
Short-lived zero-knowledge proofs and signatures

Arasu Arun1, Joseph Bonneau1,2, and Jeremy Clark3

1 New York University
New York, NY, USA

2 University of Melbourne
Melbourne, VIC, Australia

3 Concordia University
Montreal, QC, Canada

Abstract. We introduce the short-lived proof, a non-interactive proof
of knowledge with a novel feature: after a specified period of time, the
proof is no longer convincing. This time-delayed loss of soundness hap-
pens “naturally” without further involvement from the prover or any
third party. We propose definitions for short-lived proofs as well as the
special case of short-lived signatures. We show several practical construc-
tions built using verifiable delay functions (VDFs). The key idea in our
approach is to allow any party to forge any proof by executing a large
sequential computation. Some constructions achieve a stronger property
called reusable forgeability in which one sequential computation allows
forging an arbitrary number of proofs of di↵erent statements. We also
introduces two novel types of VDFs, re-randomizable VDFs and zero-
knowledge VDFs, which may be of independent interest. Our construc-
tions for short-lived S-protocols and signatures are practically e�cient
for provers and verifiers, adding a few hundred bytes of overhead and
tens to hundreds of milliseconds of proving/verification time.

Keywords: zero-knowledge proofs · signatures · VDFs · time-based crypto

1 Introduction

A digital signature is forever. Or at least, until the underlying signature scheme
is broken or the signing key is breached. This is often much more than what
is required for real world applications: a signature might need to only provide
authenticity for a few seconds to conduct an authenticated key exchange or verify
the provenance of an email. At best, the long-lived authentication provided by
standard signatures is often unnecessary. In certain cases, however, it may have
significant undesirable consequences.

An illustrative example is the DKIM protocol [53] used by modern SMTP
servers to sign outgoing email on behalf of the entire domain (e.g., example.com)
with a single key. DKIM is primarily intended to prevent email spoofing [27]. As
such, these signatures only need a lifetime of minutes for recipient SMTP servers
to verify and potentially filter email. However DKIM signatures do not expire

2 A. Arun, J. Bonneau and J. Clark

and instead provide long-lasting evidence of authenticity for old email messages,
such as ones leaked through illicit data breaches [72]. As a result, cryptographers
have suggested that DKIM servers should periodically rotate keys and reveal old
private keys to provide deniability for old DKIM signatures [45].

Our approach. A short-lived proof convinces the verifier of the following: either
a claimed statement x is true or someone expended at least t steps of sequential
work to forge the proof. The proof incorporates a random beacon value (e.g., the
day’s newspaper headline) to ensure it was not created before a specific time T0.
If a verifier observes the proof within � units of time after T0, she will believe
it is a valid proof if � < t because it would be impossible to have forged the
proof within that time period. Once � � t, the proof is no longer convincing as
it may have been constructed through the forgery process.

Our constructions build on recent advances in time-based cryptography,
specifically verifiable delay functions (VDFs) [16,77,64]. Under the hood, the
sequential computation required for forging a proof or signature in all of our
schemes is equivalent to evaluating a VDF on a random input.

Cryptographic deniability. The idea that signatures should not be permanently
verifiable is a special case of cryptographic deniability. This is often weaker than
intuition suggests. Informally, deniability for signatures means there is no addi-

tional cryptographic proof that Alice sent a particular message. There may still
be circumstantial proof such as logs or testimony, but these would exist whether
or not cryptography was used at all.

A simple approach to deniability, as suggested for DKIM, is to publish secret
information after running a protocol which enables any party to forge transcripts.
Other approaches include deniable key exchange protocols (e.g., OTR messag-
ing [21]) or designated verifier proofs/signatures [49] which limit verifiability to
a specified set of parties. By contrast, short-lived proofs are non-interactive and
publicly verifiable yet become deniable after a specified period of time with-
out any further action by the prover. For signatures, the signer can maintain a
long-lived key even as messages signed with it expire.

The fact that short-lived signatures provide deniability without the sender
needing to interact with the recipient (or even know the receivers’ public key)
makes them uniquely qualified for achieving deniability in several practical sce-
narios, as we discuss in Section 10. An example is sending email with a single
signature to a large, potentially unknown group of recipients. To our knowledge,
ours is the first primitive to enable this.

To summarize our contributions, as outlined in Table 1:

• We define short-lived zero-knowledge proofs (§4) and short-lived signatures
(§8). Reusable forgeability captures the useful property of a single slow com-
putation enabling e�cient proof forgery for any statement (§4.1).

• We propose a short-lived proof construction (with reusable forgeability) from
any generic non-interactive zero-knowledge proof scheme and any VDF (§5).

Short-Lived Zero-Knowledge Proofs and Signatures 3

Sc
he
m
e

Se
ct
io
n

Re
us
ab
le
fo
rg
ea
bi
lit
y

No
pr
e-
co
m
pu
ta
tio
n

VD
F
re
qu
ire
d

Pr
oo
f/
Si
gn
ty
pe

short-lived proofs

Generic ZK §5 any [16] generic SNARK

S-Precomp §6.2 # # any [16] S-protocol

S-rrVDF §6.3 # G# re-randomizable (§A) S-protocol

S-zkVDF §7 G# zero-knowledge (§7.1) S-protocol

short-lived signatures

Generic ZK §8 any [16] generic SNARK

⌃sign _ zkVDF §8 G# zero-knowledge (§7.1, §C) S signatures

Sign-Trapdoor §8.1 # trapdoor ([77,64]) RSA

Sign-Watermark §8.2 G# watermarkable ([77], §B) RSA

Table 1. A comparison of our constructions. The symbol G# denotes schemes with a
time-space tradeo↵ in the delay parameter t (see §9).

• We propose a short-lived proof construction (§6.2) for any S-protocol (§2.2)
and any VDF with a S-protocol for verification. Our basic scheme requires
precomputation per-proof, which we can eliminate by introducing the con-
cept of re-randomizable VDFs .

• We introduce the notion of zero-knowledge VDFs (§7) and use it to build a
short-lived proof with reusable forgeability for S-protocols.

• We show that our general S-construction can be instantiated with S-signatures
such as Schnorr (§8). We further introduce highly e�cient short-lived sig-
nature schemes (§8.1) from trapdoor VDFs [77] and watermarkable VDFs
which are as compact as a single VDF proof and o↵er reusable forgeability.

2 Preliminaries

2.1 Zero-knowledge proofs and arguments

We start with a basic background on zero-knowledge proofs, while referring
the reader to [74] for more comprehensive introduction. Zero-knowledge proofs
concern a relation R ⇢ X ⇥W — a set of pairs (x,w) where x is called the
statement or instance and w is called the witness. For example, for the relation
of Di�e-Hellman tuples, we might write: RDH3 = {(x = (g, g1, g2, g3), w =

4 A. Arun, J. Bonneau and J. Clark

(a, b))|g1 = g
a
^g2 = g

b
^g3 = g

ab
}. The set of all values x such that there exists

a witness w for which (x,w) 2 R is the language LR. It has been shown that all
NP-languages have a zero-knowledge proof system [43]. A non-interactive zero
knowledge proof system ⇧R for R is a trio of algorithms (we consider R to be
hard-coded into all three):

• ⇧.Setup(�)! pp

• ⇧.Prove(pp, x, w)! ⇡

• ⇧.Verify(pp, x,⇡)! Accept/Reject

A proof system is complete if, for all (x,w) 2 R, given a proof ⇡ Prove(pp, x, w),
the verification algorithm Verify(pp, x,⇡) outputs Accept. A proof system is sound
if an unbounded malicious prover (who does not know w) cannot produce an ac-
ceptable proof with probability greater than 2� for knowledge error . The
weaker notion of computational soundness holds for polynomial-time malicious
provers; for simplicity we refer to such argument systems as proofs.

A proof of knowledge has an additional property roughly stating that an
adversary must “know” a witness w to compute a proof for (x,w) 2 R. Knowl-
edge soundness for proofs-of-knowledge is formalized by defining an algorithm
A which outputs an accepted proof ⇡ and demonstrating an e�cient algorithm
Extract which can interact with A and output a witness w such that (x,w) 2 R.
Depending on the proof construction, the extractor may need to rewind A (a
rewinding extractor) or inspect A’s internal state (a non-black box extractor).

A proof of knowledge is zero knowledge if the proof ⇡ reveals nothing about
the witness w. Formally, this is established by demonstrating an e�cient algo-
rithm Simulate which, given any statement x 2 LR can output simulated proofs
⇡̃ indistinguishable from real proofs such that Verify(pp, x, ⇡̃)! Accept. Simulate

may require additional power, such as the ability to program the random oracle
to give specified responses.

If the system produces succinct (e.g., constant or poly-logarithmic sized)
arguments, it is a SNARK (or zk-SNARK) for R, of which there are now many
known constructions [46,42,13].

2.2 Sigma Protocols

Our constructions in Sections 6 and 7 target a special class of interactive zero-
knowledge proof systems called S-protocols [70]. A S-protocol [70] is a three-
move interactive protocol between a prover P and verifier V:

1. P runs ⌃.Commit(x)! a and sends a to V.
2. V runs ⌃.Challenge()! c and sends c to P.
3. P runs ⌃.Respond(x,w, a, c)! z and sends z to V.
4. V accepts if ⌃.Verify(x, a, c, z)! Accept.

We write ⌃R to denote a S-protocol for relation R. A S-protocol has special
soundness if there exists an algorithm ⌃.Extract(x, a, c, c0, z, z0) which outputs a

Short-Lived Zero-Knowledge Proofs and Signatures 5

witness w for x given any two accepting transcripts of the form (x, a, c, z) and
(x, a, c0, z0) with c 6= c

0. A S-protocol is honest verifier zero-knowledge if it has
an e�cient algorithm ⌃.Simulate(x) ! (ã, c̃, z̃) such that ⌃.Verify(x, ã, c̃, z̃) !
Accept and the distribution of (x, ã, c̃, z̃) is indistinguishable from transcripts of
a genuine interaction between a verifier and prover knowing a witness w.

Every S-protocol can be transformed into a non-interactive, fully secure (i.e.,
no honesty assumption on the verifier) zero-knowledge proof in the random oracle
model using the Fiat-Shamir heuristic [39], in which the challenge is generated
as c = O(x, a) where O is the random oracle. ⌃.Extract and ⌃.Simulate make
use of rewinding the other party and programming the random oracle.

