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Abstract. A substantial effort has been devoted to proving optimal
bounds for the security of key-alternating ciphers with independent sub-
keys in the random permutation model (e.g., Chen and Steinberger, EU-
ROCRYPT ’14; Hoang and Tessaro, CRYPTO ’16). While common in
the study of multi-round constructions, the assumption that sub-keys are
truly independent is not realistic, as these are generally highly correlated
and generated from shorter keys.

In this paper, we show the existence of non-trivial distributions of limited
independence for which a t-round key-alternating cipher achieves optimal
security. Our work is a natural continuation of the work of Chen et al.
(CRYPTO ’14) which considered the case of t � 2 when all-subkeys are
identical. Here, we show that key-alternating ciphers remain secure for
a large class of pt� 1q-wise and pt� 2q-wise independent distribution of
sub-keys.

Our proofs proceed by generalizations of the so-called Sum-Capture The-
orem, which we prove using Fourier-analytic techniques.

Keywords: Provable Security, Key-alternating Ciphers

1 Introduction

Key-alternating ciphers (KACs) alternate the application of fixed, invertible, and
key-independent permutations P1, . . . , Pt on the n-bit strings with xor-ing t� 1
n-bit sub-keys s0, s1, . . . , st, i.e., the output of the KAC on input x and sub-keys
s � ps0, s1, . . . , stq is

KACspxq � st � Ptpst�1 � Pt�1p� � �P2ps1 � P1ps0 � xqq � � � qq ,

where � denotes the bit-wise xor. Several modern block cipher designs are KACs
– these include in particular Substitution-Permutation Networks (SPNs), like
AES [10], PRESENT [3] and LED [14].

Most theoretical analyses of KACs [13,4,22,18,6,9,16] have proved their se-
curity as a (strong) pseudorandom permutation in a model where the permu-
tations P1, . . . , Pt are randomly and independently chosen, and can be queried
by the adversary. Moreover, the sub-keys s � ps0, s1, . . . , stq are also chosen



independently.1 These results show that the number of queries q (to the keyed
construction, as well as to the permutations) needed to break the construction
is roughly q � N t{pt�1q (where N � 2n), which has been shown to be optimal.

This paper: Security with correlated sub-keys. Real sub-keys are how-
ever not independent, and are generated from a shorter key using a specific key
schedule algorithm. However, very little progress has been made in understanding
when such key schedules are secure, and independence assumptions are common
even in cryptanalysis. In this paper, we therefore ask the following question:

For which distributions of sub-keys can we still obtain optimal security
against q � N t{pt�1q queries?

We note that this question was partially addressed by Dunkelman et al. [11] for
t � 1 and later by Chen et al. [5], who proved such bounds for the case where
t � 2, and the subkeys satisfy the constraint s0 � s1 � s2.2 Here, we consider
the extension of their work beyond three rounds.

We also stress that our goal is not that of finding practical key schedules
which are comparable to those used in actual block cipher designs. Rather, we
aim for a broader understanding of correlated key schedules, and when they
preserve optimal security. We also point out that with respect to our current
state of knowledge, even modest savings in randomness to generate the keys are
not known for multi-round KACs.

Reducing key dependence for arbitrary rounds. As our first contri-
bution, we show that for any t-round KAC with t � 1 subkeys, there are key
schedules that merely depend on t�1 independent and uniform keys that achieve
q � ΩpN t{pt�1qq security. This generalizes the result for t � 2 proved by Chen
et al. [5] to multi-round instantiations.

We give a general sufficient condition on key distributions for s that achieve
optimal security – specifically our condition considers distributions where the
t� 1 subkeys s for the t-round KAC are a linear function of a vector k of t� 1
“master” keys, denoted as s � Ak, in which we view each master key and subkey
as an element of the field F2n . The sufficient conditions for the key schedules
are, in particular, as follows:

1. Any t� 2 rows of A forms a matrix of rank t� 2.
2. For any t rows of A,

– the t rows form a matrix of rank t� 1.
– there exists a linear combination of the t rows such that it gives zero vector
and there are two neighboring rows with non-zero coefficients.

1 In fact, Chen and Steinberger [6] already noted that their result holds in the case
where the underlying subkeys are t-wise independent. The tight concrete bound
proved by Hoang and Tessaro [16] also extends to t-wise independent setting.

2 Actually, Chen et al. [5] also addressed reducing the number of keys and permutations
in parallel. They showed that a 2-round KAC is secure against q � ΩpN2{3q queries
when instantiated by a single permutation and a single key with a key schedule built
over a linear orthomorphism.
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For example, a suitable and natural key schedule that satisfies our condition is
the one where s is from the pt � 1q-wise independent distribution obtained by
evaluating a random polynomial of degree t� 2 at t� 1 distinct points over F2n .
In fact, while our condition on key schedules is more restrictive than pt�2q-wise
independence, it still allows for simple key schedules for small rounds (e.g. t � 3
and t � 4) that do not require field multiplication, which may be considered an
expensive operation, i.e., for t � 3, we show that one can set s � pk0, k0, k1, k1q
to have q � ΩpN3{4q. For t � 4, we set s � pk0, k1, k2, k0 � k1, k1 � k2q to have
q � ΩpN4{5q.

Less independence for more rounds.Of course, we would like to understand
whether even more randomness can be saved. We make progress by saving n
more bits for a sufficiently large number of rounds. Again, we give a general
condition on distributions characterized by linear functions mapping t� 2 n-bit
keys k to t � 1 keys s, i.e., s � Ak. For any linear mapping A satisfying the
property that each t� 2 rows of A have rank t� 2, our security proof shows, for
t ¡ 5, a bound that gives security strictly better than q � ΩpN pt�1q{tq and for
t ¥ 8, we achieve q � ΩpN t{pt�1qq security. Again, one particular instantiation
is obtained by evaluating a random polynomial of degree t� 3 at t� 1 distinct
points over F2n .

How far can we go? The end question is of course whether we can push our
results even further. Ideally, it would be possible to use a single-key schedule
(as in Chen et al.) for an arbitrary number of rounds. However, as we explain
below, the classical approach to prove security for limited independence is via
so-called “sum-capture theorems” [2,23]. In the paper below, we show that the
sum-capture theorem necessary to study the trivial key schedule beyond two
rounds is not true. This, of course, does not mean that the resulting construc-
tion is insecure, but improving beyond the results of this paper would require
substantially new counting techniques. (See Section 4.3)

Other related works.Another aspect of theoretical analyses over KACs is to
reduce the number of random permutations used in the construction. Recently,
Wu et al. [24] showed that for a three round KAC instantiated with four uniform
and independent subkeys and a single random permutation is secure against
q � ΩpN3{4q adversarial queries. Dutta [12] considered minimizing the tweakable
KAC by reducing the number of random permutations and proves the security
of q � ΩpN2{3q for the 2-round tweakable KAC by Cogliati et al. [7] and 4-round
tweakable KAC by Cogliati and Seurin [8].

1.1 Technical Overview

Our paper follows the well-established paradigm of proving security of key-
alternating ciphers based on the expectation method by Hoang and Tessaro [16],
combined with generalizations of sum-capture theorems as proposed by Chen et
al. [5].

Chain-based analyses. The core of existing analyses proceeds by identifying
a set of bad transcripts which contains so-called chains – these are transcripts
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where the adversary has made direct queries to P1, P2, . . . , Pt, and/or to the con-
struction, which are linked together by the chosen subkeys. In the ideal world,
such bad transcript would likely become inconsistent with the real world. i.e., the
probability of obtaining the bad transcript from the real world can be zero. For-
mally, we represent a transcript as τ � pQE ,Q1, . . . ,Qt,kq, where QE contains
queries to the construction, and Qi’s are the queries to the individual permuta-
tions. Further, k are the keys from which the actual sub-keys s � ps0, s1, . . . , stq
are generated. (As our statements are independent of whether such queries oc-
curred in the forward or in the backward direction, and of their order, we think
of the transcript as being made of sets of input-output pairs.) We say that
such a τ is bad if the subkeys ps0, s1, . . . , stq are such that there exist queries
put�1, v0q P QE , pu1, v1q P Q1, . . . , put, vtq P Qt which constitutes a chain, i.e., if
there exists an index i, such that for all j P t0, . . . , tu satisfying j � i, one has
vj�uj�1 � sj , then we say they form the i-th type of chain. If the sub-keys s are
independent and uniform, then the number of chains is at most pt� 1q � qt�1 (by
a simple union bound over all types of chain), and thus, the probability that the
transcript is bad is at most Oppt� 1qqt�1{N tq. (Note that every chain definition
only involved t subkeys.)

Handling limited independence.This argument however does not work if s
is generated (say) from pt � 1q-wise independent and uniform n-bit keys, as we
can expect (at best) to prove Oppt�1qqt�1{N t�1q. We resolve this by considering
a generalized version of the sum-capture quantity which allows us to give tighter
bound over the number of chains, namely we define

µcpV0,Q1, . . . ,Qt�1, Utq :������
#
pv0, pu1, v1q, . . . , put�1, vt�1q, utq P V0 �Q1 � . . .�Qt�1 � Ut :

t�1̧

i�0

cipvi � ui�1q � 0

+����� (1)

where V0, Ut � t0, 1un and the coefficients c � pc0, . . . , ct�1q are field elements
of F2n . A bound on this quantity can be used to bound the number of chains
in a non-trivial fashion, as long as the coefficients arising are compatible with
the underlying method to generate the sub-keys and satisfy certain conditions
(which in turn will give our characterization of which distributions actually give
the desired optimal security).

