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Abstract. We study Multi-party computation (MPC) in the setting of
subversion, where the adversary tampers with the machines of honest
parties. Our goal is to construct actively secure MPC protocols where
parties are corrupted adaptively by an adversary (as in the standard
adaptive security setting), and in addition, honest parties’ machines are
compromised.

The idea of reverse firewalls (RF) was introduced at EUROCRYPT’15
by Mironov and Stephens-Davidowitz as an approach to protecting pro-
tocols against corruption of honest parties’ devices. Intuitively, an RF for
a party P is an external entity that sits between P and the outside world
and whose scope is to sanitize P’s incoming and outgoing messages in the
face of subversion of their computer. Mironov and Stephens-Davidowitz
constructed a protocol for passively-secure two-party computation. At
CRYPTO’20, Chakraborty, Dziembowski and Nielsen constructed a pro-
tocol for secure computation with firewalls that improved on this result,
both by extending it to multi-party computation protocol, and consid-
ering active security in the presence of static corruptions.

In this paper, we initiate the study of RF for MPC in the adaptive
setting. We put forward a definition for adaptively secure MPC in the
reverse firewall setting, explore relationships among the security notions,
and then construct reverse firewalls for MPC in this stronger setting of
adaptive security. We also resolve the open question of Chakraborty,
Dziembowski and Nielsen by removing the need for a trusted setup in
constructing RF for MPC.

Towards this end, we construct reverse firewalls for adaptively secure
augmented coin tossing and adaptively secure zero-knowledge protocols
and obtain a constant round adaptively secure MPC protocol in the
reverse firewall setting without setup. Along the way, we propose a new
multi-party adaptively secure coin tossing protocol in the plain model,
that is of independent interest.
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1 Introduction

The standard definitions of security in cryptographic protocols are under the as-
sumption that honest parties can completely trust the machines that implement
their algorithms. However, such an assumption may be unwarranted in the real
world. The security guarantees of cryptosystems depend on the adversarial model
which, however, often makes idealized assumptions that are not always realized
in actual implementations. Several practical attacks in the real-world exploit im-
plementation details of an algorithm rather then treating it as a “black-box”. In
addition, users may be forced to use hardware built by companies with expertise,
and software that are mandated by standardization agencies. The capability of
the adversary to “tamper” with the implementation is not captured by security
models in classical cryptography. This model is not overkill, as we now know by
Snowden [4] revelations that one of potential mechanisms for large scale mass
surveillance is compromise of security by subversion of cryptographic standards,
and tampering of hardware. The threat of an adversary modifying the imple-
mentation so that the subverted algorithm remains indistinguishable from the
specification in black-box behavior, while leaking secrets was originally stud-
ied by Young and Yung as kleptography [33], and in the setting of subliminal
channels by Simmons [32]. Since Snowden revelations brought to light actual de-
ployment of such attacks, there is renewed attention, and has led cryptographers
to model such tampering in the security definition in order to closely capture
real-world concerns.

Reverse Firewalls. The cryptographic reverse firewall (RF) framework was in-
troduced by Mironov and Stephens-Davidowitz [28] in the context of designing
protocols secure against adversaries that can corrupt users’ machines in order
to compromise their security. A reverse firewall for a party P is an external
intermediate machine that modifies the incoming and outgoing messages sent
by P’s machine. In essence, a reverse firewall sits between a party P and the
external world, and “sanitizes” the messages that are sent and received by P.
Note that the party does not put any trust in the RF, meaning that it does
not share any secrets with the firewall. This rules out trivial solutions like a
trusted RF that simply keeps P’s secrets and runs on P’s behalf. Instead, the
goal is for an uncorrupted5 RF to provide meaningful security guarantees even
in the case that an honest party’s machine has been tampered with. Consider
an arbitrary protocol that satisfies some notions of functionality and security. A
reverse firewall for a protocol is said to functionality-maintaining if the resulting
protocol (protocol with a firewall for party P) achieves the same functionality as
the original protocol. Roughly, the RF should not ruin the functionality of the
underlying protocol, in the sense that the protocol with an RF for a party should
still work as expected in case no subversion takes place. At the same time, the
RF is expected to preserve security. An RF is said to preserve security if the
protocol with the firewall is secure even when an honest party’s implementation

5 The RF being corrupt is not interesting in the active setting, since the corrupt RF
and the other party together can be thought of as the adversary.
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is tampered with to behave in an arbitrarily corrupt way. Finally, an RF should
provide exfiltration-resistance, i.e., regardless of how the user’s machine behaves,
the presence of the RF will prevent the machine from leaking any information
to the outside world.

The work of [28] provides a construction of a two-party passively secure
computation protocol with a reverse firewall. The recent work of [12] generalizes
reverse firewalls for secure computation by showing feasibility of reverse fire-
walls for Multi Party Computation (MPC). They give a construction of reverse
firewalls for secure computation in a stronger and general setting that handles
multiple parties, and consider protocols in the malicious security model.

RFs in other settings have been constructed including key exchange and
secure message transmission [20, 14], oblivious transfer [20, 14], digital signa-
tures [2], and zero-knowledge proofs (ZK) [23]. Reverse firewalls has also been
used in a practical context in the design of True2F [16], a system that is based
on a firewalled key generation and ECDSA signature generation with potential
applications in cryptocurrency wallets.

1.1 Our Results

In this work, we take forward the study of reverse firewalls in the setting of MPC.
We begin by proposing definitions that capture the requirements of an RF for
MPC in the presence of adaptive corruptions. We then explore relationships
among them the notions. Next, we turn our attention to constructing RFs for
maliciously secure protocols in the presence of adaptive corruptions. Towards
this end, we construct protocols with reverse firewalls for multi-party augmented
coin tossing, zero-knowledge, and coin tossing, all in the presence of adaptive
corruptions. We then use the above building blocks to construct a maliciously
secure MPC in the presence of adaptive corruptions together with a reverse
firewall. We further elaborate on the contributions in this work.

On the relationship between definitions. As our first contribution, we
revisit the different notions of subversion security for MPC protocols in the
presence of RF. The work of [28] defined the notions of security preservation
(SP) and exfiltration resistance (ER) as the properties required from an RF.
SP asks that an RF preserve the security properties of the underlying protocol
for an honest party even when the honest party’s implementation is tampered
with. ER is concerned with a type of attack called exfiltration, where an hon-
est party’s tampered implementation attempts to leak secrets. A reverse firewall
that is exfiltration resistant prevents an adversary from learning secrets even
when the honest party’s machine is tampered with. Roughly, exfiltration resis-
tance for a party Pi asks that the transcripts produced in the following two
ways are indistinguishable: (i) by running the protocol with the RF for Pi whose
implementation has been arbitrarily subverted and in the presence of other ma-
licious parties, (ii) by running the protocol with the RF for honest implemen-
tation of Pi in the presence of other malicious parties. In [28], it was shown
that for certain indistinguishability-based security notions like semantic security
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of an encryption scheme, an exfiltration resistant RF is also security preserv-
ing. It was postulated in [28] that, in general, when security requirements are
simulation-based, ER does not imply SP. Surprisingly, we establish that exfil-
tration resistance implies security preservation for a reverse firewall when the
security of the underlying protocol is simulation-based (computational) MPC
security. For simulation-based security, this implication was only known for spe-
cial functionalities like zero-knowledge. Our definitional implication shows that
ER is the “right” notion for RF in the MPC setting; for new constructions, we
need only construct RFs that are exfiltration resistant for each of the parties,
and when all honest parties have an RF, security preservation for the protocol
follows in the presence of malicious parties and arbitrary tampering of honest
parties’ implementations. In the other direction, [28] showed that a security pre-
serving RF is not necessarily ER when the underlying security does not promise
privacy.

Reverse firewalls for adaptively secure MPC. The adaptive security no-
tion for an MPC protocol models the realistic threat that an adversary can
corrupt a party during the execution of a protocol. Adaptive security is much
harder to achieve than static security for MPC. In the reverse firewall setting,
capturing a technical formulation of the adaptive security notion requires some
care. When a party gets adaptively corrupted, the adversary can learn all of that
party’s inputs and internal random coins. Consider an MPC protocol where an
honest party deploys a firewall; now adaptively corrupting this party amounts to
the adversary learning the composed state of the party with its reverse firewall.
Typically, for reverse firewalls, security preservation means that the underlying
security properties hold even under subversion. In the adaptive security case, we
ask that adaptive security holds under subversion, where the adaptive adversary
can learn the composed state of an adaptively corrupt party. Defining exfiltration
resistance in the adaptive case needs some care. Here, we ask that the adver-
sary not be able to distinguish between a tampered implementation of party P
and an honest implementation, where the adversary can specify tampered im-
plementations for initially honest parties and corrupt parties adaptively in the
execution. While exfiltration resistance is not meaningful anymore once P gets
corrupt in the middle of the protocol, our definition asks that up until the point
that P gets corrupted, exfiltration resistance hold. Intuitively, the definition says
that if P gets corrupted in the middle of execution, the adversary can see the
composed state of P (the state of P composed with the state of the RF). Even
given this state, the adversary should not be able to say if until corruption it
was interacting with P composed with RF or P̃ composed with RF, where P̃ is
a tampered implementation for P .

We construct reverse firewalls for maliciously secure MPC protocols in the
presence of adaptive corruptions in the plain model. Similar to [12], we consider
RFs for functionality-maintaining tampering (see Sec. 3).

Theorem 1. (Informal) Assuming DDH and LWE assumptions, there exists
an O(1) round actively secure MPC protocol with reverse firewalls that is secure
against adaptive corruptions in the urs model.
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Later, we generate (Thm. 3) the urs using an adaptively secure coin tossing
protocol in the plain model based on the Discrete Logarithm (DLOG) and the
Knowledge of Exponent (KEA) assumption in a different group. We consider
this to be a result of independent interest, and further elaborate on the coin
tossing protocol in the technical overview section.

