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Abstract. In this paper we study cryptographic finite abelian groups of
unknown order and hardness assumptions in these groups. Abelian groups
necessitate multiple group generators, which may be chosen at random.
We formalize this setting and hardness assumptions therein. Furthermore,
we generalize the algebraic group model and strong algebraic group model
from cyclic groups to arbitrary finite abelian groups of unknown order.
Building on these formalizations, we present techniques to deal with this
new setting, and prove new reductions. These results are relevant for class
groups of imaginary quadratic number fields and time-lock cryptography
build upon them.
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1 Introduction

Abelian groups of hidden order have recently been gaining more attention in
cryptography, due to their applications in, for example, time-lock cryptography
[31, 23, 7], cryptographic accumulators [7] and zero-knowledge arguments [11, 4].
Both RSA groups and class groups of imaginary quadratic number fields have
been proposed as hidden order groups for these applications. A trusted setup is
required in the RSA group setting to hide the order, but the class group setting
does not suffer from this restriction. In contrast to RSA groups, class groups are
abelian groups which are not always cyclic, i.e., they may require more than one
generator to generate the full group. In particular, this implies prime divisors of
the group order may have multiplicity larger than one. Moreover, there are no
known generic efficient algorithms for hidden order abelian groups to compute a
smallest set of generators or to certify a set of elements generate the full group.

There has been significantly less study of computational assumptions in
abelian groups compared to cyclic groups. This paper aims to address this gap by
studying the relation between various computational problems in finite abelian
groups in the (strong) algebraic group model. The algebraic group model (AGM),
introduced by Fuchsbauer, Kiltz and Loss [17], requires algorithms to output an
algebraic representation of their output elements in terms of input group elements.
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Name Game ((G, g) $←− Gκ) Outcome

MOC N $←− A(g) N ≡ 0 (mod |G|)
HOC N $←− A(g) N = |G|

DLog/DLog1 X $←− G, e $←− A(g,X) ge = X
DLog2 X $←− G, Y $←− 〈X〉, e $←− A(g,X, Y ) Xe = Y

CDH/CDH1 a, b $←− U|G|, Y
$←− A(g, ga, gb) Y = gab

CDH2 X $←− G, a, b $←− U|〈X〉|, Y
$←− A(g,X,Xa, Xb) Y = Xab

Here G = (Gκ)∞κ=1 is a cyclic group family with security parameter κ, and A is an
adversary playing the game. Each game starts by sampling (G, g). See Section 3.

Table 1. Overview of the relevant computational games in cyclic groups

The strong algebraic group model (SAGM), introduced by Katz, Loss and Xu
[18], additionally requires any algorithm to expose the circuit of group operations
it computed for output group elements. Both these models have predominantly
been used to study computational assumptions in cyclic groups, mainly those of
prime order [17] and semiprime order [18]. Another aim of this paper is therefore
to generalize the AGM and the SAGM to the setting of finite abelian groups
which are not necessarily cyclic.

Restricted Group Models. There has been a relatively long history of studying
computational problems in groups in a restricted model of computation. Starting
with Nechaev [22] and Shoup [30] introducing the generic group model (GGM).
The two main computational models relevant to this paper are the algebraic
group model (AGM) [17] and the strong algebraic group model (SAGM) [18].

Intuitively speaking, in contrast to the GGM, an algorithm in the AGM is
allowed to exploit any additional group structure and representation of group
elements like in the standard model. However, the AGM is not equivalent to the
standard model, as algorithms in the AGM are required to provide an algebraic
representation of their output group elements in terms of input group elements.
The SAGM lies between the AGM and the GGM as it requires that the algorithm
exposes the circuit of group operations it computed for output group elements.

In the (S)AGM one can study the hardness of computational problems through
reductions to other computational problems, just as in the standard model (SM).
The generic group model also allows for the proving of information-theoretic
lower bounds on the complexity of computational problems. See for instance, the
lower bounds on the discrete logarithm and the computational Diffie-Hellman
problem by Shoup [30], and the lower bound on any generic reduction from the
discrete logarithm problem to the computational Diffie-Hellman problem when
the group order has a multiple prime factor by Maurer and Wolff [21].

Since reductions in the (S)AGM are typically generic, i.e. the reduction itself
only uses generic group operations, computational lower bounds in the GGM can
imply the impossibility of efficient generic reductions in the AGM.
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Name Game (G $←− Gκ, g := (g1, . . . , gn) $←− Gn) A wins if

MO N $←− A(g) N ≡ 0 (mod |G|) ∧N 6= 0
HO N $←− A(g) N = |G|
LO (X, d) $←− A(g) X 6= 1G ∧ 1 < d < 2κ ∧Xd = 1G

DLog1 X $←− G, e $←− A(g, X) ge = X
DLog2 X $←− G, Y $←− 〈X〉, e $←− A(g, X, Y ) Xe = Y

CDH2 X $←− G, a, b $←− U |〈X〉|, Y
$←− A(g, X,Xa, Xb) Y = Xab

e-RT X $←− G, Y $←− A(g, Xe) Y e = X ∧ e > 1
StRoot X $←− G, (Y, e) $←− A(g, X) Y e = X ∧ e > 1

ARoot X $←− A(g), ` $←− Primes(2κ), Y $←− A(X, `) X 6= 1G ∧ Y ` = X

T -RSW A2 ← A1(g), X $←− G, Y $←− A2(g, X) Y = X2T ∧ ATime(A2) < T

Here G = (Gκ)∞κ=1 is a group family with security parameter κ, and A is an adversary
playing the game. Each game starts by sampling G, g1, . . . , gn. See Section 4.

Table 2. Overview of the relevant computational games in finite abelian groups

1.1 Our Contributions

The main contributions of this paper consist of (1) a formalization of the finite
abelian hidden order setting and the respective generalizations of the (S)AGM,
and (2) proving security reductions in this setting as further detailed below.

In Section 4, we first formalize the setting of working with finite abelian groups
of hidden order and introduce a framework to study computational problems
therein. An important example are class groups of imaginary quadratic number
fields. Instead of assuming the existence of a canonical set of generators, a
sufficiently large set of random group elements is used to generate the full group.
Hence, each game in Table 2 includes sampling a set of random generators.

We generalize both the AGM and SAGM to this setting, as earlier related
works were restricted to prime order cyclic groups [17] and hidden order RSA
groups [18], respectively. We will refer to these generalized models as the abelian
hidden order (strong) algebraic group model (AHO-AGM and AHO-SAGM, re-
spectively, for short).

An overview of the computational problems we consider in finite abelian
hidden order groups is given in Table 2. These are (including some works that
depend on them):

MO/HO: the (multiple/exact) order problem ([13, 3, 31, 23, 7, 6, 11, 18, 4]);
LO: the low order problem ([23, 7]);
ARoot: the adaptive root problem ([31, 7, 6, 11]);
StRoot: the strong root problem ([13, 6, 11]);
e-RT: the e-th root problem ([24, 3],[9, Ch. 12]);
T -RSW: the T -repeated squaring problem ([26, 31, 23, 7, 18]);
DLog1: the generalized discrete logarithm problem ([8]);
DLog2: the subgroup discrete logarithm problem ([3],[9, Ch. 12]);
CDH2: the subgroup computational Diffie-Hellman problem ([10],[9, Ch. 12]).

An overview of the relevant counterparts of these computational games in
cyclic groups is given in Table 1.
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A
B

DLog1 DLog2 CDH2 HO MO T -RSW StRoot ARoot e-RT LO

DLog1 [30], 6.6 [30], 6.6 [30], 6.6 [30], 6.6 [30], 6.6 [30], 6.6 [30], 6.6

DLog2 [30], 6.6 [30], 6.6 [30], 6.6 [30], 6.6 [30], 6.6 [30], 6.6 [30], 6.6

CDH2 6.3 [30], 6.8 [30], 6.8 [30], 6.8 [30], 6.8 [30], 6.8 [30], 6.8 [30], 6.8

HO
MO 6.5 6.4 7.5 Trivial 8.2 7.1 7.2 7.4 7.3

T -RSW 6.5 6.4 7.5 [18], 6.1 [18], 6.1 7.1 7.2 7.4 7.3

StRoot 6.5 6.4 7.5 [14], 6.1 [14], 6.1 8.2 7.2 7.4 7.3

ARoot 6.5 6.4 7.5 [31], 6.1 [31], 6.1 8.2 7.1 7.4 [7]

e-RT †[3], 6.1 †[3], 6.1 †[3], 6.1 †[3], 6.1 †[3], 6.1 †[3], 6.1 †[3], 6.1 †[3], 6.1 †[3], 6.1
LO ‡6.2,6.5 ‡6.2,6.4 ‡6.2,7.5 ‡6.2 ‡6.2 ‡6.2,8.2 ‡6.2,7.1 ‡6.2,7.2 ‡6.2,7.4

Fig. 1. Overview of the relevant reductions A ======⇒
AHO-GM

B in the finite abelian hidden

order group model, where GM is in the set {SM,AGM, SAGM}. The colors and
symbols in the cells mean the following:
- new results (in SM/AGM/SAGM) ( ), partial results ( ), no generic reduction ( )
- †: conditioned on e coprime with group order
- ‡: assuming an oracle for small prime subdivisor of group order

For cyclic groups of hidden order, we show in Section 3 the simple reduction
MOC ⇒ DLog in the hidden order cyclic group model (HO-SM). Subsequently,
we prove a novel reduction HOC ⇒ DLog in the HO-SM (see Theorem 3.5).

For finite abelian hidden order groups, our contributions are outlined in
Figure 1 and detailed in Sections 5, 6, 7 and 8. In the AHO-SM, we prove
reductions of MO to DLog1 and DLog2, and of LO to MO in the case where an
oracle for a small prime divisor of the group order exists. We provide an example
of such an oracle for the class group setting.

In the AHO-AGM, we prove that MO is equivalent to ARoot as well as StRoot.
Furthermore, we prove reductions of MO to e-RT, LO and CDH2. Lastly, in the
AHO-SAGM, we prove that T -RSW is equivalent to MO.