Concretely, when the linear coefficients c � pc0, . . . , ct�1q satisfies the condi-
tion that there is an index 0 ¤ idx   t� 1 such that cidx � 0 and cidx�1 � 0, we
prove the tight bound µc � Θpqt�1{Nq using Fourier Analysis techniques.

Reducing key dependencies further.To obtain our results for construction
with subkeys generated from t � 2 independent and uniform keys, we need to
upper bound an even more restrictive version of the above sum-capture quantity
where two linear constraints are imposed, i.e.,
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µc,dpV0,Q1, . . . ,Qt�1, Utq :������
#
pv0, pu1, v1q, . . . , put�1, vt�1q, utq P V0 �Q1 � . . .�Qt�1 � Ut :

t�1̧

i�0

cipvi � ui�1q � 0 ,
t�1̧

i�0

dipvi � ui�1q � 0

+����� (2)

For the 2-constraint case, we in particular look at the coefficients c � pc0, . . . , ct�1q
and d � pd0, . . . , dt�1q that characterize the underlying subkeys generated via
the linear key schedule being pt � 2q-wise independent and uniform. We then
show that, with the subkeys generated from t�2 uniform and independent n-bit
keys via a linear key schedule:

- for t ¡ 5, the t-round KAC is secure against q � ωpN
t�1
t q queries.

- for t ¥ 8, the t-round KAC has tight security bound (i.e., q � ΩpN
t
t�1 q)

Given that (2) is a natural generalization of its one constraint counterpart, it
is tempting to conclude that upper-bounding (2) is not harder than upper-
bounding (1). However, as the number of constraints becomes two, we stress
that the problem of upper-bounding (2) is much harder. Moreover, the tightness
of upper-bounding (1) crucially relies on a particular step which was referred
to as the “Cauchy-Schwartz trick” [2,23,5], which does not seem to apply here.
We bypass this limitation by introducing a novel representation for the upper
bound of (2) as the 2-norm of a matrix. In particular, one can interpret the
Cauchy-Schwartz trick upper bound as essentially a special case of the matrix
norm bound in which each row and each column of the matrix contains at most
one non-zero entry. Then we use the matrix Frobenius norm which is easier to
compute for bounding the matrix 2-norm. Though our current technique only
proves tight security bound for t ¥ 8, we believe that the matrix 2-norm is the
right characterization and one can extend the tightness result to t ¥ 4 via a
better tool to derive the 2-norm bound, as the usage of Frobenius norm is, in
most cases, not tight3.

While (2) remains to be a promising candidate to consider for saving two
keys, we show that for t � 3, i.e., for the 3-round KAC with identical subkey
and independent permutations, the quantity of (2) is lower bounded by q3{N
with good probability. Hence, a sum capture quantity with highly non-trivial
characterizations or an alternative proof strategy for the 3-round KAC is needed
to obtain the desired q � ΩpN3{4q security bound.

Good transcript analysis. As we have bounded the probability of a tran-
script being bad, we move to understand the remaining transcripts which we
consider as good. We rely on the expectation method proposed by Hoang and

3 In fact, the Frobenius norm and 2-norm can have up to
?
N multiplicative gap for

N � N matrix (e.g. the identity matrix), and we believe that a large gap exists in
our Frobenius norm bound. However, to get a better 2-norm bound, it requires a
much better understanding to our defined matrix for analyzing (2) than we do.
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Tessaro [16], which is a generalization of the H-coefficient method [6,21]. In the
expectation method, the final security upper bound is

Security bound ¤ EX1
rgpX1qs � PrrX1 is bads

in which X1 is the random variable representing the transcript generated from
the adversary interacting with the ideal world, and g : T Ñ r0,�8q is a non-
negative function such that gpτq upper bounds the real-world-ideal-world proba-
bility ratio of any good transcript τ . The goal is find a function g : T Ñ r0,�8q
so that the value of EX1

rgpX1qs is minimized.
It is tempting to believe that the subkeys are needed to be at least t-wise

independent and uniform when applying the techniques in [16] to achieve the
tight security bound for the good transcripts. However, surprisingly, we show (in
Section 5) that as long as the underlying subkeys s � ps0, . . . , stq are pt�2q-wise
independent and uniform, we can pick a non-negative function g so that

EX1rgpX1qs ¤ Opqt�1{N tq .

Therefore, as long as the t-round KAC has a key schedule that gives pt�2q-wise
independent and uniform subkeys, our result on the good transcript analysis can
be applied as black-box.

1.2 Paper Organization

In Section 2 we define some basic notations and indistinguishability framework.
In Section 3 we give the main theorems and show tight security for classes of
t-round KAC. In Section 4 we analyze the sum capture quantity for upper-
bounding the number of bad transcripts. Then we provide analysis for good
transcripts in Section 5 and wrap up proof of theorems in Section 6. Finally we
provide conclusions and open problems in Section 7.

2 Preliminaries

Notations. For a finite set S, we write x
$
Ð S to denote that x receives a

uniformly sampled value from S. For an algorithm A, we write y Ð Apx1, . . . ; rq
to denote that A takes x1, . . . as inputs and runs with the randomness r and

assigning the output to y. We let y
$
Ð Apx1, . . . , q be that A, given the inputs,

is executed over a randomly chosen r and the resulting value is assigned to y.
We use Fp to denote a finite field of size p. For any two elements u, v P t0, 1un,

we use xu, vy �
°n
i�1 uivi to denote the inner product of u and v, where ui, vi

are the i-th bit of u, v respectively. For any number 1 ¤ b ¤ a, we write apbq �
apa� 1q � � � pa� b� 1q and take ap0q � 1 by convention. In all the following, for
any two elements u, v P t0, 1un, we take u � v and uv as the field addition and
multiplication in F2n respectively, in which u� v is implemented as the bit-wise
xor over t0, 1un. For a fixed n, we write N � 2n. For any vector u and matrix
A, we write uJ and AJ as their transpose.
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PRP security of block ciphers. We study the security of the Key Alter-
nating Cipher in the random permutation model. Let E : K �M Ñ M be a
blockcipher, which is constructed over a set of independent, random permuta-
tions P � pP1, P2, . . . , Ptq. Let A be an adversary, the strong PRP advantage of
A is defined as

Adv�prp
ErP spAq :� PrrK

$
Ð K : AErP s,P � 1s � PrrAP0,P � 1s

in which P0 is a random permutation independent of P , and “�” denotes that
the adversary A can query the oracles in both forward direction and backward
direction.

Indistinguishability framework.We consider a computationally unbounded
distinguisher A interacting with two systems S0 and S1. The interaction between
A and Sb (where b P t0, 1u) defines a transcript τ � ppu1, v1q, . . . , puq, vqqq that
records the q pairs of queries/replies A made to/received from the system Sb.
Let Xb be the random variable representing the transcript, then the goal is to
upper bound the following statistical distance

∆pX0, X1q �
¸
τ

maxt0,PrrX1 � τ s � PrrX0 � τ su .

Formulating systems. We follow [19] to describe the system behavior of S
by associating every possible transcript τ � ppu1, v1q, . . . , puq, vqqq with a value
pSpτq P r0, 1s. One can interpret pSpτq as the probability that, if the queries
u1, . . . , uq in τ are asked sequentially, S answers with v1, . . . , vq respectively. Note
that pSp�q is defined only by the underlying system S and is hence independent
of any distinguisher. We also note that pSp�q is not a probability distribution
over the transcripts, as the sum over all pSpτq does not necessarily give one.

Since the distinguisher is computationally unbounded, it is sufficient to con-
sider deterministic distinguishers only. Fix any deterministic distinguisher A, let
X denote the transcript distribution of A interacting with S, then it holds that
PrrX � τ s P t0, pSpτqu for any τ because, either A issues the queries u1, . . . , uq
when given the answers v1, . . . , vq, leading to PrrX � τ s � pSpτq, or it does not,
resulting in PrrX � τ s � 0.

Let T be the set of transcripts τ that has PrrX1 � τ s ¡ 0. Further noting
that PrrX0 � τ s � pS0

pτq if τ P T , we can rewrite the statistical distance as

∆pX0, X1q �
¸
τ

maxt0, pS1
pτq � pS0

pτqu �
¸
τ

pS1
pτq �max

"
0, 1�

pS0
pτq

pS1
pτq

*
.

The expectation method. In this part we review the expectation method
proposed by [16], which is developed based on the H-coefficient method [6,21].
In the H-coefficient method, the set of transcript T is partitioned into Tgood and
Tbad so that for any τ P Tgood, pS0pτq{pS1pτq ¥ 1 � ε for some carefully chosen
parameter ε. Then, an upper bound of the advantage directly follows. i.e.,

∆pX0, X1q ¤ ε� PrrX1 P Tbads .
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However, instead of giving a uniform bound over all good transcripts, we can
associate each τ with a non-negative value gpτq so that pS0

pτq{pS1
pτq ¥ 1�gpτq

for every τ P Tgood. Hence we can instead, derive the upper bound as

∆pX0, X1q ¤
¸

τPTgood

pS1pτq � gpτq �
¸

τPTbad

pS1pτq ¤ EX1rgpX1qs �
¸

τPTbad

pS1pτq ,

where we can take the expectation over all τ P T by the fact that gp�q is non-
negative. Therefore, we have the following lemma.

