
Franchised Quantum Money

Bhaskar Roberts1 and Mark Zhandry2,3

1 UC Berkeley
2 Princeton University

3 NTT Research

Abstract. The construction of public key quantum money based on
standard cryptographic assumptions is a longstanding open question.
Here we introduce franchised quantum money, an alternative form of
quantum money that is easier to construct. Franchised quantum money
retains the features of a useful quantum money scheme, namely unforge-
ability and local verification: anyone can verify banknotes without com-
municating with the bank. In franchised quantum money, every user
gets a unique secret verification key, and the scheme is secure against
counterfeiting and sabotage, a new security notion that appears in the
franchised model. Finally, we construct franchised quantum money and
prove security assuming one-way functions.

1 Introduction

The application of quantum information to unforgeable currency was first en-
visioned by Wiesner [Wie83], and these early ideas laid the foundation for the
field of quantum cryptography. However, Wiesner’s scheme for quantum money
has a major drawback: verifying that a banknote is valid requires a classical
description of the state, so the banknote must be sent back to the bank for
verification.

The key properties that make cash (paper bills) useful are that anyone can
verify banknotes locally, without communicating with the bank, and the ban-
knotes are hard to counterfeit. In a classical world, digital currency cannot hope
to achieve these properties because any classical bitstring can be duplicated.
In a quantum world, we have hope for uncounterfeitable money because of the
no-cloning theorem.

Recent works [Aar09, FGH+12, AC12, Zha19] have sought a public test to
verify banknotes. A scheme with such a test is called public key quantum money
(or PKQM). Unfortunately, a convincing construction of public key quantum
money has been notoriously elusive. Most proposals have been based on new
ad hoc complexity assumptions, and in many cases those assumptions were
broken [FGH+12, PFP15, Aar16]. Recently, Zhandry [Zha19] showed that the
[AC12] scheme can be instantiated using recent indistinguishability obfuscators.
However, the quantum security of such obfuscators is currently unclear. Zhandry
also proposed a new quantum money scheme in [Zha19], but the security of his
scheme was also called into question [Rob21].

Franchised Quantum Money: In this work, we introduce franchised quantum
money (FQM), which is useful as a currency system, easier to construct than
public key quantum money, and a possible stepping stone to PKQM. In fran-
chised quantum money, every user receives a unique secret verification key. With
their key, a user can verify banknotes locally, but they cannot create counterfeit
money that would fool another user. Our main result is to show how to real-
ize franchised quantum money under essentially minimal assumptions, namely
one-way functions.

Franchised quantum money is a secret key scheme that approximates the
functionality of a public key scheme. In particular, franchised quantum money
achieves local verification4.

The franchised verification model is broadly useful for approximating the
security guarantees of public key verification. Building off of an earlier, unpub-
lished version of this paper, [KNY21] proposed a franchised verification model
for quantum lightning, and combined with a lattice assumption that we also
proposed, they constructed a scheme for secure software leasing. It is conceiv-
able that we could construct and implement a franchised version of other objects
related to PKQM.

Franchised quantum money is easier to construct than PKQM because each
user has a secret key, and we only require that an adversary cannot trick a
different user into accepting a counterfeit banknote.

The difficulty with PKQM is that if the adversary knows the verification key,
they know what properties of the state will be tested during verification. It is
hard to design a verification procedure that reveals just enough information to
verify banknotes, without giving enough information to create fake banknotes
that fool the verifier.

Franchised quantum money does not have this issue. The adversary does not
know any other user’s key, so they don’t know what properties the other user
will test during verification. Therefore it is hard for the adversary to trick the
other user into accepting a counterfeit banknote.

1.1 Technical Details

Definition of Franchised Quantum Money: In franchised quantum money,
there is a trusted party, called the bank, that administers the currency system
by generating verification keys and banknotes. A banknote is valid if it was
generated by the bank.

The other participants in the system are untrusted users, who send and
receive banknotes among each other. Each user can request a unique secret
verification key from the bank. The key allows the user to verify any banknote

4 [BS20] also propose a quantum money scheme that tries to approximate the func-
tionality of PKQM. However, their scheme does not achieve local verification: their
banknotes must be periodically sent back to the bank for verification. Furthermore,
the way they define security is hard to justify.

2

they receive, and valid banknotes are accepted by verification with overwhelming
probability.

Some users (the adversaries) are malicious and try to trick other users into
accepting invalid banknotes. However it’s hard for an adversary to create invalid
banknotes that another user would accept.

Security: In order to be considered secure, a franchised quantum money scheme
must be secure against both counterfeiting and sabotage.

Security against counterfeiting: We say that the scheme is secure against coun-
terfeiting if it is hard for an adversary with m valid banknotes to get any other
users to accept m + 1 banknotes. The key difference from public key quantum
money is the word other. We don’t care if the adversary can produce m + 1
banknotes that they themself would accept.

In fact in our construction, it’s easy for the adversary to “trick themself”
into accepting invalid banknotes, because if they know what key will be used in
verification, they can create invalid banknotes that will be accepted. However, a
different user with a key that is unknown to the adversary will recognize these
banknotes as invalid.

Security against sabotage: Because each user has a different key, there is a second
kind of security we need to consider. We don’t want one user to accept an invalid
banknote that another user would reject.

We call this attack sabotage:5 the adversary takes a valid banknote and mod-
ifies it. Then they give it to one user, who accepts it even though the banknote is
invalid. But when the first user tries to spend the banknote with a second user,
the second user rejects the banknote.

How could sabotage be possible if the scheme is secure against counterfeiting?
The adversary does not need to spend more banknotes than they received in
order to succeed at sabotage.

A scheme is secure against sabotage if the adversary cannot produce a ban-
knote that one other user accepts but which a second other user rejects.

Remark 1. We note that sabotage attacks are also a potential concern for public
key quantum money schemes. Even though all users run the same verification
procedure, technically two successive runs of the procedure may not output
the same result. However, this problem can always be avoided by implementing
verification as a projective measurement.

Furthermore, in practice, decoherence between runs may cause successive
runs to behave differently. In this case too, sabotage attacks may be relevant.

To the best of our knowledge, this is the first work to point out these potential
problems.

5 We borrow this name from [BS20].

3

If an FQM scheme is secure against counterfeiting and sabotage, then it is
practically useful as currency. This is because users can trust that any banknote
they accept will be accepted by all other users, and the money supply will not
increase unless the bank produces more banknotes. Therefore, these banknotes
can hold monetary value. Quantum money does not need to be public key in
order to be useful as a currency system.

Construction from Hidden Subspaces: Our construction of FQM is based
on [AC12]’s proposal for PKQM from black-box subspace oracles. Below is a
simplified version of our construction. A less-simplified version is given in section
4, and the full version is given in section 5.

Banknote: The banknote is an n-qubit quantum state. We can think of its com-
putational basis states as vectors in Zn2 . The banknote |A〉 is a superposition
over some random subspace A ≤ Zn2 such that dim(A) = dim(A⊥) = n/2. We
call this state a subspace state.

|A〉 =
1√
|A|

∑
x∈A
|x〉

Verification key: For a given banknote |A〉, each verification key is a pair of
random subspaces (V,W). V ≤ A and W ≤ A⊥, and the dimension of V and W
is t := Θ(

√
n). Each verifier gets an independently random (V,W).

