use a NIZK for
linear languages to prove that the sum of the ` CRSs is r, where the witness can
be extracted from S. In this way, a verifier in AC0 can check that at least one of
the split CRSs is binding, without learning any useful information.

Theorem 4. If LNIZK is an NC0-NIZK with perfect soundness and AC0-composable
zero-knowledge, then ORNIZK in Figure 5 is an NC0-NIZK with perfect soundness
and AC0-composable zero-knowledge.

Proof. Complexity. First, we note that in Figures 5 and 6, the Hamming weight

of each row vector in Eλ, E`−1, Mi, and xi and each column vector in
(

E>λ
r>i

)
is constant for all i ∈ [`]. Thus, the multiplication of matrices involved can
be performed in NC0. Since addition of a constant number of matrices and
running LNIZK and its simulator can be performed in NC0 as well, we have
{ORGenλ,ORProveλ,ORVerλ,ORTGenλ,ORSimλ}λ∈N ∈ NC0.

Completeness. For xj = Mjw, Cj = MjRj , and Dj = (Rj ||w)
(

E>λ
r>j

)
, we

have
(Cj ||xj)

(
E>λ
r>j

)
= (MjRj ||Mjw)

(
E>λ
r>j

)
= MjDj .

For (ri)i∈[`] = R = EλR̃ + r · ej`
>
, we have ri = Eλr̃i for all i ∈ [`]\{j}. Then,

for Ci = MR′i − xi · r̃>i and Di = R′iE>λ where i ∈ [`]\{j}, we have

(Ci||xi)
(

E>λ
r>i

)
=((MR′i − xi · r̃>i)||xi)

(
E>λ
r>i

)
= MR′iEλ = MDi.

Moreover, since E`f j`−1 = ej` + e``, for R̃> = E`S and R = EλR̃ + r · ej`
>
, we

have

R> =R̃>E>λ + ej` · r
>

=E`SE>λ + ej` · r
>

=E`SE>λ + (e``r> + ej` · r
>) + e`` · r>

=E`SE>λ + E`f j`−1r> + e``r>

=E`(SE>λ + f j`−1r>) + e``r>,

15

ORGenλ:
r̃ $← {0, 1}λ−1, r = Eλr̃ + eλλ ∈ {0, 1}λ, crs $← Genλ
Return crsor = (crs, r)

ORProveλ(crsor, (xi)i∈[`],w):
Let xj = Mjw for some j ∈ [`]
Sample S $← {0, 1}(`−1)×(λ−1)

Compute R̃> = E`S ∈ {0, 1}`×(λ−1) and R = EλR̃ + r · ej`
> ∈ {0, 1}λ×`

Parse R = (ri)i∈[`] and R̃ = (̃ri)i∈[`]

For all i ∈ [`]\{j}, sample R′i $← {0, 1}ti×(λ−1) and compute

ri = Eλr̃i ∈ {0, 1}λ,Ci = MiR′i−xi ·̃r>i ∈ {0, 1}ni×(λ−1),Di = R′iE>λ ∈ {0, 1}ti×λ

Sample Rj
$← {0, 1}tj×(λ−1) and compute

Cj = MjRj and Dj = (Rj ||w)
(

E>λ
r>j

)
Compute

π $← Proveλ(crs,R> − e``r>,SE>λ + f j`−1r>)
Return πor = ((Ci,Di)i∈[`],R, π)

ORVerλ(crs, (xi)i∈[`], πor):
Parse R = (ri)i∈[`]

Return 1 iff (Ci||xi)
(

E>λ
r>i

)
= MiDi for all i ∈ [`] and

Verλ(crs,R> − e``r>, π) = 1

Fig. 5. Definition of ORNIZK = {ORGenλ,ORProveλ,ORVerλ}λ∈N. Recall that by
f j`−1 ∈ {0, 1}

`−1 we denote the vector such that the first j − 1 entries are 0’s and
the last `− j ones are 1’s.

i.e., R> − e``r> = E`(SE>λ + f j`−1r>). Then the completeness of ORNIZK follows
immediately from that of LNIZK.

AC0-Composable Zero-Knowledge. The indistinguishability between CRSs
generated by ORGenλ and ORTGenλ follows immediately from the composable
zero-knowledge of LNIZK and Lemma 1.

Next we define a modified prover ORProveλ′, which is exactly the same as
ORProveλ except that π is generated as π $← Simλ(crs, td,R> − e``r>). The
following distributions are identical due to the composable zero-knowledge of
ORNIZK.

