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Abstract. Protocols that make use of oblivious transfer (OT) rarely
require just one instance. Usually, a batch of OTs is required — notably,
when generating base OTs for OT extension. There is a natural way
to optimize 2-round OT protocols when generating a batch, by reusing
certain protocol messages across all instances. In this work we show that
this batch optimization is error prone. We catalog many implementations
and papers that have an incorrect treatment of this batch optimization,
some of them leading to catastrophic leakage in OT extension protocols.
We provide a full treatment of how to properly optimize recent 2-round
OT protocols for the batch setting. Along the way we show several per-
formance improvements to the OT protocol of McQuoid, Rosulek, and
Roy (ACM CCS 2020). In particular, we show an extremely simple OT
construction that may be of pedagogical interest.

1 Introduction

Oblivious transfer (OT) is a fundamental primitive for cryptographic proto-
cols. It is well-known that OT cannot be constructed in a black-box way from
symmetric-key primitives [IR90]. Nevertheless, it is possible to generate a large
number of OTs from symmetric-key primitives and a small number of “base
OTs”, thanks to an idea called OT extension [Bea96]. With OT extension,
parties can generate many OT instances where the marginal cost of each in-
stance involves only cheap symmetric-key operations. Modern OT extension pro-
tocols [IKNP03,KK13,ALSZ13,KOS15] can generate millions of OTs per second.

OT extension protocols require κ (e.g., 128) base OTs, and yet most base-
OT protocols in the literature are described in terms of a single OT instance.
Obviously any single-instance OT protocol can be invoked κ times to produce
base OTs; however, this overlooks the possibility of optimizations for the batch
setting. In this work we provide a full treatment of the batch setting for recent
leading OT protocols.

1.1 Overview of Our Results

Näıve batching is insecure. There is a natural way to optimize certain 2-round
OT protocols for the batch setting. When the OT sender is first to speak, it is
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Sender Receiver
a← KA.R (input c ∈ {0, 1})
A = KA.msg1(a) A

b← KA.R
B = KA.msg2(b, A)

B̃ = Π(B)⊕ c

M0 := KA.key1(a,Π−1(B̃)) Mc = KA.key2(b, A)

M1 := KA.key1(a,Π−1(B̃ ⊕ 1))

Fig. 1. Our conceptually simple 1-of-2 random OT protocol, from instantiating
[MRR20] with a new “programmable-once public function.” Π± is an ideal permu-
tation and KA is a 2-message key agreement whose “B-messages” are pseudorandom
bit strings.

natural to reuse their protocol message for all OT instances in the batch. We
call this method näıve batching.

We show that näıve batching is not guaranteed to be secure. Not only does
näıve batching fail to achieve an appropriate security notion, but it is also demon-
strably unsuitable as the base OTs for certain OT extension protocols. Specif-
ically, we show a serious attack on the 1-out-of-N OT extension protocol of
Orrù, Orsini, and Scholl [OOS17], when its base OTs are generated with näıve
batching. Unfortunately, we find improper batching (including näıve batching)
implemented in several protocol libraries [Rin,CMR,Kel20,Sma] and appearing
in several papers [CO15,HL17,CSW20].

Proper batching of base OTs. We then give a complete treatment of how to
correctly optimize leading OT protocols for the batch setting. Fortunately, it is
simple and cheap to fix näıve batching, although the complete security analysis
requires care. We show how to correctly optimize the recent OT protocol of
McQuoid, Rosulek, and Roy [MRR20] (hereafter, MRR) for the batch setting.
As we show, the Masny-Rindal protocol [MR19] is a special case of the MRR
protocol, so our analysis applies to that protocol as well. A comparison of our
batched-OT/base-OT protocol to existing work is shown in Table 1.

Other improvements. We present several additional improvements to the OT
protocol paradigm of McQuoid-Rosulek-Roy (MRR). The MRR protocol can
provide 1-out-of-N random-OT, for essentially any N . Modern OT extension
protocols require the base OTs to provide only 1-out-of-2 OT. Our optimizations
to the MRR approach center around the special case of 1-out-of-2 OT1 and
specific properties of the batch setting.

– The MRR protocol revolves around an object called a programmable-once
public function (POPF). A POPF with domain [N ] leads to a protocol
for 1-out-of-N OT. In introducing the concept of a POPF, MRR describe a

1 Most of our improvements also apply to 1-out-of-N OT, for polynomial N .
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Scheme Assumption Setup Flows Exp (Send/Receive) Com (Send/Receive)

SimplestOT [CO15] Gap-CDH PRO 2 1f (m+ 1)v / mf mv 1G / mG
BlazingOT [CSW20] CDH ORO 3 1f (m+ 1)v / mf mv mκ+ 1G / 2κ+mG
EndemicOT [MR19] DDH PRO 2 2mf 2mv / mf mv 2mG / 2mG
EndemicOT [MR19] iDDH PRO 1 mf 2mv / mf mv mG / 2mG
Ours (MR) ODH PRO 1 2fM 2mvM / mfM mvM 2G / 2mG
Ours (EKE) ODH IC 1 2fM 2mvM / mfM mvM 2G / mG
Ours (Feistel) ODH PRO 1 2fM 2mvM / mfM mvM 2G / mG

Table 1. Comparison of m-instance random 1-of-2 OT protocols. “Exp” denotes
exponentiations (f = fixed-base, v = variable-base, fM = fixed-base Montgomery, vM =
variable-base Montgomery). “Com” denotes communication (G = one group element).
PRO = programmable random oracle; ORO = observable random oracle; IC = ideal
cipher.

POPF with domain {0, 1}∗, which is useful in some applications but overkill
for the special case of 1-out-of-2 OT.

We show several improved POPF constructions for small domains (such as
N = 2). One particularly interesting and new POPF is in the ideal random
permutation model2 and is inspired by the Even-Mansour block cipher con-
struction [EM93]. When we instantiate MRR with this new POPF, we obtain
an endemic OT protocol that is efficient, incredibly simple to describe, and
may have pedagogical value as well (Figure 1).

– The MRR protocol constructs OT from a POPF and a key agreement (KA)
protocol. These two components must be compatible, and in [MRR20] it
was shown how to make elliptic-curve Diffie-Hellman KA compatible with
POPFs, by using hash-to-curve operations or Elligator [BHKL13] encod-
ing steps. In this work, we present an alternative approach that avoids
using either of these somewhat costly operations, based on a trick due to
Möller [Möl04]. Möller-DHKA also avoids curve point addition, allowing us
to use Montgomery ladders to multiply, which are more efficient. Adopting
the Möller technique requires doubling the length of the sender’s protocol
message; however, in the batch setting it is exactly this sender’s message
that is reused across all OT instances in the batch, so the effect of doubling
its size is minimal. In our performance benchmark, we found that the Möller
technique affords up to a 36% increase in efficiency when batching OTs. This
allows for UC secure constructions with comparable runtime to those with
standalone security. See Table 2.

Finally, we show how our batch OT protocol can be used as the base OTs in
2-round OT extension.

2 The ideal random permutation model is like the random oracle model, except that
all parties have access to a random permutation on {0, 1}2κ, and its inverse!
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Functionality FbatchEOT

The functionality FbatchEOT is parameterized by the length of the OT strings ` and
the number m of OTs in the batch. It interacts with two parties, a sender S and a
receiver R via the following queries:

On input (ready, (r̃1,0, r̃1,1, . . . , r̃m,0, r̃m,1)) from S, with r̃i,c ∈ {0, 1}`:

– If S is corrupt, and there has been no previous ready command from S, then
internally record ri,c = r̃i,c for all i ∈ [m], c ∈ {0, 1}. Otherwise do nothing.

On input (ready, (c1, . . . cm) ∈ {0, 1}m, (r̃1, . . . , r̃m)) from R, with r̃i ∈ {0, 1}`:

– Do nothing if there has been a previous ready query from R.
– Internally record (c1, . . . cm)
– If R is corrupt, then internally record ri,ci = r̃i for each i ∈ [m].