Lemma 1 (The expectation method). If there exists a partition of T �
Tgood \ Tbad, and a function g : T Ñ r0,�8q such that for any τ P Tgood,
pS0

pτq{pS1
pτq ¥ 1� gpτq, then

∆pX0, X1q ¤ EX1
rgpX1qs � PrrX1 P Tbads .

3 Main Results

We consider the PRP security of t-round Key Alternating Cipher (KAC) that
is built on t random permutations P � pP1, . . . , Ptq over t0, 1un and t � 1
subkeys ps0, . . . , stq in which si P t0, 1u

n. The t-round KAC, when given input
M P t0, 1un, outputs

st � Ptpst�1 � Pt�1p� � �P1ps0 �Mq � � � qq .

The subkeys are generated from the master key denoted as pk0, . . . , kwq in which
ki are sampled from t0, 1un uniformly and independently. Therefore, the length
of the master key is pw � 1qn bits. Here we consider only linear key schedule
algorithms, which can be represented as a matrix A over F2n . We define the
column vectors s � ps0, . . . , stq

J and k � pk0, . . . , kwq
J in which we naturally

take each n-bit string as an element in F2n and use s Ð Ak to denote the
key-scheduling process.

The case of A being an identity matrix of size pt � 1q � pt � 1q has been
well studied, i.e. it was proved in [6,16] that, when the subkeys s0, . . . , st are
independent and uniform and the permutations P1, . . . , Pt are independent, any
adversary needs at least q � ΩpN t{pt�1qq queries to achieve constant distin-
guishing advantage. Here we consider the case in which the permutations are
independent but the subkeys are correlated and are generated via linear key
schedules from t � 1 independent n-bit keys (considered Theorem 1) or t � 2
independent n-bit keys (Theorem 2).

We starts with providing security bound of t-round KAC for a class of key
schedules that generate t� 1 subkeys from t� 1 independent keys.

Theorem 1. For the t-round KAC constructed over t random permutations P �
pP1, . . . , Ptq, let the key of KAC be k � pk0, k1, . . . , kt�2q

J in which ki’s are
independently uniformly sampled from F2n . Let subkeys s � ps0, s1, . . . , stq

J be
derived by s Ð Ak in which A is a pt � 1q � pt � 1q matrix over F2n , with the
rows denoted as A0, . . . , At, such that
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1. Any t� 2 rows of A forms a matrix of rank t� 2.
2. For any I � t0, . . . , tu, |I| � t, then the row vectors pA`q`PI satisfy that

– pA`q`PI forms a matrix of rank t� 1.
– there exists values pc`q`PI such that

°
`PI c`A` � 0 and there are two in-

dices idx1, idx2 P I satisfying idx1 � idx2 P t1, tu and cidx1 , cidx2 are both non-
zero.

Then for any adversary A that issues at most q queries to KAC, P1, . . . , Pt, where
9pt� 2qn ¤ q ¤ N{4,

Adv�prp
KACrP spAq ¤ pt2 � t� 1q �

4qt�1

N t
� 3pt� 1q

c
q2t�1pt� 2qn

N2t�2
.

First, we give a key schedule that gives pt � 1q-wise independent and uniform
subkeys for arbitrary t-round KAC.

Corollary 1. For t   2n, pick distinct elements α0, . . . , αt P F2n , and let subkey
si � F pαiq in which F pXq �

°t�2
j�0 kj �X

j, then an adversary needs ΩpN t{pt�1qq
queries to achieve constant distinguishing advantage.

Corollary 1 directly follows from the fact that A is a Vandermonde matrix
so that every t� 1 rows of A forms a full-rank sub-matrix. Hence, any t rows of
A are linear dependent with the coefficients pc`q`PI satisfying c` � 0 for all `.

Note that by letting t � 2 in Corollary 1, our result implies the optimal
security bound of 2-round KAC with identical subkeys and independent permu-
tations proven by Chen et al. [5].

Though it is implied in the theorem statement that we need the subkeys be-
ing pt� 2q-wise independent and uniform, for small round t, we still can obtain
some simple key schedules that achieve the optimal bound for q while do not re-
quire any field multiplication operations, which may be considered an expensive
operation in key-scheduling.

Corollary 2. Let the 3-round KAC be with key schedule

s � pk0, k0, k1, k1q

in which k0, k1 are two independently uniform n-bit keys, then an adversary
needs ΩpN3{4q queries to achieve constant distinguishing advantage.

Corollary 3. Let the 4-round KAC be with key schedule

s � pk0, k1, k2, k0 � k1, k1 � k2q

in which k0, k1, k2 are three independently uniform n-bit keys, then an adversary
needs ΩpN4{5q queries to achieve constant distinguishing advantage.

One can check that the subkeys in Corollary 2 (respectively Corollary 3) are
1-wise (pairwise) independent and uniform, and any t rows forms a sub-matrix
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Table 1. q � ΩpNλq for constant security bound in Theorem 2.

t 3 4 5 6 7 8 9 10 � � �
λ � logN q 0.571 0.720 0.800 0.842 0.870 0.889 0.9 0.909 � � �
t{pt� 1q 0.750 0.800 0.833 0.857 0.875 0.889 0.9 0.909 � � �

of rank t � 1 with the coefficients pc`q`PI satisfying the given conditions via
Gaussian elimination.

As Theorem 1 gives tight bound for all t, one may optimistically expect
similar results can be proved with ease when saving one more key. However, for
the t-round KAC with subkeys generated from t � 2 keys, we are only able to
make partial progress and prove the following theorem that only implies tight
security for t ¥ 8.

Theorem 2. For the t-round KAC constructed over t random permutations P �
pP1, . . . , Ptq, let the key of KAC be k � pk0, k1, . . . , kt�3q

J in which ki’s are
independently and uniformly sampled from F2n . Let subkeys s � ps0, s1, . . . , stq

J

be derived by s � Ak in which A is a pt� 1q � pt� 2q matrix over F2n such that
any t�2 rows of A forms a matrix of rank t�2. Then for any adversary A that
issues at most pt� 2qnN2{3 ¤ q ¤ N{4 queries to KAC, P1, . . . , Pt,

Adv�prp
KACrP spAq ¤ pt2 � 2tq �

p5qqt�1

N t
� pt� 1q2 �

p3qq2t�2.5

N2t�4
.

Table 1 summarizes the order of q that leads the security bound to Ωp1q.
We can observe that, initially Theorem 2 does not give good bound for t ¤ 7.
From t ¥ 5, the bound starts getting better than q � ΩpN pt�1q{tq which can
be obtained by instantiating a pt� 1q-round KAC from the provided t� 2 keys
and applying Theorem 1. When t ¥ 8, the bound achieves the optimal q �
ΩpN t{pt�1qq. The tightness results for t ¤ 7 are left open.

A feasible instantiation of Theorem 2 is to let the subkeys be the evaluations
at t�1 distinct points of a degree t�3 polynomial. Then the following corollary
holds.

Corollary 4. For 8 ¤ t   2n, pick distinct elements α0, . . . , αt P F2n , and let
subkey si � F pαiq in which F pXq �

°t�3
j�0 kj � X

j, then an adversary needs

ΩpN t{pt�1qq queries to achieve constant distinguishing advantage.

Proof framework. We will use the expectation method (i.e. Lemma 1) to
show both theorems. Given the query record Q � pQE ,Q1, . . . ,Qtq, we will be
generous and allow the adversary A to see the key k after making all the queries.
Therefore, we let the transcript τ � pQ,kq by attaching k to the end of Q. In
the ideal world, we sample and attach a dummy key k to Q. Here we define the
set of bad transcript for the t-round KAC.

10



Definition 1 (Bad transcripts). For a t-round KAC, we say a transcript τ �
pQ,kq is bad if

k P BadkeyQ �
t¤
i�0

BadkeyQ,i

in which for every i,

BadkeyQ,i :� tk : sÐ KeySchedulepkq, there exists put�1, v0q P QE ,

pu1, v1q P Q1, . . . , put, vtq P Qt

s.t. for all 0 ¤ j ¤ t, j � i, vj � sj � uj�1u ,

otherwise we say τ is good. We use Tgood to denote the set of all good transcripts
and Tbad to denote the set of all bad transcripts. Hence T � Tgood \ Tbad.

Then, we break the analysis into the bad transcript case and the good tran-
script case. We will use the generalized sum capture quantity in Section 4 as an
upper bound for the bad transcripts. We analyze the good transcripts in Sec-
tion 5. The final proof of theorems will be presented in Section 6.

More fine-grained security. In the above theorems, we use q to be the
uniform upper bound over all kinds of queries. However, we note that our proof
technique also provides bounds when the number of cipher queries qe and the
number of permutation queries qp are separated. We provide the bounds in the
full version for both theorems.