Π $← ORProveλ(crsor, (xi)i∈[`],w) and Π $← ORProveλ′(crsor, (xi)i∈[`],w),

16

ORTGenλ:
r̃ $← {0, 1}λ−1, r = Eλr̃ ∈ {0, 1}λ, (crs, td) $← TGenλ
Return crsor = ((crs, r), tdor = (td, r̃))

ORSimλ(crs, td, (xi)i∈[`]):
Sample S $← {0, 1}(`−1)×(λ−1)

Compute R̃> = E`S ∈ {0, 1}`×(λ−1) and R = EλR̃ + r · e``
> ∈ {0, 1}`×λ

Parse R = (ri)i∈[`] and R̃ = (̃ri)i∈[`]

For i ∈ [`], sample R′i $← {0, 1}ti×(λ−1) and compute Di = R′iE>λ
Compute Ci = MiR′i − xi · r̃>i for i ∈ [`− 1] and C` = M`R′` − x` · (̃r` + r̃)>
Compute

π $← Simλ(crs, td,R> − e``r>)
Return πor = ((Ci,Di)i∈[`],R, π)

Fig. 6. Definition of the simulator {ORTGenλ,ORSimλ}λ∈N of ORNIZK.

for (crsor, tdor) $← ORTGenλ and any ((xi)i∈[`],w) such that xj = Mjw for some
j ∈ [`].

Next we note that for S $← {0, 1}(`−1)×(λ−1), R̃> = E`S is uniformly dis-
tributed conditioned on

∑`
i=1 r̃i = 0 for R̃> = (r̃i)i∈[`]. The reason is that

(r̃i)i∈[`−1] are randomly distributed (since E` is of full rank) and r̃` is uniquely de-
termined conditioned on

∑`
i=1 r̃i = 0. Thus, for any r = Eλr̃ where r̃ ∈ {0, 1}λ−1,

both R̃ + r̃ ·ej`
>
and R̃ + r̃ ·e``

> are uniformly distributed conditioned on the sum
of the column vectors being r̃. In this case, the distributions of R = EλR̃ +r ·ej`

>

and R = EλR̃ + r · e``
> (generated by ORProveλ and ORSimλ respectively) are

identical as well. Moreover, we have

MjRj = Mj(Rj + w · r̃>j)− xj · r̃>j

and

(Rj ||w)
(

E>λ
r̃>j E>λ

)
= (Rj + w · r̃>j)E>λ

for xj = Mjw. Since the distribution of Rj + w · r̃>j for Rj
$← {0, 1}tj×(λ−1) is

uniform in {0, 1}tj×(λ−1), the following distributions are identical.

Π $← ORProveλ′(crsor, (xi)i∈[`],w) and Π $← ORSimλ(crsor, tdor, (xi)i∈[`]),

for (crsor, tdor) $← ORTGenλ and any ((xi)i∈[`],w) such that xj = Mjw for some
j ∈ [`], completing the proof of composable zero-knowledge.
Perfect Soundness. Due to the perfect soundness of LNIZK, for a valid proof
πor = ((Ci,Di)i=0,1,R, π), we have R> = E`W+e``r> for some W ∈ {0, 1}(`−1)×λ.

17

Hence, we have

∑̀
i=1

r>i = f1
`
>R> = f1

`
>(E`W + e``r>) = f1

`
>e``r> = r>.

Here, recall that f1
` denotes a vector in {0, 1}` consisting only of 1’s and f1

` ∈
Span(E>`). Since we have r /∈ Span(Eλ) in any CRS generated by Genλ, we must

have rj /∈ Span(Eλ) for some j ∈ [`]. For such j ∈ [`], we have (Cj ||xj)
(

E>λ
r>j

)
=

MjDj , i.e., (M⊥
j)>(Cj ||xj)

(
E>λ
r>j

)
= 0. Hence, rj(x>j M⊥

j) = Eλ(C>j M⊥
j) must

hold. Since rj /∈ Span(Eλ), we must have x>j M⊥
j = 0, which implies x ∈ Lor

(Mi)i∈[`]
,

completing the proof of perfect soundness. Notice that this part of arguments is
information-theoretical and thus the equations are not necessarily computable in
AC0.

Putting all the above together, Theorem 4 immediately follows. ut
Remark on the CRS. When instantiating LNIZK in ORNIZK with our NIZK
given in Section 3, both crs and r in crsor are uniformly distributed conditioned
on the parities being 1. Hence, we can reduce the length of crsor by merging crs
and r in crsor as a single vector in Span(Eλ).

5 NIZK for Circuit SAT

In this section, we propose a fine-grained NIZK for AC0 circuit SAT running in
AC0 and secure against adversaries in AC0.

Before giving our construction, we prove the following theorem, which is
necessary to show that our NIZK can be executed in AC0.

Theorem 5. There exists a family of circuits {ZeroFλ}λ∈N ∈ AC0 (respectively,
{OneFλ}λ∈N ∈ AC0) such that ZeroFλ (respectively, OneFλ) on input a bit-
string (b1, . . . , bn) (for some polynomial n = n(λ)) outputs the index i∗ of the
lexicographically first 0-bit (respectively, 1-bit) of (bi)i∈[n].