After receiving ready queries from both S and R:

– For all i ∈ [m], c ∈ {0, 1}, if ri,c is not already defined, then sample ri,c ← {0, 1}`.
– Output (r1,c1 , . . . , rm,cm) to R and ((r1,0, r1,1), . . . , (rm,0, rm,1)) to S.

Fig. 2. Ideal functionality for a size m batch of endemic 1-out-of-2 oblivious transfers,
FbatchEOT. Adapted from the endemic OT functionality of [MR19].

2 Preliminaries

Endemic OT. We use the security definitions for universally composable OT
suggested by [MR19] (ideal functionality given in Figure 2), which are a con-
venient middle-ground between random OT and chosen-message OT. An OT
protocol results in outputs r0, r1 for the sender and rc for the receiver (who has
choice bit c). In endemic OT, a corrupt party may choose their own OT out-
puts, and all other OT outputs are chosen uniformly by the functionality. Hence,
a corrupt sender can choose both r0 and r1. A corrupt receiver can choose rc
and the functionality will ensure that r1−c is uniform. As shown in [MR19], OT
extension protocols are secure if the base OTs satisfy this notion of endemic OT.

3 Problems With Näıve Batching

3.1 Näıve Batching

Consider any 2-round protocol for (endemic) OT, with the following syntax:

Sender Receiver (input c ∈ {0, 1})
sS ← {0, 1}κ

MS = OT.msgS(sS)
MS

sR ← {0, 1}κ
MR = OT.msgR(sR,MS , c)

MR

(r0, r1) = OT.outS(sS ,MR) rc = OT.outR(sR,MS , c)
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Where the four functions OT.{msg, out}{S,R} are abstracted from the raw OT
protocol. In such a protocol, the sender’s message MS is clearly independent of
the receiver’s influence. In many protocols MS is additionally a message from a
KA protocol, and it is well-known that a KA message can be reused for many
KA instances, in certain circumstances. These observations suggest reusing the
first OT protocol message in the following way, when generating a batch of m
OTs:

Sender Receiver (inputs {ci}i∈[m])
sS ← {0, 1}κ

MS = OT.msgS(sS)
MS

for i ∈ [m]:
sR,i ← {0, 1}κ
MR,i = OT.msgR(sR,i,MS , ci)

MR,1, . . . ,MR,m

for i ∈ [m]: for i ∈ [m]:
(ri,0, ri,1) = OT.outS(sS ,MR,i) ri,ci = OT.outR(sR,i,MS , ci)

We call this protocol transformation näıve batching. All four component func-
tions taken from the base OT protocol will be given the same (sub)session ID
because they are treated as a single batch instance. They are reused in such a
way that disallows for internal domain separation.

Lemma 1. Näıve batching does not securely realize batch endemic OT (Fig-
ure 2).

Proof. The attack is simple: a corrupt receiver simply sends MR,1 = · · · = MR,m.
As a result, the sender must compute (r1,0, r1,1) = · · · = (rm,0, rm,1). There is
no way for the simulator to influence the sender’s output in this way in the ideal
model, hence this constitutes an attack.

Why not trivially patch this attack? The attack is for the receiver to send the
same OT response for all instances. We could simply tell the sender to abort if
it receives any repeated OT responses.

However, the simple attack that we have described is only the tip of the
iceberg. In all of the 2-round OT protocols that we consider, a corrupt receiver
can induce more complicated correlations among the OT values. For example,
a receiver can act honestly in the first OT instance to learn r1,0. Then r1,1
is unknown to the receiver. But there is a more sophisticated strategy for the
receiver to force the ratio r1,1/r2,0 to be a certain value. (The details of this
strategy are given in the full version of this paper, and depend on the details of
a specific base OT protocol.)

Based on this kind of attack, one might wish to weaken the endemic OT
functionality. Why not allow the simulator to specify these kinds of correlations
in the ideal model? Even this will not work, because the attack is perfectly
indistinguishable from honest behavior by the receiver. Thus, there is simply no
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way for the simulator to distinguish this kind of an attack (where the receiver
must learn r1,1/r2,0) vs. honest behavior (where the receiver must learn r2,0).

For these reasons, we believe there is no way to closely capture the security
of näıve batching in a UC ideal functionality.

3.2 Implications for OT Extension

Since the main application for batch OTs is as base OTs for OT extension, it
is natural to wonder whether the simple attack above jeopardizes the security
of OT extension. It has been established that OT extension can be securely
realized from base OTs with weakened security. For example, [CSW20] show
that certain input-dependent aborts in the base OTs do not harm the security
of OT extension.

We show that our simple attack on näıve batching indeed compromises se-
curity of some OT extension protocols. Specifically, we consider the protocol
of Orrù, Orsini, and Scholl (OOS) [OOS17]. This OT extension protocol gen-
erates many instances of 1-out-of-2t OT, where in each one the sender obtains
r1, . . . , r2t and the receiver learns only rc, where c is an input. It will be conve-
nient to consider c to be an element of {0, 1}t in the natural way.

The OOS protocol is secure when the base OTs securely realize endemic
batch OT; see [MR19] for details. However, it loses security when using näıve
batching to generate its base OTs.

Lemma 2. The OOS protocol [OOS17] is demonstrably insecure when its base
OTs are instantiated via näıve batching.

Proof. The complete details of OOS can be found in [OOS17]. We sketch the
relevant details of their protocol here. Let Alice be the OOS sender (with no
inputs), and Bob be the OOS receiver (with choice value ci ∈ {0, 1}t for the ith
OT instance). The protocol proceeds as follows:

– The parties run m base OT instances, with Alice acting as receiver and Bob
acting as sender. Bob obtains base-OT outputs (k1,0, k1,1), . . . , (km,0, km,1).
Alice’s inputs and outputs are not relevant here.

– When extending to N OTs, Bob constructs two N ×m matrices K and R
as follows:
• The jth column of K is PRG(kj,0)⊕ PRG(kj,1).
• The ith row of R is C(ci) where C : {0, 1}t → {0, 1}m is a suitable binary

error correcting code (the details of which are not relevant here).
Bob sends K ⊕R to Alice.

These details of OOS are enough to understand the attack. A corrupt Alice will
attack the base OTs (in the role of OT receiver as above) so that all ki,0’s are
the same and all ki,1’s are the same. As a result, every column of K is identical.
In other words, every row of K is either 0m or 1m.

Then the ith row of Bob’s matrix K ⊕ R is either C(ci) or its complement.
This means that if c, c′ ∈ {0, 1}t are any two choices for Bob whose codewords are
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not bitwise complements of each other, then Alice can distinguish between Bob
having choice c vs c′ in each extended OT. For some choices of C, learning C(x)
up to complement uniquely reveals x. This attack results in almost complete
leakage of Bob’s private input.

What if C is a repetition code? C is a binary error-correcting code, the simplest
of which is the repetition code C : {0, 1} → {0, 1}m. This corresponds to the case
of t = 1, and hence 1-out-of-2 OT extension. Specifically, instantiating OOS with
a repetition code collapses it to the Keller-Orsini-Scholl 1-out-of-2 OT extension
protocol (KOS) [KOS15].

In this case the only two codewords are 0m and 1m. Since these are bitwise
complements of one another, it is not clear that our attack leads to any security
problems. The rows of matrix R (encoding Bob’s private input) are masked by
either 0m or 1m, depending on a bit that is unknown to Alice. We are not sure
whether a more sophisticated attack on the base OTs (even for a specific näıvely
batched OT) can break KOS OT extension.

3.3 Problematic Batching Found in the Wild

Looking ahead, the fix for näıve batching is simple and essentially free (although
the security analysis of the fix requires some care, as we show in the next sec-
tions). In Diffie-Hellman-based OT protocols, the OT outputs r0, r1 are com-
puted by taking a (random oracle) hash of a Diffie-Hellman value. The fix is to
include the OT index in that key derivation — i.e., instead of r0 = H(sid, gab),
use r0 = H(sid, gab, i) in the ith OT instance in the batch. That way, even
if all gab values are identical (or correlated strangely), the final OT values are
independently random.