2.3 Disjunction of S-protocols

The set of relations with S-protocols is closed under conjunction and disjunc-
tion [32]. The classic protocol for disjunction of S-protocols, which we denote
S-OR, is due to Cramer et al. [32].4 Let ⌃R1 and ⌃R2 be S-protocols for relations
R1 and R2 respectively. Assume the prover wants to prove the disjunction of the
statement x = (x1, x2) and knows a witness w1 showing that (x1, w1) 2 R1

(knowing w2 showing that (x2, w2) 2 R2 is a symmetric case). The proof is
constructed as follows:

Protocol ⌃R1_R2(x1, w1, x2,�) :
1. P runs ⌃R2 .Simulate(x2)! (ã2, c̃2, z̃2)
2. P runs ⌃R1 .Commit(x1)! a1

3. P send (a1, ã2) to V
4. V sends c = ⌃.Challenge() to P
5. P sets c1 = c� c̃2

6. P runs ⌃R1 .Respond(x1, w1, a1, c1)! z1

7. P sends (c1, c̃2, z1, z2) to V

8. V accepts if c = c1 � c̃2 and both:
• ⌃R1 .Verify(x1, a1, c1, z1)! Accept

• ⌃R2 .Verify(x2, ã2, c̃2, z̃2)! Accept

2.4 Beacons

A beacon [65] is a continual source of unpredictable public randomness. A bea-
con’s output at time Ti should be uniformly random and unpredictable as of
time Ti�1. We assume that beacon values are drawn uniformly randomly from a
space |B| � 2� for the security parameter �. All our protocols assume an input
beacon value denoted b. In practice, NIST operates a centralized beacon which
publishes 512 random bits every minute [4]. The drand project operates a public
beacon publishing 256 bits every 30 seconds [2] using a multi-party randomness
protocol [73]. Other potential beacons include web server challenges [48], stock
market prices [26], and blockchain data [20].

4 Ciampi et al. [25] later introduced a di↵erent S-OR protocol with certain advantages
over the Cramer et al. construction.

6 A. Arun, J. Bonneau and J. Clark

2.5 Verifiable Delay Functions

Verifiable delay functions (VDFs) are defined by a trio of algorithms:5

• VDF.Setup(�, t)! pp

• VDF.Eval(pp, b)! (y,⇡)
• VDF.Verify(pp, b, y,⇡)! Accept/Reject

Boneh et al. formalized VDFs and o↵er formal security definitions [16]. Infor-
mally, VDFs satisfy three important properties: (1) Verifiability, meaning that
the verification algorithm is e�cient (at most polylogarithmic in t and �) and
always accepts when given genuine output from Eval. (2) VDF evaluation must
be a function, meaning that Eval is a deterministic algorithm and it is compu-
tationally infeasible to find two pairs (b, y), (b, y0) with y 6= y

0 that Eval will
accept. And (3) VDFs must impose a computational delay. Roughly speaking,
computing a VDF successfully with non-negligible probability over a uniformly
distributed challenge b should be impossible without executing t sequential steps.
Throughout this paper, we will refer to this property as “t-Sequentiality” to em-
phasize the time delay parameter. All of our constructions reduce forging a proof
to evaluating a VDF on a random input. Formally:

Property 1 (Sequentiality of VDFs (from [16])). For functions �(t), p(t), the
VDF is (p,�)-Sequential if for all randomized algorithms A0 which run in to-
tal time O(poly(t,�)), and A1 which run in parallel time �(t) on at most p(t)
processors, the probability of winning the following game is negligible:

1. pp Setup(�, t)
2. ↵ A0(�, pp, t) // advice string
3. Challenger samples VDF input b
4. yA A1(↵, pp, b)
5. Adversary wins if yA = y where y,⇡ Eval(pp, b)

VDFs constructions have been proposed from generic succinct proofs [16],
repeated squaring in groups of unknown order [77,64], permutation polynomi-
als [16], isogenies [37], and homomorphic encryption [50]. Earlier work pro-
posed “weak” VDFs based on computing square roots mod p [35,55]. Proof-
of-sequential work (PoSW) [56,28] is a similar primitive that does not require
the evaluation to have a unique mapping. Modern VDF constructions are in fact
the most e�cient known PoSW constructions; for simplicity we present all our
constructions using the notation and terminology of VDFs.

An important limitation of all VDF constructions is that they can only guar-
antee a certain number of steps of sequential computation are required. The real-
world or “wall-clock” time needed to execute this computation varies based on
the speed of available computing platforms. To manage this limitation, conven-
tional wisdom suggests using a VDF with a relatively simple evaluation function
for which highly optimized hardware is available to honest parties, limiting the
speedup available to attackers. For this reason, repeated-squaring based VDFs
are considered the most practical candidates today.
5 The VDF challenge is traditionally denoted x. We use b to avoid confusion with x

as the statement of a zero-knowledge proof.

Short-Lived Zero-Knowledge Proofs and Signatures 7

2.6 VDFs from repeated squaring

We focus in particular on VDF constructions which utilize repeated squaring in
a group of unknown order, as these have useful algebraic properties for building
short-lived proofs and signatures. VDF evaluation is simply y = VDF.Eval(b) =
b
2
t

. Wesolowski [77] and Pietrzak [64] introduced two distinct approaches for
e�ciently proving that y = b

2
t

in a group of unknown order:

Wesolowski proofs: First, the Prover provides ỹ, claiming ỹ = b
2
t

. The verifier
provides a random prime ` as a challenge. Both parties compute, via long divi-
sion, the unique values q, r such that 2t = q` + r and 0  r < `. Finally, the
prover outputs a proof ⇡ = b

q. The verifier accepts if and only if ỹ = q
`
b
r.

Pietrzak proofs: As before, the Prover provides ỹ, claiming ỹ = b
2
t

. The prover

then provides a value v and asserts that v = b
2
t/2

. The verifier chooses a random
challenge r and they both compute ỹ

0 = ỹ · v
r
, b

0 = v · b
r. The verifier could

manually verify that ỹ
0 = (b0)(2

t/2
) by computing t

2
squarings, half as many

as the original problem of verifying that ỹ = b
(2

t
). Alternately, the prover can

recursively prove that ỹ
0 = (b0)(2

t/2
). Typically, this is done for d rounds, each

halving the size of the exponent, until the verifier manually checks the remaining
exponent of size 2t/2

d

.

Boneh et al. [17] provide a detailed comparison of the two proof constructions.
Wesolowski proofs are shorter (two group elements instead of O(log t)) but more
di�cult to compute and rely on slightly stronger assumptions. In this work we
observe a new property of both constructions, re-randomizability (§6.3), and
introduce a new zero-knowledge variant of Wesolowski proofs (§7).

3 Related Work

Jakobsson et al. introduced the idea of using disjunctive statements to provide
deniability [49]. Given a statement x to be proven to Bob in zero knowledge, the
proof is transformed into the statement: {either x or I know Bob’s private key}.
A proof of this compound statement, which is called a designated verifier proof,
is only convincing to Bob. If Bob is confident that nobody else knows his private
key and that he did not compute the proof, then he knows the second clause is
false and therefore x is true. Anybody else is unsure if x is true or if Bob forged

the proof by satisfying the second clause. Another approach to constructing
signatures with the designated-verifier property is chameleon signatures [52],
which use a standard hash-and-sign construction but with a chameleon hash
function whose trapdoor is known by the intended verifier.

Many of our constructions6 follow a similar disjunctive template, with the
essential statement being {either x or someone solved a VDF of di�culty t on a

6 An initial version of this work appeared as a Masters thesis [30].

8 A. Arun, J. Bonneau and J. Clark

beacon value derived from b which was unknown before time T}. VDFs requires
t sequential steps (which approximate elapsed time).

Several other works have used disjunctive proofs to provide di↵erent no-
tions of deniability. Baldimtsi et al. showed the constructions and applications
for proofs-of-work-or-knowledge (PoWorKs) of the form {either x or someone

solved a proof-of-work puzzle} where the puzzle requires w units of parallelizable
computation [8]. Time-traveling simulators, introduced by Goyal et al. [44], pro-
vide a similar deniability notion in which a proof is convincing until a blockchain
grows to a certain length. Specter et al. proposed {either x or someone has seen

value v released at time T} for a v to be published at a future time T [72]. This
proposal is closest to our own work, as we discuss further in Section 10.2.

Similar time-based deniability notions for signatures specifically have been
considered by several authors (we believe ours is the first to expand to gen-
eral proofs). Ferradi et al. [38] in 2015 presented a protocol for what they call
fading signatures using the RSW time-lock puzzle and a trusted authority to
pre-compute some solutions using the trapdoor. Their notion is weaker in that
verification is slow, requiring t sequential steps. In hindsight, with the benefit of
modern VDFs the slow verification time of their approach could be fixed.

The connection between VDFs and time-based deniability was made by
Wesolowski who presented an interactive identification scheme that becomes
deniable after the passage of time [77, §8]. Wesolowski also described a time-
limited signature protocol which improved on the Ferradi et al. construction
in an unpublished 2016 manuscript [76]. Our Sign-Trapdoor construction (§8.1)
improves on this protocol by making it transferable, non-interactive, and a true
signature (rather than an authentication protocol).

Contemporaneous to our work, Beck et al. [10] propose a construction for
what they call time-deniable signatures, which utilize time-lock puzzles. Col-
burn [30] described a folklore construction (called Folk+) in which a time-lock
puzzle encapsulating the signing key is published along with a signature. Green
et al.’s construction works similarly, except to enable continuous use of the key
the time-lock puzzle encapsulates a restricted signing oracle which can only sign
messages with a timestamp before a chosen expiration date. This construction
appears inherently limited to signatures. It also utilizes completely di↵erent cryp-
tographic techniques and as a result the reported signing time is over 4 seconds
per message, orders of magnitude slower than our signature constructions.

Other time-based cryptographic primitives have been proposed including en-
cryption, commitments, and signatures [66,15,75]. In the context of the cited
literature, a timed signature [15] is a commitment to a signature that has been
shared and can later be revealed. However if the committer aborts before reveal-
ing, the recipient can perform sequential work to uncover the signature. Dodis
and Yum introduced a similar idea of time-capsule signatures [33] which become
valid after a certain period of time when a time-server releases some informa-
tion. We are essentially solving the inverse problem: instead of a signature being
hidden for time �t and then becomes unforgeable, a short-lived signature is
unforgeable for �t and then becomes deniable.