Proof. We first define ZeroFλ as in Figure 7.

ZeroFλ(b1, . . . , bn):
For each i ∈ [n], we compute xi = i · (1− bi) in parallel
For each i ∈ [n], we compute yi = xi · (1− OR1≤k≤(1−i),1≤j≤`(xk,j))
Compute yi∗ = OR1≤i≤n(yi,1)||. . . ||OR1≤i≤n(yi,`)

Fig. 7. Definition of ZeroFλ. By i ∈ {0, 1}` we denote the bit-string representing the
index i, where we assume that the bit-representation of n has ` bits. By yi,j we denote
the j-th bit of yi.

18

Complexity. The first step can be done by running the NOT and AND gates in
parallel with depth 2. The second step can be done by running the NOT, OR,
and AND gates in parallel with depth 3. The third step can be done in parallel
by running the OR gates with depth 1. Hence, ZeroFλ can be performed in AC0

with constant depth 6 by using unbounded fan-in AND, OR, and NOT gates.

Correctness. We now show that ZeroFλ correctly finds the index of the lexico-
graphically first 0-bit of its input. Via the first step, we can obtain a sequence of
strings (xi)i∈[n] such that xi = i if bi = 0 and xi = 0 otherwise. This step is to
pick up indices corresponding to 0-bits.

The second step is to cancel all the indices larger than i∗, where i∗ is the
index of the first 0-bit in (b1, . . . , bn). Specifically, we use the OR gate to compute
yi such that yi = xi if all x1, . . . ,xi−1 are 0`, and yi = 0` otherwise.

After the second step, we have obtained (yi)i∈[n] such that yi∗ = i∗ and
yi = 0 for all i 6= i∗, where i∗ is the index of the first 0-bit in (b1, . . . , bn). Then
we can conclude that the final step outputs each bit of yi∗ = i∗ correctly by using
the OR gate.

Construction of OneFλ. One can see that by generating xi as xi = i · bi instead
of xi = i · (1− bi), we immediately obtain a circuit OneFλ running in AC0 and
outputting the first 1-bit of a bit string.

Putting all the above together, Theorem 5 immediately follows. ut

An Example for ZeroFλ. For ease of understanding, we now give an example of
the running procedure of ZeroFλ. Assuming that the string is 10100. In the first
step, the circuit outputs 000− 010− 000− 100− 101 by using the NOT and AND
gates. In the second step, for each block, the circuit checks wether all its left bits
are 0 by using the NOT and OR gates. We can see that the check only works for
the block 010. Hence, the circuit now outputs 000− 010− 000− 000− 000. In the
third step, the circuit outputs (OR(0, 0, 0, 0, 0),OR(0, 1, 0, 0, 0),OR(0, 0, 0, 0, 0)) =
010 = 2, which is exactly the index of the first bi = 0.

Construction of Our NIZK. We now define the following languages

Lλ = {x : ∃w ∈ {0, 1}λ−1, s.t. x = Eλw}

and

Lor
λ = {(xi)i∈[`] :∃w ∈ {0, 1}2λ s.t.

∨
i∈[`]

xi = M1w

or ∃w ∈ {0, 1}(`+1)·λ s.t. x(`+1) = M2w}

where

M1 =
(

Eλ 0
0 Eλ

)
∈ {0, 1}2λ×2(λ−1)

19

and

M2 =

Eλ 0 · · · 0

0
.

...
...

. 0
0 · · · 0 Eλ

 ∈ {0, 1}(`+1)·λ×(`+1)·(λ−1),

i.e., M1 and M2 contain Eλ’s in the main diagonal and 0 in the other positions.
One can see that {Lλ}λ∈N and {Lor

λ }λ∈N are supported by our NIZK for linear
languages in Section 3 and our OR-proof given in Section 4.2 respectively.

Let {LAC0

λ }λ∈N be any family of languages such that for all x ∈ LAC0

λ , we
can run RAC0

λ (x, ·) in AC0, where RAC0

λ (x, ·) is the associated relation. 6 Without
loss of generality, we assume that all the AND and OR gates have fan-in of
some polynomial ` = `(λ). Let LNIZK = {Genλ,Proveλ,Verλ}λ∈N and ORNIZK =
{ORGenλ,ORProveλ,ORVerλ}λ∈N be NIZKs with simulators {TGenλ,Simλ}λ∈N
and {ORTGenλ,ORSimλ}λ∈N for {Lλ}λ∈N and {Lor

λ }λ∈N respectively. We give our
NIZK for {LAC0

λ }λ∈N and its simulator in Figures 8 and 9 respectively.

Theorem 6. If LNIZK and ORNIZK are NC0-NIZKs with perfect soundness
and AC0-composable zero-knowledge, then ACNIZK is an AC0-NIZK with perfect
soundness and AC0-composable zero-knowledge.