Overview of Techniques. The main results of this paper are reductions from
the problem of computing a multiple of the order of a finite abelian group to other
computational problems. A key observation here is that when G is a finite abelian
group generated by g = (g1, . . . , gn), then the integer vectors e = (e1, . . . , en)
with ge11 · · · genn = 1G form a lattice, called the relationship lattice of g. We show
in Lemma 5.1 that if one can find relations e1, . . . , en which form a full rank
sublattice of L(g), then |det(e1, . . . , en)| is an integer multiple of the order of G.

In Lemma 5.4 we prove a template reduction to obtain a multiple of the group
order with specified bounded loss in time and success probability, based on a
given simple transformation from an adversary to a relation sampler with the
following requirements: (1) repeated calls have independent and identical success
probability, which may not hold for the underlying adversary; (2) n relations
from n successful executions of the resulting relation sampler have negligible
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probability to be linearly dependent. The reduction succeeds when n linearly
independent relations are obtained among dSn/pe calls to the sampler, where S
is an oversampling parameter and p is the adversary’s advantage. Lemmas 2.6
and 2.7 on probability distribution ensembles allow us to bound the success
probability loss of the reduction.

To use the template reduction for several of our results, in each case we need
to construct such a relation sampler and prove it satisfies these requirements.
To show that the determinant |det(e1, . . . , en)| is non-zero, one can pick a
suitable large prime p and show that the determinant is non-zero modulo p
with all but negligible probability. This can be achieved by demonstrating that
the relationship coefficients modulo p (i.e., the coefficients of the matrix E =
(e1, . . . , en) mod p) are distributed close, i.e., at negligible statistical distance,
to uniform (see Lemma 2.5). Subsequently, we can apply the Schwartz-Zippel
lemma [29, 32] to conclude that the determinant of E will be zero modulo p with
negligible probability.

In order to obtain these relations with close to uniformly distributed coeffi-
cients modulo p, we query an adversary A, which solves a given computational
problem G, a number of times on independent random inputs from a fixed
group G, i.e., a new set of generators and challenge group elements. Note that by
each time freshly sampling a set of generators and input challenge it also satisfies
the requirement for independent and identical success probabilities.

From a correct input and output instance (and algebraic representations of
these instances with respect to g), we need to show one can obtain a relation
with respect to g. To construct relations which are distributed sufficiently close to
uniform modulo p, a main observation is that if we pass an element X = gr11 · · · grnn
to the adversary A, and write ri = r′i + r′′i · |〈gi〉| with 0 ≤ r′i < |〈gi〉|, then the

group element X is independent of the values of r′′i (as g
|〈gi〉|
i = 1G) and thus

any execution of A is independent of these r′′i . If we sample ri uniformly from
a sufficiently large set, then their modular reduction r′′i mod p is going to be
distributed negligibly close to uniform modulo p as desired.

In the case of cyclic groups, we show one can obtain the exact group order
with high probability from several multiples of the group order obtained from a
discrete logarithm adversary (Theorem 3.5). The main ingredient in this proof is
a theorem which states that independent uniformly sampled integers, shifted by
some bounded independent integers, have greatest common divisor equal to one
with high probability (Theorem 3.4).

1.2 Related Work

Damg̊ard and Koprowski [14] considered a variant of the strong root problem
StRoot and the e-th root problem e-RT in the GGM. The main difference is that
our work considers these assumptions in the AGM, and the methods we use are
mostly incomparable. This paper [14] did however introduce a version of the
GGM in which the group order is hidden and introduced the notion of a (hard)
group family, on which our definitions in Section 4 are based.
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Katz et al. [18] showed a reduction from the integer factorization problem
to the T -repeated squaring problem T -RSW for RSA groups in the SAGM.
Their reduction is in fact a reduction from the exact order problem HO to the
T -RSW problem. They show this through a reduction from HO to the multiple
order problem MO, which happen to be equivalent in RSA groups [18, Lemma 1].
Although Lemma 8.1 and Theorem 8.2 of our work can be seen as a generalization
of [18, Theorem 2] from the family of RSA groups to all finite abelian groups,
the techniques we use to prove these results are distinct and novel. Additionally,
our work in the finite abelian group setting investigates more relations between
more computational problems. The motivation to do so is that class groups of
imaginary quadratic number fields are not covered by [18], while this is one of
the main candidate group families for hidden order cryptography like VDFs.

Finally, the line of work by Rotem, Segev and Shahaf [28] and Rotem and Segev
[27] considers generic-group delay functions and generic-ring delay functions,
respectively. In particular, they show that generically speeding up repeated
squaring is equivalent to factoring [27]. Their work [27] is however again limited
to rings of the form ZN with N = pq an RSA modulus. Moreover, the works are
in the setting of the generic group model (for cyclic groups) [28] and the generic
ring model [27], and their methods are unlike this work.

1.3 Applications of Hidden-Order Groups

Verifiable Delay Functions. Verifiable delay functions (VDFs) were intro-
duced by Boneh, Bonneau, Bünz and Fisch [5] as a cryptographic primitive with
proposed applications in, for example, public randomness beacons [25, 7, 16]
and computational timestamping [7, 19]. The most popular VDF constructions
are those introduced by Weselowski [31] and Pietrzak [23], both are based on
the notion of time-lock puzzles from Rivest, Shamir and Wagner [26]. Time-

lock puzzles assume that no efficient adversary can compute X2T faster than
by computing T sequential squarings, which translates to the T -RSW hardness
assumption in the AHO-SAGM. We show in Theorem 8.2 that T -RSW is hard in
the AHO-SAGM if it is hard to compute a multiple of the group order (i.e., MO is
hard). Furthermore, these constructions assume the hardness of the adaptive root
problem ARoot (for Weselowski’s construction) and the low order problem LO
(for Pietrzak’s construction). We show in Theorem 7.2 that ARoot is hard in the
AHO-AGM if MO is hard. It follows from the known standard model reduction
ARoot⇒ LO [7] that LO is hard in the AHO-AGM if MO is hard (Corollary 7.3).

Cryptographic Accumulators. Boneh, Bünz and Fisch [6] propose a con-
struction for a universal accumulator in a distributed setting, together with
batching and aggregation techniques, in hidden order groups. The security of the
accumulator is based on a variant of the strong root problem StRoot. We show in
Theorem 7.1 that StRoot is hard in the AHO-AGM if MO is hard. The authors
moreover construct succinct arguments for knowledge of discrete logarithms in
hidden order groups based on the adaptive root problem ARoot [6].
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Zero-Knowledge Arguments. Bünz et al. [11] construct transparent SNARKs
based on hidden order groups, where its security depends on a variant of the
strong root problem StRoot and the adaptive root problem ARoot. Block et al.
[4] adapt this scheme from [11] to overcome a gap in the proof of security in order
to construct time and space efficient non-interactive zero-knowledge arguments.
Their construction is based on the hardness of computing a multiple of the order
of a random group element, which is closely related to the MO/HO problems.

2 Preliminaries

For integers a ≤ b, let [a, b] denote the set {a, a+ 1, . . . , b− 1, b} and for a < b
let [a, b) denote [a, b− 1]. For a positive integer n, let Primes(n) denote the set
of the first 2n primes.

Let G be a finite abelian group. For g = (g1, . . . , gn) ∈ Gn and e =
(e1, . . . , en) ∈ Zn, we use the shorthand 〈g〉 := 〈g1, . . . , gn〉 for the subgroup
generated by g1, . . . , gn, and ge :=

∏n
i=1 g

ei
i for coordinate-wise exponentiation

and multiplication of the results. Furthermore, for A = (a1, . . . ,an) ∈ Zn×n, we
denote gA := (ga1 , . . . , gan).

For a finite set S, let US denote the uniform distribution on S. Moreover, for
any 0 < M ≤ N , we define UM := U[0,M) and RN,M := [x mod M | x $←− UN ] for
the probability distribution on the set [0,M) obtained by reducing samples from
UN modulo M . For sets and probability distributions, we use

∏
to denote the

cartesian product. In particular, for probability distributions Di over domains Si,
the cartesian product D =

∏n
i=1Di is the probability distribution over

∏n
i=1 Si

defined by the probability function: p((xi)
n
i=1) :=

∏n
i=1 PrXi∼Di [Xi = xi].

We assume that all algorithms receive 1κ as input, where κ is the security
parameter. Furthermore, we assume the asymptotic runtime of our reductions
is dominated by the runtime of the original adversary it calls as subroutine. To
avoid unnecessary clutter, we omit asymptotic lower order additive terms in the
running time analyses of our reductions. These generally include very simple
operations such as sampling of integers, passing arguments between algorithms,
and simple bit-wise operations. Also, we scale time units such that multiplication
in the group G under consideration takes unit time.

2.1 Statistical Distance and Approximate Uniform Sampling

We introduce several lemmas on probability distributions that we use later on.

Lemma 2.1. For a given positive integer M ≥ 1, let X and Y be independent
random variables on [0,M) and define the random variable Z := [X+Y mod M ].
If X ∼ UM or Y ∼ UM , then Z ∼ UM is uniformly distributed on [0,M) as well.

Definition 2.2. For given probability distributions D1 and D2 over a finite set S,
the statistical distance between D1 and D2 is defined as

δ(D1,D2) :=
1

2

∑
x∈S

∣∣∣∣ Pr
X∼D1

[X = x]− Pr
Y∼D2

[Y = x]

∣∣∣∣ .
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An equivalent definition we use is the maximal absolute difference that can occur
between both probability distributions over all possible events:

δ(D1,D2) = max
T⊆S

∣∣∣∣ Pr
X∼D1

[X ∈ T ]− Pr
Y∼D2

[Y ∈ T ]

∣∣∣∣ .
Lemma 2.3. Let M ≤ N be positive integers and let X ∼ UN . Then

∀y ∈ [0,M) : |Pr[X ≡ y mod M ]− 1/M| ≤ 1/N,

hence the statistical distance between [X mod M ] = RN,M and UM is bounded as

δ (RN,M , UM ) ≤ M/2N.

Lemma 2.4. Let M ≤ N be positive integers and let X ∼ UN . For any x ∈
[0, N) there are unique y ∈ [0,M), z ∈ [0, dN/Me) such that x = y + zM . Let
Zy := [bX/Mc | X ≡ y mod M ] be the random variable related to z obtained by
dividing X by M and rounding down, conditioned on X ≡ y mod M . Then

Pr[Zy = z] =


1/dN/Me if y < (N mod M) ∧ y + zM ∈ [0, N);
1/bN/Mc if y ≥ (N mod M) ∧ y + zM ∈ [0, N);

0 otherwise.