Short-Lived Zero-Knowledge Proofs and Signatures 9

Definition 1 (Short-Lived Proofs). Let � be a security parameter. Let

LR be a language in NP and R be a relation such that (x,w) 2 R if and only

if w is a witness showing x 2 LR. Let B be a space of beacon values where

|B| � 2�. A short-lived proof system ⇧
t
R with time delay t 2 Z is a quartet

of randomized algorithms (Setup,Prove,Forge,Verify):

• Setup(L,�, t)! pp produces a set of public parameters pp

• Prove(pp, x, w, b)! ⇡ produces a proof ⇡ if (x,w) 2 R

• Forge(pp, x, b)! ⇡ produces a proof ⇡ for any x

• Verify(pp, x,⇡, b)! Accept/Reject

⇧
t
R must satisfy the following properties:

• Completeness: For all (x,w) 2 R and b 2 B, ⇡ Prove(pp, x, w, b)
runs in time less than t and Verify(pp, x,⇡, b) outputs Accept.

• t-Forgeability: For all x, b 2 B, ⇡ Forge(pp, x, b) runs in time (1+✏)t
for some positive constant ✏ and Verify(pp, x,⇡, b) outputs Accept.

• t-Soundness: For all x and for any pair of adversary algorithms A0

(precomputation) which runs in total time O(poly(t,�)) and A1 (online)

which runs in parallel time �(t) with at most p(t) parallel processors, if

Pr

2

666664

↵ A0(pp, x);

b
$
 B;

⇡ A1(pp, x, b,↵);

Verify(pp, x,⇡, b) = Accept

3

777775
> neg(�)

then there exists an algorithm Extract with rewinding access to A1 such

that with probability 1� neg(�) the algorithm Extract(pp, x, b) outputs a

witness w such that (x,w) 2 R. The probability is over the choice of b

and the random coins used by each algorithm.

• Indistinguishability: For all (x,w) 2 R, b 2 B the distributions

{Prove(pp, x, w, b)} and {Forge(pp, x, b)} (taken over the random coins

used by each algorithm) are computationally (resp. statistically) indis-

tinguishable.

4 Definitions

Definition 1 provides our main definition of short-lived proofs. The public pa-
rameters pp potentially encapsulate both setup needed for an underlying proof
system and setup needed for an underlying VDF. Either or both may represent
a trusted setup if they require a secret parameter that can be used to break
security assumptions if not destroyed. The Setup algorithm is also given both a

10 A. Arun, J. Bonneau and J. Clark

description of the language L and delay parameter t. Some underlying proof sys-
tems may require setup specific to L (others may o↵er universal setup) and some
underlying VDFs require hard-coding the delay parameter t. In the remainder
of the paper, we will generally omit pp to keep notation simpler.

The critical security property, t-Soundness,7 closely follows the security def-
inition used for VDFs [16]. In our case, the (potentially long-running) pre-
processing algorithm A0 receives not only the public parameters of a VDF func-
tion but also the statement x on which the adversary wishes to forge a proof.
Once the random beacon value b is known, the attacker’s clock starts running
and the online algorithm A1 must attempt to forge a proof in fewer than �(t)
time steps (which in all of our constructions reduces to the intractability of
solving an underlying VDF in fewer than �(t) time steps).

Note that short-lived proof schemes are inherently zero-knowledge as the
Forge algorithm serves as a simulator which produces valid proofs in polynomial-
time without knowing a witness. Receiving a proof in time less than t breaks
deniability as it must have been produced by Prove, but does not help the verifier
break zero-knowledge as the same transcript could still be produced by Forge at a
later time. Thus, t-Forgeability and Indistinguishability implies zero-knowledge
and we do not to define a separate zero-knowledge property or an additional
simulator8.

4.1 Reusable forgeability

A basic short-lived proof scheme allows the Forge algorithm time to perform
a unique slow computation for each pair (x, b). In practice, this means that
forging multiple proofs can be expensive, weakening the deniability as it becomes
less plausible that somebody paid the cost of forging. To this end, some short-
lived proof schemes may o↵er a stronger reusable forgeability property in which
performing one slow computation for a beacon value b enables e�ciently forging a
proof for any statement x without performing a full additional slow computation.
Even better, some schemes might allow forging a proof of any statement for any
beacon value from a set B = {b1, . . . bk} after just one slow computation. We
call this property k-reusable forgeability (with basic reusable forgeability being
the special case of k = 1). In practice, the set B can comprise all prior beacon
values, enhancing deniability as one slow computation at any point in the future
could enable forgery of all prior proofs.

Definition 2 (k-Reusable Forgeability). A k-reusably forgeable short-lived

proof system ⇧
t
R is a short-lived proof with two additional functions:

7 Our notion of t-soundness corresponds to knowledge soundness, we denote it as t-
soundness for conciseness.

8 Computational and statistical indistinguishability imply computational and statis-
tical zero-knowledge, respectively. Thus, it might be possible to design a simulator
that achieves statistical zero-knowledge while Forge only achieves computational in-
distinguishability.

Short-Lived Zero-Knowledge Proofs and Signatures 11

• GenAdvice(pp,B) ! ↵ takes a set B of size |B|  k and produces (in time

(1 + ✏)t) an advice string ↵

• FastForge(pp, x, b,↵)! ⇡ produces a proof ⇡ for any x

These new functions satisfy the following properties, in addition to all prop-

erties of a general short-lived proof system:

• Reusable Forgeability: For all x and for all B ✓ B and b 2 B, given

advice string ↵ GenAdvice(pp,B) the algorithm FastForge(pp, x, b,↵)! ⇡

runs in parallel time less than t and Verify(pp, x,⇡, b) outputs Accept.
• Indistinguishability II: For all (x,w) 2 R, B ✓ B and b 2 B, given

advice string ↵ GenAdvice(pp, b) the distributions {Forge(pp, x, b)} and

{FastForge(pp, x, b,↵)} (taken over the random coins used by each algorithm)

are computationally (resp. statistically) indistinguishable.

Our generic protocol (§5) o↵ers 1-reusable forgeability immediately and ex-
tends easily to o↵er k�reusable forgeability for arbitrary k (with proving over-
head logarithmic in k). Obtaining 1-reusable forgeability is also possible (though
not as easy) for our S-constructions.

5 Short-lived proofs from generic zero-knowledge

Given any VDF scheme and a non-interactive zero-knowledge proof system ⇧

for all languages in NP, we can produce a short-lived proof for any relation R

for an NP language LR. We do this by taking the disjunction (_) of R with the
VDF relation RVDF:

RVDF = {(x = b, w = (y,⇡)) | VDF.Verify(b, y,⇡)} (1)

The language LRVDF is in NP because VDF verification must run in polyno-
mial time. Therefore, the disjunction LR_RVDF is in NP and the proof protocol
⇧R_RVDF is a short-lived proof for R:

Theorem 1 (SLP from Generic Zero-Knowlege). Let R be a relation for

a language in NP, ⇧ be a zero-knowledge argument of knowledge system for

languages in NP and VDF be a verifiable delay function with delay parameter t.

Then ⇧
t
R = ⇧R_RVDF is a short-lived proof protocol with reusable forgeability for

R with time delay t

Proof. The required properties follow directly from definitions of the underlying
primitives. Completeness of ⇧t

R is due to the completeness of ⇧R as a prover
with a witness can satisfy relation R and ignore the VDF branch. t-Forgeability
follows from the correctness property of the underlying VDF, ensuring that
Forge can produce convincing forgeries in (1 + ✏)t steps by running VDF.Eval(b)
and using the output (y,⇡) to satisfy the VDF branch of the disjunction. The
Indistinguishability property follows immediately from the zero-knowledge prop-
erty of ⇧, preventing the adversary from knowing which half of the disjunction
was satisfied and meaning an e�cient simulator exists as required.

12 A. Arun, J. Bonneau and J. Clark

The t-Soundness property relies on the t-Sequentiality (Property 1) of the
VDF. The restrictions on algorithms A0,A1 in the t-Soundness definition are
identical to those in the t-Sequentiality definition, meaning such algorithms will
not be able to solve the VDF with non-negligible probability. This means that
any adversary able to produce proofs must know a witness w for x, which the
extractor for ⇧R can then e�ciently extract.

Finally, to show that this scheme o↵ers reusable forgeability, note that the
exact same VDF computation VDF.Eval(b) required is independent of the state-
ment x. Thus, it can be computed once and reused across proofs for that beacon.

6 Short-lived proofs from S-protocols

While our generic construction o↵ers reusable forgeability and works for all NP-
languages, generic zero-knowledge proof systems have practical drawbacks in-
cluding complexity, high prover costs (§9) and trusted setup in some construc-
tions. We would like to construct short-lived variants for S-protocols, an impor-
tant class of e�cient zero-knowledge proofs. They are also natural to consider
given that Wesolowski proofs [77] are S-protocols and Pietrzak proofs are a
multi-round generalization.

6.1 Non-solution: S-OR proofs

A first, insecure attempt at a short-lived proof for a relation R with a S-protocol
⌃R is to simply combine ⌃R with the verification protocol ⌃VDF for some VDF
scheme, for example using the classic S-OR construction outlined in Section 2.3.

Unfortunately, this generic composition does not yield a short-lived proof
system because proofs are distinguishable from forgeries. Standard VDF proofs
reveal the unique9 value y = VDF.Eval(b) to the verifier as part of the proof
statement. This means that the algorithm VDF.Prove, which simulates the VDF
half of a S-OR composition, must provide a fake value y0 6= y as part of the proof
whereas the Forge algorithm will simulate the R half of the proof and provide the
genuine y = VDF.Eval(b). Our definition of Indistinguishability does not preclude
the adversary from running for t steps, meaning they can simply compute the
genuine value y themselves by running VDF.Eval(b) and then determine if a proof
was constructed using Prove or Forge.

6.2 Short-lived sigma proofs from precomputed VDFs

To ensure indistinguishability, we introduce the construction S-Precomp (Pro-
tocol 1) which works for any S-protocol by modifying the input to the VDF
instead of the challenge. Assume the prover has precomputed a VDF on a ran-
dom input value b

⇤. Just as in the Cramer et al. construction, given a challenge

9 Proofs of sequential work do not have unique solutions, unlike VDFs, meaning they
might be used directly in a S-OR composition.