Given that both the attack and the fix are so simple, one may wonder whether
this problem is well-known. In fact, we found problems related to OT batching
in many libraries that implement malicious-secure OT extension. 3 We focus
on the implications for the overall OT extension protocols, which are minor in
most cases. However, the consequences would be more severe for developers that
directly access the base-OT functionalities of these libraries.

– The libote OT extension library [Rin] implements Masny-Rindal [MR19]
base OTs and applies näıve batching. The original Masny-Rindal paper con-
siders only the single-instance setting and does not discuss security of the
batch setting under näıve batching. In some configurations, the libote im-
plementation of OOS indeed uses these näıvely batched base OTs, thus
falling victim to our attack. Other configurations use a hybrid approach,
first näıvely batching 128 base OTs, then using KOS to extend to 512 OTs,
and using those 512 OTs as base for OOS. As mentioned above, we are not

3 We notified the maintainers of these libraries about the issues and the suggested fix.
By the time of writing, all maintainers have either already fixed or planned to fix
their handling of batch OTs.
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aware of any explicit attack on KOS extension, but our observations merely
raise some concerns about its security with näıvely batched OTs.

– The swanky MPC library [CMR] implements the Chou-Orlandi protocol and
reuses the sender’s message, but uses good domain separation in key deriva-
tion.4 However, it allows the sender’s protocol message to be reused across
several batches, while the domain separation is local to the batch! In other
words, parties could execute two batches of OTs, and the receiver could cause
the batches to produce identical outputs, by replaying its protocol messages.
In this library’s implementation of OT extension, they first apply the trans-
formation in [MR19] from endemic OT to uniform-message OT on the base
OTs. This prevents the receiver from forcing OT extension to operate on
identical base OTs. If not for this additional step, even KOS OT extension
would leak information across different batches. As it is, only the XOR of
PRG seeds is leaked under our attack on näıve batching, which is unlikely
to lead to a concrete attack.

– The mp-spdz [Kel20] and scale-mamba [Sma] library implementations of
OT use näıve batching of Chou-Orlandi base OTs. These libraries implement
only KOS and not OOS, and therefore we know of no concrete attack against
their OT extension.

We have also identified problematic handling of OT batching in several papers:

– The Chou-Orlandi OT protocol [CO15] explicitly considers the batch setting
and uses näıve batching to achieve it. As such, the protocol as written is not
suitable as the base OT for certain OT extensions.

– Since security flaws (unrelated to batching) were discovered in the Chou-
Orlandi protocol, several works have attempted to address and repair them.
Of those works, both [HL17] and [CSW20] explicitly consider the batch set-
ting. The paper of Hauck & Loss [HL17] maintains the näıve batching of the
original.

– The “Blazing OT” construction of Canetti, Sarkar, and Wang [CSW20] does
not technically use näıve batching, since it introduces a joint consistency
check across all instances in the batch. However, the key derivation in their
base OTs does not include the OT index. This means that the attack in
Lemma 1 has the intended effect: causing all OT instances to give identical
output. The paper only considers a combined protocol with batched Chou-
Orlandi base OTs and KOS OT extension, and as such we are not aware
of an explicit attack on their final OT extension protocol. However, their
security analysis does not seem to acknowledge the possibility of all base
OTs giving identical outputs.

We found one instance of totally correct batching, in the implementation
of Chou-Orlandi OT in emp-toolkit [WMK16], despite näıve batching being
described in the paper.

4 The authors explicitly justify their correct key derivation as a bug in the Chou-
Orlandi paper, and reference the attack in which all base OTs generate identical
output. See chou orlandi.rs.
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4 Properly Batching OTs

In this section we describe how to repair näıve batching. We focus on the
McQuoid-Rosulek-Roy (MRR) protocol [MRR20] since it subsumes the Masny-
Rindal protocol, while the Chou-Orlandi protocol does not achieve UC security.
As we saw, the main problem is that a corrupt receiver can force correlations
among the OT outputs in different instances — even causing some OT values
to be equal. The solution is to enforce “domain separation” among the different
instances. Intuitively, parties should hash each instance’s OT outputs under a
random oracle, with domain separation (i.e., include the index of that instance
in the hash).

However, proving the security of this change requires some care. For example,
we cannot prove security merely from the single-instance security of the OT
protocol, since the single-instance protocol is not being used correctly. Instead,
we must use some known structure of the protocol. The MRR protocol derives
its outputs from its underlying KA protocol, and we require stronger properties
from that KA. The KA must accept an extra “tag” argument, so that even if
the KA messages are identical, the resulting keys will be different under different
tags.

4.1 Tagged KA

A tagged KA is identical in syntax to a traditional KA, except that the KA.key1
and KA.key2 algorithms take an additional tag argument. Correctness is that for
all a, b ∈ KA.R and all tags τ :

KA.key1(a,KA.msg2(b,KA.msg1(a)), τ) = KA.key2(b,KA.msg1(a), τ)

Looking ahead to our batch OT protocol, we will let the tag τ be the index of
the OT instance (e.g., OT instance 1, 2, 3, . . .).

Intuitively, we will require that KA outputs under different tags appear inde-
pendently random. This should hold not only when the KA protocol messages are
identical, but also when the KA messages (e.g., KA.msg2) are correlated, since
we previously observed (Section 3) that the adversary could induce arbitrary
correlations across OT/KA instances. This definition may be of independent
interest—specifically, in scenarios where KA protocol messages are reused.

Definition 3. A tagged KA protocol is tag-non-malleable if a session with tag
τ∗ is secure, even against an eavesdropper that has oracle access to KA.key1(a, ·, ·),
provided the eavesdropper never queries the oracle on tag τ∗. Formally, the fol-
lowing distributions are indistinguishable, for all τ∗ and every PPT A that never
queries its oracle with second argument τ∗:

a, b← KA.R
M1 = KA.msg1(a)
M2 = KA.msg2(b,M1)
K = KA.key1(a,M2, τ

∗)
return AKA.key1(a,·,·)(M1,M2,K)

a, b← KA.R
M1 = KA.msg1(a)
M2 = KA.msg2(b,M1)
K ← KA.K
return AKA.key1(a,·,·)(M1,M2,K)
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Like [MRR20], we also require the KA protocol to satisfy the following ran-
domness property:

Definition 4. A key agreement protocol has strongly random responses if
the honest output of KA.msg2 is indistinguishable from random, even to an ad-
versary who (perhaps maliciously) generated M1. Formally, for all polynomial
time A, the following distributions are indistinguishable:

(M1, state)← A()
b← KA.R
M2 = KA.msg2(b,M1)
return (state,M2)

(M1, state)← A()

M2 ← KA.M
return (state,M2)

4.2 Programmable-Once Public Functions

The MRR protocol uses a primitive called programmable-once public functions
(POPFs). We introduce definitions for POPF here, which slightly differ from
the original definitions. We have specialized the definitions for the case of 1-
out-of-2 OT 5 — [MRR20] define POPFs in a way that is useful for 1-out-of-N
OT (with exponential N) and also password-authenticated key exchange. In the
original POPF definitions, a simulator simulated the random oracle setup in the
service of a single POPF instance; in our batch setting there will be many POPF
instances, thus we must adapt the definitions to explicitly allow simulation of
multiple POPFs in a non-interfering way.

Definition 5. A 1-weak random oracle is a function F : N → O such that
the following two distributions are indistinguishable,

x← N
y := F (x)
return x, y

x← N
y ← O
return x, y

when the adversary does not have access to F other than through these experi-
ments.

Note that F is only allowed to be used once this definition. This makes it an
extremely weak property — it’s even satisfied by universal hashes.

Definition 6 (Syntax). A batch 2-way programmable-once public func-
tion (batch 2-POPF) consists of algorithms:

– Eval :M×{0, 1} → N
– Program : {0, 1} × N →M

5 All of the POPFs in this paper have straightforward generalizations to the 1-out-
of-N case, for polynomial N , and some to exponential N as well, but we restrict
ourselves to the 1-out-of-2 case for simplicity.
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Both algorithms access some local setup H — depending on the instantiation,
H could consist of common reference strings, random oracles, ideal ciphers, etc.
All parties (adversaries) may access the setup directly as well, although it is local
to a single instance of the batch 2-POPF. The setup may be stateful (e.g., the
“lazy” formulation of a random oracle, which samples outputs on the fly).