4 Generalized Sum Capture Quantity for KAC

In [5] Chen et al. considered minimizing the 2-round KAC, where they proved a
variant of “sum-capture” results [2,15,1,17,23]. The results are often stated that,
for a randomly chosen set A of size q, the quantity

µpAq :� max
X,Y�Zn2
|X|�|Y |�q

|tpa, x, yq P A�X � Y : a � x� yu| (3)

is close to its expected value q3{N (when A,X, Y are all chosen at random)
with high probability. In the 2-round KAC with identical key schedule, the sum-
capture quantity is defined as

µpQq :� max
X,Y�Zn2
|X|�|Y |�q

|tpx, pu, vq, yq P X �Q� Y : x� u � v � yu| (4)

where one can view the query transcript Q that derived from the interaction of
an adversary A with the permutation, equivalently as the set A in (3) defined
by A � tu� v | pu, vq P Qu.

However, both (3) and (4) consider only a single random permutation with a
single linear constraints. To generalize the sum capture quantity so that we can

11



handle the KAC that saves more keys, we consider the sum capture quantity
that involves pt � 1q independently random permutations and r P t1, 2u linear
constraints over F2n for the t-round KAC with a linear key schedule.

For the r � 1 case, we are able to prove the tight bounds of sum capture
quantity for any choice of linear constraint, leading to a feasible set of key sched-
ule that enables saving two keys for arbitrary t-round KAC with tight security.
However, as we increase the number of constraints to r � 2, the problem be-
comes more complicated and we do not have sophisticated technique to give a
tight bound or handle arbitrary linear constraints. We are only able prove a loose
upper bound for the linear-constraints that characterizes the underlying subkeys
being pt� 2q-wise independent, leading to partial result for saving three keys of
t-round KAC.

Fourier Analysis. To prove the bounds, we will rely on the tool of Fourier
analysis. In this part we define some notations for the Fourier analysis over
t0, 1um. Given a function f : t0, 1um Ñ R, the Fourier coefficient of f with
α P t0, 1um is defined as

f̂pαq :�
1

2m

¸
xPt0,1um

fpxqp�1qxα,xy .

Then we have

fpxq �
¸

αPt0,1um

f̂pαqp�1qxα,xy . (5)

For any set S � t0, 1um, we let 1S : t0, 1um Ñ t0, 1u be the 0/1 indicator
function of S. Then the following properties hold for 1S :

x1Sp0q � |S|

2m
�

¸
αPt0,1um

x1Spαq2 , (6)

@α P t0, 1um : |x1Spαq| ¤ x1Sp0q � |S|

2m
. (7)

4.1 1-constraint Sum Capture Quantity

We let 1-constraint sum capture quantity be associated with a vector of coeffi-
cients c � pc0, c1, . . . , ct�1q, as

µcpV0,Q1, . . . ,Qt�1, Utq :������
#
pv0, pu1, v1q, . . . , put�1, vt�1q, utq P V0 �Q1 � � � � �Qt�1 � Ut :

t�1̧

j�0

cjpvj � uj�1q � 0

+����� .
12



Lemma 2. Let t ¥ 2. Let P1, . . . , Pt�1 be t � 1 independent uniformly ran-
dom permutations of t0, 1un, and let A be a probabilistic algorithm that makes
adaptive queries to P1, . . . , Pt�1. Let Q1, . . . ,Qt�1 be the query transcripts of
P1, . . . , Pt�1 interacting with A. Let c � pc0, . . . , ct�1q be any coefficients so that
there exists an index 0 ¤ idx   t� 1 satisfying cidx � 0 and cidx�1 � 0, then for
any A that makes at most q queries to each permutations,

PrP1,...,Pt�1

�
DV0, Ut � F2n , |V0| � |Ut| � q,

µcpV0,Q1, . . . ,Qt�1, Utq ¥
3qt�1

N
� 3qt�1{2

a
pt� 2qn

�
¤

2t

N t
.

We let ΦpQiq :� maxα�0,β�0N
2|

�

1Qipα, βq| for the query records Q1, . . . ,Qt�1.

To show Lemma 2, we will first rely on the following Lemma 3, which states the
upper bound in terms of ΦpQiq we just defined. Then we will apply the later
stated Lemma 4 by Chen et al. [5] that provides an upper bound for the ΦpQiq
term to conclude the proof.

Lemma 3. Fix any c � pc0, . . . , ct�1q such that cidx � 0 and cidx�1 � 0 for some
index 0 ¤ idx   t� 1, then for any subsets V0, Ut with |V0| � |Ut| � q,

µcpV0,Q1, . . . ,Qt�1, Utq ¤
qt�1

N
� qt�1ΦpQidx�1q .

Proof. The very first step is to write µc as a sum over indicator functions,
then we will perform Fourier transform over each indicator functions. The key
point is that, even though the summation will be over many terms and Fourier
coefficients, we can eliminate most of the summation term and simplify the
equality so that it only sums over a single Fourier coefficient terms.

Here we sum over the indicator functions.

µcpV0,Q1, . . . ,Qt�1, Utq �
¸
v0

¸
u1,v1

� � �
¸

ut�1,vt�1

¸
ut

1V0pv0q1Q1pu1, v1q � � �

� � �1Qt�1
put�1, vt�1q � 1Utputq � 1Eq

�
0,
t�1̧

j�0

cjpvj � uj�1q

�
in which 1Eqpx, yq is the equality indicator function so that 1Eqpx, yq � 1 if and
only if x � y. Note that for the equality indicator function, we can perform
Fourier transformation and get

1Eqpx, yq �
¸
α,β

y1Eqpα, βq � p�1qxα,xy�xβ,yy �
1

N
�
¸
α

p�1qxα,x�yy,

in which we use the fact that

y1Eqpα, βq �

"
1{N if α � β

0 o.w.
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We expand each indicator function using Fourier transform and continue the
calculation.

µcpV0,Q1, . . . ,Qt�1, Utq

�
¸

v0,u1,v1,���
ut�1,vt�1,ut

�¸
β0

y1V0
pβ0qp�1qxβ0,v0y

�
�

� ¸
α1,β1

y1Q1
pα1, β1qp�1qxα1,u1y�xβ1,v1y

�
�

� � �

�� ¸
αt�1,βt�1

{1Qt�1
pαt�1, βt�1qp�1qxαt�1,ut�1y�xβt�1,vt�1y

�

�

�¸
αt

y1Utpαtqp�1qxαt,uty

�
�

1

N

�¸
γ

p�1qxγ,
°t�1
j�0 cjpvj�uj�1qy

�
.

Here, notice that all Fourier coefficients only depend on the variables αs, βs and
γ, so we can expand the multiplication and change the order of summation, and
we obtain the following

µcpV0,Q1, . . . ,Qt�1, Utq

�
1

N

¸
β0

¸
α1,β1

� � �
¸

αt�1,βt�1

¸
αt

¸
γ

y1V0
pβ0qy1Q1

pα1, β1q � � �{1Qt�1
pαt�1, βt�1qy1Utpαtq

�
¸
v0

¸
u1,v1

� � �
¸

ut�1,vt�1

¸
ut

p�1qxβ0,v0yp�1qxα1,u1y�xβ1,v1y � � �

� � � p�1qxαt�1,ut�1y�xβt�1,vt�1y � p�1qxαt,uty � p�1qxγ,
°t�1
j�0 cjpvj�uj�1qy

�
1

N

¸
β0

¸
α1,β1

� � �
¸

αt�1,βt�1

¸
αt

¸
γ

y1V0
pβ0qy1Q1

pα1, β1q � � �{1Qt�1
pαt�1, βt�1q

�y1Utpαtq �
�¸
v0

p�1qxβ0,v0y�xγ,c0v0y

�
�

�¸
u1

p�1qxα1,u1y�xγ,c0u1y

�
�¸
v1

p�1qxβ1,v1y�xγ,c1v1y

�
� � �

�¸
ut

p�1qxαt,uty�xγ,ct�1uty

�

The last equality is simply grouping the inner products that share the same u, v
terms together. Note that the field multiplication of c � x can be represented as
a matrix Ac

4 that applies to an n-dimensional vector x over F2. If c � 0, then
Ac � O where we use O to denote an all zero matrix, otherwise Ac is a full-rank
matrix. Taking the summation over the v0 term as an example, we rewrite the

4 Since we are taking the natural field interpretation over t0, 1un, in which the field
addition is the bit-wise xor operation, we have the i-th column of Ac defined as
the n-dimension vector representation of field element c � νi, in which νi is the field
element that has the corresponding representation to be a basis vector with the i-th
position being one and the rest positions being zero.
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xγ, c0v0y term as xγ, c0v0y � γJAc0v0 � pAJ
c0γq

Jv0 � xAJ
c0γ, v0y where AJ

c0 is
the transpose of Ac0 . So we get

µcpV0,Q1, . . . ,Qt�1, Utq

�
1

N
�
¸
β0

¸
α1,β1

� � �
¸

αt�1,βt�1

¸
αt

¸
γ

y1V0pβ0q � � �y1Utpαtq �
�¸
v0

p�1qxβ0�A
J
c0
γ,v0y

�

�

�¸
u1

p�1qxα1�A
J
c0
γ,u1y

��¸
v1

p�1qxβ1�A
J
c1
γ,v1y

�
� � ��¸

vt�1

p�1q
xβt�1�A

J
ct�1

γ,vt�1y

��¸
ut

p�1q
xαt�A

J
ct�1

γ,uty

�
.