Verification: To verify a banknote, the verifier performs two tests, one in the
computational basis, and one in the Fourier basis.

First we test that the classical basis states of |A〉 are in W⊥.
Then we take the quantum Fourier transform of the banknote. If the banknote

is valid, the resulting state, |̃A〉, is a superposition over A⊥ ([AC12]):

|̃A〉 =
∣∣A⊥〉 =

1√
|A⊥|

∑
y∈A⊥

|y〉

Next, in the Fourier basis, we test that the vectors in |̃A〉’s superposition are
in V ⊥. Finally we take the inverse quantum Fourier transform, and return the
resulting state. We accept the banknote if both tests passed. If the banknote was
valid, the final state is the same as the initial one.

Discussion: A verifier will accept any subspace state |B〉 where V ≤ B ≤W⊥.
Note that the adversary can easily construct a |B〉 based on their key (V,W)
that they themself would accept.

However, an adversary cannot trick other users into accepting an invalid
banknote. With probability overwhelming in n, the other user’s (V,W) include
dimensions of A and A⊥, respectively, that are unknown to the adversary. Any
banknote the adversary tries to produce, other than an honest banknote, will
almost certainly get “caught” by these other dimensions and rejected.

4

Multiple banknotes. In the simplified construction above, one verification key
(V,W) cannot verify multiple banknotes. Each banknote uses a different sub-
space A, and (V,W) depends on the banknote |A〉. However in the full construc-
tion, one verification key can verify every banknote the user recieves.

To achieve this, we assume the existence of one-way functions, which implies
CPA-secure encryption. The verification key is actually a decryption key, and
(V,W) are encrypted and appended to the banknote as a classical ciphertext.
To verify, the user decrypts the ciphertext, which is unique to the banknote, to
get the correct (V,W) needed for verification.

It is straightforward to see that some computational assumptions are nec-
essary for franchised quantum money, since given an unlimited number of ban-
knotes, the bank’s master secret key is information-theoretically determined. So
our construction of franchised quantum money uses essentially minimal assump-
tions.

Franchised vs. Obfuscated Verification: [AC12, Zha19]’s construction of PKQM
relies on strong forms of obfuscation, such as iO, but the franchised verification
model removes the need for obfuscation.

[AC12]’s construction is like our FQM construction, except every verifier
uses V = A and W = A⊥. We call this full verification, in contrast to franchised
verification. Full verification provides strong security guarantees, but it seems to
require strong forms of obfuscation to implement it.

In this paper, we show that the adversary cannot distinguish whether they’re
interacting with a full verifier or a franchised verifier, so our FQM construction
inherits most of the security properties of the PKQM construction. But fran-
chised verification uses much weaker computational assumptions.

In the franchised model, the adversary only gets query access to the verifier
because they are not given another user’s verification key, so there is no need for
obfuscation. It is therefore feasible to construct FQM from assumptions weaker
than obfuscation.

Colluding adversaries: As we defined FQM above, each user receives one
verification key. But in the real world, it’s possible that multiple adversaries
collude: they pool their verification keys to gain more counterfeiting or sabotage
power.

In our construction, each key gives a small number of dimensions of A and
A⊥. If the adversary has unlimited verification keys, then they can learn all of
A and A⊥ and produce as many copies of |A〉 as they want. So we will impose
a collusion bound: no more than C = n

4t adversaries can work together. This
means no adversary learns more than n/4 dimensions of A (or A⊥). With this
collusion bound, the scheme is secure.

Collusion bounds are commonplace in cryptography, for example in the traitor
tracing literature [CFN94]. As in traitor tracing, our collusion bound reduces the
scheme’s efficiency but may be reasonable in any scenario where the number of
users is small. For example, in smaller markets trading certain financial securi-
ties or tickets for events, even an inefficient form of quantum money is useful

5

6. The banknotes can be verified locally, and the number of users is relatively
small.

Also we expect that any FQM scheme will require a collusion bound of some
kind or else it will be equivalent to PKQM. See section 1.2 for more detail.

Increasing the collusion bound: Here are two ideas for how to improve the col-
lusion bound. First, use combinatorial techniques, such as those used in traitor
tracing. For example, [BN08]’s techniques have resulted in optimally-short ci-
phertexts. Combinatorial techniques in traitor tracing usually come at the cost
of much larger secret keys though, and we might expect something similar for
franchised quantum money.

Second, we might use LWE or similar assumptions. Such techniques have
been used to compress ciphertexts in traitor tracing [GKW18], while keeping
the secret keys small.

1.2 Next Steps

Franchised quantum money is attractive as a stepping stone to PKQM because
there is a clear path from FQM to PKQM where progress is measurable by the
collusion bound. Starting with our FQM construction, increase the size of the
collusion bound until the bound is unlimited.

In our construction, the size of the banknotes (n) grows faster than the
collusion bound (C = Θ(

√
n)). The next step might be a scheme whose banknote

size grows slower than the collusion bound.
Our construction is analogous to the early days of traitor tracing, where the

initial schemes [CFN94] had ciphertexts with size linear in the collusion bound,
and the main goal became to shrink the ciphertext size.

We expect that a franchised quantum money scheme with an unlimited collu-
sion bound is equivalent to PKQM. Hypothetically, how would we prove security
for an FQM scheme with unbounded collusion? The reduction would have to gen-
erate the adversary’s verification keys, and somehow use the adversary’s forgery
for honest keys to break some underlying hard problem. But if the reduction
could generate new verification keys for itself, then the construction may also be
able to generate these new keys. If this were the case, we would easily get a pub-
lic key quantum money scheme: to verify a banknote, generate a new verification
key for yourself, and use that key.

Franchised semi-quantum money: We can make the mint in our scheme entirely
classical, similar to the semi-quantum money scheme of [RS19], which is a secret
key scheme. This follows from the fact that anyone can create new (un-signed)
banknotes. To create and send a new banknote to a recipient, the recipient will
generate a new un-signed banknote |$〉 with serial number y on its own. It will
then send y to the mint, who will sign y with a classical signature scheme.

6 We thank an anonymous reviewer for suggesting these applications.

6

2 Preliminaries

Subspaces

◦ For any subspace A ≤ Zn2 , A will also refer to a matrix whose columns are a
basis of the subspace A. The matrix serves as a description of the subspace.

◦ Let A⊥ = {x ∈ Zn2 |∀a ∈ A, 〈x,a〉 = 0} be the orthogonal complement of A.

◦ Let |A〉 = 1√
|A|

∑
x∈A |x〉

◦ Let OA : Zn2 → {0, 1} decide membership in A. That is, ∀x ∈ Zn2 :

OA(x) = 1x∈A

Given a basis B of A⊥, we can compute OA as follows:

OA(x) = 1BT ·x=0

Quantum computation.

Here we recall the basics of quantum computation, and refer to Nielsen and
Chuang [NC00] for a more detailed overview.

A quantum system is a Hilbert space H and an associated inner product 〈·|·〉.
The state of the system is given by a complex unit vector |ψ〉. Given quantum
systems H1 and H2, the joint quantum system is given by the tensor product
H1 ⊗ H2. Given |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2, we denote the product state by
|ψ1〉|ψ2〉 ∈ H1⊗H2. A quantum state |ψ〉 can be “measured” in an orthonormal
basis B = {|b0〉, ..., |bd−1〉} for H, which gives value i with probability |〈bi|ψ〉|2.
The quantum state then collapses to the basis element |bi〉.

