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Abstract. Group encryption (GE) is a fundamental privacy-preserving
primitive analog of group signatures, which allows users to decrypt spe-
cific ciphertexts while hiding themselves within a crowd. Since its first
birth, numerous constructions have been proposed, among which the
schemes separately constructed by Libert et al. (Asiacrypt 2016) over
lattices and by Nguyen et al. (PKC 2021) over coding theory are post-
quantum secure. Though the last scheme, at the first time, achieved the
full dynamicity (allowing group users to join or leave the group in their
ease) and message filtering policy, which greatly improved the state-of-
affairs of GE systems, its practical applications are still limited due to the
rather complicated design, inefficiency and the weaker security (secure
in the random oracles). In return, the Libert et al.’s scheme possesses a
solid security (secure in the standard model), but it lacks the previous
functions and still suffers from inefficiency because of extremely using
lattice trapdoors. In this work, we re-formalize the model and security
definitions of fully dynamic group encryption (FDGE) that are essentially
equivalent to but more succinct than Nguyen et al.’s; Then, we provide a
generic and efficient zero-knowledge proof method for proving that a bi-
nary vector is non-zero over lattices, on which a proof for the Prohibitive
message filtering policy in the lattice setting is first achieved (yet in a sim-
ple manner); Finally, by combining appropriate cryptographic materials
and our presented zero-knowledge proofs, we achieve the first lattice-
based FDGE schemes in a simpler manner, which needs no any lattice
trapdoor and is proved secure in the standard model (assuming inter-
action during the proof phase), outweighing the existing post-quantum
secure GE systems in terms of functions, efficiency and security.

Keywords: Lattice cryptography · Group encryption · Full dynamicity
· Message filtering · Zero-knowledge.



2 J. Pan et al.

1 Introduction

Group encryption (GE), introduced by Kiayias, Tsiounis and Yung (KTY) [21] as
the natural encryption analog of group signature (GS) that was first conceptual-
ized by Chaum and van Heyst [16], is a fundamental anonymity primitive that
allows anonymizing valid decryptors within a population of certified users. Since
the pioneering work [21], GE has found a wide range of applications (see, e.g.,
[21,25,35]) in filtering malformed encrypted emails, building oblivious retriever
storage systems, trusted third parties as well as hierarchical group signatures
[42]. Because of the duality, these two primitives share some common design ideas
in offering user memberships and generating anonymous signatures/ciphertexts.

In the design of these two anonymity primitives, to build a group of certified
users is a key component. In general, there are three types of groups optional for
GS: The simplest choice is the static group [6], in which the group population is
fixed at the setup phase and the public/private key pairs of group members are
assigned by the group manager (GM) as memberships; The partially dynamic
group [7,22,40] is then introduced to support dynamic and concurrent user en-
rollments but deny membership revocation. In such a group, a prospective user
generates a key pair on his own, and then becomes a valid group member only
when his application for joining the group is accepted by the GM, who computes
a signature on user’s public key and returns it back as the membership. Despite
an essential functionality, support for membership revocation is quite challeng-
ing to realize in an efficient manner, since it requires that the signing algorithm
is disabled for revoked users and no significant increase for workloads of other
parties (i.e., managers, non-revoked users and verifiers) is seen. To address this
problem, several approaches [8,11,12,36] have been suggested, resulting into the
fully dynamic groups [9], where membership revocation is additionally allowed.

Unlike the context of group signature, the GE always uses the partially dy-
namic group in its design since its first formalization [21] for security reasons.
This type of group allows prospective users dynamically and concurrently to join
the group, but any valid application for revoking membership is rejected, which
is quite unsatisfactory in the realistic world. In fact, group signatures with full
dynamicity have attracted much attention and have been constructed both on
pairing assumptions [33,28] and lattice assumptions [31]. To change this situ-
ation, in PKC 2021, Nguyen et al. [35] first considered the full dynamicity in
the context of group encryption and proposed a code-based instantiation secure
in the random oracles. In their design, they also first considered the message
filtering policies which are quite useful for practical applications of GE systems.
However, their formalization of FDGE is adapted directly from that of fully dy-
namic group signature [9] and hard to understand. Moreover, the construction is
rather complicated and inefficient even in the random oracle model. Therefore,
it is encouraging to design a group encryption that captures the full dynamicity,
message filtering policy and a solid security in a relatively simple manner.