A 2-POPF must also include alternative local setups, which are used in dif-
ferent security definitions:

– HHSim must provide the same interface as H as well as an additional method
HSim : N ×N →M.

– HExtract must provide the same interface as H as well as an additional method
Extract : M→ {0, 1}. Extract must not modify the private state of HExtract.

We write AH to denote an algorithm A with oracle access to all methods
provided by the setup H.

Definition 7 (Correctness). A batch 2-POPF satisfies correctness if Eval(φ,
x∗) = y∗ with all but negligible probability, whenever φ← Program(x∗, y∗).

Definition 8 (Security). A batch 2-POPF is secure if it satisfies the following
properties:

1. Indistinguishable Local Setups: The local setups H, HHSim and HExtract

all implement a common interface. The setups must be indistinguishable
to an adversary that only queries on this interface. Formally, if A is a
polynomial-time algorithm that only queries its setup on the interface of H
then the following probabilities are negligibly close:

Pr[AH() = 1]; Pr[AHHSim() = 1]; Pr[AHExtract() = 1]

2. Honest Simulation: Any φ that is generated honestly as φ← Program(x∗,
y∗), with y∗ chosen uniformly, is indistinguishable from φ generated via the
HSim algorithm of HHSim. Since HSim does not have a “preferred” input x∗,
this establishes that an honestly generated φ hides the x∗ on which it was
programmed.
Formally, define the following functions:

real phi(x∗ ∈ {0, 1},D):

(s, y∗)← D
φ← Program(x∗, y∗)
r0 := Eval(φ, 0)
r1 := Eval(φ, 1)
return s, φ, r0, r1

sim phi(x∗ ∈ {0, 1},D):

(s, y∗)← D
rx∗ := y∗

r1−x∗ ← N
φ← HSim(r0, r1)
return s, φ, r0, r1

Then for all polynomial time A,

Pr[AHHSim,real phi() = 1]− Pr[AHHSim,sim phi() = 1]
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is negligible. Here we restrict A to always query with D a distribution over
{0, 1}∗ × N such that the marginal distribution of y∗ is indistinguishable
from the uniform distribution over N . The other component s appears for
technical reasons; the reader can think of it as the coins used to sample y∗.
Note that sim phi calls the HSim method of the local setup, and that A may
even query the HSim method (both the real and ideal experiments use HHSim).

3. Uncontrollable Outputs: For any φ generated by the adversary, the Extract
method of HExtract can identify an input x∗ such that the adversary has no
control over Eval(φ, 1 − x∗). We say that Eval(φ, 1 − x∗) is beyond the ad-
versary’s control if F (Eval(φ, 1− x∗)) is indistinguishable from random, for
any 1-weak-RO F .6

Formally, the following distributions must be indistinguishable for all polynomial-
time A1,A2 and all 1-weak-RO F :

(φ, state)← AHExtract
1 ()

x∗ := Extract(φ)
r := F (Eval(φ, 1− x∗))
return AHExtract

2 (state, r)

(φ, state)← AHExtract
1 ()

r ← N
return AHExtract

2 (state, r)

As above, the left distribution calls the Extract method of the HExtract setup,
and the adversary may query this method as well. Note that A does not have
any access to F beyond the one call provided by this experiment.

The reader may be curious why we forced y∗ to be sampled inside Hon-
est Simulation, instead of letting the adversary choose it like in [MRR20]. The
answer is that otherwise an ideal cipher would not be a POPF. An adversary
could have already run Program(0, y∗) earlier, and because for each x there is a
bijection between values of y and φ, a call to HSim(y∗, r1) would be forced to
return the same φ as before. Ideal ciphers were used as a motivating example for
POPFs in [MRR20], so this is clearly a mistake. Ideal ciphers satisfy our new
definition (Section 5.1).

4.3 The Batch OT Protocol

In Figure 3 we present the batch variant of the OT protocol of [MRR20]. The
protocol is essentially the näıve batching of the single-instance protocol, except
we use a tagged KA and use different tags for each KA output.

Theorem 9. When instantiated with a secure batch POPF and a tag-non-malleable
KA scheme (Definition 3) with strongly random responses (Definition 4), the OT
protocol in Figure 3 is a UC secure batch endemic OT (Figure 2), if the POPF’s
output satisfies N = KA.M2.

6 There are 1-weak ROs whose outputs can be distinguished from random when inputs
are chosen in a certain adversarial way. Hence, requiring the RO outputs to remain
random is a way of requiring that these values are not chosen in an adversarial way.
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Sender Receiver (with input {ci}i∈[m])
a← KA.R
MS = KA.msg1(a) MS for i ∈ [m]:

bi ← KA.R
MR,i := KA.msg2(bi,MS)
φi := Program(ci,MR,i)

for i ∈ [m]:
φ1, . . . , φm

for j ∈ {0, 1}: for i ∈ [m]:
ri,j = KA.key1(a,Eval(φi, j), i ‖ j) ri,ci = KA.key2(bi,MS , i ‖ ci)

Fig. 3. Our m-batch 1-of-2 oblivious transfer protocol.

Proof. Correctness of the POPF and KA clearly show that the protocol is correct
in the case where both parties are honest. When both parties are corrupt, the
simulator has direct access to both parties and can simulate the real protocol by
just running it. This leaves the two interesting cases, where one party is malicious
and the other is honest. We prove each case by giving first a simulator, then a
sequence of hybrids showing indistinguishability. The hybrids start from the real
world and end at the ideal world: the simulator composed with an ideal batch
endemic OT.

Simulator for Malicious Sender: The simulator uses HHSim instead of H to im-
plement the local setup. It then waits until the sender provides its protocol mes-
sage MS . It creates fresh random values bi,j ∈ KA.R for i ∈ [m], j ∈ {0, 1},
then computes the KA messages Mi,j = KA.msg2(bi,j ,MS). Then it chooses
φi ← HSim(Mi,0,Mi,1) and sends φ1, . . . , φm as the simulated protocol mes-
sage from the honest receiver. Finally, it submits ri,j = KA.key2(bi,j ,MS , i ‖ j)
to the ideal functionality, for i ∈ [m] and j ∈ {0, 1} (as the endemic OT values).

Sequence of Hybrids for Malicious Sender: Starting at the real interaction be-
tween malicious sender and honest receiver:

1. Replace local setup H with HHSim. This change is indistinguishable by the
Indistinguishable Local Setups property of the POPF.

2. Change how φi is generated:

replace
bi ← KA.R
MR,i = KA.msg2(bi,MS)
φi ← Program(ci,MR,i)

with

bi ← KA.R
Mi,ci = KA.msg2(bi,MS)
Mi,1−ci ← KA.M
φi ← HSim(Mi,0,Mi,1)

This is indistinguishable by the Honest Simulation property. Recall that this
property requires bi,Mi,ci to come from a distribution D over {0, 1}∗ × N
where the marginal distribution of the second element is indistinguishable
from uniform. This holds because KA has strongly random responses.

3. Change how Mi,1−ci is sampled:

13



replace

bi ← KA.R
Mi,ci = KA.msg2(bi,MS)
Mi,1−ci ← KA.M
φi ← HSim(Mi,0,Mi,1)

with

bi,0, bi,1 ← KA.R
Mi,0 = KA.msg2(bi,0,MS)
Mi,1 = KA.msg2(bi,1,MS)
φi ← HSim(Mi,0,Mi,1)

Later references to bi become references to bi,ci . This is indistinguishable
because KA has strongly random responses.

This final hybrid describes the ideal world. The receiver’s inputs ci are not used to
simulate protocol messages to the sender; they are used only to determine which

ri,j
def
= KA.key2(bi,j ,MS) the receiver takes as output. In the ideal world the

simulator sends identically defined ri,j to the ideal functionality, which uses the
receiver’s ci inputs to determine which ones to deliver as the receiver’s output.