It is known that
°
xPt0,1unp�1qxα,xy � N if and only if α � 0, otherwise it equals

zero. So we are only interested in the case in which the fourier coefficients gives
non-zero summation. And we observe that the set of interesting coefficients can
be expressed in terms of γ, i.e., for all i P t0, . . . , t � 1u : αi�1 � βi � AJ

ciγ.
Hence the equality calculation can be greatly simplified as

µcpV0,Q1, . . . ,Qt�1, Utq

� N2t�1
¸
γ

y1V0
pAJ

c0γq
y1Q1

pAJ
c0γ,A

J
c1γq � � �

{1Qt�1
pAJ

ct�2
γ,AJ

ct�1
γqy1UtpAJ

ct�1
γq

�
qt�1

N
�N2t�1

¸
γ�0

y1V0pA
J
c0γq

y1Q1pA
J
c0γ,A

J
c1γq � � �

y1UtpAJ
ct�1

γq

¤
qt�1

N
�N2t�1

¸
γ�0

|y1V0pA
J
c0γq| � |

y1Q1pA
J
c0γ,A

J
c1γq| � � � |

y1UtpAJ
ct�1

γq| .

Next, we let

left :� min of i such that ci � 0

right :� max of i such that ci � 0

To proceed with the calculation, case discussion over pleft, rightq is needed, here
we consider the case of left � 0 and right � t � 1 (i.e., c0 � 0 and ct�1 � 0).
The other cases give the same upper bound and we left them to the full version.
Therefore, we obtain

µcpV0,Q1, . . . ,Qt�1, Utq �
qt�1

N

¤ N2t�1
¸
γ�0

|y1V0pA
J
c0γq| � |

y1Q1pA
J
c0γ,A

J
c1γq| � � � |

y1UtpAJ
ct�1

γq|

¤ N2t�3
¸
γ�0

|y1V0pA
J
c0γq| �

� q

N2

	t�2

� ΦpQidx�1q � |y1UtpAJ
ct�1

γq|
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� qt�2NΦpQidx�1q �
¸
γ�0

|y1V0
pAJ

c0γq| � |
y1UtpAJ

ct�1
γq| ¤ qt�1ΦpQidx�1q . (8)

Note that we have N2|{1Qidx�1
pAcidxγ,Acidx�1

γq| ¤ ΦpQidx�1q for any γ � 0 given
the condition that cidx � 0 and cidx�1 � 0. We also used the fact of (7) that, for

any α, β, |y1Qipα, βq| ¤ q{N2. The last step of inequality holds because by (6)

we have
°
γ
y1V0

pAJ
c0γq

2 �
°
γ
y1UtpAJ

ct�1
γq2 � q{N , so we can apply Cauchy-

Schwartz inequality to obtain the result. This exact inequality step ensures the
tight bound and was dubbed the Cauchy-Schwartz trick used in [2,23,5].

So we proved Lemma 3. [\

Now the remaining step is to upper bound ΦpQidx�1q. Here we apply the
following lemma, which has essentially the same proof of Lemma 6 proved by
Chen et al. in [5], with the only adjustment of changing their parameter δ into
δ �

a
p12 lnNq{q.

Lemma 4. Assuming that 9pt � 2qn ¤ q ¤ N{2. Fix an adversary making q
queries to a random permutation P . Let Q denote the transcript of interaction
of A with P . Then for any α, β P F2n ,

PrP,ω

�
ΦpQq ¥

2q2

N
� 3
a
pt� 2qnq

�
¤

2

N t
,

in which the probability is taken over the random permutation P and the random
coins ω used by A.

Plugging in the inequality we get

µcpV0,Q1, . . . ,Qt�1, Utq ¤
qt�1

N
� qt�1ΦpQidx�1q ¤

3qt�1

N
� 3qt�1{2

a
pt� 2qn

with probability at least 1� 2t
Nt . Hence we proved Lemma 2.

Tightness of Lemma 2.We examine the tightness of 1-constraints sum capture
quantity in two aspects. One is, given the c � pc0, . . . , ct�1q in which there exists
two neighboring ci, ci�1 so that ci � 0, ci�1 � 0, whether the upper bound is
tight or not.

We first give the following proposition showing that, if there exists neighbor-
ing coefficients ci � 0 and ci�1 � 0, then for moderately large q (e.g. q ¡ N2{3),
µc ¥ qt�1{2N with high probability. We left the detailed proof to the full version.

Proposition 1. Let q be any positive integer of power of two. Fix any c �
pc0, . . . , ct�1q such that there exists an index 0 ¤ i   t� 1 satisfying ci � 0 and
ci�1 � 0, then there is an explicit algorithm A that makes at most q queries to
each of P1, . . . , Pt�1, and V0, Ut � F2n that have |V0| � |Ut| � q, so that

Pr

�
µcpV0,Q1, . . . ,Qt�1, Utq ¥

qt�1

2N

�
¥ 1�

N

q
� e�q

2{8N .
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The following proposition, which is complementary to Proposition 1, states that,
if c � pc0, . . . , ct�1q satisfies that for any 0 ¤ i   t� 1, either ci � 0 or ci�1 � 0,
then µcpV0,Q1, . . . ,Qt�1, Utq can achieve up to qt, which is larger than qt�1{N .
We left the proof to the full version.

Proposition 2. Let q be any positive integer of power of two. Fix any c �
pc0, . . . , ct�1q such that for any 0 ¤ i   t � 1, either ci � 0 or ci�1 � 0, there
is an explicit algorithm A that makes at most q queries to each of P1, . . . , Pt�1,
and V0, Ut � F2n that have |V0| � |Ut| � q, so that

µcpV0,Q1, . . . ,Qt�1, Utq ¥ qt .

4.2 2-constraints Sum Capture Quantity

Now we move to consider the sum capture quantity in which the number of
constraints r � 2. We let the 2-constraint sum capture quantity be associated
with two vector of coefficients c � pc0, c1, . . . , ct�1q and d � pd0, d1, . . . , dt�1q, as

µc,dpV0,Q1, . . . ,Qt�1, Utq :�

|tpv0, pu1, v1q, . . . , put�1, vt�1q, utq P V0 �Q1 � � � � �Qt�1 � Ut :

t�1̧

j�0

cjpvj � uj�1q � 0,
t�1̧

j�0

djpvj � uj�1q � 0u| . (9)

Though the 2-constraint sum capture quantity is a natural generalization of the
1-constraint case, we note that adding only one more constraint makes proving
the tightest upper bound of (9) much harder. Here we only focus on giving
bounds over the sum capture quantity with a specific class of coefficients c,d
that can be derived from the pt � 2q-wise independently uniform subkeys. We
obtain a bound that gives the tightest KAC security for t ¥ 8. However, for t   5,
our 2-constraint upper bound is even worse than a reduction-based bound. While
it is interesting to investigate whether our bound can be improved, for t � 3, in
particular, we show that the above sum capture quantity is lower-bounded by
Ωpq3{Nq and hence cannot be used to prove q � ΩpN3{4q for the 3-round KAC
with identical subkeys.

We prove upper bounds for the class of linear constraint coefficients c �
pc0, . . . , ct�1q,d � pd0, . . . , dt�1q with the property that c0 � dt�1 � 1, ct�1 �
d0 � 0, and for all i P t1, . . . , t� 2u, ci � 0, di � 0, and for all i, j P t1, . . . , t� 2u
such that i � j, cid

�1
i � cjd

�1
j . We justify that c,d corresponds to the linear

key schedule from t� 2 independent keys that gives pt� 2q-wise independently
uniform subkeys.

Justification.We use s0, . . . , st�1 to denote the subkeys. Given the subkeys are
generated linearly from t�2 independent keys and are pt�2q-wise independently
uniform, the middle t � 2 subkeys s1, . . . , st�2 uniquely fix the original master
keys and hence the first subkey s0 and the last subkeys st�1 can be uniquely
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determined as a linear combination of s1, . . . , st�2. i.e.,

s0 �
t�2̧

i�1

cisi , st�1 �
t�2̧

i�1

disi .

Note that all ci, di should be non-zero because otherwise we can obtain a linear
combination t� 2 subkeys that sum to zero, breaking the pt� 2q-wise indepen-
dence. Further, we show by contradiction, if there exists i, j such that i � j
and cid

�1
i � cjd

�1
j , then we pick the set of subkeys ts0, st�1u Y tsk | 1 ¤ k ¤

t� 2^ k R ti, juu and we have

s0 � cid
�1
i st�1 �

¸
kRt0,i,j,tu

pcid
�1
i dk � ckqsk

which is a linear dependence among t�2 subkeys. Thus all cid
�1
i must be distinct.

Then we have the following lemma for the 2-constraints sum capture quantity.

Lemma 5. Let t ¥ 3. Let P1, . . . , Pt�1 be t � 1 independent uniformly ran-
dom permutations of t0, 1un, and let A be a probabilistic algorithm that makes
adaptive queries to P1, . . . , Pt�1. Let Q1, . . . ,Qt�1 be the query transcripts of
P1, . . . , Pt�1 interacting with A. Let coefficients c,d be defined as above, then
for any A that makes at most q ¥ pt� 2qnN2{3 queries to each permutations,

PrP1,...,Pt�1

�
DV0, Ut � F2n , |V0| � |Ut| � q,

µc,dpV0,Q1, . . . ,Qt�1, Utq ¥
qt�1

N2
� t �

p3qq2t�3

N t�2
�
p3qq2t�2.5

N t�2

�
¤

2t

N t
.