OUR CONTRIBUTIONS. Motivated by the above discussion, we reconsider the full
dynamicity in the context of group encryption, and propose a lattice-based in-
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stantiation in a simpler manner that shares the same functions as the existing
FDGE scheme [35] and meanwhile outweighs all available post-quantum secure
schemes [25,35] in terms of functions, efficiency and security. Our contributions
are summarized as follows:

– By introducing appropriate ingredients into the KTY model that supports
dynamic user enrollments but denies membership revocations, we re-formalize
the model and security requirements of FDGE that are essentially equal to
but more succinct and understandable than the currently existing model.

– We provide a generic and efficient zero-knowledge proof method for demon-
strating that some binary vector is non-zero over lattices, on which we first
achieve a lattice-based proof (also generic and efficient) for Prohibitive mes-
sage filtering policy. Both proofs will serve for our subsequent construction.

– By making use of appropriate cryptographic materials and the presented
zero-knowledge proofs, we achieve the first lattice-based group encryption
secure in the standard model and with full dynamicity in a free-of-trapdoor
manner, which meets our formalized model and outweighs all existing post-
quantum secure GE schemes in terms of functions and efficiency.

RELATED WORK. The privacy-preserving cryptography has been an extremely
active research area in the last decades. As one of the fundamental anonymity
primitives, group encryption thus has attracted noticeable attention in recent
years. The relevant concepts and definitions were first introduced by Kiayias,
Tsiounis and Yung [21], who also then put forth a modular design consisting
of zero-knowledge proofs, digital signatures (e.g., [13]) and anonymous CCA2-
secure public-key encryptions (e.g., [37]). Later, Cathalo et al. [15] designed a
non-interactive scheme in the standard model for the goal of optimizing the
number of rounds. Similarly, over weaker assumptions, Aimani et al. [1] pro-
posed more practical schemes by utilizing succinct approaches to protect the
identity of group members. For sake of balancing better privacy vs. safety, Lib-
ert et al. [29] supposed a variant with public traceability to specific ciphertexts,
which was inspired from traceable signatures [20]. Further, to strengthen secrecy,
Izabachène et al. [19] constructed traceable variants that are free of subliminal
channels, stressing confidentiality, anonymity and traceability. However, all these
instantiations are proposed over number-theoretic assumptions and are vulner-
able under quantum attacks. This situation has been unchanged until Libert et
al. [25] proposed the currently only existing lattice-based scheme recently.

What should be noted out is that, all the group encryptions discussed above
only offer partial dynamicity that allows concurrent user enrollments but denies
membership revocations, which is quite unsatisfactory in the most realistic ap-
plications. To end this situation, more currently, Nguyen et al. [35] proposed a
fully dynamic group encryption scheme secure in the random oracle from coding
theory, where they also achieved the message filtering policies. However, their
model is directly adapted from that of fully dynamic group signature [9] and
is tedious. Moreover, the proposed scheme is rather complicated and inefficient
together with provable security in the random oracles. This motivates us to con-
struct a fully dynamic group encryption, in a simple manner, that share practical
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functions similar to the scheme [35] while obtaining high efficiency and solid se-
curity (against quantum attacks).

ORGANIZATION. In the forthcoming sections, we briefly recall the needed lat-
tice techniques and cryptographic blocks in Section 2. The formalized model of
FDGE is given in Section 3. Section 4 describes our new techniques used for
demonstrating inequalities of binary vectors and the underlying zero-knowledge
argument system. In Section 5, we describe our scheme that captures all desired
properties, of which analysis is given. Finally, Section 6 concludes our work.

2 Preliminaries

NOTATIONS. For any positive integers n ≥ k, we denote the set {1, ..., n} by [n],
the set {k, ..., n} by [k, n]. All vectors are written as bold lower-case letters in the
column form, and matrices as bold upper-case letters. For b ∈ Rn and B ∈ Rn×m
with columns (bi)i, their Euclidean l2 norms are respectively written as ‖b‖ and
‖B‖ = maxi≤m‖bi‖. If a given set S is finite, we let U(S) to denote the uniform
distribution over it and use x ←↩ D to represent the sampling action according
to the distribution D. For two same-size binary vectors x and y, we use dH(x,y)
to denote their Hamming distance, which is equal to l1 norm ‖x⊕ y‖1.