Our approach is to construct an MPC protocol along the lines of GMW [26],
and add reverse firewall to this protocol. That is, our construction is essentially
an adaptive compiler : it takes a semi-honest adaptively secure MPC protocol and
runs [26]-like steps in the reverse firewall setting to yield an adaptively secure
MPC protocol with reverse firewalls. Towards this, we design adaptively secure
protocols for augmented coin tossing and zero-knowledge, and construct reverse
firewalls for each of the sub-protocols used in the compiler. Finally, we show that
the compiled MPC protocol is adaptively secure in the presence of tampering of
honest parties. We state each of the results below.

– Reverse firewall for ZK: Zero-knowledge in the presence of subversion have
been studied in the form of parameter subversion for NIZK [5], and in the RF
setting for a class of interactive protocols called malleable sigma protocols [23].
In this work, we consider interactive ZK since we aim for protocols without
setup. Our protocol is a variant of the adaptively secure ZK protocol of [11]
which is in the Uniform Random String (urs) model. Finally, we show how to
design an RF for this protocol.

Theorem 2. (Informal) Assuming LWE, there exists a three round actively
secure ZK protocol with reverse firewalls that is secure against adaptive cor-
ruption of parties in the urs model.

– Reverse firewall for augmented coin-tossing: We provide a construction of an
adaptively-secure multi-party augmented coin-tossing protocol. Similar to our
ZK protocol, our augmented coin-tossing protocol is also in the urs model. The
main building block of our augmented coin tossing protocol is an adaptively-
secure commitment scheme (in the urs model) which is additively homomor-
phic over the message and randomness spaces. We then show how to construct
an RF for this protocol.

Since our adaptively-secure augmented coin-tossing and ZK protocols are in
the urs model, the compiled MPC protocol is also in the urs model. However,
in the subversion setting we consider, a trusted setup is not available since a
setup is susceptible to subversion too. For instance, the security guarantees of
NIZKs completely break down in the face of subversion of the CRS [5]. To
circumvent the need for a trusted setup, we show how to generate the urs needed
by our adaptively secure MPC protocol securely in the presence of subversion
by presenting a multi-party coin tossing protocol with a reverse firewall in the
plain model.

Adaptively secure coin tossing in plain model. As a contribution of in-
dependent interest, we construct an adaptively secure multi-party coin tossing
protocol in the plain model under the knowledge of exponent (KEA) assump-
tion. Our use of non-black-box assumptions seems justified, in light of the result
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of [24] that shows that it is not possible to construct an adaptively secure multi-
party protocol with respect to black-box simulators without giving up on round
efficiency in the plain model6. We use our coin-tossing protocol to generate the
urs of our MPC protocol.

Theorem 3. (Informal) Assuming DLOG, KEA and LWE assumptions, there
exists a O(1) actively secure multi-party coin-tossing protocol that is secure
against adaptive corruptions in the plain model.

We then show how to add reverse firewalls to our adaptively secure coin tossing
protocol. Finally, putting everything together, we obtain an adaptively secure
MPC protocol with reverse firewall in the plain model. This resolves the open
question posed in [12] of removing the trusted setup assumption in constructing
MPC protocols with reverse firewalls.

1.2 Technical Overview

We provide a high-level overview of our construction, which can be viewed as an
adaptive compiler for MPC protocols in the RF setting following the blueprint
of [26]. The main idea of the [26] compiler is as follows: Each party (i) runs an
instance of an augmented multi-party coin-tossing protocol to obtain a uniformly
random string that it is committed to, (ii) commits to its input and broadcasts
the input commitment to every other party, (iii) runs the underlying semi-honest
adaptively secure MPC protocol, while proving in zero-knowledge that the com-
putations have been done correctly. Since our goal is adaptive security, we start
with an adaptively secure semi-honest protocol. Our compiler will use adaptively
secure augmented coin-tossing and adaptively-secure ZK protocols in the plain
model.

Adding reverse firewalls. The protocol outlined above requires randomness
in the augmented coin-tossing protocol and the ZK protocol. The rest of the
MPC protocol is deterministic given the coins and the randomness of the ZK
protocol. We propose an adaptively secure multi-party augmented coin-tossing
protocol Πcoin and an adaptively secure (input-delayed) ZK protocol Πzk. We
then design reverse firewalls for these protocols and show that they provide
exfiltration resistance for tampered parties. Then, by invoking our theorem that
an exfiltration resistant RF is security preserving, we get that the RFs preserve
security of the above protocols. We now explain them in more detail below.

– Πa-coin using reverse firewalls: Our augmented coin-tossing uses the “commit-
then-open” paradigm. At the end of this protocol, the initiating party (say, Pi)
obtains a random string ri along with the appropriate decommitment informa-
tion, whereas all other parties {Pj}j∈[n]\i obtain the (same) commitment to ri.
We assume that the message and randomness spaces of the commitment scheme

6 If we had a coin tossing protocol with black-box simulation, we could use it to
transform a two round adaptively secure MPC protocol in the URS model [10] to a
protocol in the plain model by generating the URS via the coin toss protocol.
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form an additive group and the commitment scheme is additively homomorphic
over these spaces. In the first round, each party {Pj}j∈[n]\i sample their own
randomness rj and sj , commits to the random coin rj using sj and broadcasts
the commitment cj = Com(rj ; sj). In the second round, party Pi samples its own
randomness (ri, si), and broadcasts the commitment ci = Com(ri; si) to all other
parties. Finally, in the third round all parties {Pj}j∈[n]\i broadcast their respec-
tive openings (rj , sj). Party Pi then obtains the final string as R =

∑
k∈[n] rk, and

locally computes the commitment ci as c = Com(R;S), where S =
∑
k∈[n] sk.

All other parties can compute the same commitment c using the commitment
ci (broadcast by Pi) and the decommitment information of all other parties
(broadcast in the final round) exploiting the homomorphic property of Com. We
show that the above protocol is adaptively secure if the underlying commitment
scheme Com is adaptively secure.

Consider the case when the initiating party Pi is tampered. In this case, the
other malicious parties can launch an input trigger attack by sending a malformed
commitment string which may serve as a wake up message to Pi. Besides, in the
second round, tampered Pi can sample bad randomness and exfiltrate secrets via
the commitment string ci. When the receiving parties are corrupt, the commit-
ment strings and their openings could also serve as a subliminal channel. The
main idea of the RF is to exploit the homomorphic properties of Com to sanitize
the incoming and outgoing messages. However, it must ensure that this mauling
is consistent with the views of all parties. In particular, RFi for Pi rerandom-
izes the commitment ci to a fresh commitment ĉi by choosing fresh randomness
(r′i, s

′
i), computing c′i = Com(r′i; s

′
i) and homomorphically adding them. In the

final round, when all the parties send their openings (rj , sj), RFi computes an
additive secret sharing of r′i and s′i (sampled in the above step) and sanitizes
each of these openings using the appropriate shares. Thus, the views of all the
parties are consistent in this firewalled protocol and the final coin is also guar-
anteed to be random (since the offsets r′i and s′i were sampled randomly). Note
that, the final commitment C computed by all the parties does not provide any
channel to exfiltrate (since both R and S are random at the end of the firewalled
execution). The detailed protocol together with the RF is in Section 5.1.
– Πzk using reverse firewalls : Next, we need a ZK protocol to show conformance
of each step of the protocol specification. We construct a reverse firewall for (a
variant of) the adaptively secure ZK protocol of [11]. The protocol of [11] is
based on the Sigma protocol of [21] where the prover sends a first message,
the verifier sends a random bit string as a challenge, and the prover sends a
response in a third message. Towards constructing a reverse firewall, we observe
that the prover’s messages can be re-randomized if the underlying primitives are
homomorphic. However, the challenge string cannot be re-randomized, without
also mauling the response provided by the prover. The ZK protocol of [11] does
not seem to have this malleable property. Therefore, we modify the protocol,
where the verifier’s challenge is generated as the result of a coin-tossing protocol.
This ensures that the challenge is indeed random, and after the firewall sanitizes,
both the prover and the verifier have the same challenge string. Therefore, the
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firewall can sanitize the protocol without the need to explicitly maul the response
from the prover. The modified protocol remains adaptively secure. Note that the
protocol also retains the input-delayed property – only the last round of the ZK
protocol depends on the statement being proven and the corresponding witness.
This allows running the first two rounds of the protocol before the inputs in
the MPC protocol are defined. During the MPC protocol, the parties compute
the input commitments and the protocol messages which define the statement
and the witness. The last round of the ZK protocol is run after this is defined,
thus helping to preserve the round complexity of the underlying semi-honest
adaptively-secure MPC protocol.
The idea behind a firewall for a tampered party in this modified ZK protocol, is to
re-randomize the prover’s first message in the coin tossing homomorphically, thus
ensuring that the verifier’s challenge in the sigma protocol is random. We show
reverse firewalls for the prover and the verifier, and prove exfiltration resistance.

We obtain the above protocols in the urs model by instantiating the semi-
honest MPC protocol and the underlying primitives in the urs model based on
DDH and LWE (see Sections 5.1 and 5.3). Next, we generate the urs using an
adaptively-secure coin tossing protocol to remove the setup assumption.

Adaptively secure coin tossing in the plain model. In order to remove
the setup, we construct a constant round multi-party coin tossing protocol Πcoin

in the plain model that generates the urs required by the MPC protocol. In ad-
dition to Discrete Log (DL) and Learning With Errors (LWE) assumption, we
rely on knowledge of exponent assumption (KEA) assumption in pairing groups.
Since it is impossible to construct a constant round adaptively secure coin-tossing
protocol in the plain model from black-box simulation techniques [24], our re-
liance on the KEA assumption seems justified. The only other adaptively secure
coin-tossing protocol in the plain model by Garg and Sahai [24] uses Barak’s
non-blackbox technique, and it is non-trivial to extend this protocol in the RF
setting. Therefore, we craft a new RF-compatible protocol from scratch.

The high-level idea behind our Πcoin protocol is as follows: There is an ini-
tial coin-tossing phase that sets up a public key of a homomorphic, obliviously
sampleable encryption scheme. In subsequent steps, there is another coin-tossing
phase where parties exchange commitments to their coins together with encryp-
tion of the commitment randomness under the public key generated in the previ-
ous coin-toss. The protocol uses the Pedersen commitment scheme – an equivocal,
perfectly hiding commitment scheme, and a public key encryption scheme with
additional properties. Πcoin consists of four phases - parameter generation phase,
commitment generation phase, commitment opening phase and output phase.