Hence Zy ∼ UdN/Me if y < (N mod M) and Zy ∼ UbN/Mc otherwise. Moreover,
the statistical distance between those two distributions is bounded:

δ(Zy,UdN/Me) ≤ δ(UbN/Mc,UdN/Me) ≤ 1/dN/Me.

Lemma 2.5. Let UM be the uniform distribution on the set [0,M) and let Di
be probability distributions over the same set for i = 1, . . . , `. Assume that there
exists a constant 0 < δ ≤ 1/M` such that for all instances x ∈ [0,M)∣∣ Pr

X∼Di
[X = x]− Pr

Y∼UM
[Y = x]

∣∣ ≤ δ.
Then the statistical distance between the cartesian products

∏`
i=1Di and

∏`
i=1 UM

is upper bounded by 1
2

(
δ`M + (δ`M)2

)
.

Proof. See the full paper [2, App. A].

We prove the following Lemma that we use in reductions to analyze repeatedly
calling adversaries with inputs belonging to the same group.

Lemma 2.6. Let X = {Xi}i∈I be a finite probability distribution ensemble,
where Xi ∼ B(N, pi) follows the binomial distribution with N samples with
probability pi. Let the set X itself be endowed with the uniform distribution.
Given n ≥ 1, S ≥ 4 and the average probability p = E[pi], if N = dSn/pe then

Pr
X∈X

[X ≥ n] ≥ (p/2) · (1− e−n·CS )

where CS := (S − 3)/2 + 1/S − log (S/2). Note that CS ≥ 1 for S ≥ 8.
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Proof (sketch). The claim can be shown by analyzing the subset X2 = {Xi ∈ X |
pi > p/2} and bounding its size |X2| ≥ (p/2) · |X |. For each Xi ∈ X2, one can
then upper bound Pr[Xi ≤ n] using Chernoff’s bound and the fact that pi > p/2.
See the full paper [2, App. A] for a full version of the proof.

Lemma 2.7. Let B(N, p) and B(N, p′) be binomial distributions with N samples
and respective success probabilities p and p′. Then the statistical distance between
these distributions is bounded by (N2/2) · |p− p′|.

Proof (sketch). Define xi,j := Pr[B(i, p) = j], yi,j := Pr[B(i, p′) = j] and αi :=
maxj |xi,j − yi,j |. Then the statistical distance is bounded by 1/2 ·N · αN . One
can show that α1 = |p− p′|, and for i ≥ 1 that αi+1 ≤ αi + α1 since for any j:

|xi+1,j − yi+1,j | =
|y1,1(xi,j−1 − yi,j−1) + y1,0(xi,j − yi,j) + xi,j−1(x1,1 − y1,1) + xi,j(x1,0 − y1,0)|
≤ y1,1αi + y1,0αi + xi,j−1α1 + xi,jα1 ≤ αi + α1,

It follows that αN ≤ N · |p− p′|, which proves the claim.

2.2 Security Games and Adversaries

Definition 2.8. A security game G is defined with respect to a set of parameters
par (defining the group family) and an adversary A that plays the game. A game
consists of a main procedure that receives as input a security parameter κ ∈ Z≥1
and at the end outputs a single bit 0 (A loses) or 1 (A wins). We denote the
output of a game G executed with parameters par and adversary A as GApar(κ).
We define the advantage of A in G as

AdvGpar,A(κ) := Pr[GApar(κ) = 1].

We denote the (expected) running time of GApar(κ) by TimeGpar,A(κ). We extend
this notation to be able to denote the advantage conditional on an event E in G:

AdvGpar,A|E(κ) := Pr[GApar(κ) = 1 | E].

Definition 2.9. Let G, H be security games. We write H
(∆ε,∆t)
=====⇒ G if there

exists an algorithm R (called a (∆ε, ∆t)-reduction) such that for all algorithms
A playing game G, the algorithm B := RA playing game H satisfies

AdvHpar,B(κ) ≥ ∆ε·AdvGpar,A(κ)−negl(κ), TimeHpar,B(κ) ≤ ∆t·TimeGpar,A(κ)+T (κ),

where T (κ) is an insignificant overhead, i.e., limκ→∞ T (κ)/TimeGpar,A(κ)→ 0.

This notation can be extended, e.g., as H
(∆ε,∆t)
=====⇒

AGM
G to specify the reduction holds

within the mentioned restricted model (AGM in the example).
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2.3 Algebraic Group Model

The algebraic group model (AGM) is a simplified model of computation introduced
by Fuchsbauer et al. [17]. It lies between the generic group model (GGM), first
introduced by Nechaev [22] and Shoup [30], and the standard (Turing machine)
model. In the AGM all algorithms are modeled as algebraic. This means that for
any group element X ∈ G an algorithm may output, it additionally has to output
an algebraic representation a = (a1, . . . , a`) ∈ Z` such that X =

∏`
i=1 g

ai
i in

terms of the group elements g = (g1, . . . , g`) ∈ G` the algorithm has received as
input. We will denote such a representation by [X]g. In the GGM every algorithm
only receives random identifiers of group elements and can only perform group
operations through oracle queries. In contrast to the generic group model GGM,
the AGM does not let us prove information-theoretic lower bounds on the
complexity of algebraic adversaries trying to solve a given problem. Just as in the
standard model, security implications in the AGM are proven through reductions.

The AGM has originally only been defined for cyclic groups G of known
prime order [17]. In this work, we will generalize this to the setting where G is
an arbitrary finite abelian group of unknown order |G|. The formal definition will
be given in Subsection 4.1.

2.4 Strong Algebraic Group Model

The strong algebraic group model (SAGM) has been introduced by Katz et al.
[18] as a strengthened version of the algebraic group model (AGM). The SAGM
lies between the GGM and the AGM. Any SAGM algorithm is algebraic, but it
must expose the algebraic representation of output group elements instead as
an algebraic circuit more similar to the GGM. More specifically, algorithms in
the SAGM may use one or more output rounds, where in each output round any
output group element must be described as a primitive group operation on one
or two group elements that were input or were output in a previous round. Our
definition of the SAGM is completely identical to the definition from Katz et al.
[18]. However, since the definition depends on our generalized definition of the
AGM, we will postpone giving the formal definition until Section 4.2.

3 Hidden Order Cyclic Group Model (HO-SM)

As a stepping stone to the theory of finite (not necessarily cyclic) abelian groups,
we first consider a simple reduction of the multiple order problem MOC to the
discrete logarithm problem DLog for cyclic groups of unknown order. Then we
prove a novel reduction from HOC to DLog in Theorem 3.5, which will also
illustrate some of the main techniques used in the rest of this paper.

Definition 3.1. A cyclic group family G = (Gκ)∞κ=1 is a family of probability
distributions over finite cyclic groups defined with:

1. An efficient sampling algorithm GGen that, on input 1κ, randomly samples a
group G ∈ Gκ and outputs a group description of G, a generator g and 1G.
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2. An efficient sampling algorithm GSample which, given a group description of
G, outputs a group element x ∈ G sampled uniformly at random.

3. Efficient algorithms GMul and GInv that, respectively, multiplies two group
elements, and inverts a group element.

4. A group order upper bound U(κ): ∀κ∀G ∈ Gκ : U(κ) ≥ |G|, such that
logU(κ) ∈ poly(κ) and 1/U(κ) ∈ negl(κ).

Remark 3.2. Note that the bit size of the representations of the group elements
of all G ∈ Gκ should be polynomial in the security parameter κ, since otherwise
it would not be possible to construct efficient algorithms on G. If we assume
that an upper bound p(κ) on the bit size of the representations is known, this
automatically gives an upper bound Uκ = 2p(κ) on the order of G, for which
log(Uκ) is polynomial in κ.

Lemma 3.3. For any cyclic group family G = (Gκ)∞κ=1:

MOC
1,1

=====⇒
HO-SM

DLog.

Proof. Given a DLog adversary A, we construct an MOC adversary BA as follows,
which takes inputs G, g, U .

r $←− UU2 , d← A(g, gr)

if gd = gr then return |r − d| else return ⊥

By Lemma 2.3, the statistical distance between r mod |G| and the uniform
distribution on [0, |G|) has negligible bound ε1 := 1/U ∈ negl(κ). Since A
succeeds with probability p := AdvDLog

(G,g),A when gr is distributed uniformly in

G, it follows that A succeeds on each instance (g, gr) with probability at least
p− ε1. Moreover, if A succeeds and gd = gr, then BA outputs |r − d| which is
indeed an integer multiple of the group order, but potentially zero if r = d.

To bound the probability that r = d, write r = r′ + r′′|G| with 0 ≤ r′ < |G|
and r′′ ∈ [0, N), where N := dU2/|G|e ≥ U . Then gr = gr

′
only depends on r′,

thus the execution and output d of A only depends on r′ as well. This implies that
we can view the experiment as if r is sampled, conditioned on r ≡ r′ mod |G|,
only after we receive the output d of A(g, gr

′
). Note that r′′ = (r − r′)/|G| is

distributed as Zy in Lemma 2.4, and thus r′′ has statistical distance at most 1/N to
UN . Since furthermore, the probability that any particular value is sampled from
UN is at most 1/N, it follows that Pr[r = d] = Pr[r′′ = (d− r′)/|G|] ≤ 2/N =: ε2,
then ε2 ≤ 2/U ∈ negl(κ). Hence, BA outputs a non-zero multiple of the group
order with probability at least (p− ε1)(1− ε2) = p− negl(κ) and with the same
Time complexity as A plus some insignificant overhead.