Proof. Complexity. First, we note that the Hamming weight of each row vector
in Eλ, M1, and M2 is constant. Thus, the multiplication of matrices involved
in Figures 8 and 9 and running NIZK and ORNIZK and their simulators can
be performed in NC0. Also, addition of a constant number of matrices can be
performed in NC0, and extending the witness to contain the bits of all wires
can be performed in AC0. Moreover, finding the lexicographically first j ∈ [`]
such that wij = 0 (respectively wij = 1) for each AND (respectively, OR) gate
can also be performed in AC0 according to Theorem 5. As a result, we have
{ACGenλ,ACProveλ,ACVerλ,ACTGenλ,ACSimλ}λ∈N ∈ AC0. Notice that after
extending the witness, the prover can generate commitments and run ORNIZK
for each wire and gate in parallel and the verifier can check the proofs in parallel.

Completeness. Let (wi1,wi2) be an input/output pair of a NOT gate and
(cmib = Eλrib + twib)b∈[2] be the corresponding commitments, we must have

cmi1 + cmi2 + t = Eλ(ri1 + ri2) + t(wi1 + wi2 + 1) = Eλ(ri1 + ri2).

Let ((wij)j∈[`],wi(`+1)) be a valid input/output pair of an AND or OR gate
in the statement circuit and (cmij = Eλrij + twij)j∈[`+1] be the corresponding
commitments.

6 We can assume that each RAC0
λ (x, ·) consists only of AND and OR gates, since by De

Morgan Rules, we can move all NOT gates to just the inputs and the resulting circuit
is still in AC0. However, this may cause loss on efficiency.

20

ACGenλ:
crs $← Genλ, crsor

$← ORGenλ, r̃ $← {0, 1}λ−1, t = Eλr̃ + eλλ
Return CRS = (crs, crsor, t)

ACProveλ(CRS, x,w):
Extend w to (w1, · · · ,wout) containing the bits of all wires in the circuit RAC0

λ (x, ·)
Compute ri $← {0, 1}λ−1 and cmi = Eλri + twi for each bit wi
Set rout = 0 and cmout = eλλ for the output wire
For each NOT gate with input commitment cmi1 = Eλri1 + twi1 and output
commitment cmi2 = Eλri2 + twi2, compute πi $← Proveλ(crs, xi, ri1 + ri2) where
xi = cmi1 + cmi2 + t
For each AND or OR gate with input commitments (cmij = Eλrij + twij)j∈[`] and
the output commitment cmi(`+1) = Eλri(`+1) + twi(`+1),
– if the gate is an AND gate,
• if wij = 1 for all j ∈ [`+ 1], set r = r1 ◦ · · · ◦ r`+1
• otherwise, find the lexicographically first j ∈ [`] such that wij = 0 and set

r = ri ◦ r`+1
• compute πi $← ORProveλ(crsor, (xij)j∈[`+1], r) where xij = cmij ◦ cmi(`+1)

for all j ∈ [`] and xi(`+1) = (cmi1 − t) ◦ · · · ◦ (cmi(`+1) − t)
– if the gate is an OR gate,
• if wij = 0 for all j ∈ [`+ 1], set r = r1 ◦ · · · ◦ r`+1
• otherwise, find the lexicographically first j ∈ [`] such that wij = 1 and set

r = ri ◦ r`+1
• compute πi $← ORProveλ(crsor, (xij)j∈[`+1], r) where xij = (cmij − t) ◦

(cmi(`+1) − t) for all j ∈ [`] and xi(`+1) = cmi1 ◦ · · · ◦ cmi(`+1)
Return Π consisting of all the commitments and proofs

ACVerλ(CRS, x, Π):
Check that all wires have a corresponding commitment and cmout = t
Check that all NAND gates have a valid NIZK proof of compliance
Return 1 iff all checks pass

Fig. 8. Definition of ACNIZK = {ACGenλ,ACProveλ,ACVerλ}λ∈N. Recall that for any
vectors (xi)i∈[`], by x1 ◦ · · · ◦ x` we denote (x>1 , · · · ,x>`)>.

If the gate is an AND gate, we must have wij = 0 ∧ wi(`+1) = 0 for some
j ∈ [`] or wij = 1 for all j ∈ [`+ 1], which implies

cmij ◦ cmi(`+1) = M1(rij ◦ r`+1)

for some j ∈ [`] or

(cmi1 − t) ◦ · · · ◦ (cmi(`+1) − t) = M2(r1 ◦ · · · ◦ r`+1).