In the first phase, the parties generate pairwise Pedersen commitment pa-
rameters and pairwise encryption key. For the commitment parameter, one party
is the committer and the other party is the verifier; and the verifier additionally
proves knowledge of the commitment trapdoor. The public key is of an encryp-
tion scheme that satisfies the following properties: oblivious ciphertext sampling,
oblivious public key sampling and additive homomorphism of ciphertexts and
public keys. The parameter generation is repeated by reversing the roles. In the

8



commitment generation phase, each party generates its random coin and com-
mits (as the committer) to it pairwise using the pairwise commitment parameters
generated in the previous phase. Each party also sends two encryptions e0 and
e1: if the committed coin is b ∈ {0, 1}, then eb is an encryption of the random-
ness used to commit to the coin, and e1−b is sampled obliviously. Upon obtaining
pairwise commitments to the random coins, the parties open their commitments
pairwise by sending the decommitment randomness and encryption randomness
for b to the pairwise verifiers. e1−b is claimed to be obliviously sampled. Each
party also broadcasts its random coin b. In the output phase, each party verifies
the pairwise commitment openings and that correct ciphertext is an encryption
of the commitment randomness. If all the openings are correct and they are
consistent with the broadcasted coins then the parties output the final coin by
summing up all the broadcasted coins.

This protocol is adaptively secure if the commitment is equivocal and per-
fectly hiding. The simulator needs to bias the output coin to a simulated coin.
It is performed as follows: In the parameter generation phase, the verifier proves
knowledge of trapdoor using a sub-protocol. When the verifier is corrupt, a non-
black-box assumption allows extraction of the trapdoor. When the committer is
corrupt, the simulator receives the commitment and the public key, samples a
key pair, rewinds the committer and sets its own oblivious key such that they ho-
momorphically combine to the honestly sampled key. Now, the simulator knows
the corresponding secret key. The simulator extracts the committed coins of the
malicious parties in the commitment generation phase. In the opening phase the
simulator equivocates (using the extracted trapdoors) the pairwise commitments
and the coins broadcasted on behalf of the honest parties such that the final out-
put coin is equal to the simulated output coin. Once the committer opens its
public key in the first coin-toss, the simulator can rewind and force the output of
this coin-toss phase to be a public key for which the simulator knows the secret
key. In the subsequent coin-tossing phase where parties exchange commitment
to their coins together with encryption of the commitment randomness, the sim-
ulator can extract the value committed. Crucially, the simulator can extract the
committed coin of the corrupt committer before the adversary can see the out-
put of the coin toss allowing it to simulate. When the committer is honest, the
simulator can explain the ciphertexts as encrypting the correct values.

Adding reverse firewalls to the coin tossing protocol. We exploit the homo-
morphism property of the underlying commitment and public-key encryption
scheme to sanitize round messages. In addition to this, the RF computes pairing
equations in order to verify validity of messages.

On the setup assumption. The work of [12] required a structured setup due
its augmented coin-tossing protocol. In their coin tossing protocol the receiving
parties obtain commitments to the sender’s coin, which is different from the
commitment generated by the sender. As a result, during the later part of the
protocol the RF needs to maul the proofs using a controlled-malleable NIZK
(cm-NIZK) as the statement being proven by the sender is different from the
one being verified by the receiving parties. Unfortunately, cm-NIZKs are not
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known in the adaptive setting. We modify the coin-tossing protocol such that
every party obtains the same commitment string, and hence the proof statement
remains unchanged. Thus, we can use an interactive ZK protocol without needing
controlled malleability (re-randomizability suffices), and this allows us to rely
on urs instead of crs. Finally, we can use the coin-tossing protocol (in the plain
model) to remove the need for urs.

Finally, in all our protocols we rely on the existence of broadcast channels
in the RF setting. We implicitly use the protocol of [12], who showed how to
implement broadcast channels in the RF setting.

1.3 Other Related Work

Besides the reverse firewall framework, other directions that address the chal-
lenge of protecting cryptosystems against different forms of subversion are re-
viewed below.

Algorithm Substitution Attacks. Bellare, Patterson, and Rogaway [7] initi-
ated the study of subversion of symmetric encryption schemes in the form of
algorithm-substitution attacks (ASAs). They show that such subversion of the
encryption algorithm is possible in a way that is undetectable. They also show
that deterministic, stateful, ciphers are secure against this type of ASAs. Subse-
quent works redefined and strengthened the notion in several aspects [17, 6], and
extended the ASA model to other contexts, like digital signatures schemes [2],
public key encryption [13].

Backdooring. Motivated by the backdooring of the DUAL EC DRBG [31], a
formal study of backdooring of PRGs was initiated in [19], where public param-
eters are surreptitiously generated together with secret backdoors by a saboteur
that allows to bypass security while remaining secure to any adversary that
does not know the backdoor. Parameter subversion has been considered for sev-
eral primitives, including pseudorandom generators [19, 18], non-interactive zero
knowledge [5], and public-key encryption [3].

Watchdogs and Self-guarding. Another approach taken in [29, 30, 8] is to
consider an external entity called a watchdog that is trusted to test whether
a given cryptographic implementation is compliant with its specification via
black-box access. Self-guarding is another approach to counter subversion [22].
The idea here is to not depend on external entities, instead assume a trusted
initialization phase where the cryptosystem is unsubverted.

2 Preliminaries

Notation. We write PPT to denote a probabilistic polynomial time machine. We
denote the security parameter by λ. For an integer n ∈ N, we denote by [n] the
set {1, 2, · · · , n} and for any pair of integers 1 < i < j ≤ n, we denote by [i, j] the
set {i, i+ 1, · · · , j}. For a distribution or random variable X, we denote x← X
the action of sampling an element x according to X. For any integer m ∈ N, we
write Um to denote the uniform distribution over all m-bit strings. We denote
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by G the multiplicative group where DDH assumption holds. The corresponding
field is denoted by Zq. We denote a negligible function in λ as neg(λ).

Required Primitives. A public key encryption scheme PKE = (Gen,Enc,Dec)
satisfies oblivious ciphertext sampling if there exists a polynomial time algo-
rithm oEnc which obliviously samples a ciphertext s.t. it looks indistinguish-
able from a real ciphertext. Additionally, we require the PKE to satisfy ad-
ditive homomorphism over message and randomness space, i.e. Enc(pk,m; r) ·
Enc(pk,m′; r′) = Enc(pk,m + m′; r + r′). We denote a commitment scheme as
Com = (Gen,Com,Verify). It is equivocal if there exists a polynomial time algo-
rithm Equiv that equivocates a commitment to open to any message, given the
trapdoor of the commitment parameters. We need an adaptively secure commit-
ment scheme and we use the definition of [10]. We also need the commitment
scheme to satisfy additively homomorphic property like the PKE scheme. We
present a version of Elgamal commitment scheme without setup as follows. Given
a generator g ∈ G, the committer commits to a field element m ∈ Zq by sampling
randomness x, r ← Zq and sets c = (c1, c2, c3) = (gx, gr, gmgrx) = (h, gr, gmhr).
The tuple (x, r) serves as the decommitment information. It is perfectly bind-
ing and computationally hiding due to the DDH assumption. We also require
an input-delayed (interactive) ZK protocol Πzk = (Gen,P,V), i.e., only the last
message from the prover to the verifier should depend on the statement. We use
the ZK definitions of [11].

Bilinear Groups and Knowledge of Exponent Assumption [1]. Let BGG denote a
bilinear group generator. It takes in input the security parameter λ and outputs
(G,H, q, g, e) where G and H is a pair of groups of prime order q where g is
a generator of group G, and e is a non-degenerate bilinear map defined as e :
G×G→ H for which e(ga, gb) = e(g, g)ab for a, b ∈ Zq and e(g, g) 6= 1H.

Definition 1. (Discrete Log Assumption) For every non-uniform poly-time
algorithm A, the following holds:

Pr[pub← BGG(1λ), h← G, w ← A(pub, h) : gw = h] ≤ neg(λ)

Definition 2. (Knowledge of Exponent Assumption). For every non uni-
form poly-time algorithm A there exists a non-uniform poly-time algorithm XA,
the extractor such that:

Pr[pub← BGG(1λ), x← Zq, (A, Â; a)← (A||XA)(pub, gx) :

Â = Ax ∧A 6= ga] ≤ neg(λ)

where (A, Â; a) ← (A||XA)(pub, gx) means that A and XA are executed on the
same input (pub, gx) and the same random tape, and A outputs (A, Â) whereas
XA outputs a.

Definition 3 ([26] Multi-party Parallel Coin-Tossing into the Well). An
n-party augmented coin-tossing into the well protocol is an n-party protocol for
securely computing the functionality (1λ, · · · , 1λ) →

(
Ut, Ut, . . . , Ut

)
, where Ut

denotes the uniform distribution over t-bit strings.
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Definition 4 ([26] Multi-party Augmented Parallel Coin-Tossing into
the Well). An n-party augmented coin-tossing into the well protocol is an n-
party protocol for securely computing the functionality (1λ, · · · , 1λ)→

(
(Ut, Ut·λ),

Com(Ut;Ut·λ), · · · ,Com(Ut;Ut·λ)
)

with respect to a fixed commitment scheme
Com = (Gen,Com,Verify) which requires λ random bits to commit to each bit,
and Ut denotes the uniform distribution over t-bit strings.

Next, we define adaptive security for MPC in the stand-alone setting. Let
us assume that an adversary A runs a protocol Π with parties (P1, . . . , Pn)
to compute function f on inputs ~x. A adaptively corrupts parties Pi in the
set C, for i ∈ C. We denote the real world adversary view of the protocol as
REALΠ,(C,A)(λ, ~x, z). Let us denote REALΠ,(C,A) as the distribution ensemble
{REALΠ,(C,A)(λ, ~x, z)}λ∈N,~x∈({0,1}∗)n,z∈{0,1}∗ . Let Sim be an ideal world adver-
sary who interacts with the ideal functionality f and we denote the ideal world
adversary view as IDEALf,(C,Sim)(λ, ~x,~r, z). let IDEALf,(C,Sim) denote the distri-
bution ensemble {IDEALf,(C,Sim)(λ, ~x, z)}λ∈N,~x∈({0,1}∗)n,z∈{0,1}∗ .We say that Π
adaptively securely evaluates f if for every real world adversary A there exists
an ideal world adversary Sim, s.t. REALΠ,(C,A)(λ, ~x, z) ≈c IDEALf,(C,Sim)(λ, ~x, z).