Short-Lived Zero-Knowledge Proofs and Signatures 13

S-Precomp

Setup

input : relation R, parameters �, t
output : public parameters pp

1. pp VDF.Setup(�, t)

Precompute

input : pp
output : (b⇤, y⇤

,⇡
⇤
VDF)

1. Sample b
⇤ $
 B

2. (y⇤
,⇡

⇤
VDF) VDF.Eval(b⇤)

Verify

input : pp, x, b, proof (a, c1, z, y, c2,⇡VDF)
output : Accept/Reject

1. Obtain c = O(x k b k a).
2. Accept if c = c1 � c2 and both:

• ⌃R.Verify(x, a, c1, z)! Accept

• VDF.Verify(b� c2, y,⇡V)! Accept

Forge

input : pp, statement x, beacon value b

output : proof (ã, c̃1, z̃, y,⇡VDF, c2)

1. (ã, c̃1, z̃) ⌃R.Simulate(x)
2. Obtain c = O(x k b k ã)
3. Set c2 = c� c1

4. (y,⇡VDF) VDF.Eval(b� c2).

Prove

pre-computed: (b⇤, y⇤
,⇡

⇤
VDF)

input : pp, x, w, b
output : proof (a, c1, z, y

⇤
,⇡

⇤
VDF, c2)

1. a ⌃R.Commit(x)
2. Challenge c = O(x k b k a)
3. Set c2 = b

⇤
� b and c1 = c� c2

4. z = ⌃R.Respond(x,w, a, c1).

Protocol 1: Short-lived proofs using precomputed VDFs given a relation R

with S-protocol ⌃R and a VDF scheme VDF

c, the prover chooses two values c1, c2 such that c1 � c2 = c and c1 is the chal-
lenge used with ⌃R. Instead of using c2 as the challenge for the VDF proof, it is
used to modify the VDF input, evaluating on the point b� c2. The intuition is
that the genuine prover can choose c2 freely and thus set c2 = b � b

⇤, mapping
the VDF input to a value b

⇤ for which it has already precomputed the solution.
However, a forger who is simulating ⌃R cannot choose c1 freely and thus c2 is
an unpredictable random value, which requires the forger to solve a VDF on a
random point (b� c2).

Theorem 2 (Proof for S-Precomp). Let R be a relation for a language

in NP with S-protocol ⌃R and VDF be a verifiable delay function with delay

parameter t. Protocol 1 is a short-lived proof scheme for relation R in the random

oracle model.

Proof. Completeness and t-forgeability of S-Precomp follow directly from the
completeness of ⌃R and correctness of the VDF.

Indistinguishability: For an input x, witness w and beacon b, let (a, c1, z, y,⇡, c2)
and (ã, c̃1, z̃, ỹ, ⇡̃, c̃2) be the outputs of Prove(x, b;w) and Forge(x, b) and let c, c̃
be the respective challenges.

14 A. Arun, J. Bonneau and J. Clark

First, we note that c2, c̃2 are uniformly distributed in both algorithms. In
Prove, c2 = b�b

⇤ where b is the beacon output produced only after b⇤ is sampled
(as the honest prover must have pre-computed the VDF output on b

⇤ first). In
Force, c̃2 = c̃� c̃1 where c̃ is generated after c̃1. This means the VDF proofs are
generated on uniformly random inputs (c2�b) and (c̃2�b), respectively, making
the two VDF sub-transcripts (y,⇡, c2) and (ỹ, ⇡̃, c̃2) indistinguishable.

Next, we note that c1, c̃1 are both uniformly distributed, as well. In Prove,
c1 = c� c2 where c is a random oracle output independent of c2. By the security
of ⌃R.Simulate, the value c̃1 is generated in Forge must be indistinguishable
from a randomly generated challenge. Again by the security of ⌃R.Simulate, the
sub-transcripts (a, c1, z) and (ã, c̃1, z̃) are indistinguishable.

Finally, all pairs of sub-challenges (c1, c2) are equally likely to be generated
by both Prove and Forge. This comes from the fact that each algorithm generates
one sub-challenge that is uniformly distributed (c2 for Prove and c1 for Forge)
and then creates the other challenge using c, which is a random oracle output.

t-Soundness: We define an extractor E which, given a pair of algorithm (A0,
A1) which output accepting proofs, either (1) extracts a witness w from A1 for
statement x and relation R or (2) computes a VDF output on a random input in
fewer than t steps, violating the t-Sequentiality (Property 1) of the underlying
VDF.

E first runs A0 and A1 to obtain an accepting transcript (a, c, c1, c2, z, y,⇡).
E then receives a random VDF input bchal from a challenger for the VDF t-
sequentiality game. Next, the extractor rewinds A1 to obtain a new transcript
(a, c0, c0

1
, c

0
2
, z

0
, y

0
,⇡

0) while programming the random oracle to fix c
0 = bchal�b�

c1. As c 6= c
0, we have the following two cases:

Case 1: If c1 6= c
0
1
, then from the special soundness of ⌃R, a witness for x

can be extracted by calling ⌃R.Extract(x, a, c1, c01, z, z
0).

Case 2: If c1 = c
0
1
, the two VDF proofs are on inputs d = b� c2 = b� c� c1

and d
0 = b � c

0
2
= b � c

0
� c

0
1
= b � c

0
� c1. As the extractor programmed

the random oracle to ensure c
0 = bchal � b � c1, we have d

0 = bchal. As both
transcripts are accepting, VDF.Verify(bchal, y0,⇡0) = Accept. As A1 runs in fewer
than t steps, E requires fewer than t steps to produce y

0 as it only rewound and
reran the adversary after after obtaining bchal. Thus, E can output y

0 and win
the t-Sequentiality game for the underlying VDF.

Assuming the underlying VDF is t-Sequential, Case 2 cannot happen except
with non-negligible probability. Therefore E correctly outputs a witness for x

(Case 1) with overwhelming probability.

Size Overhead: Transforming a normal proof into a short-lived one using S-Precomp
adds the VDF output, the VDF proof and the sub-challenge used in the VDF.
In the case of Wesolowski’s VDF [77], the output and proof are both a group
element each and the challenge is � (security parameter) bits long. For 2048-bit
RSA groups with � = 128, the total size overhead comes to 528 bytes.

The primary drawback of S-Precomp is that each precomputed VDF must
only be used once. If the same VDF challenge b

⇤ is visible in two proofs, an
adversary can conclude (with overwhelming probability) that both proofs were

Short-Lived Zero-Knowledge Proofs and Signatures 15

generated by Prove, breaking Indistinguishability. Additionally it does not o↵er
reusable forgeability as a new VDF evaluation on a random point is required for
every run of Forge.

6.3 Optimization with re-randomizable VDFs

The biggest drawback of this construction is that it requires precomputation
before every call to Prove. However, the prover simply needs a fresh, random
VDF input/output pair and not a solution on any specific point. We can greatly
improve the practicality of this scheme if it is possible to quickly generate VDF
solutions (and proofs) on random points. We introduce the notion of a re-

randomizable VDF that has this property: given a VDF solution (b, y,⇡) and pos-
sibly some auxiliary data ↵, an e�cient algorithm VDF.Randomize(b, y,⇡,↵)!
(b0, y0,⇡0) outputs a randomly distributed solution.

Now, each time Prove is called, instead of precomputing a VDF solution (step
1 of Prove in Protocol 1), a new VDF solution on a random point is produced
by calling VDF.Randomize. Indistinguishability of proofs and forgeries reduces
to the indistinguishability of random VDF solutions and those generated by
re-randomizing a known solution. We propose a definition for re-randomizable
VDFs in Appendix A of the full version [7], capturing the necessary indistin-
guishability property.

For VDFs based on repeated squaring, a random exponent r is chosen and
the input/output pair (b, y) is mapped to (b0 = b

r
, y

0 = y
r), maintaining the

relationship that y0 = (b0)2
t

. Unfortunately this homomorphism does not apply
to proofs: given (y,⇡) VDF.Eval(b) and a randomized solution (br, yr) we
cannot obtain a correct proof by simply computing ⇡

r. However, for repeated-
squaring VDFs we can compute a proof for (br, yr) in fewer than t steps using
the same advice string ↵ used to compute ⇡ when y was originally computed.
Wesolowski [77] describes such an advice string of length O(

p
t) that allows a

prover to compute a proof in O(t/ log t) steps. This algorithm may still be to
slow to re-randomize VDF proofs in reasonable time using commodity hardware.
By contrast, Pietrzak proofs can be re-randomized in just O(

p
t) steps using an

advice string of length O(
p
t). We provide the details of this re-randomization

algorithm (originally suggested by Boneh et al. [17]) in Appendix A.1 of the full
version [7].

This homomorphism was observed by Wesolowski, who warned that it was
a potential security weakness to be prevented by hashing to a random group
element as part of VDF computation [77, Remark 3]; here we use it in a con-
structive way. It has similarly been used by Thyagarajan et al. to build verifiable
timed signatures [75] and by Malavolta and Thygarajan to construct additively
homomorphic and fully homomorphic time-lock puzzles [57].

7 Short-lived proofs from zkVDFs

The previous S-based constructions did not provide reusable forgeability (Def-
inition 2). The fundamental problem is that (unlike our generic approach in

16 A. Arun, J. Bonneau and J. Clark

Section 5), they require Forge to solve the VDF on a new random value b
⇤ de-

rived from b for each forgery, rather than a solution on b itself which could be
used for multiple forgeries. We cannot include a standard VDF proof for b in
short-lived proofs because all known VDF proof schemes reveal the VDF output
y = Eval(b) which would clearly distinguish proofs from forgeries.

To avoid this distinguishability problem, we propose using a novel zero-

knowledge VDF (zkVDF) which proves knowledge of the output without re-
vealing it. Of course, since VDF verification is (by definition) an NP statement,
it is possible to construct a zkVDF from any VDF using a generic zero-knowledge
proof system to prove knowledge of VDF solutions. Our construction in Section 5
essentially does this (embedded within a disjunction). Later in this section, we
will present a more e�cient construction based on Wesolowski proofs [77].