Simulator for Malicious Receiver: The simulator uses HExtract instead of H to
implement the local setup. It generates MS in the same way as an honest sender
and sends it to the corrupted receiver. When the receiver provides φ1, . . . , φm,
the simulator runs ci = Extract(φi) for all i ∈ [m], and submits them to the ideal
functionality. It also computes ri,ci = KA.key1(a,Eval(φi, ci), i ‖ ci), and submits
these to the ideal functionality as well (as the endemic OT values).

Sequence of Hybrids for Malicious Receiver:

1. Replace local setup H with HExtract, an indistinguishable change.
2. Rearrange how ri,j are computed:

replace
for j ∈ {0, 1}:
ri,j = KA.key1(a,Eval(φi, j), i ‖ j)

with
ci ← Extract(φi)
ri,ci = KA.key1(a,Eval(φi, ci), i ‖ ci)
ri,1−ci = KA.key1(a,Eval(φi, 1− ci), i ‖ 1− ci)

This is indistinguishable because running Extract has no effect on the local
setup’s internal state.

3. For each i ∈ [m] and j ∈ {0, 1}, create an oracle Fi,j = y 7→ KA.key1(a, y, i ‖
j). Then rewrite the computation of ri,j in terms of these oracles as ri,j =
Fi,j(Eval(φi, j)). In Lemma 10 we show that every oracle Fi,j is a 1-weak
random oracle.

4. Change how ri,1−ci is chosen:

replace
ci ← Extract(φi)
ri,ci = Fi,ci(Eval(φi, ci))
ri,1−ci = Fi,ci−1(Eval(φi, 1− ci))

with
ci ← Extract(φi)
ri,ci = Fi,ci(Eval(φi, ci))
ri,1−ci ← KA.K

This change is indistinguishable by the Uncontrollable Outputs property.
Since each Fi,j is a 1-weak RO, we can apply the Uncontrollable Outputs
property once for each i to make the change described here.
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This final hybrid describes the ideal world. After seeing the receiver’s protocol
message, the simulator extracts ci values and also computes values ri,ci which
will be part of the sender’s output. The other OT values in the sender’s output
(ri,1−ci) are sampled uniformly, just as in the ideal world.

Lemma 10. For any tag-non-malleable key agreement KA with strongly random
responses, and for any set of tags T , the following distribution outputs a key
agreement message and a collection of |T | weak random oracles from KA.M2 to
KA.K.

a← KA.R
MS := KA.msg1(a)
for τ ∈ T :
Fτ := x 7→ KA.key1(a, x, τ)

return MS , {Fτ}τ∈T

Proof. We need to show that every Fτ is a weak random oracle. We describe a
sequence of hybrids starting from the real weak random oracle distribution and
ending at random.

1. Sample the input x and compute y early, when the oracle Fτ is created,
rather than when the weak RO experiment is run.

2. Instead of sampling x← KA.M2, sample b← KA.R and set x = KA.msg2(b,
MS). This is indistinguishable by the strongly random responses property of
KA.

3. We are now computing y = KA.key1(a, x, τ) for a random KA message x,
then giving oracle access to KA.key1(a, x′, τ ′) (from the other oracles Fτ ′),
but only for τ ′ 6= τ . This is exactly the same as the real distribution for
a tag-non-malleable KA, so it is indistinguishable to switch to the random
distribution by randomly sampling y ← KA.K instead.

4. Use strongly random responses again, to sample x← KA.M2 and remove b.
5. Delay the sampling of x, y until the 1-weak RO distribution is run.

Our protocol considers an underlying KA with sequential messages. Yet
Diffie-Hellman-based KA protocols have independent messages that can be sent
in any order. We call such a KA protocol 1-flow, where KA.msg2(b) is indepen-
dent of MS . When the KA is 1-flow, the OT protocol can also be made 1-flow
by sending both messages in parallel.

Theorem 11. Our OT protocol (Figure 3) becomes a 1-flow UC secure batch
endemic OT when KA is 1-flow.

Proof. This theorem largely the same as Theorem 9 from the previous one,
but with key changes. In the 1-flow instance, the adversary may rush the other
party, requiring them to send their message first before responding. For malicious
receiver the adversary already went last, but it’s different for malicious sender.

When the sender is corrupt, the simulator instead generates φ1, . . . , φm with
HSim before receiving MS , as each of the receiver’s messages from the key agree-
ment may now be sampled independently of the sender’s. The hybrid proof
continues as before, after replacing KA.msg2(b,MS) with KA.msg2(b).
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5 New/Improved POPF Constructions

In this section, we describe several suitable POPF constructions for the batch
OT protocol.

5.1 Ideal Cipher (EKE)

M := N

Program(x, y):

return E(x, y)

Eval(φ, x):

return E−1(x, φ)

H
T := empty list
E(x, y):

if ∃φ. (x, y, φ) ∈ T :
return φ

φ←M
append (x, y, φ) to T
return φ

E−1(x, φ):

if ∃y. (x, y, φ) ∈ T :
return y

y ← N
append (x, y, φ) to T
return y

HHSim

T := {}
// E and E−1 are same as in H
HSim(r0, r1):

if ∃x, φ. (x, rx, φ) ∈ T :
return ⊥

φ←M
append (0, r0, φ) to T
append (1, r1, φ) to T
return φ

HExtract

T := {}
// E and E−1 are same as in H
Extract(φ):

find first (x∗, y∗, φ) ∈ T :
return x∗

if none exist:
return 0

Fig. 4. Batch 2-POPF based on an ideal cipher.

Our first POPF is inspired by the EKE password-authenticated key exchange
protocol of Bellovin & Merritt [BM92]. POPF was created as a generalization of
an ideal cipher in the EKE protocol, and it is no surprise that in fact an ideal
cipher is a POPF. The full definition is in Figure 4. We are not aware of prior
work pointing out the connection between EKE and oblivious transfer. But it
is easy to see that an ideal cipher is useful for OT: the adversary can know the
trapdoor to at most one of E−1(0, φ) and E−1(1, φ).

The local setup H is simply an ideal cipher. Actually, we have defined H in a
way that is indistinguishable from an ideal cipher — it chooses oracle responses
uniformly, instead guaranteeing that each E(x, ·) is a permutation. By a standard
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PRF/PRP switching lemma, the difference is indistinguishable, and this choice
makes the description of H simpler. HHSim is similar to H, but it programs E−1

so that Eval(φ, i) = ri, to satisfy the honest simulation property.
In HExtract, Extract(φ) finds the first ideal cipher call that produced φ —

either as the input to an E−1 query or the output of an E query. The idea is
that once φ has appeared in some ideal cipher query, future forward queries to E
give output φ only with negligible probability. Hence, all future calls that involve
φ must be of the form E−1(·, φ), meaning that the adversary has no control over
the outputs of these queries (which are outputs of Eval). This is precisely the
property needed for a POPF.

Theorem 12. Figure 4 defines a secure and correct batch 2-POPF with all dis-

tinguisher advantages except for Uncontrollable Outputs bounded by O
(
q2

|N |

)
,

when the adversary makes q ideal cipher lookups. Uncontrollable Outputs in-

stead has advantage bounded by qAdv(wRO) + O
(
q2

|N |

)
, where Adv(wRO) is

the distinguisher advantage against the 1-weak RO F .

Proof. We have deferred the security proofs for the POPF constructions to the
the full version of this work.

5.2 Even-Mansour POPF

In [MRR20] the authors construct a POPF with a 2-round Feistel cipher. Intu-
itively, a POPF generalizes an ideal cipher, but is strictly weaker. So, while an
8-round Feistel cipher is indifferentiable from an ideal cipher, a 2-round Feistel
cipher suffices for a POPF. Similarly, we suggest a POPF based on the Even-
Mansour [EM93] construction. While the Even-Mansour construction is not an
ideal cipher unless many rounds are added [DSST17], a single round suffices for
a POPF.

The construction (Figure 5) is similar to the Ideal Cipher POPF, but with a
few changes. The local setup H is not an ideal cipher, but a simpler ideal random
permutation. In the ideal cipher POPF, every query to the oracles included the
x-value (as the key of the cipher). In this Even-Mansour POPF the value x is
used only by xor’ing with the ideal permutation output — it is not directly
available to the simulator (in Extract).