Discussion. Note that when t ¥ 5, the security bound starts getting better

than the t � 1 round KAC bound q � ΩpN
t�1
t q. For t ¥ 8, the security bound

achieves optimal security of q � ΩpN
t
t�1 q.

As in the case of 1-constraint, we will prove an upper bound of µc,d condi-
tioning on ΦpQiq being small for all i.

Lemma 6. Fix c,d defined as in Lemma 5, then conditioning on ΦpQiq ¤
9q2{N for all 1 ¤ i ¤ t � 1, it holds that for any subsets V0, Ut � F2n with
|V0| � |Ut| � q,

µc,dpV0,Q1, . . . ,Qt�1, Utq ¤
qt�1

N2
� t �

p3qq2t�3

N t�2
�
p3qq2t�2.5

N t�2
.

Proof. The initial calculation steps are similar to the 1-constraint case. We di-
rectly give the calculation result and left the details in the full version.

µc,dpV0,Q1, . . . ,Qt�1, Utq �

N2t�2
¸
α,β

y1V0pθ0qy1Q1pθ0, θ1qy1Q2pθ1, θ2q � � �{1Qt�1pθt�2, θt�1qy1Utpθt�1q
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in which

θ0 � α, θt�1 � β,

@i P t1, . . . , t� 2u : θi � AJ
ciα�AJ

diβ .

We write Coeff � tθ0, θ1, . . . , θt�1u. Here we partition the summation into three
cases and discuss the set of pα, βq assignments that falls into each cases.

1. At least two θs in Coeff are zero.
2. Exactly one θ in Coeff is zero.
3. None of the θs in Coeff is zero.

The following claim shows that, if case one happens, then all coefficients θ are
zero.

Claim 1 If two θs in Coeff are zero, then α � β � 0.

Proof. If θ0 � α � β � θt�1 � 0, then the claim is trivial. If α � θ0 � θi � 0
for some i with 1 ¤ i ¤ t � 2, then given θi � AJ

ciα � AJ
di
β � AJ

di
β and AJ

di
is

full-rank (because di � 0), we can infer that β � 0. Similarly we can infer α � 0
if β � θt�1 � θi � 0 for some i with 1 ¤ i ¤ t� 2. Now, if θi � θj � 0 for some
i, j such that 1 ¤ i, j ¤ t� 2 and i � j. Then the choice of pα, βq must satisfy$&%AJ

ciα�AJ
di
β � 0

AJ
cjα�AJ

dj
β � 0

implying AJ
d�1
i�1ci�1

α � pAJ
di�1

q�1AJ
ci�1

α � β � pAJ
dj�1

q�1AJ
cj�1

α � AJ
d�1
j�1cj�1

α.

Hence �
AJ
d�1
i�1ci�1

�AJ
d�1
j�1cj�1

	
α �

�
AJ
d�1
i�1ci�1�d

�1
j�1cj�1

	
α � 0 .

Here α can be non-zero only if d�1
i�1ci�1 � d�1

j�1cj�1. However, this is impossible
as we have justified from the pt � 2q-wise independently uniform property of
subkeys. [\

Let µ1, µ2, µ3 corresponds to summation for pα, βq that corresponds to case
one, two, three, respectively.

Proposition 3.

µ1 �
qt�1

N2

Proof. Since case one only happens when α � β � 0, we have θi � 0 for all i.
Therefore, a direct calculation using the fact that y1V0

p0q � y1Utp0q � q{N andy1Qip0, 0q � q{N2 proves the bound. [\
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Proposition 4.

µ2 ¤
t � p3qq2t�3

N t�2

We note that the proof of Proposition 4 can be derived via a moderate tweak from
the proof of 1-constraint sum capture quantity upper bound (i.e., Lemma 2), we
left the complete proof to the full version.

Proposition 5.

µ3 ¤
p3qq2t�2.5

N t�2

Proof (of Proposition 5). We define a N �N matrix M with each entry labeled
by pα, βq P F2n � F2n so that

Mα,β �

"
0 if some θ P Coeff is 0y1Q1

pα,AJ
c1α�AJ

d1
βq � � �{1Qt�1

pAJ
ct�2

α�AJ
dt�2

β, βq o.w.

Note that M is a 2n � 2n matrix. We also define the column vectors v, u with

each entry labeled by α P F2n so that vα � {1V0pαq and uα � {1Utpαq. Therefore,
we can write µ3 as

µ3 � N2t�2
¸

α,β |Mα,β�0

{1V0
pαq �Mα,β � {1Utpβq � N2t�2vJMu .

Noting that the equivalent definition for the matrix 2-norm as

‖M‖2 :� sup
‖x‖2�1

‖Mx‖2 � sup
‖x‖2�1,‖y‖2�1

yJMx ,

we can use the matrix norm as the upper bound of µ3, that is

µ3 � N2t�2 � vJMu ¤ N2t�2 ‖v‖2 ‖M‖2 ‖u‖2 .

By (6), we can infer that ‖v‖2 �
a°

α v
2
α �

b°
α
y1V0

pαq2 �
a
q{N and ‖u‖2 �a

q{N . We also use the fact that ‖M‖2 ¤ ‖M‖F where ‖M‖F �
b°

i,jM
2
i,j is

the Frobenius norm, then we have

µ3 ¤ N2t�2 �

c
q

N
‖M‖2

c
q

N
¤ qN2t�3 ‖M‖F � qN2t�3

d¸
α,β

M2
α,β

where¸
α,β

M2
α,β �

¸
α,β |Mα,β�0

y1Q1pα,A
J
c1α�AJ

d1βq
2 � � �{1Qt�1pA

J
ct�2

α�AJ
dt�2

β, βq2
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¤
¸

α,β |Mα,β�0

y1Q1
pα,AJ

c1α�AJ
d1βq

2 �
p3qq4pt�2q

N6pt�2q

¤
p3qq4pt�2q

N6pt�2q

¸
α,β

y1Q1pα,A
J
c1α�AJ

d1βq
2 �

p3qq4pt�2q

N6pt�2q
�
q

N2
¤
p3qq4t�7

N6t�10
.

So we get

µ3 ¤ qN2t�3 �
p3qq2t�3.5

N3t�5
¤
p3qq2t�2.5

N t�2
.

[\

Putting the propositions all together, we have

µc,d � µ1 � µ2 � µ3 ¤
qt�1

N2
� t �

p3qq2t�3

N t�2
�
p3qq2t�2.5

N t�2
.

[\

4.3 Tightness of 2-constraint Sum Capture Quantity for 3-round
KAC

A natural question is whether the upper bound of the 2-constraint sum capture
quantity can be improved so that it gives tight security bound for t-round KAC
when t   7. In particular, the most interesting case is to prove tight security
bound q � ΩpN3{4q for 3-round KAC with identical subkeys, which corresponds
to the instantiation in Corollary 4 when t � 3. However, for the 3-round KAC
with identical key schedule, we show that it is impossible to show the conjectured
optimal security bound via upper-bounding the sum capture quantity, as the
sum capture quantity for 3-round identical-subkey KAC is lower-bounded by
Ωpq3{Nq with high probability, giving µc{N � Ωpq3{N2q instead of the desired
q4{N3. The sum capture quantity lower bound for 3-round identical-subkey KAC
directly follows from the following proposition with c1 � d1 � 1. We left the proof
of proposition to the full version.

Proposition 6. Let q be any positive integer of power of two. Let t � 2 and fix
c � p1, c1, 0q, d � p0, d1, 1q where c1, d1 are non-zero, then there exists an explicit
algorithm A that makes at most q queries to each of P1, P2 and V0, U3 � F2n

that have |V0| � |U3| � q, so that

Prrµc,dpV0,Q1,Q2, U3q ¥ q3{2N s ¥ 1�
N

q
� e�q

2{8N .

Though Proposition 6 gives a lower bound of Ωpq3{Nq for the sum capture
quantity µc,d, it does not immediately imply a distinguishing attack against
the 3-round KAC. This is because the number of bad keys generated by our
constructed A is at most q, so we have Prrk P Badkeys ¤ q{N . The reason of
µc,d being too large is that a bad key may be counted multiple times in the sum
capture quantity. Therefore, we cannot proceed with the sum capture quantity to
prove the optimal q � ΩpN3{4q bound for 3-round KAC with identical subkeys
if the overcounting cannot be eliminated.
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5 Good Transcript Analysis

Our next goal is to obtain upper bounds of 1� pS0
pτq{pS1

pτq for each τ P Tgood.
In particular, we will show the following lemma.

Lemma 7. If the t-round KAC is instantiated with a key schedule that gives
pt� 2q-wise independently uniform subkeys, then there exists a function g : T Ñ
r0,�8q so that for any τ � pQ,kq P Tgood,

1�
pS0

pτq

pS1
pτq

¤ gpτq ,

and for any query records Q,

Ek rgpQ,kqs ¤
t2p4qqt�1

N t
.