Given a S-protocol for RzkVDF and any relation R for which we have a S-
protocol ⌃R, we can use the standard S-OR construction to create a disjunction
protocol ⌃R_RzkVDF which we call S-zkVDF. To obtain reusable forgeability, we
set the VDF input to be the beacon value b. Thus, VDF.Eval(b) need be performed
only once to generate advice to quickly forge others proofs with b.

Theorem 3 (SLP from zkVDF and S-OR). Let R be a relation for a lan-

guage in NP, ⌃R be a zero-knowledge S-protocol for R and ⌃RzkVDF be a S-protocol
for a zkVDF with delay parameter t. Letting x and w be the statement and witness

for relation R and b be the beacon, the following is a short-lived proof protocol

with reusable forgeability for R with time delay t:

S-zkVDF

• Prove(x,w, b): perform ⌃R_RzkVDF by simulating ⌃RzkVDF with input b and run-

ning ⌃R with statement x and witness w

• Forge(x, b): perform ⌃R_RzkVDF by simulating ⌃R for statement x and running

⌃RzkVDF with input b

• Verify(x, b,⇡): verify ⌃R_RzkVDF with statement x for ⌃R and input b for

⌃RzkVDF

The proof is identical to that of Theorem 1. Owing to the security of S-
OR compositions, the verifier cannot tell if the proof was generated by honestly
computing the ⌃R branch (requiring knowledge of the witness) or the ⌃RzkVDF

branch (requiring the VDF solution on beacon b). Appendix D of the full ver-
sion [7] contains the proof.

7.1 zkVDF Construction

In this section we present a S-based zkVDF construction built o↵ of Wesolowski
proofs [77]. To do so, we introduce a new zero-knowledge S-protocol for proof
of knowledge of a power (Protocol 2) using an idea similar to that introduced
by Boneh et al. [18, §3.2] for proof of knowledge of discrete log in a group of
unknown order. Our zero-knowledge proof that y = g

u sends a blinded value
y
0 = y · h

v = g
u
h
v (for a random v) instead of y itself. A proof of the following

theorem is provided in Appendix C of the full version [7].

Short-Lived Zero-Knowledge Proofs and Signatures 17

zk-PoKP

Parameters: security parameter �, group of unknown order G GGen(�), h
$
 G,

B � 22�|G|; random oracle HashToPrime which outputs from the set Primes(�) of the
first 2� prime numbers

Prove

input: g 2 G, u 2 Z, witness y 2 G such that y = g
u

output: proof ⇡ = ha,Q, r2i

1. Sample v
$
 [�B,B]

2. Compute a = Commit(y, v) = y · h
v

3. Compute ` = Challenge(a) = HashToPrime(a)
4. Let u = q1`+ r1, v = q2`+ r2 such that 0  r1, r2  `

5. Compute Q = g
q1h

q2

6. Respond(`) = Q, r2

Simulate

inputs: g 2 G, u 2 Z, simulated challenge ˜̀

output: simulated proof ⇡̃ = hã, Q̃, r̃2i

1. Sample q̃1, ṽ
$
 � [�B,B]

2. Let ũ = q̃1
˜̀+ r̃1 and ṽ = q̃2

˜̀+ r̃2 such that 0  r̃1, r̃2 
˜̀

3. Compute Q̃ = g
q̃1h

q̃2

4. Compute ã = Q̃
˜̀
g
r1h

r̃2

Verify

input: g 2 G, u 2 Z, proof ⇡ = ha,Q, r2i

output: Accept/Reject

1. Compute ` = HashToPrime(a)
2. Let u = q1`+ r1 such that 0  r1  `

3. Check that a
?
= Q

`
g
r1h

r2

Protocol 2: S-protocol for proof-of-knowledge of a power in a group of unknown
order.

Theorem 4 (Zero-Knowledge Proof of Knowledge of Power). Proto-

col 2 is an honest-verifier zero-knowledge argument of knowledge for the relation

RPoKP = {((g, u); y) : gu = y}.

7.2 E�ciency of zk-PoKP and S-zkVDF

The zk-PoKP Simulate algorithm of Protocol 2 is e�cient and takes timeO(� log |G|+
polylog(t)). The most significant cost is computing five group exponentiations
with small exponents, each involving O(logB) = O(� log |G|) steps. This makes
the S-zkVDF prover e�cient as it runs the zk-PoKP simulation algorithm.

18 A. Arun, J. Bonneau and J. Clark

The Forge algorithm for S-zkVDF must execute the Prove algorithm of
zk-PoKP. This naively takes time O(t), as it involves computing a large power
Q

`. For multiple forgeries, this can be improved significantly using a precom-
puted advice string, identical to that used for re-randomizable VDFs (Sec-
tion 6.3). With an advice string of size O(

p
t), the Prove algorithm requires

only O(t/ log t) steps. Unlike the case for general re-randomizable VDFs, our
zk-PoKP construction is inherently based o↵ of Wesolowski proofs and cannot
utilize the more e�cient advice string approach used for re-randomizing Pietrzak
proofs. Designing a Pietrzak-style zk-PoKP is an interesting open problem.

Proof Size: The zkVDF proof contains two group elements (a,Q) and the re-
mainder r2. When using 2048-bit RSA groups and � = 128, the total size comes
to 529 bytes: 512 bytes for the two group elements and 17 bytes (� lg �) for
the value r2. The S-zkVDF construction additionally includes one sub-challenge
(the other is implicit), which adds an extra � bits (16 bytes), making the total
overhead for transforming a normal proof into a short-lived one just 545 bytes.
The algorithm S-zkVDF.Prove requires running the zk-PoKP simulator. The
significant operations are raising a group element to a power of size B twice,
where B ⇡ 22�|G|, and then raising two elements to a power of up to � twice.
In Section 9, we evaluate the cost of these operations for 2048-bit RSA groups.

8 Short-lived Signatures

A key special case of zero-knowledge proofs is digital signatures. We define a
short-lived signature scheme as follows:

Definition 3 (Short-Lived Signatures). Let � be a security parameter and

B be a space of beacon values where |B| � 2�. A short-lived signature scheme

with time delay t is a tuple of algorithms:

• Setup(�, t)! pp

• KeyGen(pp)! (pk, sk)
• Sign(pp, sk,m, b)! � takes a message m and beacon b and outputs (in time

less than t) a signature �.

• Forge(pp,m, b) ! � takes a message m and beacon b and outputs (in time

less than (1 + ✏)t) a signature �.

• Verify(pp, pk,m, b,�)! Accept/Reject

The following properties are satisfied:

• Correctness: For all m, b 2 B, if � Sign(pp, sk,m, b), then Verify(pp, pk,m, b,�)!
Accept.

• Existential Unforgeability: For all pairs of adversary algorithms A0

(precomputation) which runs in total time O(poly(t,�)) and A1 (online)

which runs in parallel time �(t) with at most p(t) processors, the probability

that (A0,A1) win the following game is negligible:

Short-Lived Zero-Knowledge Proofs and Signatures 19

1. Challenger C runs pp Setup(�, t) and (pk, sk) KeyGen(pp). C sends

pp, pk to (A0,A1).
2. The adversary runs A0(pp, pk) $ C interactively with the challenger,

adaptively sending chosen message/beacon queries (mi, bi) to the chal-

lenger and receiving �i Sign(pp, sk, bi,mi) in response.

3. A0 outputs an advice string ↵.

4. C samples a random beacon value b
$
 B and sends it to the adversary.

5. The adversary runs A1(pp, pk,↵, b) $ C interactively with the chal-

lenger, adaptively sending chosen message/beacon queries (mi, bi) to the

challenger and receiving �i Sign(pp, sk, bi,mi) in response.

6. A1 outputs a claimed forgery (m⇤, b,�⇤) and wins if (m⇤, b) 6= (mi, bi)
for all i and Verify(pp, pk,m⇤, b,�⇤) = Accept.

• Indistinguishability: For all m, b 2 B, given a random (pk, sk) KeyGen(pp)
the distributions {Sign(pp, sk,m, b)} and {Forge(pp,m, b)} (taken over the

random coins used by each algorithm and randomly generated private key)

are computationally (resp. statistically) indistinguishable.

This definition closely follows our definition of short-lived proofs and stan-
dard security properties for signatures. We present a game-based definition for
short-lived signature unforgeability, in contrast with our probabilistic soundness
definition for short-lived proofs, to more closely match standard unforgeability
definitions for signature schemes. The primary distinction is that the second ad-
versary A1 is required to run in fewer than t steps (otherwise it could simply
run the provided Forge algorithm).

Note that while our Indistinguishability definition compares distributions of
output, some signature schemes are deterministic(e.g., RSA [68], BLS [19]). In
this case, it is necessary that Sign and Forge produce the same exact signature
with overwhelming probability.

We observe that our generic constructions in Section 5 can be used to trans-
form any signature scheme into short-lived signature scheme by implementing
a zero-knowledge proof for knowledge of a signature. Furthermore, our S-based
constructions in Section 6 can also be used for S-based signature schemes such
as Schnorr [70] or DSA[1,51].

8.1 Construction from Trapdoor VDFs

We present a short-lived signature construction from trapdoor VDFs [77] in Pro-
tocol 3. Trapdoor VDFs require a trusted setup which yields a secret evaluation
key (the trapdoor) enabling e�cient evaluation. Normally, this trapdoor repre-
sents a security risk if not destroyed. However, we observe that in the case of
short-lived signatures, the trapdoor can serve as a signing key. Repeated-squaring
VDFs in RSA groups are trapdoor VDFs: the public parameters include an RSA
modulus N and the trapdoor is the factors p, q such that N = p · q. With the
trapdoor, raising an element to any large exponent z (e.g. z = 2t) is e�cient, as
z can be reduced modulo '(N) = (p� 1)(q � 1) into an equivalent exponent of
size less than N . Note that this trapdoor is equivalent to the private key used
for traditional RSA signatures.