If the gate is an OR gate, we must have wij = 1 ∧ wi(`+1) = 1 for some i ∈ [`] or
wij = 0 for all j ∈ [`+ 1], which implies

(cmij − t) ◦ (cmi(`+1) − t) = M1(ri ◦ r`+1)

21

ACTGenλ:
(crs, td) $← TGenλ(λ), (crsor, tdor) $← ORTGenλ(λ), r̃ $← {0, 1}λ−1, t = Eλr̃
Return CRS = (crs, crsor, t) and TD = (td, tdor)

ACSimλ(CRS,TD, x):
Compute ri $← {0, 1}λ−1 and cmi = Eλri for each wire in the circuit RAC0

λ (x, ·)
For each NOT gate with input commitment cmi1 and output commitment cmi2,
run πi $← Simλ(crs, td, xi) where xi = cmi1 + cmi2 + t
For each AND or NOT gate with input commitments (cmij)j∈[`] and the output
commitment cmi(`+1), run πi $← ORSimλ(crsor, tdor, (xij)j∈[`+1]), where
– xij = cmij ◦ cmi(`+1) for all j ∈ [`] and x`+1 = (cmi1 − t) ◦ · · · ◦ (cmi(`+1) − t)

if the gate is an AND gate
– xij = (cmij − t) ◦ (cmi(`+1) − t) for all j ∈ [`] and x`+1 = cmi1 ◦ · · · ◦ cmi(`+1)

if the gate is an OR gate
Return Π consisting of all the commitments and proofs

Fig. 9. Definition of the simulator {ACTGenλ,ACSimλ}λ∈N of ACNIZK.

for some i ∈ [`] or

cmi1 ◦ · · · ◦ cmi(`+1) = M2(r1 ◦ · · · ◦ r`+1).

Then the completeness of ACNIZK follows from that of LNIZK and that of
ORNIZK.
AC0-Composable Zero-Knowledge. The indistinguishability of CRSs gen-
erated by ACGenλ and ACTGenλ follows immediately from Lemma 1 and the
composable zero-knowledge of LNIZK and ORNIZK.

Next we define a modified prover ACProve′λ, which is exactly the same as
ACProveλ except that for each NOT gate, πi is generated as

πi
$← Simλ(crs, td, xi),

and for each AND or OR gate, πi is generated as

πi
$← ORSimλ(crsor, tdor, (xij)j∈[`+1]).

The following distributions are identical due to the composable zero-knowledge
of LNIZK and ORNIZK.

Π $← ACProveλ(CRS, x,w) and Π $← ACProve′λ(CRS, x,w),

for (CRS,TD) $← TGenλ and any (x,w) such that RAC0

λ (x,w) = 1.
Moreover, since the distribution of cmi = Eλri is identical to that of cmi =

Eλri + twi for ri $← {0, 1}λ when t ∈ Span(Eλ), the distributions of

Π $← ACProve′λ(CRS, x,w) and Π $← ACSimλ(CRS,TD, x),

22

where (CRS,TD) $← ACTGenλ and RAC0

λ (x,w) = 1, are identical as well, complet-
ing the proof of composable zero-knowledge.
Perfect Soundness. Due to the perfect soundness of LNIZK and ORNIZK, for
each NOT gate with input/output commitments (cmi0, cmi1), we have cmi0 +
cmi1 = t. For each AND gate with input commitments (cmij)i∈[`] and an output
commitment cmi(`+1) in a valid proof, we have

xij = (cmij ◦ cmi(`+1)) ∈ Span(M1)

for some j ∈ [`] or

xk = (cmi1 − t) ◦ · · · ◦ (cmi(`+1) − t) ∈ Span(M2).

Similarly, for each OR gate, we have

xij = (cmij − t ◦ cmi(`+1) − t) ∈ Span(M1)

for some j ∈ [`] or

xk = cmi1 ◦ · · · ◦ cmi(`+1) ∈ Span(M2).

Recall that f1
λ denotes a vector in {0, 1}λ consisting only of 1’s and f1

λ ∈
Ker(E>λ). For t = Eλr̃ + eλλ where r̃ ∈ {0, 1}λ−1, we have f1

λ
>t = 1. For a NOT

gate, we must have
f1
λ
>cmi1 + f1

λ
>cmi2 + 1 = 0.

For an AND gate, we must have

f1
λ
>cmij = 0 and f1

λ
>cmi(`+1) = 0 for some j ∈ [`]

or
f1
λ
>cmij = 1 for all j ∈ [`+ 1].

For an OR gate, we must have

f1
λ
>cmij = 1 and f1

λ
>cmi(`+1) = 1 for some j ∈ [`]

or
f1
λ
>cmij = 0 for all j ∈ [`+ 1].

For the output wire, we have

f1
λ
>cmout = f1

λ
>t = 1.

As a result, we can extract valid values of all the wires with the final output being 1,
completing the proof of perfect soundness. Notice that the extraction procedure is
not necessarily in AC0 since the arguments in this part are information-theoretical.