3 Reverse Firewalls for Adaptively secure MPCs

In this section, we present definitions of reverse firewalls for adaptively secure
MPC protocols. The existing definitions of security preservation and exfiltration-
resistance for reverse firewalls are for a static adversary [12]. In the adaptive
setting, while the security preservation is defined as before, exfiltration resistance
now has to incorporate the adaptive power of the adversary. We first introduce
some notation that will be used throughout the paper.

Notation. Let Π denote a `-round MPC protocol, for some arbitrary polynomial
`(·) in the security parameter λ. Let H and C denote the indices of the honest
and maliciously corrupted parties respectively in the protocol Π. For a party
P and reverse firewall RF we define RF ◦ P as the “composed” party in which
the incoming and outgoing messages of A are “sanitized” by RF. The firewall
RF is a stateful algorithm that is only allowed to see the public parameters of
the system, and does not get to see the inputs and outputs of the party P . We
denote the tampered implementation of a party P by P .

We denote the view of a party Pi by ViewPi , which consists of the input of
Pi, its random tape and the messages received so far. We also denote the view
of a party Pi till some round k(≤ `) as View≤kPi . We denote the reverse firewall
for party Pi as RFi and the internal state of RFi by stRFi . We write ViewRFi◦Pi
to denote the composed view of a party Pi and its RF RFi. Let Transform(·) be
a polynomial time algorithm that takes as input the random tape ri of a party
Pi and the internal state (or randomness) stRFi of RFi and returns a sanitized
random tape Transform(ri, stRFi)

7. Note that, the composed view ViewRFi◦Pi of

7 Looking ahead, in all our constructions the function Transform will typically be a
very simple function like addition or field multiplication.

12



Pi can be efficiently constructed from the view ViewPi of Pi and the state stRFi
of RFi using the Transform function as a subroutine. We write ΠRFi◦Pi (resp.
ΠPi

) to represent the protocol Π in which the role of a party Pi is replaced by

the composed party RFi ◦ Pi (resp. the tampered implementation Pi).

Definition 5. (Functionality-maintaining RF). For any reverse firewall
RF and a party P , let RF1 ◦ P = RF ◦ P , and RFk ◦ P = RF ◦ · · · ◦ RF︸ ︷︷ ︸

k times

◦P . For

a protocol Π that satisfies some functionality requirements F , we say that a
reverse firewall RF maintains functionality F for a party P in protocol Π if
ΠRFk◦P also satisfies F , for any polynomially bounded k ≥ 1.

Definition 6. (Security-preserving RF for Malicious Adaptively secure
MPCs). Let Π be a multi-party protocol run between parties P1, . . . , Pn satis-
fying functionality requirement F and is secure against adaptive malicious ad-
versaries. We assume that each honest party {Pi}i∈H is equipped with its cor-
responding reverse firewall {RFi}i∈H. When the adversary (adaptively) corrupts
a party Pi, it receives ViewRFi◦Pi as the view of Pi. Then, we say that the re-
verse firewalls RFi for parties {Pi}i∈H strongly (resp. weakly) preserves secu-
rity of the protocol Π, if there exists a polynomial-time computable transforma-
tion of polynomial-size circuit families A = {Aλ}λ∈N for the real world into
polynomial-size circuit families Sim = {Simλ}λ∈N for the ideal model such that
for every λ ∈ N, every subset H ⊂ [n], every input sequence ~x = (x1, . . . , xn) ∈
({0, 1}λ)n, every auxiliary information z ∈ {0, 1}∗ and every arbitrary (resp.
functionality-maintaining) tampered implementation {Pi}i∈H we have the fol-
lowing: REALΠ{RFi◦Pi}i∈H ,(C,A)(λ, ~x, z) ≈c IDEALf,(C,Sim)(λ, ~x, z).

We now define exfiltration resistance in terms of the game LEAK that asks
the adversary to distinguish between a tampered implementation of party Pi
and an honest implementation, even given the composed state of Pi and its RF
if Pi gets adaptively corrupt in the middle of execution. 8

Definition 7. (Exfiltration-resistant RF in the presence of adaptive
corruptions). Let Π be a multi-party protocol run between the parties P1, . . . , Pn
satisfying functionality F and having reverse firewalls RFi for the set of honest
parties {Pi}i∈H. When the adversary (adaptively) corrupts a party Pi, it receives
ViewRFi◦Pi as the view of Pi. Then ∀i ∈ H, we say that the firewall RFi is
exfiltration-resistant for party Pi against all other parties {Pj}j∈[n]\i, if for any

PPT adversary AER, the advantage AdvLEAKAER,RFi(λ) of AER (defined below) in the
game LEAK (see Fig. 1) is negligible in the security parameter λ.
The advantage of any adversary AER in the game LEAK is defined as:

AdvLEAKAER,RFi(λ) =
∣∣∣Pr[LEAK(Π, i, {P1, . . . , Pn},RFi, λ) = 1]− 1

2

∣∣∣.
8 Note that, if we were to give Pi’s internal state when it gets adaptively corrupt

instead of the composed state, the adversary can trivially distinguish since the party’s
state does not explain the sanitized transcript.
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Fig. 1. Exfiltration-resistance game LEAK for a party Pi for adaptively secure MPCs

LEAK(Π, i, {P1, · · · , Pn},RFi, λ)

W.l.o.g, let PH = (P1, · · · , Ph) denote the set of honest parties at the onset of the
protocol Π, where h = |H|. The exfiltration-resistance game LEAK for a party Pi ∈ PH

is modelled as an interactive game between a challenger CER and an adversary AER

described as follows:

1. The adversary AER provides the tampered implementations of all the honest
parties along with their inputs {(P1, · · · , Ph), IH} to the challenger CER.

2. The challenger CER samples a bit b
$←− {0, 1} uniformly at random and does the

following:
– If b = 1, define P ∗i ← RFi ◦ Pi.
– If b = 0, define P ∗i ← RFi ◦ Pi.

3. CER and AER then engage in an execution of the MPC protocol Π, where the
challenger CER plays the role of all the honest parties PH (with inputs IH) and
the adversary can adaptively corrupt parties in the set PH. The CER then returns
the transcript T ∗ of Π to AER.

4. If AER adaptively corrupts the party Pi at some point during the execution of Π
(say at round k) the challenger CER returns the composed view of Pi till round k,
i.e., View≤kRFi◦Pi

to AER. Note that, View≤kRFi◦Pi
can be efficiently constructed from

View≤kPi and the state stRFi of RFi using the Transform function as a subroutine.

5. The challenger CER also returns the views of all the other uncorrupted parties
{ViewPk}k∈[h\i] to AER.

6. The game ends when AER returns a bit b′ as a guess for the bit b. Output 1 if
b′ = b.

As in prior works on RF, we consider the notion of functionality-maintaining
tampering attacks. Informally, such an attack excludes all conspicuous tamper-
ings, which would otherwise be detected by honest parties. We provide a formal
definition in the full version. We also define transparency of reverse firewalls
which was informally introduced in [20], which means that the behavior of RF◦P
is identical to the behavior of P if P is the honest implementation. We will also
need the notion of valid transcripts and detectable failures of reverse firewalls, as
presented in [20]. In this work we do not consider input replacement tampering
attack - tampering attacks work by substituting the actual input of the honest
parties with a different (possibly (un)related) value. We defer these definitions
to the full version.

4 Relations between Security Preservation and
Exfiltration Resistance

In this section, we explore the relation between the notions of security preser-
vation (SP) and exfiltration resistance (ER) for reverse firewalls in the MPC
setting. Specifically, we show that ER implies SP for MPC protocols for adap-
tive corruptions; whereas the relation in the other direction is much less clear.
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For all the implications we show in this section, we assume that security
preservation be defined by the existence of a black-box simulator. We also assume
that the adversaries are not computationally unbounded, and do not have access
to additional oracles. Looking ahead, all of our constructions will satisfy the
above requirements.

4.1 Exfiltration-Resistance implies Security Preservation

In this section, we show that ER implies SP for adaptively-secure MPC protocols
by proving the following theorem.

Theorem 4. Let f be an n-ary functionality and let Π be a an n-party protocol
that securely computes f with abort in presence of malicious adaptive adver-
saries. Let C ⊂ [n] denote the indices of adaptively corrupt the corrupted parties
in the protocol Π, and let H = [n] \ C denote the indices of the honest par-
ties at the outset of Π. Let (P i)i∈H denote the tampered implementations of
the honest parties provided by the adversary. Also, let RFi denote the RF cor-
responding to party Pi. Then for all i ∈ H, if RFi is functionality maintaining,
(strongly/weakly) exfiltration resistant with adaptive security for Pi against all
other parties {Pj}[n]\i and transparent, then for all PPT adversaries A and

all PPT tamperings (Pi)i∈H provided by A, the firewalls RFi for parties {Pi}i∈H
(strongly/weakly) preserve security of the protocol Π according to Def. 6 in the
presence of adaptive corruptions.

Proof. We need to show that security of the MPC protocolΠ is (strongly/weakly)
preserved by the reverse firewalls RFi for parties {Pi}i∈H by relying on (strong/
weak) exfiltration-resistance of the firewalls RFi, transparency of RFi and the
adaptive security of the underlying MPC protocol Π. More formally, we will
show that there exists a simulator/ideal-world adversary Sim such that for any
real-world adversary A participating in the protocol Π, adaptively (maliciously)
corrupting parties during the execution, for all λ ∈ N, inputs ~x ∈ ({0, 1}λ)n and
auxiliary input z ∈ {0, 1}∗ the following two random variables are computation-
ally indistinguishable:

{REALΠ{RFi◦Pi}i∈H ,(C,A)(λ, ~x, z)} ≈c {IDEALf,(C,Sim)(λ, ~x, z)}, (1)

Note that, in the above, C denotes the set of parties adaptively corrupted by
the adversary. This set is allowed to grow during the execution of the protocol.
H denotes the indices of honest parties at the outset of the protocol Π, i.e the
initial set of honest parties.
We prove the above theorem via a sequence of hybrids, as described below.