For a state over a joint system H1 ⊗ H2, we can also perform a partial
measurement over just, say, H1. Let {|a0〉, ...〉} be a basis for H1 and {|b0〉, ...〉}
a basis for H2. Then for a general state |ψ〉 =

∑
i,j αi,j |ai〉|bj〉, measuring in H1

will give the outcome i with probability pi =
∑
j |αi,j |2. In this case, the state

collapses to
√

1/pi
∑
j αi,j |ai〉|bj〉.

Operations on quantum states are given by unitary transformations over H.
An efficient quantum algorithm is a unitary U that can be decomposed into a
polynomial-sized circuit, consisting of unitary matrices from some finite set.

Miscellaneous

A function f(λ) is negligible, written as f(λ) = negl(λ), if f(λ) = o(λ−c) for any
constant c. poly(λ) is a generic polynomial in λ. A probability p is overwhelming
if 1− p = negl(λ). Finally [λ] = {1, . . . , λ}, for any λ ∈ N. Numbers are assumed
to be in N unless otherwise stated.

7

3 Definition of Franchised Quantum Money

Here we’ll define franchised quantum money and its notions of security in detail.

Definition 1 (Main Variables).

◦ Let λ ∈ N be the security parameter.
◦ Let N ∈ N be the number of verification keys that the bank distributes. N =
O(poly(λ)) in the security game because the adversary cannot query more
than polynomially-many users.

◦ Let C ∈ [N] be the collusion bound, the maximum number of verification
keys that the adversary can receive.

◦ Let msk be the master secret key, known only by the bank.
◦ Let svk be a secret verification key given to a user.
◦ Let |$〉 be a valid banknote. Let |P 〉 be a purported banknote, which may or

may not be valid.
◦ After verification, |$〉 becomes |$′〉, and |P 〉 becomes |P ′〉.

Definition 2. A franchised quantum money scheme F comprises four
polynomial-time quantum algorithms: Setup, Franchise, Mint, and Ver.

1. Setup: The bank runs Setup to initialize the FQM scheme.

msk ← Setup(1λ)

2. Franchise: The bank runs Franchise whenever a user requests a secret verifi-
cation key. Then the bank sends svk to the user.

svk ← Franchise(msk)

3. Mint: The bank runs Mint to create a new banknote |$〉. Then the bank gives
|$〉 to someone who wants to spend it.

|$〉 ← Mint(msk)

4. Ver: Any user with a secret verification key can run Ver to check whether
a purported banknote |P 〉 is valid. Ver accepts |P 〉 (b = 1) or rejects |P 〉
(b = 0). Finally, |P 〉 becomes |P ′〉 after it is processed by Ver.

b, |P ′〉 ← Ver(svk, |P 〉)

In order to function as money, |$〉 should be accepted by Ver with overwhelm-
ing probability, and |$′〉 should be close to |$〉. This way, we can verify the state
in future transactions. The following definition, for correctness, achieves these
properties.

Definition 3. F is correct if for any svk ← Franchise(msk), any |$〉 ← Mint(msk),
and any N and C that are polynomial in λ,

1. Ver(svk, |$〉) accepts with probability overwhelming in λ, and

8

2. The trace distance between |$〉 and |$′〉 is negl(λ).

Next, franchised quantum money needs two forms of security: security against
counterfeiting and sabotage. Security against counterfeiting, defined below, means
that an adversary given m banknotes cannot produce m+1 banknotes that pass
verification, except with negl(λ) probability.

Definition 4. F is secure against counterfeiting if for any polynomial-time
quantum adversary, the probability that the adversary wins the following security
game is negl(λ):

1. Setup: The challenger is given λ,N, and C, where N,C = poly(λ). Then
the challenger runs Setup(1λ) to get msk, and finally creates N verification
keys (svk1, . . . , svkN) by running Franchise(msk) N times.

2. Queries: The adversary makes any number of franchise, mint, and verify
queries, in any order:
◦ Franchise: the challenger sends a previously unused key to the ad-

versary. By convention, let the last C keys be sent to the adversary:
svkN−C+1, . . . , svkN .

◦ Mint: The challenger samples |$〉 ← Mint(msk) and sends |$〉 to the
adversary.

◦ Verify: The adversary sends a state |P 〉 and an index id ∈ [N − C] to
the challenger. The challenger runs Ver(svkid, |P 〉), and sends the results
(b, |P ′〉) back to the adversary.

Let m be the number of mint queries made, which represents the number of
valid banknotes the adversary receives.

3. Challenge: The adversary tries to spend m + 1 banknotes. The adversary
sends to the challenger u > m purported banknotes, possibly entangled, each
with an id ∈ [N − c]:

(id1, |P 〉1), (id2, |P 〉2), . . . , (idu, |P 〉u)

Then for each purported banknote |P 〉k, the challenger runs Ver:

bk, |P ′〉k ← Ver(svkidk , |P 〉k)

The adversary wins the game if at least m+1 of the purported banknotes are
accepted.

The second form of security is security against sabotage. Sabotage is when
the adversary tricks one user into accepting an invalid banknote that is then
rejected by a second user.

Definition 5. F is secure against sabotage if for any polynomial-time quan-
tum adversary, the probability that the adversary wins the following security game
is negl(λ):

1. Setup: same as in definition 4

9

2. Queries: same as in definition 4
3. Challenge: The adversary sends to the challenger a banknote |P 〉 and two

distinct indices id1, id2 ∈ [N − c].
The challenger runs Ver using svkid1 , then svkid2 :

b1, |P ′〉 ← Ver(svkid1 , |P 〉)
b2, |P ′′〉 ← Ver(svkid2 , |P ′〉)

The adversary wins the game if the first verification accepts (b1 = 1) and the
second verification rejects (b2 = 0).

4 Simple Construction

Here we give a simpler version of our construction of FQM in order to illustrate
the main ideas. The simple construction is correct and secure, but only if the
adversary gets just one banknote. The full construction of FQM is given in
section 5.

Variables and Parameters

◦ Let N be any poly(λ).
◦ Let n = Ω(λ) be the dimension of the ambient vector space: Zn2 .
◦ Let A < Zn2 be a subspace, and let dim(A) = dim(A⊥) = n/2.
◦ Let V ≤ A and W ≤ A⊥ be two subspaces given by an svk.
◦ Let t = Θ(

√
n) be an upper bound on the dimension of V and W .

◦ Let C = n
4t .

Setup

Input: 1λ

1. Choose values for N,n, and t.
2. Sample A ≤ Zn2 such that dim(A) = dim(A⊥) = n/2.
3. For each id ∈ [N]: sample t indices uniformly and independently from [n/2].

Call this set Iid. Then sample another set called Jid from the same distribu-
tion.

4. Sample v1, . . . ,vn/2 ∈ A independently and uniformly at random.

Sample w1, . . . ,wn/2 ∈ A⊥ independently and uniformly at random.
5.

Let msk =
(
A, {vi}i∈[n/2], {wj}j∈[n/2], {Iid, Jid}id∈[N]

)
and output msk.