20 A. Arun, J. Bonneau and J. Clark

Sign-Trapdoor

KeyGen

input : �, delay parameter t
output : key pair (pk, sk)

1. Generate keys
(pk, sk) tdVDF.Setup(�, t)

Sign

input : message m, beacon value b

output : signature �

1. x = Hash(m k b)
2. � = (y,⇡)

tdVDF.TrapdoorEval(sk, x)

Forge

input : message m, beacon value b

output : signature �

1. x = Hash(m k b)
2. Compute with delay:

� = (y,⇡) tdVDF.Eval(x)

Verify

input : message m, beacon b, � = (y,⇡)
output : Accept/Reject

1. x = Hash(m k b)
2. Check that tdVDF.Verify(pk, x, y,⇡, t)

Protocol 3: Short-Lived Signatures from a trapdoor VDF scheme

Theorem 5 (Short-Lived Signatures from Trapdoor VDFs). Assuming

that Hash is a random oracle and tdVDF is a trapdoor VDF, Protocol 3 is a

short-lived signature scheme.

Proof. The correctness of this scheme comes from the correctness of the underly-
ing trapdoor VDF. Indistinguishability is trivial as signing and forgery produce
the exact same VDF output, given that VDFs are deterministic.

Existential unforgeability comes from the definition of a trapdoor VDF and
modeling Hash as a random oracle. Since the challenger chooses b randomly
during the existential forgery game after the precomputation of A0, the value
x⇤ = Hash(m⇤||b) will be randomly distributed for any message m⇤. Thus, the
online algorithm A1 must evaluate the VDF on a random input in fewer than
t steps. The adversary’s ability to query for signatures on chosen pairs (mi, bi)
is new from the traditional VDF security model. However since each such pair
leads to a VDF evaluation by the challenger on xi = Hash(mi||bi), the adversary
can only learn VDF evaluations on a polynomial number of random inputs. This
ability could be simulated byA0 precomputing the VDF on a polynomial number
of random inputs and passing the results as part of the advice string ↵. Thus,
any pair (A0,A1) which make queries could be converted into an equivalent
pair (A0

0
,A

0
1
) which make no queries but rely on A

0
0
to precompute random

VDF solutions instead. Winning the signature forgery game with no querying
capability is then equivalent to evaluating the VDF on a random input. The
VDF security definition states that no suitably bounded algorithms (A0

0
,A

0
1
)

can do so with non-negligible probability.

Short-Lived Zero-Knowledge Proofs and Signatures 21

Protocol Proof Size Overhead Proving Time Overhead

zk-SNARKs (§5) 0 for Groth16 ⇠60 seconds

S-Precomp (§6.2) 2hGi+ � 528 bytes O(T) precomputation

S-rrVDF (§6.3) 2hGi+ � 528 bytes O(T/k) precomputation

S-zkVDF (§7) 2hGi+ 2� 545 bytes 2expG(2
2�
|G|) + 2expG(2

�) 120 ms

Sign-Trapdoor (§8.1) hGi+ � 272 bytes expG(2
�) 10 ms

Sign-Watermark (§8.2) hGi+ � 272 bytes expG(2
�) 10 ms

Table 2. Additional costs to transform a standard proof/signature into a short-lived
proof/signature. � is the security parameter, hGi denotes the size of a group element,
expG(e) is the cost of raising a group element to a power of size e, and t is the VDF
delay parameter. For concrete evaluations, � = 128 and G is a 2048-bit RSA group.
The Generic zk-SNARK method was implemented using Groth16 [47]. All evaluations
were performed on a 2.3 GHz 8-Core Intel Core i9 laptop with 16 GB memory.

8.2 Construction from Watermarkable VDFs

The construction in Protocol 3 does not o↵er reusable forgeability, as the Forge

evaluates a VDF on a message-dependent value x = Hash(m k b). We construct
an e�cient signature scheme (Protocol 5) with reusable forgeability using wa-

termarkable VDFs which embed a prover-chosen watermark (µ) during proof
generation. Watermarkable VDFs were presented informally by Wesolowski [77,
§7.2]; we propose a definition capturing the essential security property of water-
mark unforgeability in Appendix B of the full version [7]. The key idea to con-
struct a watermarkable VDF is to embed the watermark into the Fiat-Shamir
challenge, computing ` HashToPrime(y k µ) instead of ` HashToPrime(y).

Short-lived signatures from watermarkable VDFs To build a short-lived
signature scheme using a watermarkable VDF, we use the beacon value as the
input to the VDF and the message as the watermark. This enables reusable
forgeability, as once a forger has computed y = VDF.Eval(b) for a specific beacon
value, along with its associated advice string ↵, they can sign a new message
by computing a new proof using the same advice string. This is equivalent to
proof re-randomization, which can be done in significantly fewer than t steps
as discussed in Section 6.3. We note that reusability is more limited for this
signature scheme as the precomputation is specific to an individual user’s public
key. A single VDF evaluation enables e�cient forgery of any statement by a
given signer, but will not work between di↵erent signers.

9 Implementation and performance evaluation

9.1 zk-SNARK Construction

We implement the generic ZK algorithm using zk-SNARKs, which produce suc-
cinct non-interactive proofs for large computations. With zk-SNARKs, the state-

22 A. Arun, J. Bonneau and J. Clark

ment is represented in a format similar to algebraic circuits and prover e�ciency
depends on the size of the circuit in gates. Given a base circuit for relation R and
an e�cient circuit representation of VDF.Verify, it is straightforward to compile
a circuit that is the disjunction of the two as outlined in Section 5. We imple-
mented a VDF circuit using Wesolowski VDF proofs [77] using a 2048-bit RSA
modulus and the “bellman-bignat” library [62].

The total size of the VDF verification circuit is just over 5 million gates. The
large size is due to the costly “hash-to-prime” involved in Wesolowski verifica-
tion. We composed this circuit with an elliptic curve signature verification circuit
(acting as the base relation R) of size under 1000 gates. All proofs were gener-
ated using the Groth16 construction [47] which produces proofs of constant size
around 300 bytes and with verification time under 10 ms. As proofs are constant
size and the verification cost is minimal, there is no added overhead on verifiers
for short-lived proofs. However, proof generation incurs a significant added cost
of around 60 seconds.

9.2 S-based Constructions

Table 2 compares the performance of our algorithms. Our S-constructions, which
require only a few exponentiations in a group of unknown order, are signifi-
cantly more e�cient than the zk-SNARK method. We evaluated them using
Wesolowski proofs in a 2048-bit RSA group, which is conjectured to provide
close to � = 128 bits of security [9]. We denote the cost of raising a group ele-
ment to an exponent of magnitude 22�|G| as expG(2

2�
|G|) (this is the value of B

in Protocol 4). A single exponentiation takes around 40 ms. The costliest of the
S-constructions is S-zkVDF which takes two expG(2

2�
|G|) operations and three

expG(2
�) operations (<10 ms each), leading to a total overhead of under 0.12

seconds. Section 7.2 contains more details on the size overhead of the S-zkVDF
construction. Our signature constructions add one or two more group elements
to the size of the base proof/signature. With 2048-bit RSA groups, each element
is of size hGi = 256 bytes.

9.3 Re-randomization Improvements

Three of our constructions (based on re-randomizable VDFs, zero-knowledge
VDFs, watermarkable VDFs) can utilize a precomputed advice string ↵ to speed
up computation. For S-rrVDF, ↵ is used to speed up the Prove algorithm; for
S-zkVDF and Sign-Watermark, ↵ speeds up FastForge.

In Appendix A.1 of the full version [7], we outline such an advice string of size
O(
p
t) for Pietrzak proofs which enables proof computation in O(

p
t) steps. This

advice string is applicable to S-rrVDF and Sign-Watermark protocols, for which
Pietrzak proofs can be used. Table 3 highlights the practical performance of this
approach for di↵erent delay parameters. We provide numbers for 2048-bit and
1024-bit RSA groups and assume that hardware implementations (e.g. FPGAs)

Short-Lived Zero-Knowledge Proofs and Signatures 23

Re-Rand Time

Hardware
Speed

Delay log t RSA-2048 RSA-1024

225 ops/s
1 min 31 28s 8s

15 min 35 110s 35s

230 ops/s
1 min 36 145s 58s

15 min 40 720s 240s

Table 3. The time taken for re-randomizing a Pietrzak proof on commodity hardware
for RSA groups with delay parameters and specialized hardware speed assumptions.
The lengths of the advice strings range from 1 MB to 16 MB. The lengths of the proofs
range from 2.6 KB to 8.0 KB. The proof verification time is under 50 ms and 150 ms
for 1024-bit and 2048-bit RSA groups, respectively.

for RSA arithmetic can perform up to 225 and 230 operations per second.10 The
improvements achieved by our advice string enable Pietrzak proofs to be re-
randomized in minutes with commodity hardware, whereas Wesolowski proofs
would still take days with comparably sized advice strings([77], Section 4.1).

10 Applications

10.1 Deniable Messaging and Email

Deniable messaging protocols aim to ensure that a purported transcript of a
secure communication session between Alice and Bob, along with copies of all
cryptographic keys used, does not provide convincing evidence of what Alice and
Bob actually communicated or (in some cases) that they communicated at all.
Generally, a secure messaging (chat) protocol is run between two participants,
identified by public keys bound somehow to their real-world identities. When
both participants are online, they can use a key agreement protocol to establish
an ephemeral shared MAC key for message integrity. Even if the long-term keys
are compromised, the transcript could be forged by either party [69], as popu-
larized by O↵-the-Record messaging (OTR) [21]. Deliberate publication of the
MAC key after the session can extend forgeability to anyone.

Deniability can be extended to o✏ine recipients in a store-and-forward sys-
tem through non-interactive designated verifier signatures [49] or ring signatures
formed between a sender and a recipient [69,21]—however both require prior
knowledge of each recipient’s public key. Email is a particularly challenging en-
vironment, as in addition to being asynchronous and unidirectional the sender
cannot assume knowledge of the recipient’s public key. OTR’s authors believed
email is too di�cult for an OTR-like protocol [21].

10 Öztürk [78] reported a speed for ⇠ 224 squarings/second in 2019 in an optimized
FPGA implementation used to break the RSA LCS-35 timelock puzzle [67].

24 A. Arun, J. Bonneau and J. Clark

Our work suggests a di↵erent (and complementary) approach to deniability:
a sender with an identifiable public key can provide a short-lived signature on
their messages. Recipients within the validity period of the signature can validate
the message’s authenticity, while the message becomes indistinguishable from a
forgery after a period of time and therefore deniable by the original sender.
Short-lived messages do not require any knowledge about the recipient, inter-
action, or follow-up steps, making them very versatile. They can be broadcast
asynchronously to a group of unidentified recipients with a single communica-
tion, and even forwarded with no additional cryptographic e↵ort, making them
suitable for email as well as messaging protocols.