To deal with this challenge, we observe that x can be inferred by the simulator
given φ. The only situation where x is ambiguous given φ is when Π(y1)⊕ x1 =
φ = Π(y2) ⊕ x2 for distinct bits x1, x2. This event implies Π(y1) ⊕ Π(y2) =
x1⊕x2 = 1, which is negligibly likely for forward queries to Π. This turns out to
be enough for the simulator to extract. The construction generalizes to strings
x which are significantly shorter than the ideal permutation output.

Theorem 13. Figure 5 defines a secure and correct batch 2-POPF where the
distinguisher advantage is O(q22−α) when the adversary makes q ideal permu-
tation lookups, except for Uncontrollable Outputs which allows an additional ad-
vantage of qAdv(wRO).

Proof. We have deferred this proof to the full version of this work.
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M := N := {0, 1}α

Program(x, y):

return Π(y)⊕ x

Eval(φ, x):

return Π−1(φ⊕ x)

H
T := empty list
Π(u):

if ∃v. (u, v) ∈ T :
return v

v ← {0, 1}α
append (u, v) to T
return v

Π−1(v):

if ∃u. (u, v) ∈ T :
return u

u← {0, 1}α
append (u, v) to T
return u

HHSim

T := empty list
// E and E−1 are same as in H
HSim(r0, r1):

if ∃x, φ. (rx, φ⊕ x) ∈ T :
return ⊥

φ← {0, 1}α
append (r0, φ⊕ 0) to T
append (r1, φ⊕ 1) to T
return φ

HExtract

T := empty list
// E and E−1 are same as in H
Extract(φ):

find first (y∗, φ⊕ x∗) ∈ T :
return x∗

if none exist:
return 0

Fig. 5. Batch 2-POPF based on an ideal permutation.

5.3 Masny-Rindal POPF

This next POPF is inspired by the OT construction of Masny and Rindal [MR19].
Using this POPF in the context of Figure 3 we see that the Masny-Rindal
OT protocol for 1-out-of-2 OT7 is then a specific instance of our protocol. The
description of the POPF can be found in Figure 6.

The local setup H consists of two random oracles H0, H1 whose outputs are
a group G. In the resulting OT protocol, the KA scheme must have protocol
messages that reside in this group. HHSim is similar to H, but it also tracks the
values r0, r1 that have been given to HSim(R). To satisfy the honest simulation
property, it further programs the random oracles Hx to be consistent:

Eval(φ, x) = sx ·Hx(s1−x) = sx · (sx)
−1 · rx = rx.

HExtract is also very similar to H, but it also tracks chronological order of the
oracle queries. Extract(φ), upon seeing φ = (s0, s1), checks if s1−x∗ was a query
to the random oracle Hx∗ , for either x∗ ∈ {0, 1}. Extract(φ) then chooses the first

7 Generalizing to 1-out-of-N for polynomial N works the same as in [MR19].
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M := G2

Program(x, y):

s1−x ← G
sx = y · (Hx(s1−x))−1

return (s0, s1)

Eval((s0, s1), x):

return sx ·Hx(s1−x)

H
record calls in a transcript T
Hx(u):

if ∃v. (v ← Hx(u)) ∈ T :
return v

v ← G
return v

HHSim

record calls in a transcript T
U := empty assoc. array
Hx(u):

if ∃v. (v ← Hx(u)) ∈ T :
return v

if U [x, u] defined:
return U [x, u]

v ← G
return v

HSim(r0, r1):

φ = (s0, s1)←M
U [0, s1] := s−1

0 · r0
U [1, s0] := s−1

1 · r1
return φ

HExtract

record calls in a transcript T
// Hx is the same as in H
Extract((s0, s1)):

find first query Hx∗(s1−x∗) in T :
return x∗

if none exist:
return 0

Fig. 6. Batch 2-POPF based on the OT construction of Masny-Rindal [MR19]. Here
H0, H1 : G→ G are random oracles, and (G, ·) is a group.

query (chronologically) and returns the associated x∗, or chooses x∗ arbitrarily
to be 0 if neither call was made. As in the original proof in [MR19] the main
idea is that for the adversary to program φ, they need to query on one of the
two sx values to find the other, unless the “other” is sampled independently, in
which case the adversary fails to program.

Theorem 14. Figure 6 defines a secure and correct batch 2-POPF with all

distinguisher advantages except for Uncontrollable Outputs bounded by O
(
q2

|G|

)
when the adversary makes q queries to the random oracles. Uncontrollable Out-

puts instead has advantage bounded by q2−q+2
2 Adv(wRO) +O

(
q2

|G|

)
.

Proof. We have deferred this proof to the full version of this work.

5.4 Streamlined Feistel POPF

[MRR20] propose a POPF based on 2-round Feistel, in which the φ value is
3κ bits longer than the underlying value from N . We present an alternative
construction (Figure 7) that improves on this when G = N can be represented
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N := G
M := G× F

Program(x, y):

u← F
t := H(x, u)−1 · y
s := u− ι(t)x
return s, t

Eval((s, t), x):

return H(x, ι(t)x+ s) · t

H
record calls in a transcript T
H(x, u):

if ∃v. (v ← H(x, u)) ∈ T :
return v

v ← G
return v

HHSim

record calls in a transcript T
U := empty assoc. array
H(x, u):

if ∃v. (v ← H(x, u)) ∈ T :
return v

if U [x, u] defined:
return U [x, u]

v ← G
return v

HSim(r0, r1):

(s, t)← G× F
U [0, ι(t) 0 + s] := r0 · t−1

U [1, ι(t) 1 + s] := r1 · t−1

return (s, t)

HExtract

record calls in a transcript T
// H is the same as in H
Extract((s, t)):

find first query H(x∗, ι(t)x∗ + s):
return x∗

if none exist:
return 0

Fig. 7. Variant of the Feistel POPF in [MRR20], where one random oracle has been
replaced with multiplication in a finite field F. ι is an injection with an efficient left
inverse ι−1, i.e., ∀t. ι−1(ι(t)) = t.

with less than 3κ bits. This is useful because elliptic curve points usually can be
represented with 2κ bits.

As with [MRR20], we need N to be a group G, and the local setup H is a
hash function H mapping into G. However, instead of a second random oracle
H ′(x, T ), we use an injection ι from G into a finite field F. The hash call H ′(x, T )
in one of the Feistel rounds is then replaced with multiplication ι(T )x. ι is
required to have an efficiently computable left inverse ι−1.

These changes eliminate the main bad event in the security proof of [MRR20],
which occurs when the adversary manages to delay making the H ′ query, which
the simulator needs to see in order to find what T the adversary chose, until
after the simulator needs to use T to program H. The simulator can now find T
directly using ι−1.

Theorem 15. The streamlined Feistel POPF in Figure 7 is a secure and cor-

rect batch 2-POPF. The distinguisher advantage is O
(
q2

|G|

)
when the adversary
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makes q ideal permutation lookups, except for Uncontrollable Outputs which al-

lows an additional advantage of q2−q+2
2 Adv(wRO).

Proof. We have deferred this proof to the full version of this work.

The original 2-round Feistel POPF in [MRR20] also satisfies our new def-
initions. We omit the proof because it is substantially similar to the proof of
Theorem 15, just preserving a few more ideas from [MRR20].

6 Suitable Key Agreement Choices

Our batched OT protocol requires a tagged KA in which the receiver’s protocol
messages are indistinguishable from the uniform distribution over the domain of
the POPF (outputs of Eval). In this section we discuss several choices for KA,
including one not considered in [MRR20] but which is well-suited to the batch
setting.

The main challenge is that traditional DHKA on an elliptic curve is not
enough. Under the usual encoding (the x-coordinate), points on the curve are
easily distinguishable from random strings, while it is more natural to define a
POPF operating on strings. Hence, some care is involved in making the POPF
and KA compatible.

6.1 Curve Mappings

In [MRR20], the authors suggest two ways to achieve compatibility between
POPF and KA over elliptic curves.