Franchise

Input: msk

1. Choose an id ∈ [N] that hasn’t been chosen before.
2. Let svkid =

(
Iid, Jid, {vi}i∈Iid , {wj}j∈Jid

)
, and output svkid.

10

Mint

Input: msk

1. Generate and output |$〉 = |A〉.

Ver

Input: svk, |P 〉

Let svk =
(
I, J, {vi}i∈I , {wj}j∈J

)
. Then let

V := span({vi}i∈I) and W = span({wj}j∈J)

1. Computational basis test: Check that OW⊥
(
|P 〉

)
= 1. Now |P 〉 becomes

|P1〉.
2. Take the quantum Fourier transform of |P1〉 to get |̃P1〉.
3. Fourier basis test: Check that OV ⊥

(
|̃P1〉

)
= 1. Now |̃P1〉 becomes |̃P2〉.

4. Take the inverse quantum Fourier transform of |̃P2〉 to get |P2〉. Let |P ′〉 =
|P2〉. Output 1 (accept) if both tests pass, and 0 (reject) otherwise. Also
output |P ′〉.

Proofs of Correctness and Security

Theorem 1. The simple FQM construction is correct.

Proof. We will show that for any valid banknote |$〉 = |A〉, Ver(svk, |$〉) outputs
(1, |$〉) with probability 1.

1. The computational basis test passes with probability 1. W ≤ A⊥, so A ≤
W⊥, and OW⊥(|A〉) = 1 with probability 1. Also the banknote is unchanged
by this test.

2. The quantum Fourier transform of the banknote is
∣∣A⊥〉 ([AC12]).

3. The Fourier basis test also passes with probability 1. Since V ≤ A, then
A⊥ ≤ V ⊥, and OV ⊥(

∣∣A⊥〉) = 1 with probability 1. The banknote is also
unchanged by this test.

4. Finally, the inverse quantum Fourier transform restores the banknote to its
initial state |A〉, and the banknote is accepted by Ver with probability 1.

Theorem 2. The simple FQM construction is secure against counterfeiting if
the adversary receives only m = 1 banknote.

Proof.
1) Preliminaries
Let’s say without loss of generality that the adversary receives C verification
keys, which correspond to the last C identities: id ∈ {N − C + 1, . . . , N}. Then
they receive 1 banknote, and then they make any polynomial number of verifi-
cation queries. Finally, they attempt the counterfeiting challenge.

We can define the subspaces Vadv ≤ A and Wadv ≤ A⊥ as the subspaces
known to the adversary. We also define Vid andWid analogously for each id ∈ [N]:

11

Definition 6.

◦ Let Iadv =
⋃
id>N−C Iid and Jadv =

⋃
id>N−C Jid.

◦ For any id ∈ [N], let Vid = span
(
{vi}i∈Iid

)
. Let Wid, Vadv, and Wadv be

defined analogously.

Let’s assume for simplicity that

dim(Vadv) = dim(Wadv) =: d

where d is fixed. This assumption isn’t necessary for proving security, but it does
make the proof simpler. Also note that d ≤ n/4.

2) We’ll use a hybrid argument to reduce the counterfeiting game to [AC12]’s
security game for secret key quantum money:

◦ h0 is the counterfeiting security game for the simple FQM construction. In
particular, the adversary receives one banknote |A〉, along with C franchised
verification keys.
◦ h1 is the same as h0, except the challenger simulates full verifiers: whenever

the adversary makes a verification query (id, |P 〉), the challenger verifies the
state using OA and OA⊥ instead of OW⊥

id
and OV ⊥

id
.

◦ h2 is essentially [AC12]’s security game for secret key quantum money: let
A ≤ Zn−2d2 be a uniformly random subspace such that dim(A) = dim(A⊥) =
n/2 − d. Next, the adversary gets a banknote |A〉 but no verification keys.
They can make verification queries, and the challenger will run Ver using full
verifiers: (OA and OA⊥).

Lemma 1. For any polynomial-time adversary A, their success probabilities in
h0 and in h1 differ by a negl(λ) function.

We’ll defer the proof of lemma 1 to section 6.

Lemma 2. If A is a polynomial-time adversary with non-negligible success prob-
ability in h2, then there is a polynomial-time adversary A′ with non-negligible
success probability in h3.

Proof. We can reduce the security game in h3 to the security game in h2. Let
A′ be given an h3 banknote |A〉, where A ≤ Zn−2d2 and dim(A) = dim(A⊥) =
n/2−d. We will turn |A〉 into an h2 banknote |B〉, where B ≤ Zn2 , and dim(B) =
dim(B⊥) = n/2:

1. Prepend |A〉 with |0〉⊗d |+〉⊗d:

Let |A′〉 = |0〉⊗d |+〉⊗d |A〉

|A′〉 is a subspace state, a uniform superposition over the subspace

A′ := span[êd+1, . . . , ê2d, (0
×2d ×A)]

where 0×2d ×A is all vectors in Zn2 for which the first 2d bits are 0 and the
rest form a vector in A. Also, dim(A′) = dim(A′⊥) = n/2.

12

2. Sample an invertible matrix M ∈ Zn×n2 uniformly at random. Then apply
M to |A′〉:

Let B = M ·A′ and |B〉 = M(|A′〉)

Observe that |B〉 is a uniformly random h2 banknote.

Additionally, the adversary knows d dimensions of B and d dimensions of
B⊥:

Vadv = M · span(êd+1, . . . , ê2d)

Wadv = M · span(ê1, . . . , êd)

A′ derives C h2-verification keys whose vectors span Vadv and Wadv. Finally, A′
runs A, giving it the banknote |B〉 along with the verification keys.

When A makes a verification query (id, |P 〉), A′ simulates the h2 challenger’s
response as follows, by converting |P 〉 into an h3 banknote:

1. Let |P ′〉 = M−1(|P 〉).
2. Check that the first 2d qubits of |P ′〉 are |0〉⊗d |+〉⊗d.
3. Query the h3 challenger with the remaining n− 2d qubits of |P ′〉. Let |P ′′〉

be the state returned by the challenger. Accept the banknote if and only if
the first 2d qubits passed their test, and the challenger accepted as well.

4. Return M(|0〉⊗d |+〉⊗d |P ′′〉) to the h2 adversary.

This procedure simulates h2 for A. Also, note that the probability that |P ′〉
passes h3 verification is at least the probability that |P 〉 passes h2 verification.

Finally, when A attempts to win the challenge by outputting several pur-
ported h2 banknotes, A′ converts these into h3 banknotes. If A wins in h2 with
non-negligible probability, then A′ wins in h3 with at least that probability.

Lemma 3. In h3, any polynomial-time adversary has negligible success proba-
bility.

Proof. [AC12]’s security game is similar to h3, except the adversary can query
both OA and OA⊥ . They proved the following:

Theorem 3 ([AC12], Theorem 25). Let the adversary get |A〉, a random
n′-qubit banknote, along with quantum query access to OA and OA⊥ . If the ad-
versary prepares two possibly entangled banknotes that both pass verification with
probability ≥ ε, for all 1/ε = o(2n

′/2), then they make at least Ω(
√
ε2n

′/4) oracle
queries.