The above Lemma shows that we can leverage a DLog adversary to obtain
a multiple of the group order with non-negligible probability. By repeating this
process with independently randomly chosen gr, we can obtain various multiples
of the group order, and using the following theorem we can show that in this way
we can obtain the exact group order with high probability.
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Theorem 3.4. Let k ≥ 2, n ≥ 223, and 1 ≤ d < n be positive integers, and
let s1, . . . , sk be arbitrary integers with |si| ≤ nd. Let X1, . . . , Xk be independent
random variables with distribution Un, then:

Pr[gcd(s1 +X1, . . . , sk +Xk) = 1] ≥ (1− (d/n)k−1) · (1− εk) · 1/ζ(k) =: σ(k, d/n),

where ζ(k) is the Riemann zeta function, εk ≤ .077 for k = 2 and εk ≤ 2.9 · 10−5

for k ≥ 3. When d ≤ n/10, this probability is at least .505 for k ≥ 2, at least .92
for k ≥ 4, and at least .99 for k ≥ 7.

Proof. The proof is given in the full paper [2, App. A].

Theorem 3.5. For any cyclic group family G = (Gκ)∞κ=1, integers k ≥ 2, S ≥ 4:

HOC
ck(1−e−k·CS )/2, dSk/pe
================⇒

HO-SM
DLog, e.g., HOC

.49, d56/pe
=======⇒

HO-SM
DLog,

where p := AdvDLog
G,A (κ), CS as in Lemma 2.6, and ck := σ(k, 1/10) ≥ 0.505. The

example uses S = 8 and k = 7.

Proof. Given a DLog adversary A with advantage p(κ) := AdvDLog
G,A (κ), then given

k ≥ 2, S ≥ 4 we construct an HOC adversary BA which takes input (1κ,G, g)
with (G, g) ∈ Gκ as follows.

M := ∅
for i = 1, . . . , dSk/p(κ)e
ri $←− UU2 , di ← A(g, gri)

if gri = gdi then M ←M ∪ {|di − ri|}
if M 6= ∅ then return gcd(M) else return ⊥

This adversary is similar to the one in the proof of Lemma 3.3, except it performs
dSk/p(κ)e such sample & queries and returns the gcd of the obtained differences
|ri − di|. This corresponds to the time complexity factor dSk/p(κ)e in the claim.

We have already shown that for each sample & query the probability that
gr = gd depends on (G, g) and is p′G := pG − negl(κ), where pG := AdvDLog

(G,g),A.

Let p′ := EG∈Gκ [p′G] be the average success probability of a successful sample &
query for a random group G ∈ Gκ, then p′ = p(κ)− negl(κ).

Next we bound the probability we find at least k successful samples for a
random group G ∈ Gκ. We apply Lemma 2.6 on X = {B(dSk/p(κ)e, pG)}G∈Gκ
and use Lemma 2.7 to find that

Pr
G∈Gκ

[|M | ≥ k] = Pr
X∈X

[X ≥ k]− negl(κ) ≥ p · (1− e−k·CS )/2− negl(κ).

For any given (G, g), consider any successful sample & query gri = gdi and
let N := dU2/|G|e. As the size of the outputs di of A are polynomially bounded
in κ, there is an integer K such that for all κ ≥ K the outputs of A are bounded
by |di| ≤ NN/10. Assume that indeed |di| ≤ NN/10 and N ≥ U ≥ |G| ≥ 223.
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We have already shown that r′′i = bri/|G|c is distributed independently from
di and has negligible statistical distance ε1 to UN . By Theorem 3.4 it follows
that if we have k successful samples |r1 − d1|, . . . , |rk − dk| then

Pr [gcd (|r1 − d1|/|G|, . . . , |rk − dk|/|G|) = 1] ≥ σ(k, 1/10)− kε1 = ck − negl(κ).

Finally, we can conclude that indeed:
Pr(G,g)∈Gκ

[
BA(1κ,G, g) = |G|

]
≥ p · (ck(1− e−k·CS )/2)− negl(κ).

4 Abelian Hidden Order Standard Model (AHO-SM)

In this section we propose a computational framework for working in finite abelian
groups of hidden order. We first generalize the notion of a (hard) group family
from Damg̊ard and Koprowski [14], and later introduce generalized notions of
the algebraic group model from Fuchsbauer et al. [17] as well as of the strong
algebraic group model from Katz et al. [18].

In our definition of an abelian group family below we do not assume sampled
groups come with a canonical set of generators. Instead a sufficiently large set
of random group elements can always be used as generator set. Hence, for the
computational problems considered in Table 2, each game starts with sampling a
group G as well as a set of random generators (g1, . . . , gn).

Definition 4.1. An abelian group family G = (Gκ)∞κ=1 is a family of probability
distributions over finite abelian groups defined with:

1. An efficient sampling algorithm GGen that, on input 1κ, samples uniformly
at random a group G ∈ Gκ and outputs a group description of G and 1G.

2. An efficient sampling algorithm GSample which, given a group description of
G, outputs a group element x ∈ G sampled uniformly at random.

3. Efficient algorithms GMul and GInv that, respectively, multiplies two group
elements, and inverts a group element.

4. A group order upper bound U(κ): ∀κ∀G ∈ Gκ : U(κ) ≥ |G|, such that
logU(κ) ∈ poly(κ) and 1/U(κ) ∈ negl(κ).

5. A random group generator count n(κ) ∈ Z>0 and n(κ) ∈ poly(κ) such that

Pr[〈g〉 6= G | G $←− Gκ, g $←− Gn(κ)] ∈ negl(κ).

When the security parameter κ is clear from the context, we will usually omit κ
and simply denote U and n instead of U(κ) and n(κ), respectively.

Note that by the same arguments as in Remark 3.2, for any tuple of abelian
group family algorithms (GGen, GSample, GMul, GInv) there always exists a
candidate U(κ) that satisfies Definition 4.1. Moreover, the following Lemma also
provides a candidate n(κ).

Lemma 4.2. For any abelian group G and U ≥ |G|, let n := dlog2 Ue. Then
there exist g1, . . . , gn such that 〈g1, . . . , gn〉 = G. Moreover, 2n random elements
fail to generate the full group with exponentially small probability in n, i.e.,

Pr[〈g〉 6= G | g $←− G2n] ≤ 2−n(≤ 1/U).
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Proof. The first part of the lemma follows directly from the observation that
if gi+1 /∈ 〈g1, . . . , gi〉 then we have that |〈g1, . . . , gi+1〉| = k · |〈g1, . . . , gi〉| with
k ∈ Z≥2. The second part of the lemma follows from two observations. First,
that for all g1, . . . , gi that generate a strict subgroup G′ := 〈g1, . . . , gi〉 6= G the
probability that a randomly sampled element lies in the subgroup is bounded as
Pr[x ∈ G′ | x $←− G] ≤ 1/2. Second, for g ∈ G2n with 〈g〉 6= G, it follows that for
at least n indices i it holds that gi+1 ∈ 〈g1, . . . , gi〉 6= G.

We generalize the notion of a hard group family from Damg̊ard and Koprowski
[14, Definition 1] to the abelian hidden order setting as follows.

Definition 4.3. Let lp(N) denote the largest prime divisor of N . Sampling a
group G $←− Gκ and considering lp(|G|), induces a distribution Dκ on the primes.
Define α(Gκ) := maxp PrG[p = lp(|G|)] to be the maximal probability in Dκ. For
a positive integer M , define the probability β(Gκ,M) := PrG[lp(|G|) ≤ M ] that
the largest prime divisor of the group order is at most M .

Definition 4.4. A hard abelian group family is an abelian group family (Gκ)κ∈Z>0

which satisfies the following conditions:

1. α(Gκ) is negligible in κ;
2. There exists B(κ) such that ∀G ∈ Gκ : B(κ) ≤ |G| and 1/B(κ) ∈ negl(κ).

Moreover, Damg̊ard and Koprowski noted that if (Gκ)κ∈Z>0
is a hard abelian

group family, then setting Mκ := 1/
√
α(Gκ) leads to β(Gκ,Mκ) as well as 1/Mκ

being negligible [14, Fact 1].
The order of elements sampled uniformly at random will in general be super-

polynomially large, which we will show using the following two lemmas.

Lemma 4.5. Let |G| =
∏
p p

e(p) be the prime factorization of |G|. Then the
probability for a prime p | |G| to divide the order of a uniformly random element
of G is 1− 1/pe(p).

Proof. By the fundamental theorem of finite abelian groups we can write G ∼=⊕t
i=1(Z/peii Z), where p1, . . . pt are (not necessarily distinct) prime numbers. The

order of an element X ∈ G is not divisible by a prime p | |G| if and only if X
has trivial components in all subgroups corresponding to (Z/peii Z) with pi = p.
There are exactly

∏
pi 6=p p

ei
i = |G|/pe(p) such elements.

Lemma 4.6. Let (Gκ)∞κ=1 be a hard abelian group family. Then there exists a
superpolynomial bound Mκ such that the order of a random element X ∈ G ∈ Gκ
will have order greater than Mκ with all but negligible probability, i.e.:

Pr [|〈X〉| < Mκ | X $←− G, G $←− Gκ] ∈ negl(κ).

Proof. As mentioned above, for Mκ := 1/
√
α(Gκ), the probability β(Gκ,Mκ) is

negligible and the bound Mκ is superpolynomial [14, Fact 1]. Assume that the
largest prime divisor p of |G| is at least Mκ, which thus happens with probability
1− negl(κ). Now, sampling X $←− G, we see that p divides the order of X with
probability ≥ 1− 1/p by Lemma 4.5, i.e. with all but negligible probability.
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Note that even without knowing the exact group structure or the exact group
order we can efficiently sample group elements as gr close to uniform, as shown
in the following two lemmas.

Lemma 4.7. Let G be a finite abelian group and let g1, . . . , gn ∈ G be a system
of generators. Put Oi := |〈gi〉| for i = 1, . . . , n. If we sample (ri)

n
i=1

$←−
∏n
i=1 UOi

and set X := gr11 · · · grnn , then X is uniformly distributed in G.

Lemma 4.8. Let G be a finite abelian group and 〈g1, . . . , gn〉 = G, and let `, v

be positive integers. If we sample (rij)
`,n
i,j=1

$←− (UUv )`n and set Xi := gri11 · · · grinn
for i = 1, . . . , `. Then the statistical distance between the distribution of (Xi)

`
i=1

and the uniform distribution UG` is upper bounded by `n/2Uv−1 + `2n2
/2U2v−2.

Proofs of Lemmas 4.7 and 4.8 can be found in the full paper [2, App. A].