To obtain the desired function gp�q, we need to understand the ratio pS0
pτq{pS1

pτq
first. Given the transcript τ � pQ,kq in which Q � pQE ,Q1, . . . ,Qtq, we write
E Ó QE to denote that the real-world cipher construction E is consistent with
the recorded query QE , that is, for each px, yq P QE , it holds that Epxq � y.
Similarly, we write Pi Ó Qi to denote that the permutation Pi is consistent with
the recorded query Qi. Then following [5,16] one can derive that

pS0pQ,kq
pS1

pQ,kq � N p|QE |q � PrrEk Ó QE | P1 Ó Q1, . . . , Pt Ó Qts , (10)

where N p|QE |q � NpN � 1q � � � pN � |QE | � 1q. We provide a proof of (10) in the
full version.

To analyze the probability term on the RHS, we need to take the following
graph view for KAC, which was originally introduced by Chen and Steinberger
in [6].

5.1 Graph Definition and an Useful Lemma

Let G be a graph that consists of vertices which can be divided into m�1 layers
L0, . . . , Lm such that each layer contains exactly N vertices, and edges that can
be partition into m sets E � pEp0,1q, Ep1,2q, . . . , Epm�1,mqq such that Epi,i�1q

forms a partial (but possibly perfect) matching from Li to Li�1.
We say a vertex u P Li, where i   m, is right-free if no edge connects u to

any vertex in Li�1. Analogously, we say a vertex v P Lj , where j ¡ 0, is left-free
if no edge connects v to any vertex in Lj�1.

For any vertex u P L0 we define the following probabilistic procedure that
generates a path pw0, w1, . . . wmq from u to a vertex in Lm.

- Let w0 � u.
- For i from 1 to m, if wi�1 is not right-free and connects to some vertex
w1 P Li, then let wi � w1, otherwise let wi be uniformly sampled from all
left-free vertices in Li.
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We write Prru Ñ vs to denote the probability that the path pu,w1, . . . , wmq
satisfies wm � v. In particular, we are interested in the pair of pu, vq such that
u is right-free and v is left-free.

For the layered graph G, we let UGpa, bq, where a ¤ b, be the set of paths that
starts at a left-free vertex in La and reaches a vertex in Lb. We note that the
path in UGpa, bq does not necessarily ends in Lb. We write UGpa, bq � |UGpa, bq|.
Note that UGpa, aq denotes the total number of left-free vertices in La.

Given any σ � ppi0, i1q, pi1, i2q, . . . , pi|σ|�1, i|σ|qq in which i0   i1   � � �   i|σ|,
we say σ is an interesting pa, bq-segment partition with regard to the index set
I � t0, . . . ,mu if i0 � a, i|σ| � b and for all 1   j   |σ| we have ij P I. We use
BIpa, bq to denote the set that contains all interesting pa, bq-segment partition of
the set I. Given a layered graph G, we let the interesting indices of G as

IpGq :� ti P t0, 1, 2, . . . ,mu | UGpi, iq ¡ 0u .

Then we are ready to state the following lemma, which is a slightly different
variant of the lemma proved by Chen and Steinberger in [6] but with essentially
the same proof. We include the proof in the full version.

Lemma 8. For any graph G defined as above, and any u P L0, v P Lm such that
u is right-free and v is left-free, it holds that

PrruÑ vs �
1

N
�

1

N

¸
σPBIpGqp0,mq

p�1q|σ|
|σ|¹
h�1

UGpih�1, ihq

UGpih, ihq
.

5.2 Graph View of KAC

The KAC can also be interpreted in the graph view. Given a transcript τ �
pQ,kq where Q � pQE ,Q1, . . . ,Qtq and let subkeys s � ps0, . . . , stq be generated
from the key k, we define Ep2i,2i�1q :� tpv, v � siq | v P L2iu for i P t0, . . . , tu.
That is, L2i and L2i�1 are connected by the “subkey edges”, which corresponds
to the step of xoring the subkey si in the KAC execution. For i P t1, . . . , tu, we
let Ep2i�1,2iq :� tpu, vq | pu, vq P Qiu. This corresponds to the queries made to
the permutation Pi. Now, note that the interesting indices for KAC can only be
a subset of t0, 2, 4, . . . , 2tu.

For a fixed query records Q, let Zspa, bq, where a ¤ b, be the total number of
paths that connects a vertex in La and a vertex in Lb when the subkeys are fixed
to s. Note that the paths do not necessarily start at La or end at Lb. For the
`-th cipher query px`, y`q, let α`rss denote the largest possible index of the layer
that is reachable from x` when the subkeys are fixed to be s. let β`rss denote
the smallest index of the layer than is reachable from y`. Note that in the good
key case, we always have α`rss   β`rss.

Now, to bound the probability PrrE Ó QE | P1 Ó Q1, . . . , Pt Ó Qts, we
analyze the following experiment that can be divided into |QE | stages.

1. Initially, G0 is defined according to the given transcript τ � pQ,kq.
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2. For ` from 1 to |QE |, given G`�1 is defined, the probabilistic path generating
process is run for the `-th query px`, y`q P QE over the graph G`�1, from
vertex x` P L0.
– If the generated path from x` does not arrive at y`, the experiment outputs
0 and aborts.
– otherwise we first set G` � G`�1, then we remove all vertices on the path
of px`, y`q from G`. The new graph G` will have N � ` vertices in each layer.

3. If G|QE | is successfully defined, the experiment outputs 1.

So we have

pS0
pQ,kq

pS1
pQ,kq � N p|QE |qPrrExppτq � 1s � N p|QE |q

|QE |¹
`�1

Prrx` Ñ y` | G`�1s

Now we are ready to state the core lemma that defines the function gpQ,kq and
prove it using Lemma 8.

Lemma 9. For any query records Q with q ¤ N{4 and subkeys k such that the
transcript τ � pQ,kq P Tgood,

pS0pQ,kq
pS1

pQ,kq ¥ 1�
q̧

`�1

¸
1¤a¤b¤t

R2a�1,2b,`rss
¸

σPBIp2a�1,2bq, |σ|¥2

|σ|¹
h�1

Zspih�1, ihq

N � 2q

in which the set of interesting indices I of the segment partition set BI is defined
as I � t0, 2, . . . , 2tu, and Ra,b,`rss :� 1pα`rss ¥ a, β`rss ¤ bq.

Proof. For the `-th cipher query px`, y`q given the graph support G`�1, we can
define a graph G from G`�1 that removes all layers Li for i   α`rss and Lj
for j ¡ β`rss. Thus, in the graph G we starts at a right-free vertex u P L0 and
targets a left-free vertex v P Lm, allowing us to apply Lemma 8.

PrGrpx` Ñ y`q | G`�1s

�
1

N � `� 1

��1�
¸

σPBIpGqp0,mq

p�1q|σ|
|σ|¹
h�1

UGpih�1, ihq

UGpih, ihq

�

�

1

N � `� 1

��1�
UGp0,mq

UGpm,mq
�

¸
σPBIpGqp0,mq, |σ|¥2

p�1q|σ|
|σ|¹
h�1

UGpih�1, ihq

UGpih, ihq

�

¥

1

N � `� 1

��1�
¸

σPBIpGqp0,mq, |σ|¥2

|σ|¹
h�1

UGpih�1, ihq

UGpih, ihq

�

¥

1

N � `� 1

��1�
¸

σPBIpα`rss,β`rssq, |σ|¥2

|σ|¹
h�1

Zspih�1, ihq

N � 2q

�
 (11)
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Now we only consider the case where the lower bound (11)¥ 0 for all `. Otherwise
Lemma 9 becomes trivially true. Hence we have

pS0
pQ,kq

pS1
pQ,kq ¥

q¹
`�1

��1�
¸

σPBIpα`rss,β`rssq, |σ|¥2

|σ|¹
h�1

Zspih�1, ihq

N � 2q

�

¥ 1�

q̧

`�1

¸
σPBIpα`rss,β`rssq, |σ|¥2

|σ|¹
h�1

Zspih�1, ihq

N � 2q
(12)

¥ 1�
q̧

`�1

¸
1¤a¤b¤t

R2a�1,2b,`rss
¸

σPBIp2a�1,2bq, |σ|¥2

|σ|¹
h�1

Zspih�1, ihq

N � 2q

(13)

in which (12) is due to p1� aqp1� bq ¥ 1� a� b for any a, b ¥ 0 and (13) is due
to the indicator function R is non-negative and satisfies Rαrss,βrss,`rss � 1. We
note that (13) is the exact quantity we pick for 1� gpQ,kq. [\

Lemma 10. If q ¤ N{4, then,

Ek

�� q̧

`�1

¸
1¤a¤b¤t

R2a�1,2b,`rss
¸

σPBIp2a�1,2bq,|σ|¥2

|σ|¹
h�1

Zspih�1, ihq

N � 2q

�
¤ t2p4qqt�1

N t
.

Proof. By the sum of expectation and noting that none of σ P BIp2a � 1, 2bq
would have |σ| ¥ 2 if a � b, we have

Ek

�� q̧

`�1

¸
1¤a¤b¤t

R2a�1,2b,`rss
¸

σPBIp2a�1,2bq, |σ|¥2

|σ|¹
h�1

Zspih�1, ihq

N � 2q

�

�

q̧

`�1

¸
1¤a b¤t

¸
σPBIp2a�1,2bq, |σ|¥2

Es

��R2a�1,2b,`rss �

|σ|¹
h�1

Zspih�1, ihq

N � 2q

�
 .