– Hyb0 : This is the first hybrid which corresponds to the left hand side of Eq. 1.
In particular, Hyb0 corresponds to the real world view of the adversary A
in the MPC protocol Π, who adaptively corrupts the subset PC of parties.
When the adversary A corrupts some party Pi ∈ PH, return ViewRFi◦Pi =
Transform(ViewPi , stRFi) to A, and move Pi to the corrupt set. All the honest
parties in H are replaced with their corresponding tampered implementations
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composed with their firewalls, i.e., for all i ∈ H, Pi is replaced with RFi ◦ Pi
in the protocol Π. The view of the real world adversary A consists of the
following:

{REALΠ{RFi◦Pi}i∈H ,(C,A)(~x)}λ∈N,~x∈({0,1}λ)n} (2)

– Hyb1 : Hyb1 is same as Hyb0, except that, in the protocol Π the implementa-
tion of the first party P1 is replaced by its honest implementation composed
with its firewall RF1. The rest of the honest parties remain tampered, that
is, {Pj}j∈H∧j∈{2,··· ,n} are still replaced by RFj ◦ Pj , and the corrupt parties
remain as in Hyb0. In particular, the view of the real world adversary is as
follows:

{REALΠ(RF1◦P1,{RFj◦Pj}j∈H∧j∈{2,··· ,n})
,(C,A)(~x)}λ∈N,~x∈({0,1}λ)n

We now present the general description of the `-th hybrid for all 1 ≤ ` ≤ n
as follows:

– Hyb` : In Hyb`, in the protocol Π the implementations of the first ` parties
{P1, P2, · · · , P`} are replaced by their corresponding honest implementations
composed with their firewalls. The other honest parties {Pj}j∈H∧j∈{`+1,··· ,n}
are still replaced by RFj ◦ Pj in the protocol Π, as in Hyb0. When the
adversary A corrupts a currently honest party Pj , return ViewRFj◦Pj =
Transform(ViewPj , stRFj ) to A, and move Pj to the set of corrupt parties
as before. In particular, the adversary A obtains the following view:

{REALΠ({RFj◦Pj}j∈[`],{RFj◦Pj}j∈H∧j∈{`+1,··· ,n}
,(C,A)(~x)}λ∈N,~x∈({0,1}λ)n (3)

Note that, when ` = 0, we are in Hyb0, i.e., when the implementations of
all the honest parties in PH are replaced by their corresponding tampered
implementations composed with their firewalls in the protocol Π. On the
other hand, when ` = n, we are in Hybn where the implementations of all
the honest parties are replaced by their honest implementations composed
with their firewalls. For the sake of completeness, we present the n-th hybrid
as follows:

– Hybn : In Hybn, in the protocol Π the implementations of all the honest
parties {Pj}j∈H are replaced by their corresponding honest implementations
composed with their firewalls. In particular, the adversary A obtains the
following view:

{REALΠ({RFj◦Pj}j∈H),(C,A)(~x)}λ∈N,~x∈({0,1}λ)n (4)

Note that, in each subsequent hybrid we replace each party (honest and
corrupt) with the fire-walled honest implementation. However this does not
mean that the corrupt parties are forced to behave with honest implementa-
tion. As will be clear in the indistinguishability proof below, this approach
does not enforce any restriction on the way the corrupt parties behave. We
take this approach for readability and ease of proving indistinguishability.
Now, we prove the indistinguishability of consecutive hybrids.
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Claim. ∀1 ≤ ` ≤ n, Hyb`−1 ≈c Hyb`

Proof. Note that, the two hybrids Hyb`−1 and Hyb` differ in the imple-
mentation of the party P`. In particular, the only change from Hyb`−1 to

Hyb` is that RF` ◦ P` in the former is replaced by RF` ◦ P` in the latter. Let
D` be an adversary that distinguishes between these two hybrids. Since the
adversary is allowed to corrupt parties adaptively, assume that party P` is
corrupted by D` in round k`. Using D`, we construct an exfiltration resistant
adversary AER such that if the advantage of D` is non-negligible, then the
advantage of AER in breaking the exfiltration-resistance game (Def. 7) is also
non-negligible. At a high level, AER interacts with D` as the challenger for
the indistinguishibility game for D` so that ultimately D` either sees views
from Hyb`−1 or Hybl. If party P` is already in the corrupt set at the start
of the protocol, then exfiltration-resistance is trivially satisfied for P`. Oth-
erwise, for the case when P` gets adaptively corrupt in round k`, by the
exfiltration guarantee, D` cannot distinguish views till round k`.
The reduction is as follows:

• The adversary AER receives the initial indices of honest parties (H), and
the tampered implementations {Pj}j∈H∧j∈{`,···n} corresponding to the
last (|H| − `+ 1) honest parties in the set PH from the distinguisher D`.

• AER then sets (1) Pj = RFj ◦ Pj for all j ∈ H ∧ j ∈ [` − 1], and (2)
randomly samples inputs for the parties in the honest set to define I and
sends it to CER. It forwards the set {Pj}j∈H (here H is set of honest parties
at the outset of Π) to the challenger CER of the exfiltration-resistance
(ER) game (see the LEAK game in Fig. 1). In other words, AER sets
the tampered implementations of the first ` − 1 honest parties in the
set PH to be simply their corresponding honest implementations with
a wrapper of firewall on top of it and sets the implementations of the
remaining (|H| − `+ 1) honest parties as received from D`.

• Now AER interacts with the challenger CER and the distinguisher D` to
execute Π. CER executes Π on the behalf of the currently honest parties,
and D` executes on behalf of the currently dishonest parties. AER passes
round messages between CER and D`. If D` adaptively corrupts an honest
party, AER too corrupts the same party and receives a transformed view
from CER which it passes on to D`. On corruption of an honest party, CER
moves it from the set of honest to dishonest parties. Note that if party
P` is statically corrupt, the indistinguishability in the ER game trivially
follows.

• Upon receiving the final views of parties from CER as described in the
LEAK game in Fig. 1, AER constructs the view as in Eq. 3. If D` corrupts
any party post execution, AER forwards relevant view. Note that, AER

only needs to know the views corresponding to the corrupt parties to
construct the view as in Eq. 3.

• If D` outputs a bit b′, the adversary AER outputs the same bit b′. Note
that, if the challenger CER of the ER game sampled the bit b = 1, then

17



we are in Hyb`−1; whereas if b = 0, we are in Hyb`. Hence, if the advan-
tage of D` in distinguishing between these hybrids is non-negligible, the
advantage of AER in breaking the ER game is also non-negligible.

ut
Note that, at the end of Hybn, all the honest parties {Pj}j∈H in the set PH

are replaced by RFj ◦ Pj .
– Hybn+1 : Hybn+1 is same as Hybn, except that, in the protocol Π all the

honest parties in H have honest implementations and there is no RF for the
honest parties. In particular, the adversary A obtains the following view:

{REALΠ({Pj}j∈H),(C,A)(~x)}λ∈N,~x∈({0,1}λ)n .

Claim. Hybn ≈c Hybn+1.

Proof: It is easy to see that the hybrids Hybn and Hybn+1 are identically
distributed by relying on the transparency of the firewalls {RFj}j∈H. More
formally, we can define a set of n hybrids (similar to the claim earlier in this
section) and show that the consecutive hybrids are indistinguishable by the
transparency property of each of the reverse firewalls. ut

– Hybn+2 : This is the final hybrid. This hybrid corresponds to the the ideal
world adversary view for the MPC protocol Π where the set of corrupted
parties is {Pi}i∈C. All the honest parties PH have honest implementations
and there is no RF for the honest parties. In particular, the adversary A
obtains the following view:

{IDEALf,(C,Sim)(~x)}λ∈N,~x∈({0,1}λ)n (5)

Claim. Hybn+1 ≈c Hybn+2

Proof: Hybn+2 is indistinguishable from Hybn+1 due to the security of the
protocol Π. Hybn+1 corresponds to the real world adversary view of Π (with-
out any RF) and Hybn+2 corresponds to the ideal world adversary view of
Π (without any RF). ut

Thus, combining the above three claims, we obtain Eq. 1. This completes the
proof of Thm. 4. ut

This implication holds in the static corruption case as well when the exfil-
tration resistant game, transparency game and the security preservation games
are defined for static corruptions. We defer this proof to the full version.

5 Adaptively-Secure Compiler using Reverse Firewalls in
the urs model

In this section, we show a compiler that transforms any semi-honest adaptively
secure MPC protocol to a maliciously-secure MPC protocol in the urs model,
which withstands adaptive corruptions and admits reverse firewalls. As a build-
ing block, we first present the adaptively-secure multiparty augmented coin toss-
ing protocol using reverse firewalls.
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5.1 Adaptively-Secure Augmented Coin-Tossing using Reverse
Firewalls in the urs model

The adaptively-secure augmented coin tossing protocol Πa-coin is used to gen-
erate random bits (according to Def. 4) for all the parties participating in the
adaptively-secure MPC protocol. The initiating party receives a random tuple
(S,R) and all other parties receive a commitment Com(S;R) (under the urs of
party Pi) of S using commitment randomness R, where S ∈ {0, 1}λ, Com is
an adaptively secure homomorphic commitment and R ← RCom. The protocol
Πa-coin is presented in Fig. 2.

Fig. 2. Adaptively-Secure Multi-party Augmented Coin-Tossing Protocol Πa-coin for Pi

– Primitives: (Gen,Com,Verify) is an adaptively secure homomorphic commitment
scheme where Com(urs, a1; b1)·Com(urs, a2; b2) = Com(urs, a1+a2; b1+b2) for a1, a2 ∈
{0, 1}λ and b1, b2 ∈ RCom respectively. We denote Comi(m; r) = Com(ursi,m; r)

under ursi ← Gen(1λ).

– Public Inputs: Each party gets as input ursa-coin = {ursi}i∈[n] where ursi ←
Com.Gen(i, 1λ). Party Pi commits using Comi in the protocol.