Putting all the above together, Theorem 6 immediately follows. ut

23

Remark. If we only treat statement circuits in NC0, we can further reduce
the proof size by instantiating the underlying OR-proof with our warm-up
construction for one disjunction given in Section 4.1.

Similar to previous fine-grained NIZKs [1,19], our construction also works
in the “inefficient prover setting”. Namely, if we allow the prover to run in
polynomial-time, we immediately have an unconditionally secure NIZK for all
NP against AC0 adversaries.
Extension to NIZK in the URS model. As remarked in Section 4.2, the
CRS of the underlying OR-proof can be generated as a single vector uniformly
distributed conditioned on the parity being 1. For ACNIZK, we can further merge
crsor and t in the same way. Moreover, by running ACNIZK in parallel for the same
statement and generating each CRS as a uniformly random string, we immediately
achieve a NIZK with perfect soundness and composable zero-knowledge in the
URS model. The reason is that a random string is a binding and a hiding CRS
with “half-half” probability. Composable zero-knowledge of the resulting scheme
follows immediately from Lemma 1, and statistical soundness follows from that
at least one string is a binding CRS with overwhelming probability.

6 Non-Interactive Zap

In this section, we show that our NIZKs have verifiable correlated key generation
and exploit the framework in [10] to convert our NIZKs into non-interactive zaps.

6.1 Verifiable Correlated Key Generation

The definition of verifiable correlated key generation is as follows.

Definition 6 (Verifiable correlated key generation). A C1-NIZK NIZK =
{Genλ,Proveλ,Verλ}λ∈N with a simulator {TGenλ,Simλ}λ∈N has verifiable corre-
lated key generation if there exists a function family {Convertλ,Checkλ}λ∈N ∈ C1
such that
1. the distribution of Convertλ(crs0) is identical to that of crs1, where crs0

$←
Genλ and (crs1, td1) $← TGenλ,

2. Checkλ(crs0,Convertλ(crs0)) = 1 for all crs0 ∈ Genλ, and
3. for any crs0 and crs1 (not necessarily in the support of Genλ or TGenλ) such

that Checkλ(crs0, crs1) = 1, we have crs0 ∈ Genλ or crs1 ∈ Genλ.

Lemma 2. LNIZK in Section 3 (see Figure 1) has verifiable correlated key gen-
eration.

Proof. For LNIZK where a binding (respectively, hiding) CRS consists only of a
vector uniformly sampled conditioned on the parity being 1 (respectively, 0), we
define {Checkλ}λ∈N and {Convertλ}λ∈N as in Figure 10.

First we note that {Convertλ}λ∈N ∈ NC0 and {Checkλ}λ∈N ∈ NC0 since they
only involve addition of two vectors.

24

Convertλ(r0):
r1 = r0 + eλλ

Checkλ(r0, r1):
Return 1 iff eλλ = r0 + r1

Fig. 10. Definition of {Convertλ,Checkλ}λ∈N.

For r0
$← Genλ and r1

$← TGenλ, the distributions of r0 + eλλ and r1 are
identical. Hence, the first condition in Definition 6 is satisfied. The second
condition is satisfied since for r1 = r0 + eλλ, we have r0 + r1 = r0 + (r0 + eλλ) = eλλ.
For r0 and r1 such that eλλ = r0 + r1, we must have PARITYλ(r0) = 1 or
PARITYλ(r1) = 1, i.e., r0 ∈ Genλ or r1 ∈ Genλ. Hence, the third condition is also
satisfied, completing the proof of Lemma 2. ut

As remarked in Sections 4.2 and 5, the CRSs of our OR-proof and our NIZK
for circuit SAT can be generated in exactly the same way as those of LNIZK.
Hence, we have the following corollary.

Corollary 1. ORNIZK in Section 4.2 (see Figure 5) and ACNIZK in Section 5
(see Figure 8) have verifiable correlated key generation.

6.2 Construction of Non-Interactive Zap

We now show how to convert our NIZKs with verifiable correlated key generation
to non-interactive zaps by using the technique in [10].

Let {LAC0

λ }λ∈N be any family of languages such that for all λ ∈ N and all
x ∈ LAC0

λ , we can run RAC0

λ (x, ·) in AC0, where RAC0

λ is the associated relation. Let
NIZK = {Genλ,Proveλ,Verλ}λ∈N be a NIZK with a simulator {TGenλ,Simλ}λ∈N
and verifiable correlated key converting and checking algorithms {Checkλ,Convertλ}λ∈N
for {LAC0

λ }λ∈N. We give a non-interactive zap ZAP = {ZProveλ,ZVerλ}λ∈N for
{LAC0

λ }λ∈N in Figure 11.