Let n′ = n − 2d, the size of the banknote in h3. Note that n′ ≥ n/2. Next,
let ε = 2−n

′/3. Note that ε = negl(λ). Finally, the number of queries needed to
win with probability ≥ ε is

Ω(
√
ε2n

′/4) = Ω(2n
′/4−n′/6) = Ω(2n

′/12)

Any polynomial-time adversary makes fewer than that many queries, so no
polynomial-time adversary can win with non-negligible probability.

13

Putting together lemmas 1, 2, 3, we get that any polynomial-time adversary
has negligible probability of winning the counterfeiting security game for the
simple construction of FQM.

Theorem 4. The simple FQM construction is secure against sabotage if the
adversary receives only m = 1 banknote.

Proof. The proof of this theorem follows the proof of 2, except at the end. We
need to show that in h3, any polynomial-time adversary has negligible probability
of succeeding at sabotage. To show this, we need the following lemma:

Lemma 4 ([AC12], Lemma 21). In h3, Ver projects |P 〉 onto |A〉 if it accepts
and onto a state orthogonal to |A〉 if it rejects.

That means that if a purported banknote is verified twice, it is either accepted
both times or rejected both times. Therefore, sabotage is not possible in h3.

Again, by lemmas 1 and 2, any polynomial-time adversary has negligible
probability of winning the sabotage security game for the simple construction of
FQM.

5 Full Construction

The full construction of FQM adds a signature scheme and a secret key en-
cryption scheme, which let us hand out the subspaces Vid,Wid as part of the
banknote. As a result, a user can verify many banknotes, each for a different
subspace A, without needing to call Franchise for each banknote.

The signature and encryption schemes have the following syntax.

Definition 7. ([KL14], Definition 12.1) A signature scheme comprises the
following three probabilistic polynomial-time algorithms:

◦ SigKeyGen takes a security parameter λ, and returns (sig pk, sig sk), the
public and secret keys.

sig pk, sig sk ← SigKeyGen(1λ)

◦ Sign takes a message msg ∈ {0, 1}∗ and the secret key and produces σ, the
signature for msg.

σ ← Sign(sig sk,msg)

◦ SigVer takes msg, σ, and the public key, and outputs a bit b to indicate the
decision to accept (b = 1) or reject (b = 0) the signature-message pair. Also,
SigVer is deterministic.

b := SigVer(sig pk,msg, σ)

The signature scheme is existentially unforgeable under an adaptive chosen-
message attack. Such a signature scheme can be constructed from one-way func-
tions ([KL14]).

14

Definition 8. ([KL14], Definition 3.7). A secret key encryption scheme
comprises the following three probabilistic polynomial-time algorithms:

◦ EncKeyGen takes a security parameter λ and produces a secret key enc k.

enc k ← EncKeyGen(1λ)

◦ Enc encrypts a message msg ∈ {0, 1}∗ using the key enc k to produce a
cyphertext c.

c← Enc(enc k,msg)

◦ Dec decrypts c, again using enc k. Dec is deterministic, so for any enc k
produced by EncKeyGen, Dec always decrpyts c correctly.

msg := Dec(enc k, c)

The secret key encryption is CPA-secure, and it can also be constructed from
one-way functions ([KL14]).

Variables

◦ Let |$〉, a valid banknote, comprise a quantum state |Σ〉 and some classical
bits.

◦ Let |P 〉, a purported banknote, comprise a quantum state |Π〉 and some
classical bits.

Setup

Input: 1λ

1. Choose values for the parameters: n = Ω(λ), t = Θ(
√
n).

2. Set up one signature scheme and n encryption schemes by computing:

(sig pk, sig sk)← SigKeyGen(1λ)

(enc k1, . . . , enc kn)← EncKeyGen(1λ), . . . ,EncKeyGen(1λ)

3. Let msk = (sig pk, sig sk, enc k1, . . . , enc kn), and then output msk.

Franchise

Input: msk

1. Sample t indices uniformly and independently from [n/2]. Call this set I.
Then sample another set called J from the same distribution.

2. Let svk = (sig pk, I, J, {enc ki}i∈I , {enc kj+n/2}j∈J), and then output svk.

15

Mint

Input: msk

1. Sample a subspace A < Zn2 such that dim(A) = dim(A⊥) = n/2, uniformly
at random.

2. Create the subspace state for A, and let |Σ〉 = |A〉.
3. Sample n/2 random vectors in A: {v1, . . . ,vn/2} ∈R A. And sample n/2

random vectors in A⊥: {w1, . . . ,wn/2} ∈R A⊥.
4. Encrypt the vs and ws, each with a different enck:

Let c1, . . . , cn
2

=
[
Enc(enc k1,v1), . . . ,Enc(enc kn

2
,vn

2
)

cn
2 +1, . . . , cn =

[
Enc(enc kn

2 +1,w1), . . . ,Enc(enc kn,wn
2

)

5. Sign the ciphertexts. Let σ ← Sign[sig sk, (c1, . . . , cn)].
6. Construct the banknote. Let |$〉 = (|Σ〉 , c1, . . . , cn, σ). Finally, output |$〉.

Ver

Inputs: svkid, |P 〉

1. Check the signature: SigVer(sig pk, (c1, . . . , cn), σ).
2. Decrypt any ciphertexts for which the key is available. For every i ∈ Iid com-

pute vi = Dec(enc ki, ci), and for every j ∈ Jid, compute wj = Dec(enc kj+n/2, cj+n/2).

Additionally, define two subspaces, Vid,Wid:

Vid := span({vi}i∈Iid)

Wid := span({wj}j∈Jid)

3. Recall that |P 〉 comprises a quantum state |Π〉 and some classical bits.
Computational basis test: Check that OW⊥

id
(|Π〉) = 1. After this step,

|Π〉 becomes |Π1〉.
4. Take the quantum Fourier transform of |Π1〉 to get ˜|Π1〉.
5. Fourier basis test: Check that OV ⊥

id
(˜|Π1〉) = 1. After this step, ˜|Π1〉 be-

comes ˜|Π2〉.
6. Take the inverse quantum Fourier transform of ˜|Π2〉 to get |Π2〉.

Let |P ′〉 be the state that |P 〉 has become, with |Π〉 replaced with |Π2〉.
Output 1 (accept) if both tests pass, and 0 (reject) otherwise. Also output
|P ′〉.

Proofs of Correctness and Security

Theorem 5. The full construction of franchised quantum money is correct.

16

Proof. In steps 1 and 2 of Ver, we check the signature and decrypt the cipher-
texts. With probability 1, the signature check passes, and the ciphertexts are
correctly decrypted. This follows from the correctness of the signature and en-
cryption schemes.

After the first two steps, Ver is the same as it was in the simple construction.
Because the simple construction is correct, the full construction is correct as
well.

Theorem 6. The full construction of franchised quantum money is secure against
counterfeiting and sabotage.

Proof. We will use a hybrid argument to show that the adversary’s success prob-
ability at counterfeiting or sabotage with the full construction is close to what it
is with the simple construction. Since the simple construction is secure against
counterfeiting and sabotage, the full construction is secure as well.

1) Preliminaries
Without loss of generality, let us say that the adversary receives C svks, then
receives m valid banknotes from the challenger, and finally makes multiple Ver
queries.

Furthermore, let the challenger keep a record of all the banknotes and svks
it generated. Finally let the ciphertexts (c1, . . . , cn) of each valid banknote be
unique. This occurs with overwhelming probability.