Round 1: For j ∈ [n] \ i, every party Pj samples sj ← {0, 1}λ and rj ← RCom respec-
tively. It computes cj = Comj(sj ; rj), and broadcasts cj .

Round 2: Party Pi chooses a random si ← {0, 1}λ. It then computes ci = Comi(si; ri)

for a random ri ←RCom, and broadcasts ci.

Round 3: For j ∈ [n] \ i, every party Pj broadcasts (sj , rj) as the opening of cj .

Local Computation:

– For j ∈ [n], Pj aborts if ∃k ∈ [n] \ i s.t. Verify(ursk, ck, sk, rk) = ⊥.

– Party Pi sets S = Σi∈[n]si and R = Σi∈[n]ri. Pi outputs C = Comi(S;R).

– For j ∈ [n] \ i, Party Pj sets Sj = Σk∈[n]\isk and Rj = Σk∈[n]\irk. Pj outputs
C = ci · Comi(Sj ;Rj).

Theorem 5. Assuming Com is an adaptively secure homomorphic commitment
in the urs model, Πa-coin securely implements the augmented coin-tossing func-
tionality (Def. 4) against adaptive corruption of parties in the urs model.

Next, we consider security of the protocol when honest parties are tampered.
Our firewall RFi for a tampered initiating party Pi and firewall {RFk}k∈[n]\i
for a tampered receiving party {Pk}k∈[n]\i is presented in Fig. 3 and Fig. 4
respectively. We prove that the firewalls provide weak exfiltration resistance and
preserve security.
Theorem 6. If the commitment scheme Com is adaptively secure in the urs
model and is additively homomorphic, the firewall RFi, (resp. RFk) is trans-
parent, functionality-maintaining, and provides weak exfiltration resistance for
initiating Pi (resp. receiving party Pk) against other parties in Πa-coin with valid
transcripts, and detects failure for Pi (resp. Pk).
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Fig. 3. Reverse firewall RFi for initiating party Pi involved in Πa-coin (from Fig. 2).

(Gen,Com,Verify) is an additively homomorphic commitment scheme where Com(urs, a1; b1) ·
Com(urs, a2; b2) = Com(urs, a1 + a2; b1 + b2) for a1, a2 ∈ {0, 1}λ and b1, b2 ∈ RCom respectively.
We denote Comi(m; r) = Com(ursi,m; r) under ursi ← Gen(1λ).

Party Pi Firewall RFi Parties {Pj}j∈[n]\i
Round 1:

Broadcasts {cj}j∈[n]\i←−−−−−−−−−−−−−−−−
1. Sample s′i ← {0, 1}λ and r′i ∈ RCom

2. Secret share (s′i, r
′
i) as {sj ′, rj ′}j∈[n]\i

s.t. s′i = Σn
j 6=is

′
j and r′i = Σn

j 6=ir
′
j .

3. ∀j ∈ [n] \ i, compute c′j = Comj(s
′
j ; r
′
j)

4. ∀j ∈ [n] \ i, compute ĉj = cj · c′j
{ĉ1,··· ,ĉi−1,ĉi+1,··· ,ĉn}←−−−−−−−−−−−−−−−−

Round 2:

Broadcasts ci
Broadcasts ci−−−−−−−−−−−−−−−−→

5. Compute c′i = Comi(s
′
i; r
′
i)

6. Compute ĉi = ci · c′i
ĉi−−−−−−−−−−−−−−−−→

Round 3:
Broadcasts {(sj ,rj)}j∈[n]\i←−−−−−−−−−−−−−−−−

7. ∀j ∈ [n] \ i, compute ŝj = sj + s′j
8. ∀j ∈ [n] \ i, compute r̂j = rj + r′j

{ŝj ,r̂j}j∈[n]\i←−−−−−−−−−−−−−−−−

Now, consider ΠRF
a-coin, a firewalled version of the protocol where all hon-

est parties Pi have their respective firewalls RFi attached to them. Now, from
Thm. 6, and our implication from Thm. 4, we conclude weak security preser-
vation; we have that ΠRF

a-coin securely implements augmented coin tossing in the
presence of adaptive corruptions.

Theorem 7. ΠRF
a-coin securely implements the augmented coin-tossing function-

ality (Def. 4) in the urs model against adaptive corruption of parties, and in the
presence of functionality-maintaining tampering of honest parties.

Instantiation. We instantiate the adaptively secure homomorphic commitment
in the urs model using the recent construction of [10]. It is additively homomor-
phic in the message and randomness space and can be instantiated based on
DDH assumption in the urs model.

5.2 Adaptively-Secure ZK in the urszk model

We construct our adaptively secure ZK protocol Πzk in the common random
string model based on the recent ZK protocol of [11] by incorporating a coin
tossing protocol to generate the verifier’s challenge. We refer to Sec. 1.2 for a
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Fig. 4. Reverse firewall RFk for receiving party Pk involved in Πa-coin (from Fig. 2).

(Gen,Com,Verify) is an adaptively secure homomorphic commitment scheme where
Com(urs, a1; b1)·Com(urs, a2; b2) = Com(urs, a1+a2; b1+b2) for a1, a2 ∈ {0, 1}λ and b1, b2 ∈ RCom

respectively. We denote Comi(m; r) = Com(ursi,m; r) under ursi ← Gen(1λ).

Parties Pi ∪ {Pj}j∈[n]\{i,k} Firewall RFk Party Pk

Round 1:
Broadcasts {cj}j∈[n]\{i,k}−−−−−−−−−−−−−−−−→

1. Sample s′k ← {0, 1}λ and r′k ∈ RCom

2. Secret share (s′k, r
′
k) as {s′`, r′`}`∈[n]\k

s.t. s′k = Σn
` 6=ks

′
` and r′k = Σn

6̀=kr
′
`.

3. ∀j ∈ [n] \ {i, k}, compute c′j = Comj(s
′
j ; r
′
j)

4. ∀j ∈ [n] \ {i, k}, compute ĉj = cj · c′j
{ĉj}j∈[n]\{i,k}−−−−−−−−−−−−−−−−→
Broadcast ck←−−−−−−−−−−−−−−−−

5. Compute ĉk = ck · Comk(s′k; r′k)
ĉk←−−−−−−−−−−−−−−−−

Round 2:
Broadcasts ci−−−−−−−−−−−−−−−−→

6. Compute c′i = Comi(s
′
i; r
′
i)

7. Compute ĉi = ci · c′i
ĉi−−−−−−−−−−−−−−−−→

Round 3:
Broadcasts {sj ,rj}j∈[n]\{i,k}−−−−−−−−−−−−−−−−→

8. ∀j ∈ [n] \ {i, k}, compute ŝj = sj + s′j
9. ∀j ∈ [n] \ {i, k}, compute r̂j = rj + r′j

{(ŝj ,r̂j)}j∈[n]\{i,k}−−−−−−−−−−−−−−−−→
Broadcasts (sk,rk)←−−−−−−−−−−−−−−−−

10. Compute ŝk = sk + s′k and r̂k = rk + r′k
ŝk,r̂k←−−−−−−−−−−−−−−−−

high level overview and defer the protocol to the full version. The security of our
protocol is summarized below.

Theorem 8. If Com is a non-interactive equivocal commitment scheme in the
urs model and PKE is an IND-CPA public key encryption scheme (where the
public key is statistically close to a random string) with oblivious ciphertext sam-
pleability, then Πzk realizes FZK for all NP relations against adaptive corruptions
in the urs model.

We provide a firewall RFzk which provides security for a tampered prover (re-
spectively, verifier) against a corrupt verifier (respectively, prover) in the full
version. We summarize our result below.

Theorem 9. Let RFzk be a reverse firewall for a tampered prover (resp. verifier)
against a corrupt verifier (resp. prover) in Πzk, and Πzk implements FZK func-
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tionality against adaptive corruption of parties. Let Com be a non-interactive
equivocal commitment scheme in the urs model and PKE be an IND-CPA public
key encryption scheme (where the public key is statistically close to a random
string) with oblivious ciphertext sampleability. If Com and PKE are homomorphic
with respect to the (addition) operation defined over the underlying spaces (i.e,
the message space, randomness space) and the message space of PKE is same
as randomness space of Com then the firewall RFzk is transparent, functionality-
maintaining and provides weak exfiltration resistance for a tampered prover (resp.
verifier) against a corrupt verifier (resp. prover). The firewall also detects fail-
ures for all the parties.

From Thm. 9, and our implication from Thm. 4, we conclude weak security
preservation; we have that ΠRFzk

zk securely implements FZK in the presence of
adaptive corruptions as summarized in Thm. 10 below.

Theorem 10. ΠRFzk

zk securely implements the FZK functionality in the urs model
against adaptive corruption of parties, and in the presence of functionality-
maintaining tampering of honest parties.

We instantiate the commitment using the LWE-based construction of [27]
and we instantiate the PKE using the LWE-based construction of [25].

5.3 Adaptively-Secure MPC in the ursmpc model

We present our actively-secure protocol Πmpc which withstands adaptive cor-
ruption of parties in Fig. 5, 6. Adaptive security is achieved by the adaptive
security of the underlying primitives and subprotocols – ZK, augmented coin-
tossing, semi-honest MPC protocol and commitments.

Theorem 11. Assuming Com is an adaptively secure commitment in the urscom
model, Πa-coin securely implements the augmented coin-tossing functionality against
adaptive corruption of parties in the ursa-coin model, Πzk securely implements the
FZK functionality against adaptive corruption of parties in the urszk model and
Πsh-mpc is an adaptively-secure semi-honest MPC protocol in the urssh-mpc model,
Πmpc is an actively secure MPC protocol that withstands adaptive corruption of
parties in the ursmpc = (urscom, urszk, ursa-coin, urssh-mpc) model.

Next, we consider a reverse firewall RFimpc = (RFizk,RF
i
a-coin) to be the firewall

for Pi in Πmpc. RF
i
mpc is obtained by first applying RFizk to the messages of Πzk

phase of Πmpc, followed by application of RFia-coin to the messages in the Πa-coin

phase, if RFizk did not output ⊥. We show that RFimpc provides weak exfiltration
resistance for party Pi in Πmpc.