Hence it is sufficient to derive bounds for each pa, b, σq. Note that for each a, b,
R2a�1,2b,jrss only depends on the subkeys s0, . . . , sa�2, sb�1, . . . , st, which are
pa� 2� 1q � pt� pb� 1q � 1q � t� b� a� 1 subkeys in total.

Next, given a fixed σ � ppi0, i1q, pi1, i2q, . . . , pi|σ|�1, i|σ|qq, we analyze the key
dependency for each Zspih�1, ihq.

1. For Zspi0, i1q, note that i0 � 2a�1 which is odd, and i1 is even. So Zspi0, i1q
pi1 � i0 � 1q{2 subkeys between Li0 and Li1 .

2. For any pih�1, ihq where h ¡ 1, given ih�1 is an even number, implying that
Lih�1

and Lih�1�1 are connected by “key-edges”, always forming a perfect
matching regardless of the subkey choice. Then the equality Zspih�1, ihq �
Zspih�1 � 1, ihq always holds. And we can see that Zspih�1 � 1, ihq only
depends on pih � ih�1 � 2q{2 subkeys.
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...
...

L0 L1

s0

...
...

L2 L3

s1

...
...

L4 L5

s2

...
...

L6 L7

s3

Q1 Q2 Q3

2a� 1 � 1 2b � 6

Zsp1, 6q
Zsp1, 4q Zsp4, 6q

Fig. 1. A 3-round KAC with fixed query records Q1,Q2,Q3. The subkeys s �
ps0, . . . , s3q are random and to be sampled. The red solid line indicates that the
Zspleft, rightq that counts the number of paths from Lleft to Lright depends on the cor-
responding subkeys. Consider 2a � 1 � 1, 2b � 6, then R1,6,`rss � 1 and depends on
pa � 1q � p3 � bq � 0 subkeys, because any s0 allows x` from L0 to reach L1, and y`
from L7 to L6. For σ � pp1, 6qq, the value of Zsp1, 6q depends on two subkeys s1, s2.
However, if the σ is further paritioned into pp1, 4q, p4, 6qq, then Zsp1, 4q depends on s1
but Zsp4, 6q does not depend on any subkeys, because Zsp4, 6q � Zsp5, 6q � |Q3|.

Also note that the sets of dependent subkeys for Zspih�1, ihq and R2a�1,2b,jrss
are disjoint. Putting the results altogether, after fixing pa, b, σq, the total number
of subkeys that each expectation term depends on are at most

#dependent subkeys � pt� b� a� 1q �
i1 � i0 � 1

2
�

|σ|̧

h�2

�
ih � ih�1

2
� 1




� pt� b� a� 1q �

°|σ|
h�1pih � ih�1q � 1

2
� p|σ| � 1q

� t� b� a� 1�
2b� 2a

2
� |σ| � 1

� t� |σ| ¤ t� 2 ,

in which we observe that a summation term of pa, b, σq depends on fewer subkeys
if the size of σ is larger (See Figure 1 for a specific case illustration). Because
our construction ensures that any t�2 subkeys are independently and uniformly
distributed, the random variables in each expectation terms are mutually inde-
pendent and hence we can break the terms into

Ek

�� q̧

`�1

¸
1¤a¤b¤t

R2a�1,2b,`rss
¸

σPBIp2a�1,2bq, |σ|¥2

|σ|¹
h�1

Zspih�1, ihq

N � 2q

�
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¤
q̧

`�1

¸
1¤a b¤t

¸
σPBIp2a�1,2bq, |σ|¥2

Es

��R2a�1,2b,`rss �

|σ|¹
h�1

2Zspih�1, ihq

N

�

�

q̧

`�1

¸
1¤a b¤t

¸
σPBIp2a�1,2bq, |σ|¥2

Es pR2a�1,2b,`rssq �

|σ|¹
h�1

Es
�

2Zspih�1, ihq

N



(14)

¤
q̧

`�1

¸
1¤a b¤t

� q
N

	t�b�a�1 ¸
σPBIp2a�1,2bq,

|σ|¥2

�
2q

N


pi1�i0�1q{2 |σ|¹
h�2

�
2q

N


pih�ih�1q{2

(15)

¤
q̧

`�1

¸
1¤a b¤t

� q
N

	t�b�a�1

�

�
4q

N


b�a�1

¤ t2 �
p4qqt�1

N t
. (16)

In the above calculation, (14) is due to the subkeys are pt�2q-wise independent.
The first “q{N” term of (15) comes from moving the Es pR2a�1,2b,`rssq, and
inside the summation the “2q{N” terms are the direct calculation upper bound
of Es p2Zspih�1, ihq{Nq for each pih�1, ihq. Finally we have the first inequality
of (16) holds because the size of BIp2a� 1, 2bq is upper-bounded by 2b�a, which
is absorbed into “2q{N” term yielding a “4q{N” term. [\

6 Concluding the Proof

Given the similarity of proofs for both theorems, we provide the proof of Theo-
rem 1 here and left the proof of Theorem 2 to the full version.

6.1 Proof of Theorem 1

Proof. We partition the set of transcripts T � Tgood \ Tbad according to Defini-
tion 1. By applying Lemma 1, we have ∆pX0, X1q ¤ EX1rgpX1qs�PrrX1 P Tbads.
We start with bounding PrrX1 P Tbads.

Claim.

PrrX1 P Tbads ¤ pt� 1q �
3qt�1

N t
� 3pt� 1q

c
q2t�1pt� 2qn

N2t�2
�
tpt� 1q

N t
.

Proof (of claim). We note that in the system S1, the set of bad keys BadkeyQ
is defined only by the query records Q � pQE ,Q1, . . . ,Qtq. Therefore, we have

PrrX1 P Tbads ¤ PrQ
�
|BadkeyQ| ¡ C

�
�

C

N t�1
.

To get the size bound for BadkeyQ, we compute the size of BadkeyQ,i for 0 ¤
i ¤ t. Then, we have

|BadkeyQ,0| ¤ µc0
pV1,Q2,Q3, . . . ,Qt�1,Qt, Ut�1q
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|BadkeyQ,1| ¤ µc1
pV2,Q3,Q4, . . . ,Qt,QE , U1q

...

|BadkeyQ,t�1| ¤ µct�1
pVt,QE ,Q1, . . . ,Qt�2, Ut�1q

|BadkeyQ,t| ¤ µctpV0,Q1, . . . ,Qt�1, Utq .

where the linear coefficient tuples ci are given by the condition 2 of Theorem 1
so that there are two neighboring coefficients that are non-zero, and

@i P t1, . . . , tu : Ui � tu | Dv : pu, vq P Qiu, Vi � tv | Du : pu, vq P Qiu

Ut�1 � tu | Dv : pu, vq P QEu, V0 � tv | Du : pu, vq P QEu .

The size of BadkeyQ,i is bounded by µci because any key k P BadkeyQ,i is
uniquely mapped to the subkeys ps0, . . . , si�1, si�1, stq as the linear mapping
has rank t� 1 (stated in condition 2 of Theorem 1).

Now we can apply Lemma 2 to upper bound BadkeyQ,i with high proba-

bility. For every i, by letting Ci �
3qt�1

N � 3qt�1{2
a
pt� 2qn, we obtain that

PrQr|BadkeyQ,i| ¡ Cis ¤
2
Nt . Therefore, setting C �

°t
i�0 Ci, we have

PrrX1 P Tbads ¤
ţ

i�0

PrQ
�
|BadkeyQi | ¡ Ci

�
�

C

N t�1

¤
2tpt� 1q

N t
� pt� 1q �

3qt�1

N t
� 3pt� 1q �

qt�1{2
a
pt� 2qn

N t�1

Hence we proved the claim [\

The next step is to pick a function g and upper bound EX1rgpX1qs. Note that
by condition 1 of Theorem 1, any t� 2 rows of key schedule matrix A has rank
t � 2, implying that any subset of t � 2 subkeys are independent and uniform.
Therefore we can apply Lemma 7 and obtain a function g. Noting that X1 is in
the ideal world so k is sampled independently of Q, we have

EX1
rgpX1qs � EQEkrgpQ,kqs ¤ EQ

�
t2p4qqt�1

N t

�
�
t2p4qqt�1

N t
.

Then by summing up the two quantities and numerical simplifications, the the-
orem follows. [\

7 Conclusion and Open Problems

In this paper, we provided key schedules of limited independence for t-round
key-alternating ciphers achieving tight security. We proved that the t-round key-
alternating cipher remains tightly secure for a class of pt� 1q-wise independent
sub-key distributions and, when t ¥ 8, for pt� 2q-wise sub-key distributions.

While, for 3 ¤ t ¤ 7, our result does not extends to pt� 2q-wise independent
sub-key distributions, we expect that a tighter analysis of the matrix 2-norm for
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the sum-capture quantity should give a proof for 4 ¤ t ¤ 7. Also, it is interesting
to investigate new methods for bounding the bad keys and proving tight security
of 3-round key-alternating cipher with identical key schedule. Further, it would
be also interesting to study whether the tightness result holds for pt � 3q-wise
distributions or beyond.
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