4.1 Abelian Hidden Order Algebraic Group Model (AHO-AGM)

In this subsection we generalize the algebraic group model (AGM) of Fuchsbauer
et al. [17] to the setting of finite abelian groups of hidden order. We call this model
the abelian hidden order algebraic group model (AHO-AGM). In the AHO-AGM,
all algorithms must satisfy the following definition.

Definition 4.9. An algorithm A executed in an algebraic game G is called alge-
braic if for all group elements X ∈ G that A outputs, it also outputs a representa-
tion a = (a1, . . . , a`) ∈ Z` such that X =

∏`
i=1 g

ai
i , where g = (g1, . . . , g`) ∈ G` is

the list of all group elements that have been given to A so far. We will denote such
a representation by [X]g. (Here, typically, g1, . . . , gn are the uniformly randomly
chosen generators for G.)

Surprisingly, a standard model reduction and an algebraic group model
reduction can compose to a standard model reduction under certain conditions.
That is Z ======⇒

AHO-SM
X may follow from Z =======⇒

AHO-AGM
Y and Y ======⇒

AHO-SM
X. For

instance, note that any standard model algorithm for any game X ∈ {MO, HO,
DLog1, DLog2} is by definition also algebraic, since no group elements are output.
In that case any generic or algebraic reduction Y ⇒ X results in an algebraic
adversary for Y. Hence, such generic reductions Y ⇒ X in the standard model can
be composed with any algebraic group model reduction from Z⇒ Y to obtain a
standard model reduction Z⇒ X. (See e.g. Corollary 6.4.)

4.2 Abelian Hidden Order Strong Algebraic Group Model
(AHO-SAGM)

In this subsection we extend the strong algebraic group model (SAGM) to finite
abelian (not necessarily cyclic) groups. In the SAGM the running time of an
algorithm is measured by the number of algebraic rounds and the “normal”
running time measured in some underlying computational model (e.g. the Turing
machine model). The SAGM is similar to the AGM, but in the case of the
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repeated squaring problem with timing parameter T , an adversary can simply

output g2
T

in one algebraic round. Therefore the AGM is not the right model to
study the hardness of the repeated squaring problem. This is made formal in [18,
Theorem 3]. Moreover, note that this model allows for arbitrary parallelism, since
strongly algebraic algorithms are allowed to output multiple tuples per round.
Of course efficient algebraic algorithms are only allowed to output a polynomial
number of tuples in each round.

Note that a strong algebraic algorithm is automatically an algebraic algorithm.
Conversely, assuming that the output length is polynomial, any algebraic algo-
rithm can be turned into a strongly algebraic algorithm with a polylogarithmic
time loss (see [18, Theorem 1]).

Our definition is a generalization of the original definition introduced by Katz
et al. [18]. Contrary to Katz et al. [18], we let G be any finite abelian group, which
is sampled according to some group family G = (Gκ)∞κ=1. Here κ can be seen as
the security parameter of the corresponding game. We call this model the abelian
hidden order strong algebraic group model (AHO-SAGM). In the AHO-SAGM,
all algorithms must satisfy the following definition.

Definition 4.10. An algorithm A over a group G is called strongly algebraic
if it has one or more output rounds (between which it may perform arbitrary
local computation). An output round is called algebraic if it contains one or more
group elements. For each group element X it outputs it must also output a tuple
of one of the following forms:

1. (X,X1, X2) ∈ G3 such that X = X1X2, where X1, X2 were either previously
given to A or previously output by A.

2. (X,X1) ∈ G2 such that X = X−11 , where X1 was either previously given to
A or previously output by A.

In the AHO-SAGM, we will denote a tuple of one of the above forms by [X]. The
algebraic running time of A is the number of algebraic rounds it takes, and is
denoted by ATime. We denote the running time of A by a pair (ATime,Time).

5 Computing (a Multiple of) the Group Order

Following [8], given a system of generators g = (g1, . . . , gn) of a finite abelian
group G, we call any vector e = (e1, . . . , en) ∈ Zn with the property that ge = 1G
a relation for g. The relations for g form a lattice in Zn, which we will denote by
L(g). Since this lattice is the kernel of the surjective homomorphism

Zn → G, e 7→ ge, (1)

its dimension is n. Let B = (b1, . . . , bn) be a basis for the lattice L(g), then
Zn/B Zn ∼= G by (1), from which it follows that [8, Lemma 3.1]

|det(B)| = |Zn/B Zn| = |G|. (2)

We can show that if you find a full rank sublattice of L(g), then you obtain a
multiple of the group order:
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Lemma 5.1. Let G be a finite abelian group, let g = (g1, . . . , gn) be a system of
generators of G, and let B = (b1, . . . , bn) be a basis for the relationship lattice
L(g). Let R = (r1, . . . , rn) be a system of relations for g, which are linearly
independent as vectors over R. This implies these form a full rank sublattice
Λ := RZn ⊂ L(g). Then |det(R)| is an integer multiple of |G|.

Proof. Since both lattice bases B and R generate Rn as a vector space, we know
that there is a matrix T = (tij)

n
i,j=1 such that R = BT , with d := det(T ) 6= 0.

Since a change of basis on either L(g) or Λ multiplies d by ±1, the absolute
value of d is uniquely determined by L(g) and Λ, and we will also refer to this
as the relative determinant d(Λ/L(g)) := |d|. Since ri ∈ Λ ⊂ L(g), we can write
ri =

∑n
j=1 aijbj for some aij ∈ Z. Hence from the expression ri =

∑n
j=1 tijbj ,

we deduce that tij ∈ Z (since otherwise we would obtain a linear relation between
the bj). This implies that d = det(T ) ∈ Z. Together with equation (2), we see
that |det(R)| = |d · det(B)| is an integer multiple of |G|.

Given a distribution over Zn×n resulting in the uniform distribution over Zn×np

when reducing matrices modulo a prime p, then one can use the Schwartz-Zippel
lemma [29, 32] to upper bound the probability of sampling a singular matrix.

Lemma 5.2 ([29, 32]). Let p be prime. Let F (X1, . . . , Xk) ∈ Zp[X1, . . . , Xk] be
a nonzero polynomial of total degree d. Then for uniformly random x1, . . . , xk

$←−
Zp, the probability that F (x1, . . . , xk) = 0 is at most d/p.

Corollary 5.3. Let p be a prime and n ≥ 1 an integer. Then
we have Pr[det(x1, . . . ,xn) = 0 | x1, . . . ,xn

$←− Znp ] ≤ n/p.

5.1 Reduction Template for MO

Using the previous results, we construct a template reduction MO⇒ G for some
computational game G, and specify certain conditions G needs to satisfy in order
for such a reduction to succeed with sufficiently high probability.

We have seen in Lemma 5.1 that if we can find n linearly independent relations
R = (r1, . . . , rn) w.r.t. some system of generators g for G, then |det(R)| is going
to be an integer multiple of the order of G. Therefore to show that we can reduce
the multiple order problem MO to some computational problem G, it suffices to
show that we can use any adversary A for game G to obtain n linearly independent
relations for a given system of generators with a reasonable probability.

We are now ready to formulate the necessary conditions on the game G for a
reduction MO⇒ G to exist, and construct a template for such a reduction.

Lemma 5.4. Let G = (Gκ)∞κ=1 be a group family with security parameter κ ∈
Z>0. Let G be some computational game, which, given κ, is based on sampling
a group G $←− Gκ and g = (g1, . . . , gn) $←− Gn uniformly at random. Let RelA be
a relation sampler that takes as input a group G ∈ Gκ, g = (g1, . . . , gn) ∈ Gn,
and has oracle access to an adversary A for game G. Assume RelA satisfies the
following properties for any given adversary A in a given group model AHO-GM
(i.e., AHO-SM, AHO-AGM, AHO-SAGM):
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E := ()

for i = 1, . . . , dSn/pe

ei ← RelA(G, g)

if ei 6= ⊥ then

E ← (E‖eTi )

if Columns(E) = n then return |det(E)|
return ⊥

Fig. 2. Template for MO adversary BA(G, g)

(i) RelA(G, g) outputs either ⊥ (failure) or a relation e s.t. ge = 1G (success).
(ii) When G = 〈g〉, each execution of RelA(G, g) is independent and has identical

success probability p′G,g with |p′G,g − pG,g| ≤ ε1 ∈ negl(κ).
(iii) When G = 〈g〉, given n relation outputs e1, . . . , en of n independent and

successful executions of RelA(G, g), then Pr[det (e1, . . . , en) = 0] ∈ negl(κ).
(iv) TimeG,Rel ∼ TimeGG,A, i.e., the time complexity of Rel is asymptotically equiv-

alent to that of A.

Then for S ≥ 4:

MO
(1−e−n·CS )/2, dSn/pe
===============⇒

AHO-GM
G,

where p := AdvGG,A(κ), pG,g := AdvGG,A|G,g(κ) and CS is defined as in Lemma 2.6.

Proof. Given an adversary A for game G, we construct an MO adversary BA
which takes input (1κ,G, g) where G ∈ Gκ, g ∈ Gn as given in Figure 2. The
adversary B calls A exactly l := dSn/pe times, which explains the time factor.
For the advantage of B our proof is based on the following inequality:

AdvMO
G,B(κ) ≥ Pr

G,g
[BA(1κ,G, g) ∈ Z>0 | Columns(E) = n ∧ 〈g〉 = G]

· Pr
G,g

[Columns(E) = n | 〈g〉 = G] · Pr
G,g

[〈g〉 = G]

≥ p · (1− e−n·CS )/2− negl(κ) (3)

First, recall that by Definition 4.1(5.):

Pr
G,g

[〈g〉 = G] = 1− negl(κ). (4)

Second, by condition (iii), over all G, g with 〈g〉 = G:

Pr
G,g

[BA(1κ,G, g) ∈ Z>0 | Columns(E) = n ∧ 〈g〉 = G] = 1− negl(κ). (5)

Third, for any given G, g with 〈g〉 = G, the success probability of each call
to Rel is p′G,g and the amount of successful calls has distribution B(l, p′G,g) by
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condition (ii). From condition (ii) and Lemma 2.7 it follows that the statistical
distance between B(l, p′G,g) and B(l, pG,g) is at most ε2 := (l2/2) · ε1 ∈ negl(κ).