2) Next, we’ll use a sequence of hybrids to simplify the situation and remove the
need for the signature and encryption schemes.

◦ h0 uses the full FQM construction in the counterfeiting or sabotage security
game.
◦ h1 is the same as h0, except Ver only accepts a purported banknote if its

ciphertexts (c1, . . . , cn) match those of one of the m valid banknotes given
to the adversary.
◦ h2 is the same as h1, except for any ciphertext ci for which the adversary

does not have the decryption key, ci is replaced with junk: the encryption
under enc ki of a random message.

The adversary has negl(λ) advantage in distinguishing h0 and h1. The sig-
nature scheme is existentially unforgeable under an adaptive chosen-message
attack, so except with negl(λ) probability, any banknote that passed Ver in h0
had ciphertexts that matched one of the m valid banknotes.

The adversary has negl(λ) advantage in distinguishing h1 and h2 because the
encryption scheme is CPA-secure. For any i for which the adversary does not
have the decryption key, the adversary receives either m ciphertexts of random
messages or m ciphertexts of potentially useful messages. CPA security is equiv-
alent to left-or-right security ([KL14]), which implies that the adversary cannot
distinguish these two cases.

17

3) Next, we’ll use another set of hybrids to relate the full construction with the
simple construction.

◦ h3 is the same as h2, except we do not use the signature or encryption
schemes. Each valid banknote comprises a subspace state |ψA〉 and a set of
plaintext v vectors in A and w vectors in A⊥. Finally, to verify a purported
banknote, the challenger checks that the v and w vectors associated with a
purported banknote match those of a valid banknote. Then they use what-
ever svks were recorded along with the valid banknote to verify the subspace
state.

◦ h4 is the simple FQM construction with just one banknote. This is the same
as h3, except the adversary receives only 1 valid banknote, and the v and w
vectors are given by Franchise and are not included with the banknote.

The adversary’s best success probability is the same in h2 and h3 because
the signature and encryption schemes were not necessary in h2, so h3 presents
essentially the same security game to the adversary.

Lemma 5. The best success probability for an adversary in h3 is at most m
times the best success probability in h4.

Proof. Given any h3 adversary A, there is an h4 adversary A′ that simulates A.
A′ receives one valid banknote and generates m − 1 other banknotes. Then A′
runs A with the m banknotes. When A makes a verification query, A′ simulates
the verifier for the m− 1 banknotes it generated and queries the h4 verifier for
the banknote that it received. Finally, A outputs some purported banknotes at
the challenge step, which A′ outputs as well.

If A wins in h3, then there are at least m+ 1 purported banknotes that pass
verification, and at least two of them have the same v and w vectors. A′ wins
in h4 if the two banknotes with matching vectors also match the vectors of the
banknote given to A′. This happens with probability 1

m , by the symmetry of the
m banknotes. Therefore, A′’s success probability is 1

m times A’s.

4) In h4, the adversary has negligible probability of winning the counterfeiting or
sabotage games, by theorems 2 and 4. Since m = O(poly(λ)), for any polynomial-
time adversary, then any polynomial-time adversary has negligible probability
of winning the counterfeiting or security games for the full FQM construction.

6 Distinguishing Game

In order to prove lemma 1, we will use the adversary method of [Amb02]. We
will study the distinguishing game, in which an adversary that is more powerful
than the one in lemma 1 tries to distinguish full and franchised verifiers. Then
we show that the more-powerful adversary still has negligible advantage.

In the distinguishing game, the adversary is given a classical description of A,
as well as other information that they don’t get in the security game. However,
one piece of information remains hidden to them: the verification keys used by the

18

franchised verifiers. More formally, we say the adversary is given the msk, which
includes every (Vid,Wid). But the verifiers will actually use (M · Vid,M ·Wid)
for some random matrix M . The next two definitions make this precise.

Definition 9. Let M(A) be the set of all matrices M ∈ Zn×n2 such that:

◦ M is invertible
◦ If x ∈ A, then MTx ∈ A, and if x ∈ A⊥, then MTx ∈ A⊥.

Definition 10. For any M ∈ M(A), we also treat M as a function mapping
one master secret key to another. Essentially, M is applied to every v or w
vector that the adversary did not receive. More formally, for any msk:

M(msk) =
(
A, {vi}i∈Iadv

, {M ·vi}i6∈Iadv
, {wj}j∈Jadv

, {M ·wj}j 6∈Jadv
, {Iid, Jid}id∈[N]

)
Letmsk′ = M(msk), and let V ′adv,W

′
adv, V

′
id, andW ′id be defined analogously.

Then V ′adv = Vadv and W ′adv = Wadv because the adversary’s v and w vectors
are not changed by M . Therefore, in the counterfeiting and sabotage security
games, the adversary receives the same information, whether the master secret
key is msk or msk′.

Next, the adversary in the distinguishing game can also query OW⊥
id

and OV ⊥
id

,
rather than just Ver. The following definitions bundle together the oracles that
the adversary can query.

Definition 11. The franchised verification oracle for a given msk is OFran[msk].
It takes as input an id ∈ [N −C], a selection bit s ∈ {0, 1}, and a vector x ∈ Zn2 .
Then

OFran[msk](id, s,x) =

{
OW⊥

id
(x) s = 0

OV ⊥
id

(x) s = 1

Definition 12. The full verification oracle for a given msk is OFull[msk]
or OFull[A]. It takes as input id ∈ [N − C], s ∈ {0, 1}, and x ∈ Zn2 . Then

OFull[A](id, s,x) =

{
OA(x) s = 0

OA⊥(x) s = 1

Now we can define the distinguishing game precisely.

Definition 13. The distinguishing game takes as input an msk, which is
given to the challenger and the adversary. Then:

1. The challenger samples b ∈R {0, 1} and M ∈RM(A).
2. The adversary makes quantum queries to the challenger. If b = 0, the chal-

lenger uses OFull[A] to answer the queries; if b = 1, the challenger uses
OFran[M(msk)].

3. The adversary outputs a bit b′, and they win if and only if b′ = b.

19

Theorem 7. Any polynomial-time quantum adversary A has negligible advan-
tage in the distinguishing game. That is:∣∣∣P [A = 1|b = 0]− P [A = 1|b = 1]

∣∣∣ ≤ negl(λ)

where the probabilities are over the choice of M ∈M(A) and A’s randomness.

We’ll prove theorem 7 later using the adversary method, but assuming the-
orem 7 for now, we can prove lemma 1.

Proof of lemma 1

We want to show that for any polynomial-time adversary A, their success proba-
bilities in h0 and in h1 differ by a negl(λ) function. Recall that h0 uses franchised
verifiers, whereas h1 uses full verifiers.

Assume toward contradiction that A’s success probabilities in h0 and h1
differ by a non-negligible amount. Then we can construct an adversary A′ that
has non-negligible advantage in the distinguishing game.
A′ simulates the counterfeiting security game and runsA on it. Givenmsk,A′

constructs |A〉 and the C franchised verification keys. When A queries a verifier,
A′ simulates this by querying either OFull[A] (if we’re in h1) or OFran[M(msk)]
(if we’re in h0). A′ can even simulate the counterfeiting challenge, checking if
A successfully counterfeited. Finally, A′ outputs 1 if A won the security game,
and 0 otherwise. h0 and h1 for the counterfeiting game correspond to b = 1
and b = 0 in the distinguishing game, so A′ has non-negligible advantage in the
distinguishing game.