10.2 Deniable Domain Authentication

A specific case of deniable authentication arises with the DomainKeys Identified
Mail (DKIM) standard for email. Originally proposed to address email forgeries
and spam, DKIM requires that the sender’s mail server sign every outbound
email with a domain-bound key. For example, all email originating from the
mail server for example.com would be signed with a key bound to the DNS
record of example.com, however (unlike the use case above) the signature will
not distinguish between mail from alice@example.com and bob@example.com.
By 2015, DKIM headers were present in 83% of all inbound mail to Gmail [34].

Over the past two decades, email dumps—the public release of private email
messages from breached servers—have received extensive news coverage [27].
DKIM signatures increase the value of email dumps by certifying their authen-
ticity. The call to periodically release past DKIM private signing keys was popu-
larized by Matthew Green [45]. DKIM signatures do not require validity beyond
the network latency of reaching a recipient’s mail server.

Specter et al. proposed KeyForge and TimeForge [72] to replace DKIM with
Forward Forgeable Signatures (FFS) that become non-attributable after a speci-
fied time (e.g., 15 minutes). Both KeyForge and TimeForge require future action
to ensure deniability: respectively, a secret value released by the signer, or a fu-
ture signed update to a beacon-like service called a publicly verifiable timekeeper.
If the time-keeper’s private key is lost then all signatures become permanently
attributable. Alternately, if the time-keeper is silently compromised then signa-
tures are immediately forgeable. Short-lived signatures can fulfill the same role
as a drop-in replacement for DKIM, while requiring no follow-up action by any-

one and hence deniability is guaranteed at the time of signing. Both TimeForge
and short-live signatures expand the current length of a 2048-bit RSA DKIM
signature. Our trapdoor RSA-based short-lived signature adds a single group
element (200% expansion) while TimeForge signatures expand by 329% [72].

TimeForge also has advantages: no costly VDFs need to be evaluated (or
threatened) to provide deniability and the timing of deniability is precise, whereas
for short-lived signatures the deniability time period depends on how fast VDFs
can be evaluated. Our approaches are complementary: a signature could be both
short-lived and forgeable after the release of information as in TimeForge, at-
taining the advantages of both.

Short-Lived Zero-Knowledge Proofs and Signatures 25

10.3 Receipt-Free Voting

Numerous cryptographic voting protocols involve encoding a voter’s selection
with an additively homomorphic encryption scheme. A voter wants ballot casting
assurance [14] that a posted ciphertext decrypts to her choice, however she
should not be able to transfer this assurance to anyone else. As the literature
moves toward a more realistic view of voters as humans casting ballots at polling
places, vote casting needs to be accessible and bare-handed (i.e., no assumption
of an additional device at casting time). The dominant approach (exemplified
in Helios [5], STAR-Vote [11], and Microsoft’s ElectionGuard [3]) is the Benaloh
challenge [14]: (1) a voter asks for an encryption of a candidate si, (2) the
voting machine commits (e.g., on paper) a ciphertext c, (3) the voter chooses
to audit the ballot or cast it, and (4) if auditing, the voting machine produces
the plaintext and randomness (si, r) such that c = Enc(si, r); and the voter
restarts at (1). Later, aided by a computer, the voter validates all transcripts.
This protocol has two drawbacks. If a voter asks for an encryption of candidate
Bob, receives one for candidate Alice instead, audits it and receives a proof for
Alice, the voter is convinced the machine is malicious (she knows she asked
for Bob) but the transcript will not convince a third party that the machine
misbehaved. The second drawback is that auditing is probabilistic (and a low
audit frequency is observable by the machine itself).

Alternatives to the Benaloh challenge mitigate these drawbacks but add com-
plexity for the voter. A collection of techniques [49,60,59] use quite di↵erent pro-
tocols to produce a similar outcome: the voter leaves with a receipt that contains
the ciphertext c and n proofs that c = Enc(si) for each of the n candidates. One
proof is real and the rest are forgeries, but the transcript does not reveal which
one is real. These protocols vary, but at a high level, either the machine prepares
the forgeries and the voter releases a value (e.g., a challenge) for construction of
the real proof; or the machine prepares the real proof, and the voter releases a
value (e.g., a trapdoor or private key) for the forgeries.

A short-lived proof can be used in this second paradigm to eliminate all the
pre-constructed values (i.e., challenges, keys, trapdoors) the voter must bring
into the polling place, replacing them with a simple clock. The voter experience
is as follows: (1) a voter selects candidate si, (2) the voting machine commits
(e.g., on paper) the time T , the name of si (in plaintext), a ciphertext c, and
a short-lived (e.g., 60 second) proof that c = Enc(si), (3) the voter checks that
T and si are correct, (4) after two minutes, the machine (possibly a di↵erent
machine at a di↵erent station within the polling place) produces n � 1 forged
receipts for each leftover si with the same c and same (and now outdated) T .

Commonly used encryption schemes for voting, like exponential Elgamal and
Paillier, have e�cient S-protocol proofs of plaintext values and be adapted to
use any of our S-protocol-based short-lived proof constructions. A time param-
eter of 60 seconds provides reasonable assurance if the beacon and voter’s clock
are synchronized to within one second, while not delaying the time to vote sub-
stantially. Voters could choose to shred their initial receipt or wait for a set of

26 A. Arun, J. Bonneau and J. Clark

forged receipts. Attention is required to mitigate side-channel information (like
forensics of the paper) to infer the order in which the proofs are printed.

11 Concluding Remarks

We observe that the existence of the Forge algorithm for short-lived proofs cir-
cumvents Pass’ observation [63] that non-interactive zero-knowledge proofs in the
random oracle model are not deniable. Normally, because the simulator requires
programmable access to the random oracle, verifiers cannot simulate proofs and
hence possession of a proof demonstrates interaction with a genuine prover. In
our case, the Forge algorithm does not require programmable random oracle ac-
cess, only the ability to compute a slow function. Short-lived proofs therefore
can o↵er deniability as they can be forged with no special ability except time.

In practice, this is an important limitation if the time taken to compute a
proof is known and is insu�cient to produce a forgery. For example, if a short-
lived proof ⇡ is convincingly timestamped at time T1 and the beacon value b

used to compute ⇡ was not known until time T0, with T1� T0 < t, then ⇡ could
not have been computed via Forge. Thus, deniability for short-lived proofs relies
on the assumption that it is not feasible to convincingly timestamp all data. For
example, in the case of deniable DKIM signatures, it must be the case that signed
emails are not routinely timestamped en masse. We note that other solutions to
this problem, including key expiry/rollover or the KeyForge/TimeForge schemes
of Specter et al. [72], have the exact same limitation.

Recall that we o↵er constructions for proofs and signatures based on S-
protocols, where deniability is added by combining the original statement with
a VDF-related statement in a disjunction. As noted in Section 3, designated
verifier proofs, proofs of work-or-knowledge, and KeyForge/TimeForge also add
deniability via disjunction with a second statement. It is straightforward to com-
bine these approaches. For example, a statement could be proven in zero knowl-
edge to be true only if the proof is received by a specific recipient before a signed
timekeeper statement is released or a VDF could have been computed. In this
way, a proof can gain deniability in the absence of any trusted third party action
in the future (as with short-lived proofs) while also gaining deniability without
requiring anybody to solve a VDF if the third party acts faithfully.

We conclude with several open problems arising from our work:

• Short lived proofs require someone to evaluate a VDF. It might be possible to
piggyback o↵ of an existing party computing VDFs, such as a computational
time-stamping service [54], some other party computing a long-running con-
tinuous VDF [36] or a decentralized protocol using chained VDFs [29,40].

• Our S-zkVDF construction (§7) only provides 1-reusable forgeability. It
might be possible to extend this to k-reusable forgeability using an RSA-style
accumulator to combine past beacon values (while keeping the accumulator
value secret to avoid undermining deniability).

• Our zk-PoKP construction in Protocol 2 is based on Wesolowski proofs.
Constructing a zk-PoKP algorithm based on Pietrzak proofs would allow a

Short-Lived Zero-Knowledge Proofs and Signatures 27

S-zkVDF forger to leverage the more e�cient re-randomization algorithm
for Pietrzak proofs, enabling significantly faster forging times.

• While our watermarkable VDF signature construction (§8.2) o↵ers reusable
forgeability, it requires a VDF computation per-signer (as each signer uses
unique public parameters). An ideal scheme might use similar accumulator
techniques to forge proofs from a set of signers after just one VDF evaluation.

• Another, potentially much more e�cient, approach to achieve generic short-
lived proofs is to take an existing generic proof scheme which relies on a
S-protocol and replace that component with a short-lived equivalent (e.g.
our S-zkVDF construction). While this would not retain the k-reusability of
our generic approach in §5, it would avoid the cost of verifying a VDF within
the proof system itself. This approach potentially applies to many popu-
lar zero-knowledge proof systems, including Bulletproofs [22], Marlin [24],
PLONK [41], Sonic [58], Spartan [71], Supersonic [23], or STARKs [12].

• Another approach to obtain short-lived SNARKs is through composition
techniques that construct zero-knowledge proofs of disjunctions of SNARKs
with S-protocols (zkVDFs in our case) as proposed by Agrawal et al. [6].
This would avoid the costly encoding of VDFs as arithmetic circuits (which
require millions of gates) leading to interesting tradeo↵s between shorter
proving times and larger proof sizes.

Acknowledgments

We give a special acknowledgement to Michael Colburn who initially pursued
the idea of short-lived signatures and proofs in his MASc thesis [30] supervised
by Jeremy Clark. The constructions in this paper are new, and any ideas or text
from [30] incorporated into this paper were originated by Clark. We thank Ben-
jamin Wesolowski, Justin Thaler, Riad Wahby, Benedikt Bünz, Ben Fisch, Dan
Boneh, Matthew Green, Michael Specter, and Michael Walfish and for helpful
feedback and discussion. We thank Alex Ozdemir for help with implementing
our SNARK-based construction.

Arasu Arun and Joseph Bonneau were supported by DARPA under Agree-
ment No. HR00112020022. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily
reflect the views of the United States Government or DARPA.