By applying Lemma 2.6 on X = {B(l, pG,g)}G=〈g〉, we find that

Pr
G,g

[Columns(E) = n | G = 〈g〉] ≥ Pr
X∈X

[X ≥ n]−ε2 ≥ p·(1−e−n·CS )/2−ε2. (6)

The desired inequality (3) is obtained by multiplying Eqs. (4), (5) and (6).

6 Security Reductions in the AHO-SM

In this section we prove reductions in the abelian hidden order standard model.
Firstly, {StRoot, ARoot, e-RT, T -RSW} ⇒ MO were previously shown. Using an
assumed small prime divisor of group order oracle O, we can prove LOO ⇒ MO
as well. Followed by reductions MO⇒ DLog1 and MO⇒ DLog2, where the latter
follows from the straightforward reduction CDH2 ⇒ DLog2 and the reduction
MO⇒ CDH2 from Theorem 7.5. An impossibility of efficient generic reductions
in the opposite direction for DLog1, DLog2 and CDH2 is treated in section 6.1.

Lemma 6.1 ([14, 31, 18, 3]).

{StRoot,ARoot, T -RSW, e-RT} 1,1
======⇒
AHO-SM

MO, for gcd(e, |G|) = 1.

Proof (sketch). Let N denote the multiple of the group order |G|. For e-RT
this is a trivial generalization over [14, 3]. Given N , one can determine N ′ =
N/ gcd(ebloge(N)c, N). The resulting value N ′ will still be a multiple of |G| and
coprime with e, hence one can compute an e-th root of X ∈ G as Y := Xd where
ed ≡ 1 mod N ′. Now the first two reductions can be easily shown using the e-RT
reduction: For StRoot one can pick an exponent coprime to N (e.g., by picking a
prime > N); For ARoot the adversary receives a random large prime e which is
coprime to N with all but negligible probability. Finally, T -RSW ⇒ MO since
log2(2T )� log2(2T mod N) for any T � log2(N).

Note that for e-RT with gcd(e, |G|) > 1 the situation is less straightforward.
For cyclic groups and some more general forms of finite abelian groups, Shank’s
algorithm can be extended to compute e-th roots [20, Chapter 3]. However, this
holds in the known group order setting, and it remains an open question whether
it is possible to compute e-th roots given only a multiple of the order.

The situation for the reduction LO⇒ MO is also complex. First of all, there
need to be elements or order < 2κ in the group G in order for the reduction to
be possible at all. An algebraic method that works in any finite abelian group
which contains elements of low order, is not known to the authors at this time.
However, if one has access to an oracle which provides a small prime divisor of
the group order, then it is possible to construct such a reduction as we prove
below. Note that a concrete example of such an oracle can be given in the setting
of class groups of imaginary quadratic number fields. Here the Cohen-Lenstra
heuristics [12] predict that the group order is divisible by an odd prime q with
probability f(q) = 1−

∏∞
n=1 (1− 1/qn). For example: f(3) ≈ 0.439874.
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Proposition 6.2. Let O be an oracle that on input a finite abelian group G ∈ Gκ,
outputs a prime q < 2κ which divides the order |G| with non-negligible probability p.
Let LOO denote the low order game where an adversary playing the game has
access to O. Then

LOO
p/2, 1

======⇒
AHO-SM

MO.

Proof. Given an MO adversary A, we construct an LO adversary BA,O, which
takes input (G, g) with G ∈ Gκ and g ∈ Gn, as defined below:

q ← O(G), N ← A(g), r $←− (UU2)n, X := gr

for i = 1, . . . , blogq(N)c

if N 6≡ 0 mod qi then return ⊥

if XN/qi 6= 1G then return (XN/qi , q)

return ⊥

For random G $←− Gκ and g $←− Gn, if the output of A is correct and q divides
the order of X, then we claim that BA,O outputs a correct element of low order.
Indeed, we know that XN = 1G and since N/qblogq(N)c is not divisible by q, there

must be an 1 ≤ i ≤ blogq(N)c for which XN/qi 6= 1G. Let i∗ be the first i for

which this happens, then (XN/qi
∗

)q = XN/qi
∗−1

= 1G, so the output of BA,O is
indeed correct in this case.

By definition of the oracle O, the group order |G| is divisible by q with
probability p. If q divides the group order, then by Lemma 4.5 the probability
that q divides the order of a uniformly chosen X ∈ G is at least 1− 1/q ≥ 1/2.

By Lemma 4.8, the distribution of X has negligible statistical distance to the
uniform distribution UG when g forms a system of generators for G, and we assume
the latter to happen with all but negligible probability. Hence BA,O succeeds
with probability AdvLOG,BA,O (κ) ≥ (p/2 + ε) ·AdvMO

G,A(κ), for some negligible ε.

Lemma 6.3.
CDH2

1, 1
======⇒
AHO-SM

DLog2

Proof (sketch). Given a CDH2 instance (X,A,B), one can simply query a DLog2
adversary on (X,A) and raise B to the resulting output.

Note that any standard model DLog2 adversary is algebraic as well, hence
the above generic reduction produces an algebraic CDH2 adversary which can be
composed with the algebraic reduction in Theorem 7.5 to obtain:

Corollary 6.4.

MO
(1−e−n·CS )/2, dSn/pe
===============⇒

AHO-SM
DLog2, for S ≥ 4,

where p := Adv
DLog2
G,A (κ) and CS is defined as in Lemma 2.6.
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Theorem 6.5.

MO
(1−e−n·CS )/2, dSn/pe
===============⇒

AHO-SM
DLog1, for S ≥ 4,

where p := Adv
DLog1
G,A (κ) and CS is defined as in Lemma 2.6.

Proof. Given a DLog1 adversary A, we construct an MO adversary BA, which
takes input (G, g) with G ∈ Gκ and g ∈ Gn, according to the template in Lemma
5.4. We define a relation sampler RelA as follows, where we assume that a state is
maintained in which all internal variables are stored and which is passed between
the subroutines.

RelA(G, g)

(g̃i, Xi)← Samp(G)

d̃i ← A(g̃i, Xi)

return Ext(G, g, state)

Samp(G)

Ai $←− (UU2)n
2

ri $←− (UU3)n

return (gAi , gri)

Ext(G, g, state)

if g̃d̃i
i = Xi then

return ri −Aid̃i
else return ⊥

Assume G $←− Gκ and g $←− Gn are sampled uniformly at random. It is straightfor-
ward to check that ri −Aid̃i do indeed form relations with respect to g; hence
Lemma 5.4(i) is satisfied.

By assumption, g forms a system of generators with all but negligible probabil-
ity. Conditioned on the event that G = 〈g〉, the instances (g̃i, Xi) have negligible
statistical distance to the uniform distribution UGn+1 by Lemma 4.8, which is
the way problem instances are distributed in the definition of DLog1. Hence each
execution of RelA(G, g) is independent and has identical success probability

p′G,g := Adv
DLog1
G,A |G,g(κ) + ε1

for some negligible ε1; thus Lemma 5.4(ii) is satisfied. Moreover, Lemma 5.4(iv)
is also clear under the assumption that the runtime of Rel is asymptotically
dominated by the runtime of A.

It remains to show that Lemma 5.4(iii) is satisfied. Let Oj := |〈gj〉| and write
rij = r′ij + r′′ijOj with 0 ≤ r′ij < Oj . Furthermore, write Ai = (ai1, . . . ,ain) and

let dij =
∑n
k=1 aikj d̃ik. We can split the relationship coefficients as

r̂ij − d̂ij with r̂ij := r′′ijOj , d̂ij := dij − r′ij .

Without loss of generality, we assume A succeeds on the instances i = 1, . . . , n.
Our goal will be to show that the r̂ij are distributed negligibly close to uniform

modulo p given arbitrary values of the shifts d̂ij , so that we can conclude that

the coefficients r̂ij − d̂ij = rij − dij are distributed negligibly close to uniform
modulo p by Lemma 2.1. Ultimately, we conclude that the probability that
det(rij − dij)ni,j=1 = 0 is negligible by Corollary 5.3.

Since g
rij
j = g

r′ij
j , the execution of A is independent from the r′′ij . So despite

the distribution of the ri being conditioned on A succeeding on input (gAi , gri),
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the distribution of the r′′ij is independent from that of the dij . It therefore suffices
to show that the r̂ij are distributed negligibly close to uniform modulo p given
arbitrary values of the r′ij ∈ [0, Oj). We pick p to be a prime |G|/2 < p < |G|,
which exists by Bertrand’s postulate (see e.g., [1, Chapter 2]), so that p is coprime
to Oj for each j = 1, . . . , n. Hence it suffices to show that the r′′ij are distributed
negligibly close to uniform modulo p given arbitrary values of the r′ij ∈ [0, Oj).

Let y ∈ [0, p) and fix x ∈ [0, Oj). We can bound the probability as

1

p
− Oj
U3 −Oj

≤ Pr[r′′ij ≡ y mod p | r′ij = x] ≤ 1

p
+

Oj
U3 −Oj

,

and denote this distribution by RU3,ij,p,x. Hence we can apply Lemma 2.5 with
δ = Oj/(U

3−Oj) to find that, for fixed (xij)
n
i,j=1 ∈

∏n
i,j=1[0, Oj), the statistical

distance ∆ between (Up)n
2

and
∏n
i,j=1RU3,ij,p,xij is bounded as

∆ ≤ 1

2

(
n2pOj
U3 −Oj

+

(
n2pOj
U3 −Oj

)2
)
≤ 1

2

(
n2

U − 1
+

(
n2

U − 1

)2
)

which is negligible. Hence the probability that det(E) = det(rij − dij)ni,j=1 = 0 is
negligible by Corollary 5.3; thus Lemma 5.4(iii) is satisfied.

6.1 Impossibility Results for Generic Reductions

Corollary 6.6. There do not exist efficient generic reductions from DLog1 to
MO and from CDH1 to MO: solving these problems in the generic group model
for prime cyclic groups G takes time

√
|G| with known group order [30, Theorem

1 and 3]. Since DLog2 is equivalent to DLog1 in the case of cyclic groups of prime
order, it also follows that no efficient generic reduction from DLog2 to MO exists.