Theorem 12. Let Com be an adaptively secure commitment in the urscom model,
Πa-coin securely implement the augmented coin tossing functionality against adap-
tive corruption of parties in the ursa-coin model, Πzk securely implement the
FZK functionality against adaptive corruption of parties in the urszk model, and
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Fig. 5. Adaptively secure Multi-party Protocol Πmpc in the urs model

– Primitives: (Gen,Com,Verify) is an adaptively secure non-interactive commitment
scheme and Πzk = (Gen,P1,V1,P2,V2) is an adaptively secure rerandomizable
input-delayed protocol implementing FZK in the urszk model.

– Subprotocols: Adaptively secure augmented coin-tossing protocol Πa-coin in the
ursa-coin model and adaptively secure semi-honest k-round MPC protocol Πsh-mpc

in the urssh-mpc model. Each invocation of Πa-coin generates λ for initiating party.

– Inputs: Each party gets ursmpc = (urscom, urszk, ursa-coin, urssh-mpc) and security pa-
rameter 1λ. Party Pi has private input xi for i ∈ [n].

– Output: Parties compute the ideal functionality Fmpc and output y =

Fmpc(x1, x2, . . . , xn) = f(x1, x2, . . . , xn).

– Notations: Let T <T =
⋃
t∈[T−1]{T ti }i∈[n] denote the entire transcript of Πsh-mpc

until the end of round T − 1 for 0 < T ≤ k. We assume T 0 = ⊥. NMF is the
next message function of Πsh-mpc for Pi computing NMF(T <t, xi, ri) = T ti . Let
Nλ = no. of random bits required by Pi to commit |xi| bits + no. of random
bits required by Pi to compute Πsh-mpc. γ`inp,i,j denotes the `-th (` ∈ [3]) round
message in the ZK proof for Rinp where Pi is the prover and Pj is the verifier.
Similarly, γ`t,i,j (where t ∈ [k]) denotes the `-th (` ∈ [3]) round message in the
ZK proof for Rmpc where Pi is the prover and Pj is the verifier.

– Relations: Let Rinp((c, c
inp), (x, r, s)) = 1 iff (c = Com(x; r) ∧ cinp = Com(r; s)). Let

Rmpc((T , T ′, c, cinp, c′), (x, r, s, r′, s′)) = 1 iff (c = Com(x; r) ∧ cinp = Com(r; s) ∧ c =

Com(r′; s′) ∧ NMF(T ′, x, r′) = T ).

Offline Phase:

The parties run the following protocols in parallel:

– For i ∈ [n], Party Pi invokes Πa-coin N times in parallel as the initiating party to
obtain randomness for input commitment - (rinpi , sinpi ) s.t. cinpi = Com(rinpi ; sinpi ),
and randomness for MPC protocol (rmpc

i , smpc
i ) s.t. cmpc

i = Com(rmpc
i ; smpc

i ) =

{rmpc
i [t], cmpc

i [t]}t∈[k]. Every party obtains cinpi and cmpc
i .

– For i ∈ [n], j ∈ [n] \ i, Party Pi runs Πzk.P1(1λ, 1
|Rinp|) as prover with Pj as verifier

to obtain γ1inp,i,j . Upon obtaining γ1inp,i,j , Pj runs V2 = Πzk(1
λ) on γ1inp,i,j to obtain

γ2inp,i,j . Pi and Pj obtain (γ1inp,i,j , γ
2
inp,i,j). Pi aborts if γ2inp,i,j is invalid.

– For i ∈ [n], j ∈ [n] \ j, t ∈ [k], Party Pi runs Πzk.P1(1λ, 1|Rmpc|) as prover with Pj as
verifier to obtain γ1t,i,j . Upon obtaining γ1t,i,j , Pj runs V2 = Πzk(1

λ) on γ1t,i,j to
obtain γ2t,i,j . Pi and Pj obtain (γ1t,i,j , γ

2
t,i,j). Pi aborts if γ2t,i,j is invalid.

Online Phase:

Each party Pi (for i ∈ [n]) performs the following :

Input Commitment Phase:

– Each party Pi commits to his input xi as ci = Com(xi; r
inp
i ) and broadcasts ci.

– For each j ∈ [n]\ i, party Pi proves honest computation of ci using the committed
randomness. Pi computes proof γ3inp,i,j = Πzk.P2 for Rinp((ci, c

inp
i ), (xi, r

inp
i , sinpi )) on

(γ1inp,i,j , γ
2
inp,i,j). Pi sends Γinp = (γ1inp,i,j , γ

2
inp,i,j , γ

3
inp,i,j) to Pj .
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Fig. 6. Adaptively-Secure Multi-party Protocol in the urs model(cont.)

Local Computation at the end of Input Commitment Phase:

After receiving the n commitments party Pi aborts if ∃j ∈ [n] s.t. Πzk.V2(Γinp,j,i) = 0.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Round 1 ≤ t ≤ k:
– If any party aborts at the end of round t− 1 then abort.

– Pi computes the t-th round message of the MPC protocol as T t =

NMF(T <t, xi, rmpc
i [t]). Pi broadcasts T ti .

– For each j ∈ [n] \ i, party Pi proves honest computation of T ti to Pj using
the committed input xi and committed randomness rmpc

i [t]. Pi computes proof
γ3t,i,j = Πzk.P2 for Rmpc((T ti , T <t, ci, c

inp
i , cmpc

i [t]), (xi, r
inp
i , sinpi , rmpc

i [t], smpc
i [t])) on

(γ1t,i,j , γ
2
t,i,j). Pi sends Γt,i,j = (γ1t,i,j , γ

2
t,i,j , γ

3
t,i,j) to Pj .

Local Computation at the end of Round t:

– Party Pi aborts if ∃j ∈ [n] \ i s.t. Πzk.V2(Γt,j,i) = reject.

– For i ∈ [n], Pi sets T <t+1 = T <t
⋃
{T tj }j∈[n] and continues to next round.

Output Computation for Party {Pi}i∈[n] :
– If any party aborts at the end of round k then abort.

– Pi sets T ≤k = T <k
⋃
{T kj }j∈[n] and outputs y = NMF(T ≤k, xi, rmpc

i [k]).

Πsh-mpc be an adaptively-secure semi-honest MPC protocol in the urssh-mpc model.
Let RFizk and RFia-coin be transparent, functionality-maintaining, and weakly ex-
filtration resistant for Pi in Πzk and Πa-coin respectively. Then, RFimpc is a trans-
parent, functionality-maintaining, weakly exfiltration RF for Pi in Πmpc .

The proof of Thm. 12 is deferred to the full version.
We have shown in Thm. 11 that Πmpc is adaptively secure. Now, consider

ΠRF
mpc, a firewalled version of the protocol Πmpc where all honest parties Pi have

their respective firewalls RFi attached to them. From Thm. 12, and our impli-
cation from Thm. 4, we conclude weak security preservation.

Theorem 13. ΠRF
mpc is an actively secure MPC protocol against adaptively cor-

ruption of parties, and in the presence of functionality maintaining tampering
of honest parties.

Instantiation. We obtain Πzk and Πa-coin based on LWE and DDH assumptions
respectively. We assume that Πzk setup consists of n setup strings –{ursizk}i∈[n],
where ursizk is used by party Pi to prove statements. Similarly, Πa-coin consists of
n setup strings – {ursia-coin}i∈[n], where ursia-coin is used in a session where party
Pi is the initiating party. The commitment scheme can be instantiated from
the adaptively secure commitment of [10] based on DDH in the urscom model.
We assume that Com consists of n setup strings – {ursicom}i∈[n], where ursicom is
used by party Pi to commit. We obtain an adaptively secure semi-honest MPC
protocol in the urs model as follows. The work of [9] obtain a two-round semi-
honest adaptively secure MPC protocol based on adaptively secure two-round
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OT protocol and augmented NCE. The work of [10] construct an adaptively
secure two-round OT protocol from DDH in urs model and instantiate [15] the
augmented NCE from DDH; thus yielding a two-round adaptively secure MPC
protocol in the urs model from DDH. We instantiate Πsh-mpc using the DDH-
based MPC protocol of [10].

Round complexity. In Πmpc the subprotocols Πa-coin and the first two rounds
of Πzk can be run in parallel during the offline phase. Thus, the offline phase
requires 3 rounds in total. The input commitment phase requires 1 round and
Πsh-mpc requires 2 rounds when instantiated using the protocol of [10]. We get a
6 round MPC protocol from DDH and LWE.

6 Adaptively-Secure Multi-party Coin-Tossing Protocol
with Reverse Firewalls in the Plain Model

In this section we give a protocol in the plain model with reverse firewalls to
generate the setup string ursmpc required for Πmpc. A high level overview of our
construction can be found in Sec. 1.2 and our protocol is presented in Fig. 7.
Our protocol satisfies security against adaptive corruptions in the plain model
and its security is summarized in Thm. 14 (proven in the full version).

Theorem 14. Let Discrete Log and Knowledge of Exponent Assumptions hold
in a bilinear group G and PKE is a public key encryption with oblivious ciphertext
sampling, oblivious public key sampling, satisfying additive homomorphism over
key space, message space, randomness space and ciphertext space with public
key space being Zq. Πcoin(Fig. 7) securely implements coin-tossing functional-
ity(Def. 3) against adaptive corruptions in the plain model.

Next, we turn to constructing a reverse firewall for Πcoin. We provide a reverse
firewall RFi for the tampered honest party Pi in Fig. 8. Weak ER for Pi is
summarized in Thm. 15 and is proved in the full version.

Theorem 15. Let RFi be the reverse firewall for party Pi in Πcoin. If Discrete
Log assumption and Knowledge of Exponent assumption holds in a bilinear group
G and PKE is a public key encryption with oblivious ciphertext sampling and
oblivious public keys sampling satisfying additive homomorphism over key space,
message space, randomness space and ciphertext space and public key space of
PKE be Zq. Then RFi is transparent, functionality maintaining and provides weak
exfiltration resistance for party Pi against every other party {Pj}j∈[n]\i with valid
transcripts, and detects failure for Pi.