ZProveλ(x,w):
(crs0, td0) $← TGenλ, crs1 = Convertλ(crs0)
π0

$← Proveλ(crs0, x,w)
π1

$← Proveλ(crs1, x,w)
Return π = (crs0, crs1, π0, π1)

ZVerλ(x, π):
Return 1 iff

Checkλ(crs0, crs1) = 1
Verλ(crs0, x, π0) = 1
Verλ(crs1, x, π1) = 1

Fig. 11. Definition of ZAP = {ZProveλ,ZVerλ}λ∈N for {LAC0
λ }λ∈N.

Theorem 7. If NIZK is an AC0-NIZK with AC0-composable zero-knowledge,
perfect soundness, and verifiable correlated key generation, then ZAP is an AC0-
non-interactive zap with perfect soundness and AC0-witness indistinguishability.

25

We refer the reader to Appendix A for the security proof.
By instantiating the underlying NIZK with our NIZK in Section 5, we obtain an

AC0-non-interactive zap for AC0-circuit SAT with AC0-witness indistinguishability.

Acknowledgement

We are grateful to the anonymous reviewers of ASIACRYPT 2022 for the helpful
feedback.

References

1. Ball, M., Dachman-Soled, D., Kulkarni, M.: New techniques for zero-knowledge:
Leveraging inefficient provers to reduce assumptions, interaction, and trust. In:
Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172,
pp. 674–703. Springer, Heidelberg (Aug 2020) 2, 4, 24

2. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (Dec
2014) 1

3. Degwekar, A., Vaikuntanathan, V., Vasudevan, P.N.: Fine-grained cryptography.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp.
533–562. Springer, Heidelberg (Aug 2016) 2, 3

4. Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS. pp. 283–293.
IEEE Computer Society Press (Nov 2000) 3

5. Egashira, S., Wang, Y., Tanaka, K.: Fine-grained cryptography revisited. J. Cryptol.
34(3), 23 (2021) 2

6. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (May 2013)
1

7. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186–208 (1989) 1

8. Groth, J.: Short non-interactive zero-knowledge proofs. In: Abe, M. (ed.) ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 341–358. Springer, Heidelberg (Dec 2010)
1

9. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (May 2016) 1

10. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11:1–11:35 (2012) 1, 3, 5, 7, 24, 25

11. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (Apr 2008) 1, 3

12. Håstad, J.: One-way permutations in NC0. Inf. Process. Lett. 26(3), 153–155 (1987)
3

13. Håstad, J.: On the correlation of parity and small-depth circuits. SIAM J. Comput.
43(5), 1699–1708 (2014) 4, 8

26

14. Impagliazzo, R.: A personal view of average-case complexity. In: Computational
Complexity Conference. pp. 134–147. IEEE Computer Society (1995) 3

15. Impagliazzo, R., Matthews, W., Paturi, R.: A satisfiability algorithm for ac$ˆ0$.
CoRR abs/1107.3127 (2011) 4, 8

16. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189.
Springer, Heidelberg (Mar 2012) 1

17. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learning
with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS,
vol. 11692, pp. 89–114. Springer, Heidelberg (Aug 2019) 1

18. Ràfols, C.: Stretching groth-sahai: NIZK proofs of partial satisfiability. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 247–276. Springer,
Heidelberg (Mar 2015) 5

19. Wang, Y., Pan, J.: Non-interactive zero-knowledge proofs with fine-grained security.
In: Eurocrypt 2022, Trondheim, Norway, 2022, Proceedings. Lecture Notes in
Computer Science (2022), https://eprint.iacr.org/2022/548 2, 3, 4, 24, 29

20. Wang, Y., Pan, J., Chen, Y.: Fine-grained secure attribute-based encryption. In:
Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp.
179–207. Springer, Heidelberg, Virtual Event (Aug 2021) 2

27

https://eprint.iacr.org/2022/548

Appendix

A Proof of Theorem 7

We prove Theorem 7 in this section.

Proof. Complexity. our ZAP runs in AC0, since the underlying NIZK runs in
AC0.
Completeness. The completeness of ZAP follows immediately from that of
NIZK and the fact that Checkλ(crs0,Convertλ(crs0)) = 1 for all crs0 ∈ Genλ (see
Definition 6).
Perfect Soundness. Due to the verifiable correlated key generation of NIZK, we
have crs0 ∈ Genλ or crs1 ∈ Genλ for a valid proof π = (crs0, crs1, π0, π1). Hence,
the perfect soundness of ZAP follows immediately from that of NIZK.
AC0-Witness Indistinguishability. We prove the witness indistinguishability
of ZAP by a sequence of games as in Figure 12.