Lemma 6.7. For a group family of (hidden) cyclic large prime order, we have

CDH1
1,1

=====⇒
HO-SM

CDH2

Proof (sketch). On CDH1 input tuple (g, ga, gb), choose random exponent r and
let s = r−1 mod p. Let X = gr, Y = (ga)r = Xa, Z = gb = Xbs and we return
R = A(g,X, Y, Z). If A is successful then R = Xabs = gabsr = gab as desired.
Note that it does not need to know the prime order p.

Corollary 6.8. There does not exist an efficient generic reduction from CDH2

to MO, as otherwise this would contradict Corollary 6.6 using Lemma 6.7.

7 Security Reductions in the AHO-AGM

Theorem 7.1.

MO
(1−e−n·CS )/2, dSn/pe
===============⇒

AHO-AGM
StRoot, for S ≥ 4,

where p := AdvStRootG,A (κ) and CS is defined as in Lemma 2.6.
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Proof. Again we will use the template from Lemma 5.4 to construct an MO
adversary BA, which takes input (G, g) with G ∈ Gκ and g ∈ Gn, given an
algebraic StRoot adversary A. We define a relation sampler RelA as follows, where
we assume that a state is maintained in which all internal variables are stored
and which is passed between the subroutines.

RelA(G, g)

(g̃i, Xi)← Samp(G)

([Yi](g̃i,Xi), ei)← A(g̃i, Xi)

(bi, ci) := [Yi](g̃i,Xi)

return Ext(G, g, state)

Samp(G)

Ai $←− (UU2)n
2

ri $←− (UU3)n

return (gAi , gri)

Ext(G, g, state)

if (Y eii = Xi ∧ ei > 1) then

return ri(1− ciei)− eiAibi
else return ⊥

Assume G $←− Gκ and g $←− Gn are sampled uniformly at random. Again it is
straightforward to check that ri(1− ciei)− eiAibi do indeed form relations with
respect to g; hence Lemma 5.4(i) is satisfied. Completely analogous to Theorem
6.5 conditions (ii) and (iv) of Lemma 5.4 are satisfied.

Our approach to show that Lemma 5.4(iii) is satisfied will be similar to the
one in Theorem 6.5. Without loss of generality, we assume that A succeeds on
instances i = 1, . . . , n. Write Ai = (ai1, . . . ,ain) and rij = r′ij + r′′ij Oj with
0 ≤ r′ij < Oj , and split the relationship coefficients as

r̂ij − d̂ij with r̂ij := r′′ij(1− ciei)Oj , d̂ij := ei

n∑
k=1

aikjbik + r′ij(ciei − 1).

We claim that we can now pick a prime p such that it is coprime to each Oj for
j = 1, . . . , n, and additionally coprime to 1− ciei for all i = 1, . . . , n (note that
1− ciei 6= 0 since ei > 1). This is possible since by [15, Théorème 1.10: 4 & 5],
for |G| ≥ 120368 ≈ 217, there are superpolynomially many, namely at least

|G| (log(|G|/4)− 1.2)

2(log |G| − 1)(log(|G|/2)− 1.1)
,

primes between |G|/2 and |G|. As mentioned before, these are coprime to each
Oj for j = 1, . . . , n. Moreover, the number of prime factors of 1− ciei is bounded
polynomially for each i = 1, . . . , n, and n is bounded polynomially; hence there
are superpolynomially many primes meeting our criteria.

From Theorem 6.5 we know that the distribution of (r′′ij mod p)ni,j=1, condi-

tioned on arbitrary values of (r′ij)
n
i,j=1 ∈

∏n
i,j=1[0, Oj), has negligible statistical

distance to (Up)n
2

and is independent of ei, bi and ci for i = 1, . . . , n. Hence

we can conclude that (r̂ij − d̂ij mod p)ni,j=1 has negligible statistical distance to

(Up)n
2

, and thus that the probability that det(E) = det(r̂ij − d̂ij)ni,j=1 = 0 is
negligible by Corollary 5.3; hence Lemma 5.4(iii) is satisfied.

Theorem 7.2.

MO
(1−e−n·CS )/2, dSn/pe
===============⇒

AHO-AGM
ARoot, for S ≥ 4,
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where p := AdvARootG,A (κ) and CS is defined as in Lemma 2.6.

Proof. Given an algebraic ARoot adversary A, we will again use the template
from Lemma 5.4 to construct an MO adversary BA, which takes input (G, g)
with G ∈ Gκ and g ∈ Gn. We define a relation sampler RelA as follows, where we
assume that a state is maintained in which all internal variables are stored and
which is passed between the subroutines.

RelA(G, g)

(g̃i, Xi, `i)← Samp(G)

[Yi](g̃i,Xi) ← A(g̃i, Xi, `i)

(ci, di) := [Yi](g̃i,Xi)

return Ext(G, g, state)

Samp(G)

Ai $←− (UU3)n
2

[Xi]gAii
← A(gAi)

bi := [Xi]gAii

`i $←− Primes(2κ)

return (gAi , Xi, `i)

Ext(G, g, state)

if (Y `ii = Xi ∧ Xi 6= 1G) then

return Ai(bi(1− di`i)− ci`i)

else return ⊥

It is straightforward to check that Ai(bi(1 − di`i) − ci`i) do indeed form
relations with respect to g; hence Lemma 5.4(i) is satisfied. Completely analogous
to Theorem 6.5 conditions (ii) and (iv) of Lemma 5.4 are satisfied.

To show that Lemma 5.4(iii) is satisfied, we again take a similar approach as in
the proof of Theorem 6.5. Without loss of generality, we assume that A succeeds
on instances i = 1, . . . , n. Write Ai = (ai1, . . . ,ain) and aikj = a′ikj + a′′ikjOj
with 0 ≤ aikj < Oj . Note that for every i = 1, . . . , n, there is at least one
k ∈ {1, . . . , n} for which bik 6= 0 since A needs to output a non-trivial Xi to
succeed. For each i = 1, . . . , n, pick such a k ∈ {1, . . . , n}, and denote it by ki.
Put δik := bik(1− di`i)− cik`i, expand and split the relation coefficients as

r̂ij + d̂ij with r̂ij := a′′ikijδikiOj , d̂ij := a′ikijδiki +
∑
k 6=ki

aikjδik.

As before, our goal is to show that the r̂ij are distributed negligibly close to

uniform modulo some prime p given arbitrary values of the shifts d̂ij . We first
claim that the δiki can only be zero with negligible probability, so that we can
pick the prime p coprime to δiki for all i = 1, . . . , n, just as in the proof of
Theorem 7.1. Then it suffices to show that the distribution of (a′′ikij mod p)ni,j=1,

conditioned on arbitrary values of the (a′ikij)
n
i,j=1 ∈

∏n
i,j=1[0, Oj), has negligible

statistical distance to (Up)n
2

. The latter follows completely analogous as in the
proof of Theorem 6.5. So it remains to show the first claim.

Recall that δiki = biki(1 − di`i) − ciki`i with biki 6= 0. If ciki = 0, then
δiki = biki(1− di`i) 6= 0 since `i > 1. If ciki 6= 0 and δiki = 0, this implies that
`i divides biki , which can only happen with negligible probability since biki is
chosen before `i is picked uniformly from a superpolynomially large set of primes.

Ultimately we can conclude analogous to Theorem 7.1 that Lemma 5.4(iii) is
satisfied, which concludes our proof.
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Boneh, Bünz and Fisch [7] previously established the standard model reduction
ARoot ==⇒

SM
LO. (That is, given an element X ∈ G whose order divides d, one

can compute an `-th root as Y = Xe where e` ≡ 1 mod d.) We note that this
reduction is generic, and thus ARoot =======⇒

AHO-AGM
LO as well. Composing this

reduction with Theorem 7.2, we obtain the following corollary.

Corollary 7.3.

MO
(1−e−n·CS )/2, dSn/pe
===============⇒

AHO-AGM
LO, for S ≥ 4,

where p := AdvLOG,A(κ) and CS is defined as in Lemma 2.6.

Theorem 7.4.

MO
(1−e−n·CS )/2, dSn/pe
===============⇒

AHO-AGM
e-RT, for S ≥ 4,

where p := Adv e-RTG,A (κ) and CS is defined as in Lemma 2.6.

Proof. Given an algebraic e-RT adversary A for some fixed e ∈ Z>1, we use the
template from Lemma 5.4 to construct an MO adversary BA, which takes input
(G, g) with G ∈ Gκ and g ∈ Gn. We define a relation sampler RelA as follows,
where we assume that a state is maintained in which all internal variables are
stored and which is passed between the subroutines.

RelA(G, g)

(g̃i, Xi)← Samp(G)

[Yi](g̃i,Xi) ← A(g̃i, Xi)

(bi, ci) := [Yi](g̃i,Xi)

return Ext(G, g, state)

Samp(G)

Ai $←− (UU2)n
2

ri $←− (UU3)n

return (gAi , grie)

Ext(G, g, state)

if Y eii = Xi then

return ri(e− cie2)−Aibie
else return ⊥

It is straightforward to check that ri(e−cie2)−Aibie do indeed form relations
with respect to g; hence Lemma 5.4(i) is satisfied. Again, completely analogous
to Theorem 6.5, conditions (ii) and (iv) of Lemma 5.4 are satisfied.

We can show almost completely analogous to the proof of Theorem 7.1 that
Lemma 5.4(iii) is satisfied, with the only difference being that we now pick the
prime p coprime to e− cie2 for i = 1, . . . , n (where we again assume without loss
of generality that A succeeds on the instances i = 1, . . . , n). Note that e− cie2 is
nonzero since e > 1.

Theorem 7.5.

MO
(1−e−n·CS )/2, dSn/pe
===============⇒

AHO-AGM
CDH2, for S ≥ 4,

where p := AdvCDH2

G,A (κ) and CS is defined as in Lemma 2.6.
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RelA(G, g)

(g̃i, Xi, Ai, Bi)← Samp(G)

[Yi](g̃i,Xi,Ai,Bi) ← A(g̃i, Xi, Ai, Bi)

(ci, di, ei, fi) := [Yi](g̃i,Xi,Ai,Bi)

return Ext(G, g, state)

Samp(G)

Hi $←− (UU2)n
2

(ri, ai, bi) $←− (UU3)n+2

return (gHi , gri , griai , gribi)

Ext(G, g, state)

if Yi = Xaibi
i then

return ri(di + aiei + bifi − aibi) +Hici

else return ⊥

Fig. 3. The MO relation sampler Rel(G, g,A) given CDH2 adversary A.