This is a contradiction, by theorem 7, so in fact, the success probabilities of
A in the two hybrids must be negligibly close.

The Adversary Method

Now we’ll prove theorem 7 using the adversary method7. First, we’ll define the
scenario that [Amb02] considered, which is an abstract version of the distin-
guishing game, and then we’ll state their main theorem.

Definition 14. Let O be a set of oracles, each of which has range {0, 1}. Let
f : O → {0, 1} be a predicate that takes an oracle as input. Let X,Y partition
O such that f(Ox) = 0, for all Ox ∈ X, and f(Oy) = 1, for all Oy ∈ Y .

Next, the adversary will try to compute f on every input, so it must distin-
guish oracles in X from oracles in Y .

Definition 15. Let AO be a quantum algorithm with query access to an O ∈ O.
We say that A approximately computes f if for every O ∈ O, P [AO =
f(O)] ≥ 2/3.

7 Our proof is inspired by [AC12].

20

Definition 16. Let u, u′ be upper bounds that satisfy:

◦ For any Ox ∈ X and any input i to Ox, POy∈Y [Ox(i) 6= Oy(i)] ≤ u.
◦ For any Oy ∈ Y and any input i to Oy, POx∈X [Ox(i) 6= Oy(i)] ≤ u′.

Theorem 8 ([Amb02], Thm. 2). If A approximately computes f , then A
makes at least Ω

(
1√
u·u′

)
queries to O.

Proof of theorem 7

The distinguishing game’s format matches the format considered by the ad-
versary method. For a given msk, let X comprise only the full verification
oracle, {OFull[A]}. Let Y comprise all possible franchised verification oracles:
Y = {OFran[M(msk)]|M ∈M(A)}. And let O = X

⋃
Y . Then f equals b from

the distinguishing game.

Next, we will assume that each honest verifier gets at least t/4 dimensions of
Vid and t/4 dimensions of Wid that are unknown to the adversary. As a result,
each verifier accepts a negligible fraction of the vectors in Zn2 . So it is hard for
the adversary to find an x ∈ Zn2 on which the full and franchised oracles behave
differently, which makes distinguishing them hard. The next definition and next
two lemmas expand on this argument.

Definition 17. An msk ← Setup(1λ) is good if for every id ∈ [N − C],

◦ dim[span(Vadv, Vid)] ≥ dim(Vadv) + t/4
◦ dim[span(Wadv,Wid)] ≥ dim(Wadv) + t/4

Lemma 6. With overwhelming probability in λ, msk ← Setup(1λ) is good.

Proof.

1) With overwhelming probability, |Iid\Iadv| ≥ t/4 for all id ∈ [N − C].
First, |Iadv| ≤ Ct = n/4, so the probability that a uniformly random i ∈ [n/2]
is in Iadv is ≤ 1/2. Then

Let µ = EIid [|Iid\Iadv|] ≥ t/2

Next we use the multiplicative Chernoff bound:

P
[
|Iid\Iadv| ≤ t/4

]
≤ P

[
|Iid\Iadv| ≤ µ/2

]
<

(
e−1/2

(1/2)1/2

)µ
=
(2

e

)µ/2
≤
(2

e

)t/4
=
(2

e

)Θ(
√
n)

= negl(λ)

Then by the union bound, the probability that |Iid\Iadv| ≥ t/4 for all id ∈
[N − C] is 1− (N − C) · negl(λ) = 1− negl(λ).

21

2) For convenience, let’s say that Iid\Iadv =
[
|Iid\Iadv|

]
. Given that |Iid\Iadv| ≥

t/4, the following event E occurs with overwhelming probability:

E : dim
[
span(Vadv,v1, . . . ,vt/4)

]
= dim(Vadv) + t/4

P{vi}i∈[t/4]
(E) ≥ 1− P (v1 ∈ Vadv)− . . .− P [vt/4 ∈ span(Vadv,v1, . . . ,vt/4−1)]

≥ 1− 2n/4−n/2 − . . .− 2n/4+t/4−1−n/2

≥ 1− t

4
· 2(t/4−n/4) = 1− 2−Θ(n) = 1− negl(λ)

3) Putting together steps 1 and 2, we have that with overwhelming probability
in λ,

dim
[
span(Vadv, Vid)

]
≥ dim(Vadv) + t/4

Lemma 7. Let msk be good, let M ∈RM(A), and let msk′ = M(msk). Then
for any id ∈ [N − C] and any x ∈ Zn2 ,

◦ If x 6∈ A, then P
(
x ∈W ′id

⊥)
= 2−Ω(

√
n).

◦ If x 6∈ A⊥, then P
(
x ∈ V ′id

⊥)
= 2−Ω(

√
n).

The probability is over the choice of M ∈RM(A).

Proof. We’ll prove the first claim – the second claim’s proof is similar.

1) Let S = span({wj}j∈Jid\Jadv
). This is the random subspace that verifier id has

that the adversary cannot predict. We know from lemma 6 that dim(S) ≥ t/4.
Also M · S ≤W ′id, so W ′⊥id ≤ (M · S)⊥. Then:

PM
(
x ∈W ′id

)
≤ PM

(
x ∈ (M · S)⊥

)
= PM

(
xT ·M · S = 0

)
2) MTx is a random vector satisfying MTx 6∈ A. First, MT maps A to A and
A⊥ to A⊥. Since x 6∈ A, x has a non-zero component in A⊥, which MT maps to
a non-zero component in A⊥. Therefore, MTx 6∈ A.

PM
(
xT ·M · S = 0

)
= PM

(
MTx ∈ S⊥

)
≤ |S⊥|
|Zn2\A|

=
2dim(S⊥)

2n − 2n/2
≤ 2n−t/4

2n−1
= 21−t/4 = 2−Ω(

√
n)

Lemma 8. If msk is good, then any quantum algorithm that approximately com-
putes f needs at least 2Ω(

√
n) oracle queries.

Proof.

1) If OFull and OFran differ on an input, then OFull rejects the input, and OFran
accepts it.

22

For any input (id, s,x) to an oracle, if OFull[A](id, s,x) = 1, then
OFran[M(msk)](id, s,x) = 1 as well. When s = 0, OFull accepts iff x ∈ A. Since
A ≤ W⊥id , OFran accepts as well. Similar reasoning shows that when s = 1, if
OFull accepts, then OFran accepts as well.

Therefore, the only way for OFull and OFran to give different responses to
an input is if:

OFull[A](id, s,x) = 0, and OFran[M(msk)](id, s,x) = 1

2) Lemma 7 says that if OFull[A](id, s,x) = 0, then

PM←M(A)

(
OFran[M(msk)](id, s,x) = 1

)
= 2−Ω(

√
n)

so we can set u = 2−Ω(
√
n). Also, we can set u′ = 1 because 1 is greater than or

equal to any probability.
Finally, in order to approximately compute f , the number of oracle queries

needed is Ω
(

1√
u·u′

)
= 2Ω(

√
n).