In the final protocol every honest party {Pj}j∈H will have a firewall {RFj}j∈H
and the firewalls will be composed together. By applying the result of Thm. 4
we obtain the following result.

Theorem 16. If Discrete Log and Knowledge of Exponent assumptions hold in
a bilinear group G and PKE is a public key encryption with oblivious ciphertext
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Fig. 7. Adaptively-Secure Multi-party Coin-Tossing Protocol Πcoin using Reverse Fire-
walls without Setup

– Public Inputs: Each party gets as input the group G where DLP assump-
tion holds. Every element g′ ∈ G \ 1 is a generator. Every party also re-
ceives a generator g as input and a bilinear map e : G × G → H. Let PKE =

(Gen,Enc,Dec, oGen, oEnc) is a public key encryption with oblivious ciphertext
sampling and oblivious public keys sampling satisfying additive homomorphism
over key space, message space, randomness space and ciphertext space. Let the
public key space of PKE be Zq.

Parameter Generation Phase:

The following protocol steps are repeated by every party Pi for i ∈ [n] with every
party Pj for j ∈ [n] \ i to generate the pair-wise commitment parameter hij where Pi
is the committer and Pj is the verifier. We denote it as h and the pairwise commu-
nication without any subscript ij to avoid notation overloading.

1. Pj samples an R← G. Pj sends R to Pi.
2. Pi aborts if R ∈ {1, g}. Pi samples a1, u ← Zq and computes A1 = ga1 and

commits to a1 using randomness u as v = A1Ru. Pi also samples pk1 ← oGen(1λ)

and commits to it as vp = gpk1Rup for up ← Zq. Pi sends (v, vp) to Pj .
3. Pj samples A2 ← G, pk2 ← oGen(1λ), and sends (A2, pk2) to Pi.
4. Pi opens commitment vp by sending (up, pk1). Pi also sends u to Pj . Pi computes

pk = pk1 + pk2.
5. Pj aborts if (up, pk1) is not a valid opening of vp. Else, Pj computes pk = pk1+pk2.

Pj computes A1 = v
Ru

and sets A = A1 · A2. Pj samples commitment trapdoor
t← Zq and sets commitment parameter as h = gt. Pj sends (h,At) to Pi.

6. Pi computes A = A1 · A2 and aborts if e(h,A) 6= e(g, Z) where Pi received (h, Z)

from Pj . Else, Pi proves knowledge of discrete log of A1 by sending a1 to Pj . If
v 6= ga1Ru then Pj aborts. Else, set (g, h) as the pair-wise commitment parameter
and pk as the pairwise encryption parameter.

Commitment Generation Phase:

Every party Pi chooses a random coin si ← {0, 1}, and commits to it pairwise. For i ∈
[n], every party Pi and constructs cij = gsih

dij
ij where hij is the pairwise commitment

parameter. Pi also encrypts the commitment randomness as eij,si = Enc(pkij , dij ; yij)

using randomness yij and samples eij,si ← oEnc(pkij), where pkij is the pair-wise
encryption parameter. Pi sends (cij , eij,0, eij,1) to Pj .
Commitment Opening Phase:

For all i ∈ [n], party Pi broadcasts si. Pi opens cij pairwise (for all j ∈ [n] \ i) by
sending (dij , yij) and claims that eij,si was obliviously sampled.

Output Phase:

For all i ∈ [n], party Pi verifies the commitments cji
?
= gsjh

dji
ji and eji,sj =

Enc(pkji, dji; yji). If all verification checks pass then Pi sets S = (Σk∈[n]sk) mod 2

and outputs S as the final random coin.
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Fig. 8. Reverse Firewall RFi for Party Pi in Πcoin

Parameter Generation Phase:

The following protocol steps are repeated for every party Pj for j ∈ [n] \ i where Pi
is the committer and Pj is the verifier:

1. When Pj sends R, RFi samples an r ← Zq and sends R̂ = Rr to Pi.
2. When Pi sends v = A1R̂u, RFi forwards v̂ = Â1Rû to Pj where Â1 = A1 · Ã,

v̂ = v · Ã · Rũ and û = ru + ũ for random values ã, ũ ← Zq and Ã = gã. When
Pi sends vp = gpk1 R̂up , RFi forwards v̂p = g

ˆpk1Rûp to Pj where ˆpk1 = pk1 + p̃k,
v̂ = v · gp̃k ·Rũp and û = rup + ũp for random values ũp ← Zq and p̃k = oGen(1λ).

3. When Pj sends (A2, pk2), RFi forwards Â2 = A2 · Ã and ˆpk2 = pk2 + p̃k to Pi. Pi
computes p̂k = pk1 + ˆpk2 = pk1 + pk2 + p̃k.

4. When Pi sends commitment randomness (u, up, pk1), RFi drops the message if
vp 6= gup R̂pk1 . Else, RFi forwards (û, ûp, ˆpk1) to Pj .

5. Pj computes p̂k = ˆpk1+pk2 = pk1+pk2+ p̃k. Pj computes Â = A1 ·A2 ·Ã. When Pj
sends (h, Z) = (h, Ât) drop the message if e(h, Â) 6= e(g, Z). Else, sample a t̃← Zq
and compute ĥ = ht̃. Send (ĥ, Ẑ) = (ĥ, Z t̃) to Pi. Pj sets h as the parameter and
Pi sets ĥ = ht̃ as the parameter. Pi and Pj sets p̂k as the pairwise public key
parameter.

6. When Pi sends a1, RFi drops the message if v 6= ga1 R̂u. Else, RFi forwards
â1 = a1 + ã to Pj .

The above steps are also repeated when Pi is the verifier and Pj is the committer.
Commitment Generation Phase:

RFi chooses a random coin s̃i and computes {s̃ji}j∈[n]\i randomly such that
Σj∈[n]\is̃ji = s̃i. RFi performs the following :

- Pi is the committer: When Pi sends a commitment (cij , eij,0, eij,1) compute ĉij =

gŝih
ˆdij
ij = cij · gs̃i · h

˜dij
ij where ŝi = si + s̃i and d̂ij = dij · t̃ + d̃ij for d̃ij ← Zq. Set

ˆeij,0 = t̃ ·eij,0+Enc(p̂k, d̃ij ; ˜yij,0) and ˆeij,1 = t̃ ·eij,1+Enc(p̂k, d̃ij ; ˜yij,1). The firewall
forwards (ĉij , ˆeij,0, ˆeij,1) to Pj . Here t̃, hij and p̂k correspond to the run where Pj
is verifier and Pi is committer.

- Pj is the committer: When Pj sends a commitment (cji, eji,0, eji,1) compute ĉji =

gŝjh
ˆdji
ji = cji · g ˜sji · h

˜dji
ji where ŝj = sj + s̃ji and d̂ji = dji · t̃ + d̃ji for d̃ji ← Zq.

Set ˆeji,0 = t̃ · eji,0 + Enc(p̂k, d̃ji; ˜yji,0) and ˆeji,1 = t̃ · eji,1 + Enc(p̂k, d̃ji; ˜yji,1). The
firewall forwards (ĉji, ˆeji,0, ˆeji,1) to Pi. Here t̃, hji and p̂k correspond to the run
where Pi is verifier and Pj is committer.

Commitment Opening Phase:

- When party Pi broadcasts si, RFi broadcasts ŝi. When Pi opens commitments by
sending (dij , yij), RFi drops the message if cij 6= gsi ĥ

dij
ij or eij,si 6= Enc(p̂k, dij ; yij).

Else, RFi sends (d̂ij , ŷij) = (t̃ · dij + d̃ij , t̃ · yij + ỹij) and claims that eij,1−ŝi was
obliviously sampled.

- When party Pj broadcasts sj , RFi sends ŝj to Pi. When Pj opens commitments by

sending (dji, yji), RFi drops the message if cji 6= gsj ĥ
dji
ji or eji,sj 6= Enc(p̂k, dji; yji).

Else, RFi sends (d̂ji, ŷji) == (t̃ · dji + d̃ji, t̃ · yji + ỹji) and claims that eji,1−ŝj was
obliviously sampled.

27



sampling and oblivious public keys sampling satisfying additive homomorphism
over key space, message space, randomness space, ciphertext space and public
key space of PKE be Zq. Then Πcoin (Fig. 7) securely implements the coin-tossing
functionality (Def. 3) against adaptive corruption of parties in the plain model
and in the presence of functionality maintaining tampering of honest parties.

The FHE scheme of [25] based on LWE assumption satisfies all the properties
required from the PKE. We consider q = max(qLWE, qDL) where LWE holds for
q ≥ qLWE and DL holds for q ≥ qDL. Thus we get the result from Discrete Log,
Knowledge of Exponent and LWE assumptions.

7 The Final Compiler

We now show our final result, i.e., an adaptively secure MPC protocol in the
plain model that admits reverse firewalls. In particular, the reverse firewall for
our final MPC protocol is obtained by combining the reverse firewall for our
adaptively secure MPC protocol Πmpc in the uniform random string (ursmpc)
model (see Section 5.3) along with the reverse firewall for our adaptively secure
multi-party coin-tossing protocol Πcoin in the plain model (see Section 6). Let us
denote the final MPC protocol (in the plain model) to be Π which is obtained
by first running Πcoin to obtain ursmpc and then running Πmpc using ursmpc.

Let us consider a reverse firewall RFi = (RFicoin,RF
i
mpc) to be the firewall for

a party Pi in the protocol Π. RFi is obtained by first applying RFicoin to the
messages of Πcoin, followed by application of RFicoin to the messages of Πmpc, if
RFicoin did not output ⊥. We show that RFi provides weak ER for party Pi in Π.

We defer the proof of the theorem to the full version.

Theorem 17 (Composition Theorem for Π). Let Πmpc be an adaptively
secure MPC protocol in the uniform random string (ursmpc) model, Πcoin se-
curely implement the coin-tossing functionality (see Def. 3) against adaptive
corruption of parties in the plain model. Let RFimpc and RFicoin be transpar-
ent, functionality-maintaining, and weakly exfiltration-resistant reverse firewalls
for some party Pi in Πmpc and Πcoin respectively. Then RFi is transparent,
functionality-maintaining, and weakly exfiltration-resistant reverse firewall for
party Pi in the protocol Π.
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