Jeremy Clark acknowledges support for this research project from (i) the Na-
tional Sciences and Engineering Research Council (NSERC), Raymond Chabot
Grant Thornton, and Catallaxy Industrial Research Chair in Blockchain Tech-
nologies, and (ii) NSERC through a Discovery Grant.

28 A. Arun, J. Bonneau and J. Clark

References

1. The digital signature standard. Communications of the ACM 35(7), 36–40 (1992)
2. drand Randomness Beacon. drand.love (2021)
3. ElectionGuard. github.com/microsoft/electionguard (2021)
4. NIST Randomness Beacon Version 2.0. beacon.nist.gov/home (2021)
5. Adida, B.: Helios: Web-based Open-audit Voting. In: USENIX Security (2008)
6. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for

composite statements. In: CRYPTO (2018)
7. Arun, A., Bonneau, J., Clark, J.: Short-lived zero-knowledge proofs and signatures.

Cryptology ePrint Archive, Paper 2022/190 (2022)
8. Baldimtsi, F., Kiayias, A., Zacharias, T., Zhang, B.: Indistinguishable Proofs of

Work or Knowledge. In: Eurocrypt (2016)
9. Barker, E., Dang, Q.: Recommendation for Key Management. NIST Special Pub-

lication 800-57 (2015)
10. Beck, G., Choudhuri, A.R., Green, M., Jain, A., Tiwari, P.R.: Time-deniable sig-

natures. Cryptology ePrint Archive, Paper 2022/1018 (2022)
11. Bell, S., Benaloh, J., Byrne, M.D., Debeauvoir, D., Eakin, B., Kortum, P., McBur-

nett, N., Pereira, O., Stark, P.B., Wallach, D.S., Fisher, G., Montoya, J., Parker,
M., Winn, M.: STAR-Vote: A Secure, Transparent, Auditable, and Reliable Voting
System. In: JETS (2013)

12. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/46 (2018)

13. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: Ver-
ifying program executions succinctly and in zero knowledge. In: CRYPTO (2013)

14. Benaloh, J.: Ballot Casting Assurance via Voter-Initiated Poll Station Auditing.
In: EVT (2007)

15. Boneh, D., Naor, M.: Timed Commitments. In: CRYPTO (2000)
16. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable Delay Functions. In:

CRYPTO (2018)
17. Boneh, D., Bünz, B., Fisch, B.: A Survey of Two Verifiable Delay Functions. Cryp-

tology ePrint Archive, Report 2018/712 (2018)
18. Boneh, D., Bünz, B., Fisch, B.: Batching Techniques for Accumulators with Ap-

plications to IOPs and Stateless Blockchains. In: CRYPTO (2019)
19. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:

Eurocrypt (2001)
20. Bonneau, J., Clark, J., Goldfeder, S.: On Bitcoin as a public randomness source.

Cryptology ePrint Archive, Report 2015/1015 (2015)
21. Borisov, N., Goldberg, I., Brewer, E.: O↵-the-record communication, or, why not

to use PGP. In: ACM WPES (2004)
22. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:

Short proofs for confidential transactions and more. In: IEEE Security & Privacy
(2018)

23. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: CRYPTO (2020)

24. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: Prepro-
cessing zkSNARKs with universal and updatable SRS. In: CRYPTO (2020)

25. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved OR
Composition of Sigma-Protocols. In: TCC (2016)

drand.love
github.com/microsoft/electionguard
beacon.nist.gov/home

Short-Lived Zero-Knowledge Proofs and Signatures 29

26. Clark, J., Hengartner, U.: On the Use of Financial Data as a Random Beacon. In:
EVT/WOTE (2010)

27. Clark, J., van Oorschot, P.C., Ruoti, S., Seamons, K., Zappala, D.: SoK: Securing
email: A stakeholder-based analysis. In: Financial Cryptography (2021)

28. Cohen, B., Pietrzak, K.: Simple Proofs of Sequential Work. In: CRYPTO (2018)
29. Cohen, B., Pietrzak, K.: The Chia network blockchain (2019)
30. Colburn, M.: Short-lived signatures. Master’s thesis, Concordia University (2018)
31. Couteau, G., Klooß, M., Lin, H., Reichle, M.: E�cient Range Proofs with Trans-

parent Setup from Bounded Integer Commitments. In: Eurocrypt (2021)
32. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of Partial Knowledge and

Simplified Design of Witness Hiding Protocols. In: CRYPTO (1994)
33. Dodis, Y., Yum, D.H.: Time Capsule Signature. In: Financial Cryptography (2005)
34. Durumeric, Z., Adrian, D., Mirian, A., Kasten, J., Bursztein, E., Lidzborski, N.,

Thomas, K., Eranti, V., Bailey, M., Halderman, J.A.: Neither snow nor rain nor
MITM: An empirical analysis of email delivery security. In: ACM CCS (2015)

35. Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail. In:
CRYPTO (1992)

36. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous Verifiable Delay
Functions. In: CRYPTO (2020)

37. Feo, L.D., Masson, S., Petit, C., Sanso, A.: Verifiable Delay Functions from Su-
persingular Isogenies and Pairings. Cryptology ePrint Archive, Report 2019/166
(2019)

38. Ferradi, H., Géraud, R., Naccache, D.: Slow Motion Zero Knowledge Identifying
with Colliding Commitments. In: ICISC (2015)

39. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Eurocrypt. Springer (1986)

40. Foundation, E.: Ethereum 2.0 Beacon Chain (2020)
41. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over

Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. Cryp-
tology ePrint Archive, Report 2019/953 (2019)

42. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: CRYPTO (2013)

43. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. JACM 38(3) (1991)

44. Goyal, V., Raizes, J., Soni, P.: Time-traveling simulators using blockchains and
their applications. Cryptology ePrint Archive, Paper 2022/035 (2022)

45. Green, M.: Ok Google: please publish your DKIM secret keys (November 2020)
46. Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In:

Eurocrypt (2010)
47. Groth, J.: On the Size of Pairing-Based Non-interactive Arguments. In: CRYPTO

(2016)
48. Halderman, J.A., Waters, B.: Harvesting Verifiable Challenges from Oblivious On-

line Sources. In: CCS (2007)
49. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and their

Applications. In: Eurocrypt (1996)
50. Jaques, S., Montgomery, H., Roy, A.: Time-release Cryptography from Minimal

Circuit Assumptions. Cryptology ePrint Archive, Report 2020/755 (2020)
51. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-

rithm (ECDSA). International Journal of Information Security 1(1) (2001)
52. Krawczyk, H., Rabin, T.: Chameleon Signatures. In: NDSS (2000)

30 A. Arun, J. Bonneau and J. Clark

53. Kucherawy, M., Crocker, D., Hansen, T.: DomainKeys identified mail (DKIM)
signatures. RFC 6376 (2011)

54. Landerreche, E., Stevens, M., Scha↵ner, C.: Non-interactive Cryptographic Times-
tamping based on Verifiable Delay Functions. In: Financial Cryptography (2020)

55. Lenstra, A.K., Wesolowski, B.: Trustworthy public randomness with sloth, unicorn,
and trx. International Journal of Applied Cryptography 3(4), 330–343 (2017)

56. Mahmoody, M., Moran, T., Vadhan, S.: Publicly Verifiable Proofs of Sequential
Work. In: ITCS (2013)

57. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic Time-Lock Puzzles and Appli-
cations. In: CRYPTO (2019)

58. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings.
In: ACM CCS (2019)

59. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting
privacy. In: CRYPTO (2006)

60. Ne↵, C.A.: Practical High Certainty Intent Verification for Encrypted Votes. Tech.
rep., VoteHere Whitepaper (2004)

61. Okamoto, T., Uchiyama, S.: A New Public-Key Cryptosystem as Secure as Fac-
toring. In: Eurocrypt (1998)

62. Ozdemir, A., Wahby, R., Whitehat, B., Boneh, D.: Scaling Verifiable Computation
Using E�cient Set Accumulators. In: USENIX Security (2020)

63. Pass, R.: On Deniability in the Common Reference String and Random Oracle
Model. In: CRYPTO (2003)

64. Pietrzak, K.: Simple Verifiable Delay Functions. In: ITCS (2018)
65. Rabin, M.: Transaction protection by beacons. Journal of Computer and System

Sciences 27(2) (1983)
66. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release

Crypto. Tech. Rep. TR-684, MIT (1996)
67. Rivest, R.L.: Description of the LCS35 Time Capsule Crypto-Puzzle. https://

people.csail.mit.edu/rivest/lcs35-puzzle-description.txt (1999)
68. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures

and Public-Key Cryptosystems. Communications of the ACM 21(2) (1978)
69. Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Asiacrypt (2001)
70. Schnorr, C.P.: E�cient Signature Generation by Smart Cards. Journal of Cryptol-

ogy 4(3), 161–174 (1991)
71. Setty, S.: Spartan: E�cient and general-purpose zkSNARKs without trusted setup.

In: CRYPTO (2020)
72. Specter, M.A., Park, S., Green, M.: KeyForge: Non-Attributable Email from

Forward-Forgeable Signatures. In: USENIX Security (2021)
73. Syta, E., Jovanovic, P., Kogias, E.K., Gailly, N., Gasser, L., Kho�, I., Fischer, M.J.,

Ford, B.: Scalable Bias-Resistant Distributed Randomness. In: IEEE Security &
Privacy (2017)

74. Thaler, J.: Proofs, Arguments, and Zero-Knowledge (2021)
75. Thyagarajan, S.A.K., Bhat, A., Malavolta, G., Döttling, N., Kate, A., Schröder,

D.: Verifiable Timed Signatures Made Practical. In: ACM CCS (2020)
76. Wesolowski, B.: A proof of time or knowledge, https://hal.archives-ouvertes.

fr/hal-03380471
77. Wesolowski, B.: E�cient Verifiable Delay Functions. In: Eurocrypt (2019)
78. Öztürk, E.: Modular Multiplication Algorithm Suitable For Low-Latency Circuit

Implementations. Cryptology ePrint Archive, Paper 2019/826 (2019)

https://people.csail.mit.edu/rivest/lcs35-puzzle-description.txt
https://people.csail.mit.edu/rivest/lcs35-puzzle-description.txt
https://hal.archives-ouvertes.fr/hal-03380471
https://hal.archives-ouvertes.fr/hal-03380471