Proof. Given an algebraic CDH2 adversary A, we construct an MO adversary
BA, which takes input (G, g) with G ∈ Gκ and g ∈ Gn, using the template from
Lemma 5.4. We define a relation sampler RelA as shown in Figure 3, where we
assume that a state is maintained in which all internal variables are stored and
which is passed between the subroutines. It is again straightforward to check
that ri(di + aiei + bifi − aibi) +Hici do indeed form relations with respect to g;
hence Lemma 5.4(i) is satisfied. Conditions (ii) and (iv) of Lemma 5.4 hold up
analogous to Theorem 6.5.

To show that Lemma 5.4(iii) is satisfied, we again follow a similar approach
to Theorem 6.5, only with a few more subtleties. Without loss of generality, we
assume that A succeeds on instances i = 1, . . . , n. Write Hi = (hi1, . . . ,hin) and
rij = r′ij + r′′ijOj with 0 ≤ r′ij < Oj , put δi := di + aiei + bifi − aibi, and split
the relation coefficients as

r̂ij + d̂ij with r̂ij := r′′ijδiOj , d̂ij := r′ijδi +

n∑
k=1

hikjcik.

Similar to the proof of Theorem 7.2, we want to pick our prime p coprime to δi for
all i = 1, . . . , n. We claim that δi can only be zero with negligible probability, and
show this using a similar argument as for that the determinant of the relationship
matrix can only be zero with negligible probability.

Write ai = a′i + a′′i |〈Xi〉| and bi = b′i + b′′i |〈Xi〉| with 0 ≤ a′i, b′i ≤ |〈Xi〉|. Pick
a prime |G|/2 < p′ < |G| so that it is coprime to |〈Xi〉| for each i = 1, . . . , n.
Completely analogous to the proof of Theorem 6.5, the distribution of (a′′i mod

p′, b′′i mod p′)ni=1, conditioned on arbitrary values of (a′i, b
′
i) ∈

∏n
i=1 [0, |〈Xi〉|)2,

has negligible statistical distance to (Up′)2n. Moreover, it is independent from
di, ei and fi since a′′i and b′′i are completely hidden from the point of view of the
adversary. By Lemma 5.2, the probability that (z1i, z2i)

n
i=1

$←− (Up′)2n are a zero
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modulo p′ of the polynomial F (Z11, . . . , Z1n, Z21, . . . , Z2n), defined as

n∏
i=1

di+(a′i + Z1i|〈Xi〉|) ei+(b′i + Z2i|〈Xi〉|) fi−(a′i + Z1i|〈Xi〉|) (b′i + Z2i|〈Xi〉|) ,

is at most 2n/p′ (note that F reduces to a nonzero polynomial of degree 2n
over Fp′), which is negligible. It follows that any of the δi can only be zero with
negligible probability since F (a′′1 , . . . , a

′′
n, b
′′
1 , . . . , b

′′
n) =

∏n
i=1 δi.

Now analogous to the proof of Theorem 7.2, we can conclude that Lemma
5.4(iii) is satisfied.

8 Security Reductions in the AHO-SAGM

In this section we will show, using similar arguments as before, that it is possible
to reduce the multiple order problem MO to the T -repeated squaring problem
T -RSW in the AHO-SAGM. Our result can be seen as a generalization of that of
[18, Theorem 2] from the family of cyclic RSA groups to all finite abelian groups.
The proof in the abelian case is more complex due to the additional complications
that arise from having to run the T -RSW adversary multiple times in order
to extract several group relations, which have to be shown to be independent
enough. Furthermore, our security definition of T -RSW in AHO-SAGM is weaker
by giving the adversary A1 more power: (1) in contrast to [18], A1 itself may be
standard model and does not have to be strongly algebraic; (2) in contrast to
[18], A1 is given g (i.e., the same generators g as the strongly algebraic online
algorithm A2 output by A1).

We have already seen the reduction in the opposite direction T -RSW⇒ MO;
hence this shows the T -repeated squaring and the multiple order game are
(asymptotically) equivalent in the AHO-SAGM. Before we show this reduction,
we first prove a useful lemma bounding the size of the representation coefficients
of the output elements of strongly algebraic algorithms.

Lemma 8.1. Let G be a finite abelian group and let g = (g1, . . . , gn) be a tuple
of elements of G. Let A be any strongly algebraic algorithm running in at most
t rounds on input g and X = gr = gr11 · · · grnn for r = (r1, . . . , rn) ∈ Zn≥1 (i.e.
ATime(A(g, X)) ≤ t). Let Y be any output of A and let (Ys, Ys,1, Ys,2) or (Ys, Ys,1)
be the corresponding tuples for each element Ys being output at round 1 ≤ s ≤ t.
(Note that A is in fact allowed to output arbitrary many tuples in each round,
but we can always pick a path of sequential computation leading to Y .) Then the
following two statements hold.

1. The generalized discrete logarithm DLogA(g, Y ) of Y with respect to g and
A, can be recursively computed as follows:

– DLogA(g, gi) = 1i (the vector with a 1 on the i-th place and 0 on all
others) for 1 ≤ i ≤ n, DLogA(g, X) = r;

27



– For s = 1, . . . , t, let

DLogA(g, Ys) =

{
DLogA(g, Ys,1) + DLogA(g, Ys,2) if Ys = Ys,1Ys,2

−DLogA(g, Ys,1) if Ys = Y −1s,1

2. The generalized discrete logarithm d = (d1, . . . , dn) := DLogA(g, Y ) satisfies
|di| ≤ 2t ri for all 1 ≤ i ≤ n.

Proof. The first statement is clear. For the second statement we note that if
t = 1, the only elements A can output are

gi = g1i , g2i = g2·1i , gigj = g1i+1j , g−1i = g−1i ,

X = gr, giX = gr+1i , X2 = g2r, X−1 = g−r

for 1 ≤ i 6= j ≤ n; hence the statement holds for t = 1. We proceed to prove the
statement by induction. Suppose that the lemma holds for t− 1. Now suppose
that A outputs (Y, Y1, Y2) in round t. Then Y1 and Y2 are either equal to one
of the gi (1 ≤ i ≤ n), X = gr, or one of the outputs of A in rounds 1, . . . , t− 1.
Hence we see that for 1 ≤ i ≤ n

|DLogA(g, Y )i| = |DLogA(g, Y1)i + DLogA(g, Y2)i|
≤ |DLogA(g, Y1)i|+ |DLogA(g, Y2)i| ≤ 2t−1ri + 2t−1ri = 2t ri.

Similarly, if A outputs (Y, Y1) in round t, then for 1 ≤ i ≤ n we have that
|DLogA(g, Y )i| = |DLogA(g, Y1)i| ≤ 2t−1ri, which completes the proof of the
second statement.

Theorem 8.2.

MO
(1−e−n·CS )/2, dSn/pe
===============⇒

AHO-SAGM
T -RSW, for S ≥ 4,

where p := AdvT -RSW
G,A (κ) and CS is defined as in Lemma 2.6.

Proof. Let A1 be an adversary which runs in the standard model in the prepro-
cessing phase and produces A2 ← A1(G,g) which runs as a strongly algebraic
algorithm in the online phase. We use the template from Lemma 5.4 to con-
struct an adversary BA1 , which takes input (G, g) with G ∈ Gκ and g ∈ Gn.
We define a relation sampler RelA1 as follows, where we assume that a state is
maintained in which all internal variables are stored and which is passed between
the subroutines, and use the shorthand ti := ATime(A2(g̃i, Xi)).

RelA1(G, g)

(g̃i, Xi)← Samp(G)

A2 ← A1(G, g̃i)

(Yi, ([Yi,s])
ti
s=1)← A2(g̃i, Xi)

return Ext(G, g, state)

Samp(G)

Ai $←− (UU3)n
2

ri $←− (UU3)n

return (gAi , gAiri)

Ext(G, g, state)

if
(
Yi = X2T

i ∧ ti < T
)
then

di ← DLogA2
(g̃i, Yi)

return 2TAiri −Aidi
else return ⊥
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It is straightforward to check that 2TAiri − Aidi do indeed form relations
with respect to g; hence Lemma 5.4(i) is satisfied. Conditions (ii) and (iv) of
Lemma 5.4 again hold up completely analogous to Theorem 6.5.

We once more show similar to the proof of Theorem 6.5 that Lemma 5.4(iii)
is satisfied. Without loss of generality, we assume that A succeeds on instances
i = 1, . . . , n. Write Ai = (ai1, . . . ,ain) and aikj = a′ikj + a′′ikjOj with 0 ≤ a′ikj <
Oj , and expand the relationship coefficients as

n∑
k=1

a′′ikj(2
T rik − dik)Oj +

n∑
k=1

a′ikj(2
T rik − dik).

Then by Lemma 8.1 and the fact that A2 runs in ti < T rounds on input
(g̃i, Xi), we see that |dik| < 2T rik and thus that δik := 2T rik − dik 6= 0 for all
i = 1, . . . , n and k = 1, . . . , n. Now we can pick an arbitrary ki ∈ {1, . . . , n}
for each i = 1, . . . , n (e.g. ki = 1 for all i = 1, . . . , n suffices), and split the

coefficients as r̂ij + d̂ij with r̂ij := a′′ikijδikiOj , d̂ij := a′ikijδiki +
∑
k 6=ki aikjδik.

Then, similar to the proof of Theorem 7.2, we can pick our prime p coprime
to δiki for all i = 1, . . . , n. Analogous to the proof of Theorem 6.5 it follows
that the distribution of (a′′ikij mod p)ni,j=1, conditioned on arbitrary values of

(a′ikij)
n
i,j=1 ∈

∏n
i,j=1[0, Oj), has negligible statistical distance to (Up)n

2

. Hence we

conclude as in the proof of Theorem 6.5 that (r̂ij − d̂ij mod p)ni,j=1 has negligible

statistical distance to (Up)n
2

and thus that Lemma 5.4(iii) is satisfied.
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