ZProveλ(x,w0), ZProveλ(x,w0,w1) , ZProveλ(x,w1) :

G0, G1 , G2 , G3 , G4

(crs0, td0) $← TGenλ, crs0
$← Genλ , (crs0, td0) $← TGenλ

crs1 = Convertλ(crs0)
π0

$← Proveλ(crs0, x,w0), π0
$← Proveλ(crs0, x,w1)

π1
$← Proveλ(crs1, x,w0), π1

$← Proveλ(crs1, x,w1)
Return π = (crs0, crs1, π0, π1)

Fig. 12. Modifications on ZProveλ in the intermediate games.

Let A = {aλ}λ∈N ∈ AC0 be an adversary against the witness indistinguisha-
bility of ZAP. It receives a proof π generated by the (modified) prover in each
game as defined in Figure 12. Below by εi we denote the probability that aλ
outputs 1 in Game Gi for i = 0, · · · , 4.
Games G0 and G1. G0 is the real game where aλ receives π = (crs0, crs1, π0,
π1) $← ZProveλ(x,w0). G1 is the same as G0 except that π0 is generated as
π0

$← Proveλ(crs0, x,w1) instead of π0
$← Proveλ(crs0, x,w0).

Lemma 3. ε0 = ε1.

Proof. Lemma 3 follows immediately from the composable zero knowledge of
NIZK. ut

28

Game G2. This is the same as G1 except that crs0 is generated as crs0
$← Genλ

instead of (crs0, td0) $← TGenλ.

Lemma 4. There exists an adversary B1 = {b1
λ}λ∈N ∈ AC0 such that b1

λ breaks
the composable zero-knowledge of NIZK with probability |ε2 − ε1|.

Proof. We build the distinguisher b1
λ as follows.

b1
λ runs as in G1 except that now it takes crs0 as input from the composable

zero-knowledge game of NIZK. crs0 can be generated as (crs0, td0) $← TGenλ or
crs0

$← Genλ. When aλ outputs β ∈ {0, 1}, b1
λ outputs β as well.

If crs0 is generated as (crs0, td0) $← TGenλ (respectively, crs0
$← Genλ), the

view of aλ is the same as its view in G1 (respectively, G2). Hence, the probability
that b1

λ breaks the fine-grained matrix linear assumption is |ε2 − ε1|.
Moreover, since all operations in b1

λ are performed in AC0, we have B1 =
{b1
λ}λ∈N ∈ AC0, completing this part of proof. ut

Game G3. G3 is the same as G2 except that π1 is generated as π1
$← Proveλ(crs1,

x,w1) instead of π1
$← Proveλ(crs1, x,w0).

Lemma 5. ε3 = ε2.

Proof. By the verifiable correlated key generation, the distribution of Convertλ(crs0)
is the same as crs1 for crs0

$← Genλ and (crs1, td1) $← TGenλ. Then Lemma 5
follows from the composable zero-knowledge of NIZK. ut
Game G4. G4 is the same as G3 except that crs0 is generated as (crs0, td0) $←
TGenλ instead of crs0

$← Genλ.

Lemma 6. There exists an adversary B2 = {b2
λ}λ∈N ∈ AC0 such that b2

λ breaks
the composable zero-knowledge of NIZK with probability |ε4 − ε3|.

Proof. We build the distinguisher b2
λ as follows.

b2
λ runs as in G3 except that crs0 is taken as input from its composable

zero-knowledge challenger, namely, crs0 can be generated as crs0
$← Genλ or

(crs0, td0) $← TGenλ. When aλ outputs β ∈ {0, 1}, b2
λ outputs β as well.

If crs0 is generated as crs0
$← Genλ (respectively, (crs0, td0) $← TGenλ), the

view of aλ is the same as its view in G3 (respectively, G4). Hence, the probability
that b2

λ breaks the composable zero-knowledge of NIZK is |ε4 − ε3|.
Moreover, since all operations in b2

λ are performed in AC0, we have B2 =
{b2
λ}λ∈N ∈ AC0, and this completes the proof. ut
Putting all the above together, Theorem 7 immediately follows. ut

Remark on Non-Interactive Zap for NP. Similar to the work of Wang and
Pan [19], our transformation from NIZK to the non-interactive zap also works
for polynomial-time provers, namely, we have an unconditionally secure non-
interactive zap for all NP against AC0 adversaries if we allow polynomial-time
provers. In our transformation, generating a zap proof (see Figure 11) involves
two proofs of the underlying NIZK. In this case, we have to show that the above
reductions run in AC0, i.e., we need to ensure that they can generate proofs of
the underlying NIZK in AC0. This is possible for our NIZK in Figure 8. More

29

precisely, to generate a NIZK proof for an NP statement, AC0-reductions can
perform all the steps except for extending the witness (since the commitments and
OR-proofs can be generated in parallel). Extending the witness is not necessary,
since the extended witness can be hard-wired in an AC0-reduction beforehand,
due to the fact that any statement x and its two witnesses w0 and w1 are a-prior
fixed in the hybrid games.

30

	 Unconditionally Secure NIZK in the Fine-Grained Setting