2.1 Lattices and Computational Problems

As in [14,18], we use the notations L to denote lattices defined by Λ⊥q (A) := {e ∈
Zm| A · e = 0n mod q} or Λu

q (A) := {e ∈ Zm| A · e = u mod q} w.l.o.g., where
A ∈ Zn×mq . Accordingly, use the notation DL,σ,c to denote the discrete Gaussian
distributions of the support L, center c ∈ Rm and parameter σ > 0, which is

defined by DL,σ,c(x) =
ρσ,c(x)
ρσ,c(L) for each x ∈ L where ρσ,c(x) = exp(−π‖x −

c‖2/σ2) is the Gaussian function over Rm. When c = 0, we also write the
Gaussian distributions as DL,σ for short. The following fact ensures that the
outputs of the discrete Gaussian distribution are always short.

Lemma 1. ([3]) Given any L ⊆ Rn and σ > 0, Prb←↩DL,σ [‖b‖ ≤
√
nσ] ≥

1− 2−Ω(n).

For appropriate parameters, the syndrome u = A · e with A ∈ Zn×mq and
e ∈ Zmq is nearly uniform over Znq .

Lemma 2. ([18]) Given positive integers n, q with q prime, let m ≥ 2n log q and
s ≥ ω(

√
logm). Then for any A ←↩ U(Zn×mq ), the distribution of the syndrome

u = A ·e mod q is within negligible distance to the uniform distribution over Znq ,
where e←↩ DZm,s.

The computational lattice problems and associated hardness claims used in
this work are stated as follows.



Lattice-Based Group Encryption with Full Dynamicity 5

Definition 1 (SIS). Given appropriate positive integers n,m, q, β, the SISn,m,q,β
problem is defined as: for any A←↩ U(Zn×mq ), search a non-zero vector x ∈ Zm
such that A · x = 0 and ‖x‖ ≤ β.

By choosing appropriate parameters, the standard worst-case lattice problem
SIVPγ can be reduced to the average-case SISn,m,q,β problem. Such an example

is followed by setting m,β = poly(n); q ≥
√
nβ and γ = Õ(

√
nβ) (e.g., [2,18,32]).

Definition 2 (LWE). Given appropriate positive integers n,m, q, and a prob-
ability distribution on Z denoted as χ. For secret s ∈ Znq , define As,χ as the
distribution generated by sampling a ←↩ U(Znq ) and e ←↩ χ, and returning (a,

aT· s+e) ∈ Znq × Zq. The goal of LWEn,q,χ is to distinguish m samples from
As,χ and m samples from U(Znq × Zq), respectively.

For prime power q, one can build a discrete integer distribution χ bounded
by B ≥

√
nω(log n), for which there exists an efficient reduction from the

SIVPÕ(nq/B) problem to the LWEn,q,χ problem (e.g., [10,38,39]).

2.2 LNWX Lattice-Based Accumulators

The LNWX accumulator [31] is an updatable variant opposed to the static coun-
terpart [26], and we will use it in our construction to achieve dynamic group users
enrollments and membership revocations. The accumulator is built on a family
of hash functions H = {hA|A ∈ Zn×mq } with A =

[
A0|A1

]
∈ Zn×mq which hash

(u0,u1) ∈ ({0, 1}nk)2 into hA(u0,u1) = bin
(
A0 ·u0 +A1 ·u1 mod q

)
∈ {0, 1}nk.

Its security is ensured by the hardness of the SIS problem.

Informally, as in [4,12,36], the accumulator is defined by the algorithms
(TSetup,TAcc,TWitness,TVerify,TUpdate). Namely, for a Merkle-tree with N =
2` leaves, algorithm TSetup takes a random A ∈ Zn×mq to form a hash func-
tion hA; Algorithm TAcc accumulates all values R = {d0, ...,dN−1} of each
length nk on leaves into the root u via the recursive computations shown as
ub1,...,bi = hA(ub1,...,bi,0,ub1,...,bi,1) for any node at depth i ∈ [`] and u =
hA(u0,u1), where (b1, ..., bi) ∈ {0, 1}i; Algorithm TWitness returns ⊥ if d /∈ R,
otherwise computes the witness w =

(
(j1, ..., j`), (uj1,...,j`−1,j̄` , ...,uj1,j̄2 ,uj̄1)

)
∈

{0, 1}`×
(
{0, 1}nk

)`
demonstrating that d = dj ∈ R for some j ∈ [0, N −1] with

bin(j) = (j1, ..., j`), where b̄ denotes the bit 1− b for a chosen bit b; Then, given

a witness w =
(
(j1, ..., j`), (w`, ...,w1)