One choice is to ensure that the KA protocol messages are uniform bit strings.
This can be done using the Elligator technique of [BHKL13] to encode curve
elements. Elligator is an injective and efficiently invertible function ι from {0, 1}κ
to a large subset of the elliptic curve. If some party wishes to make their KA
protocol message a uniform string, they simply sample from points in the image
of ι. This is achieved in practice by re-sampling a DH scalar until the resulting
curve point is in ι({0, 1}κ). If the range of ι is a large fraction of the elliptic
curve, then the expected number of re-samples is small. See Figure 8 for a formal
description of tagged Elligator ECDHKA.

Another choice is to ensure that the POPF Eval function only outputs values
on the curve. In the POPF construction of [MRR20] this can be achieved by
instantiating a random oracle that gives outputs in the curve.

These techniques incur nontrivial computational overhead. The Elligator ap-
proach requires resampling each curve element some constant number of times on
average. The state-of-the-art techniques for hashing-to-curve [BCI+10,FFS+10,TK17]
have cost roughly 25% that of a scalar multiplication on the curve, and the POPF
requires at least 2 hash-to-curve operations per party.
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Sender (tag τ) Receiver (tag τ)
do:

a← Fp b← Fp
A = aG B = bG

while B 6∈ ι({0, 1}κ)
A

B̃ = ι−1(B)

return H(a · ι(B̃), τ) return H(bA, τ)

Fig. 8. Tagged Elligator ECDHKA. G is a generator of the curve and ι is the injective
Elligator mapping of [BHKL13].

6.2 Möller Variant of ECDHKA

We now suggest a more efficient approach that is well suited for the batch setting.
Before continuing, let us give a brief review of elliptic curves. For the remainder
of this section, we will consider curves over prime fields with order larger than
3. Further results and descriptions can be found in Silverman [Sil09].

Definition 16. An elliptic curve Ea,b over a field Fp is defined by a congru-
ence of the form Y 2 = X3 + aX + b parameterized by elements a, b ∈ Fp such
that 4a3 + 27b2 6= 0. The elements of Ea,b are given by tuples (X,Y ) satisfying
the congruence along with a neutral element O, the point at infinity.

We may equip this set with a group law called the chord-and-tangent law such
that we arrive at a commutative group where the usual Diffie-Hellman problems
are believed to be hard.

Definition 17. Given an elliptic curve Ea,b over a field Fp and c ∈ Fp, we may
consider the elliptic curve E′c : cY 2 = X3 + aX + b. If c is a quadratic residue
in Fp then E′ is isomorphic to E, otherwise, E′ is called the (quadratic) twist
of E.

As a twist of a given curve is unique up to isomorphism, we may consider, singly,
a primary curve and its twist curve. It follows from the definition that any x ∈ Fp
is the abscissa (x-coordinate) of a point on E or of a point on the twist E′.

Lemma 18. Let c 6= 0 be a quadratic non-residue in the field Fp, and let Ea,b
be an elliptic curve over Fp with twist E′c. Then for every x ∈ Fp:

1. If x3 + ax + b is a non-zero quadratic residue, then (x,±
√
x3 + ax+ b) are

points on Ea,b. Furthermore, (x3 + ax+ b)/c is a quadratic non-residue and
x is not the abscissa of any point on E′c

2. If x3 + ax+ b is a quadratic non-residue, then x is not a point on Ea,b. Fur-

thermore, (x3 +ax+ b)/c is a quadratic residue and (x,±
√

(x3 + ax+ b)/c)
are points on E′c.

3. If x3 + ax+ b = 0, then (x, 0) is a point on Ea,b and E′c.
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This idea is of importance as for many curves and applications; only the abscissa
of a point is needed. This means that we can work with bitstrings using the
implicit mapping defined above.

Furthermore, there are a similar number of points on the twist as there are on
the curve. If one were to toss a coin b← {0, 1}, and then sample an x-coordinate
of a random curve point (if b = 0) or a random twist point (if b = 1), the result
would be statistically close to the uniform distribution on the set of bitstrings.

Lemma 19 ([CFGP06, Corollary 11]). Given a curve Ea,b and its twist E′c
over Fp, where 2q − p < 2q/2 (i.e., p is very close to a power of 2), the following
distribution is indistinguishable from the uniform distribution in {0, 1}q

D = {β ← {0, 1}, x0 ← [Ea,b]abscissa, x1 ← [E′c]abscissa : K = xβ},

with statistical distance

δ =
1

2

∑
x∈Fp

∣∣∣∣ Pr
K←F2q

[K = x]− Pr
K←D

[K = x]

∣∣∣∣ ≤ 1 +
√

2

2q/2
.

This suggests the key agreement approach in Figure 9. The receiver will
sample an x-coordinate as above. The sender cannot anticipate the receiver’s
choice, so she prepares a DH message on both the curve and the twist, then
chooses the correct one to compute the final key. Lemma 19 establishes that
the receiver’s KA message is statistically indistinguishable from the uniform
distribution on strings.

Note that the sender sends two curve/twist elements instead just one as in
standard DHKA. However, in batched OT it is exactly this sender message that
is reused across all OT instances. Hence a slight increase in its size has minimal
effect on the overall OT protocol’s efficiency.

Similar approaches to representation have been used in the context of PAKE [BMN01],
pseudo-random permutations [Kal91], authenticated key exchange [CFGP06],
and by Möller [Möl04] in the context of ElGamal.

6.3 Curve Choice and Security

We now discuss the security of the Möller variant (tagged) KA protocol. The
choice of curve must satisfy the following

– The finite field must have order at least 2q − 2q/2.
– The curve and its twist must be cryptographically secure.
– The curve and its twist must be cyclic.

More specifically, we need a security property similar to the oracle Diffie-
Hellman (ODH) assumption [ABR01]. That definition is as follows:

Definition 20 ([ABR01]). Let G be a cyclic group of order n, with generator
g, and let H : {0, 1}∗ → {0, 1}` be a hash function. Then the oracle Diffie-
Hellman (ODH) assumption holds in G with respect to H if the following
distributions are indistinguishable, for all A that do not query their oracle at bg.
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Sender (tag τ) Receiver (tag τ)
a0 ← [n] b← [n]
a1 ← [n] β ← {0, 1}
A0 = a0G0 B = bGβ

A1 = a1G1
A0, A1

Babscissa,sign

if B on the curve:
β = 0

else: β = 1
return H(aβ ·B, τ) return H(b ·Aβ , τ)

Fig. 9. Möller tagged ECDHKA. G0 is a generator of the curve and G1 is a generator
of its twist.

a, b← [n]
def Ha(X) = H(aX)
K = H(abg)
return AHa(ag, bg,K)

a, b← [n]
def Ha(X) = H(aX)
K ← {0, 1}`
return AHa(ag, bg,K)

Our applications require a variant of ODH where the hash function H takes an
additional tag argument:

Definition 21. Let G be a cyclic group of order n, with generator g, and let H :
{0, 1}∗ × {0, 1}∗ → {0, 1}` be a hash function. Then the tagged oracle Diffie-
Hellman (TODH) assumption holds in G with respect to H if the following
distributions are indistinguishable, for all tags τ∗ and all A that do not query
their oracle with second argument τ∗:

a, b← [n]
def Ha(X, τ) = H(aX, τ)
K = H(abg, τ∗)
return AHa(ag, bg,K)

a, b← [n]
def Ha(X, τ) = H(aX, τ)
K ← {0, 1}`
return AHa(ag, bg,K)

In [ABR01] the authors show that standard ODH is secure in the generic
group model when H is a random oracle. This proof is easily adapted to the new
TODH assumption as well.

Proposition 22. Möller tagged DHKA (Figure 9) satisfies tag nonmalleability
(Definition 3) if the TODH assumption holds in both the curve and its twist.