Lemma 9. For any polynomial-time quantum algorithm A, and any good msk,
there exists an M ∈M(A) such that:∣∣∣P (AOFull[A] = 1)− P (AOFran[M(msk)] = 1)

∣∣∣ ≤ 2−Θ(
3√
n)

Proof.
1) Let ∆ be the minimum value of∣∣∣P (AOFull[A] = 1)− P (AOFran[M(msk)] = 1)

∣∣∣
over all M , and let p = P (AOFull[A] = 1).

Next, assume toward contradiction that there is some polynomial-time algo-

rithm A and some good msk such that ∆ > 2−Θ(
3√
n). Then we’ll construct an

algorithm A′ that approximately computes f using 2Θ(
3√
n) queries (by lemma

8, we know this is not possible).
A′ runs 4n/∆2 independent iterations of A and averages the outputs. Let p̄

be the average number of iterations of A that output 1. Next, A′ outputs 0 if
|p̄− p| ≤ ∆/2 and outputs 1 otherwise.

2) A′ gives the incorrect value for f if:

1. |p̄− p| ≤ ∆/2, but the oracle is franchised.
2. |p̄− p| > ∆/2, but the oracle is full.

In the first case,
∣∣E[p̄]− p

∣∣ > ∆, so
∣∣p̄−E[p̄]

∣∣ ≥ ∆/2. In the second case as well,∣∣p̄−E[p̄]
∣∣ ≥ ∆/2.

The probability of an error is bounded by the Hoeffding inequality:

P
(∣∣p̄−E[p̄]

∣∣ ≥ ∆/2) ≤ 2e−2(∆/2)
2·(4n/∆2) = 2e−2n

23

Next, A′ approximately computes f because for any O ∈ O, A′ computes
f(O) with probability ≥ 1− 2e−2n > 2/3.

3) Finally, A′ makes 2Θ(
3√
n) queries. First, A makes 2O(logn) queries because it

runs in polynomial time. So the number of queries that A′ makes is:

4n

∆2
· 2O(logn) = 2O(logn)+O(

3√
n) = 2O(

3√
n)

Since no algorithm can approximately compute f using 2O(
3√
n) queries, this

is a contradiction. So for any polynomial-time A, and any good msk, there exists
an M such that∣∣∣P (AOFull[A] = 1)− P (AOFran[M(msk)] = 1)

∣∣∣ ≤ 2−Θ(
3√
n)

Lemma 10. For any polynomial-time quantum algorithm A, any good msk, and
a uniformly random M ∈RM(A),∣∣∣P (AOFull[A] = 1)− P (AOFran[M(msk)] = 1)

∣∣∣ ≤ 2−Θ(
3√
n)

The probability is over A’s randomness and the choice of M .

Note that lemma 10 is equivalent to theorem 7.

Proof. The problem of distinguishing full and franchised oracles is random self-
reducible. Since lemma 9 says the algorithm’s distinguishing advantage is neg-
ligible in the worst case, then their advantage is also negligible in the average
case.

Assume toward contradiction that there exists a polynomial-time quantum
algorithm A such that for a uniformly random M ∈RM(A),

δ :=
∣∣∣P (AOFull[A] = 1)− P (AOFran[M(msk)] = 1)

∣∣∣ = 2−o(
3√
n)

Then we’ll construct a polynomial-time algorithm A′ that runs A as a subroutine

and achieves δ = 2−o(
3√
n) for all M (by lemma 9, this is impossible).

Given any M ∈ M(A), A′ samples a uniformly random R ∈R M(A). Then
R[M(msk)] is an “average-case” master secret key in the sense thatR[M(msk)] =
(R ·M)(msk), and R′ := R ·M is uniformly random in M(A).
A′ gives msk to A and simulates the distinguishing game in which the fran-

chised verifiers are using R[M(msk)]. Whenever A queries the oracle, A′ uses R
as a change-of-basis for the query before forwarding it to the challenger. In A’s
view, it is dealing with a uniformly random R′ ∈M(A), so A has distinguishing

advantage δ. Therefore, A′ has the same advantage δ = 2−o(
3√
n), but for every

M . This contradicts lemma 9, so in fact, lemma 10’s claim is true.

Lemma 10 proves theorem 7.

24

Acknowledgements

This work is supported in part by NSF. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of NSF.

This work is also supported by MURI Grant FA9550-18-1-0161 and ONR
award N00014-17-1-3025.

We thank Zeph Landau, Umesh Vazirani, and the Princeton Writing Center
for helpful feedback on various drafts of this paper.

References

[Aar09] Scott Aaronson. Quantum copy-protection and quantum money. In Proceed-
ings of the 2009 24th Annual IEEE Conference on Computational Complex-
ity, CCC ’09, pages 229–242, Washington, DC, USA, 2009. IEEE Computer
Society.

[Aar16] Scott Aaronson, 2016. http://www.scottaaronson.com/blog/?p=2854.
[AC12] Scott Aaronson and Paul Christiano. Quantum money from hidden sub-

spaces. Proceedings of the Annual ACM Symposium on Theory of Comput-
ing, 03 2012.

[Amb02] Andris Ambainis. Quantum lower bounds by quantum arguments. J. Com-
put. Syst. Sci., 64(4):750–767, June 2002.

[BN08] Dan Boneh and Moni Naor. Traitor tracing with constant size ciphertext. In
Proceedings of the 15th ACM Conference on Computer and Communications
Security, CCS ’08, page 501–510, New York, NY, USA, 2008. Association
for Computing Machinery.

[BS20] Amit Behera and Or Sattath. Almost public quantum coins, 2020.
[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Yvo G.

Desmedt, editor, Advances in Cryptology — CRYPTO ’94, pages 257–270,
Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[FGH+12] Edward Farhi, David Gosset, Avinatan Hassidim, Andrew Lutomirski, and
Peter Shor. Quantum money from knots. In Proceedings of the 3rd Innova-
tions in Theoretical Computer Science Conference, ITCS ’12, page 276–289,
New York, NY, USA, 2012. Association for Computing Machinery.

[GKW18] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant
traitor tracing from learning with errors. In Proceedings of the 50th An-
nual ACM SIGACT Symposium on Theory of Computing, STOC 2018, page
660–670, New York, NY, USA, 2018. Association for Computing Machinery.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. Chapman Hall/CRC, 2nd edition, 2014.

[KNY21] Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa. Secure software
leasing from standard assumptions, 2021.

[NC00] Michael A. Nielsen and Isaac Chuang. Quantum Computation and Quantum
Information. American Journal of Physics, 70(5):558, 2000.

[PFP15] Marta Conde Pena, Jean-Charles Faugère, and Ludovic Perret. Algebraic
cryptanalysis of a quantum money scheme the noise-free case. In Jonathan
Katz, editor, Public-Key Cryptography – PKC 2015, pages 194–213, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

25

[Rob21] Bhaskar Roberts. Security analysis of quantum lightning. Springer-Verlag,
2021.

[RS19] Roy Radian and Sattath. Semi-quantum money. In Proceedings of the 1st
ACM Conference on Advances in Financial Technologies, AFT ’19, page
132–146. Association for Computing Machinery, 2019.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, January
1983.

[Zha19] Mark Zhandry. Quantum lightning never strikes the same state twice. In
Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2019, pages 408–438, Cham, 2019. Springer International Publish-
ing.

26