A further small optimization is possible for Montgomery curves. The multi-
plication algorithm only depends on the x-coordinate of its input and is uniform
for both the curve and its twist, in the sense that the usual multiplication al-
gorithm for the curve also correctly multiplies in the twist if the input is on
the twist. So if the sender in Figure 9 chooses a0 = a1 then there is no need
to check whether the receiver’s B is on the curve or twist. Instead, the sender
simply multiplies B without any checking. However, security of this optimization
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Sender Receiver (with input {ci}i∈[N ])

φ1 . . . φκ ← Base OT Receiver
φ1, . . . , φκ MS , {ri,j} ← Base OT Sender

{ui} ← OT Extension Receiver
chal := H({φi},MS , {ui})

ri,ci ← Base OT Receiver
MS , {ui}, resp

resp← OT Extension Receiver
chal := H({φi},MS , {ui})
check that resp answers chal
{r′i,j}i,j ← OT Extension Sender {r′i,ci}i ← OT Extension Receiver
return {r′i,j}i∈[N ],j∈{0,1} return {r′i,ci}i∈[N ]

Fig. 10. Sketch of the composition of our batch OT protocol with the KOS OT
extension protocol, in 2 rounds.

requires that a kind of TODH assumption hold for the curve and twist jointly
(instead of separately/independently for the curve and for the twist).

Instantiation When creating a concrete instantiation of Möller ECDHKA, we
chose to use Curve25519 [Ber06]. The main reasons for this choice were:

1. The base field Fp is of prime order 2255 − 19 > 2255 − 2255/2.
2. Curve25519 is explicitly designed to have a twist that is as secure as the

curve itself.
3. Curve25519 can take full advantage of Montgomery Ladders for scalar mul-

tiplication which allows us to use only the abscissa in computations.
4. Curve25519 and its twist have large prime subgroups of size #E/8 and

#E′c/4.

Curve25519 also provides additional evidence for the security of the above op-
timization of setting a0 = a1, because [Ber06] recommends not checking whether
a given point is on the curve or twist before performing scalar multiplication.
This optimization is why Curve25519 was chosen to have a secure twist, and
in fact the reference implementation does not check if an elliptic curve point
is on the curve. This requires a similar additional security assumption to our
optimization because it uses the same key for both the curve and its twist.

7 2-round Endemic OT Extension

When our protocol is used for base OTs, we can achieve a 2-round Endemic
OT extension protocol if the Fiat-Shamir heuristic is used. First, recall that our
batch OT protocol is 1-flow when instantiated with a 1-flow KA protocol, e.g.,
any Diffie-Hellman-based KA protocol. This gives us the flexibility to send base
OT messages in any order.

Second, we summarize the 1-out-of-2 OT extension protocol of [KOS15]:

– The parties perform base OTs
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– The receiver (who is base OT sender) sends data as in all IKNP-based [IKNP03]
extension protocols.

– To protect against a malicious receiver, the sender gives a random challenge
– The receiver sends a response to this challenge, which the sender checks.

We can order the messages of the base OTs so that the receiver can send their
IKNP data along with their base OT sender message. Additionally, we can col-
lapse the malicious consistency check using the Fiat-Shamir heuristic, since the
sender’s challenge is random. The resulting OT extension protocol is sketched
in Figure 10.

In related work, [CSW20] show how to use the Chou-Orlandi base OT pro-
tocol to achieve 3-round OT extension. This is inevitable since their base OTs
already require 3 rounds. [BCG+19] show a 2-round OT extension protocol based
on newer “silent OT” techniques. Note however that both these papers achieve
chosen message OT, while Figure 10 only achieves endemic OT and would require
a third round to derandomize the sender’s messages.

8 Performance Evaluation

In this section, we will explore the concrete performance benchmarks of multiple
instantiations of the protocol in Figure 3.

8.1 Implementation Details

We implemented8 our protocol inside the libote OT extension library [Rin],
modifying the library to use Rijndael-256 [DR99,BÖS11] to instantiate an ideal
cipher and libsodium [Den20] to implement elliptic curve operations. The li-
brary uses Blake2 [ANWW13] to instantiate a random oracle. We then tested
the protocols on a machine running on an Intel Xeon E5-2699 v3 CPU, without
assembly optimizations or multi-threading. For benchmarking, each protocol was
run in a batch of 128 OTs for two settings of simulated latency and bandwidth
limiting. The two settings are meant to shed light on the LAN vs WAN environ-
ments that these protocols may run in. The number of OTs to run was chosen
to provide a realistic setting in the case of 128 base OTs as is common in OT
extension.

We compared the following implementations:

– Chou-Orlandi (Simplest OT).
– Naor-Pinkas OT
– Masny-Rindal (Endemic OT), with and without reusing the sender’s mes-

sage. This protocol uses hash-to-curve operations.
– Our protocol instantiated with Möller’s DHKA and various POPFs pre-

sented in Section 5. Because the messages from Möller’s scheme are uni-
formly random bit strings, our POPFs avoid the hash-to-curve operations

8 Source code is at https://github.com/Oreko/popfot-implementation.
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Protocol Security Sender (ms) Receiver (ms)

0.1ms latency, 10000Mbps bandwidth cap

Simplest OT [CO15] (Sender-reuse) standalone 35 17

Naor-Pinkas OT [NP01] (Sender-reuse) standalone 43 34

Endemic OT [MR19] (No reuse) UC 79 42

Endemic OT (Sender-reuse) UC 62 37

Ours (Field Feistel POPF Figure 7 — DHKA) UC 80 40

Ours (Field Feistel POPF — Möller DHKA) UC 50 27

Ours (MR POPF Figure 6 — Möller DHKA) UC 48 27

Ours (EKE POPF Figure 4 — Möller DHKA) UC 50 25

30ms latency, 100Mbps bandwidth cap

Simplest OT [CO15] (Sender-reuse) standalone 105 111

Naor-Pinkas OT [NP01] (Sender-reuse) standalone 101 107

Endemic OT [MR19] (No reuse) UC 161 53

Endemic OT (Sender-reuse) UC 137 53

Ours (Field Feistel POPF Figure 7 — DHKA) UC 155 47

Ours (Field Feistel POPF — Möller DHKA) UC 128 44

Ours (MR POPF Figure 6 — Möller DHKA) UC 128 44

Ours (EKE POPF Figure 4 — Möller DHKA) UC 128 44

Table 2. Running time to generate a batch of 128 OT instances. We report the average
of 100 trials for each experiment.

that are needed in [MR19]. We did not evaluate the Even-Mansour POPF
(Figure 5) since its performance would be identical to the EKE POPF (Fig-
ure 4) when Rijndael is used to instantiate both the ideal cipher and ideal
permutation.

– Our protocol with traditional DHKA, and all POPF instantiations exclud-
ing EKE and Masny-Rindal. We did not implement the EKE POPF using
DHKA; however, this might be possible using Elligator or a similar map-
ping to construct an ideal cipher on a subset of the curve points. We did
not implement our protocol with Masny-Rindal POPF as it would be nearly
identical to the Masny-Rindal protocol.

8.2 Results & Discussion

The performance benchmarks can be found in Table 2 for both settings.
As we would expect, when comparing the three instances of Masny-Rindal

OT, each with their own improvement, we see a marked increase in efficiency.
Specifically, reusing the sender’s message reduced the total time spent by both
parties by 18% / 11% in the low latency and high bandwidth setting / the
high latency and low bandwidth setting, respectively. Moving to Möller’s KA
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caused an additional 24% / 9% improvement, respectively, for the Masny-Rindal
construction. On average, for the three protocols with both DHKA and Möller
DHKA versions (Masny-Rindal and the Feistel POPF) we saw an improvement
of 31% / 12%, respectively, when moving to Möller’s KA.

As expected, the Simplest OT protocol outperforms our instantiations for the
sender since it uses fewer exponentiations in the group. One point to take note of
in the evaluation data is the large gap in the performance for the receiver between
the Naor-Pinkas and Simplest / Blazing OT constructions and the POPF and
Masny-Rindal constructions in the high latency / low bandwidth setting. This is
due to the different flow requirements between the two sets of protocols. Simplest
OT and Naor-Pinkas constructions all require an additional flow (or two) which,
in the WAN setting, will accrue more time for the party which needs to wait.
It then follows that the advantages of our protocol over Simplest OT is our UC
security and round/flow complexity.
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