)
∈ {0, 1}` ×

(
{0, 1}nk

)`
, and set v` = d,

algorithm TVerify computes the path v`−1, ...,v0 ∈ {0, 1}nk via the recursive
formula vi = j̄i+1 · hA(vi+1,wi+1) + ji+1 · hA(wi+1,vi+1) for any j ∈ [0, N − 1]
and i ∈ [`− 1] with initial setting u = v0; Finally, when a value at position j is
replaced by p, algorithm TUpdate(bin(j),p) efficiently updates the accumulator
by simply updating the hash values of nodes on path from the specific leaf to
the root, then the algorithm TWitness outputs the updated paths and maintains
other values unchanged.
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2.3 GPV Dual Encryption

The GPV encryption presented in [18] features the public-key anonymity and
is efficient because of usage of lattice trapdoors. We now recall a variant that
would be used in our construction. Choose positive integers n and q ≥ 2 and set
k = blog qc and m = 2nk. Select a random public matrix A ∈ Zn×mq . Given a
Gaussian parameter σ, a Gaussian distribution DZm,σ and an error distribution
χm, one samples a short matrix E from Dm

Zm,σ as the secret key sk, and computes

a corresponding public matrix U = A · E ∈ Zn×mq as the public key pk. To
encrypt a message m ∈ {0, 1}m, one samples a random vector s ←↩ U({0, 1}n)
and two random vectors x,y ←↩ χm to compute the ciphertext c = (c1, c2) as:
c1 = A> · s + x, c2 = U> · s + y + m · b q2e. When the decryptor wants to recover

the message m, he uses the preserved key sk = E to compute b(c2−E> ·c1)/ q2e.

2.4 Zero-Knowledge Argument of Knowledge

A zero-knowledge argument system of knowledge (ZKAoK) is a two-party inter-
active protocol, where a prover P triggers a proof to convince the verifier V that
he knows a witness of the specific statement while not revealing any additional
information. More formally, given an NP relation defined by a set of statements-
witnesses R = {(y, w)} ∈ {0, 1}∗ × {0, 1}∗, the associated ZKAoK is defined via
an interactive game 〈P,V〉 with completeness δc and soundness error δs as:

• Completeness. For any given (y, w) ∈ R, Pr[〈P(y, w),V(y)〉 6= 1] ≤ δc.
• Soundness. Given any (y, w) /∈ R,∀ PPT P̂: Pr[〈P̂(y, w),V(y)〉 = 1] ≤ δs.

In the lattice setting, the Stern-like argument system [41] is a generic frame-
work with statistical ZK property and soundness 2/3, and has been widely ap-
plied in the constructions of advanced cryptographic schemes [23,25,26,30]. Its
key idea is to use “decomposition-extension-permutation” techniques to trans-
form the targeted NP relations into those suitable for the framework, which in
general increases double to four times communication cost and makes the system
quite inefficient in practice together with soundness 2/3. In this work, we use
a currently presented framework referred as Yang et al.’s argument system [43]
which uses novel techniques to capture the computational ZK property and an
inverse polynomial soundness. Let us recall it below.
The Abstraction of the Argument System. The desired ZKAoK system
provided in Section 4 is covered within the following abstraction:

R = {(M,y), (x) : M · x = y ∧ x ∈ cond}, (1)

where M,y are the public matrix and vector, respectively, and the vector x
is the secret witness, additionally cond represents the set of conditions that
x should satisfy, which covers all possible constraints such as short vectors,
quadratic relations. Actually, the set cond is always equally represented by a
set M = {(h, i, j)} consisting of index tuples of x that satisfy the relation
x[h] = x[i] · x[j].
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3 Model and Security Requirements of Fully Dynamic
Group Encryption

In this section, by introducing a time factor and a group updating algorithm into
the KTY model [21], also taking less oracles than that of [35], we provide the
formalized model and security definitions of the fully dynamic group encryption
(FDGE) primitive, which are appropriately upgraded and modified from the KTY
model [21] that is only suitable for partially dynamic groups.

Like the KTY model [21], the FDGE also involves several parties: a group
manager (GM) that managers a group of users, an opening authority (OA) that
is empowered to revoke the anonymity of recipients should the misbehavior arise,
and a set of prospective users as well as a sender producing well-formed cipher-
texts for certified group members. In the forthcoming model, users join/leave
the group under the permission of GM who can regularly edit and publish au-
thentic group information infoτ at growing epoch τ , thereby anyone can learn
the knowledge about changes of the group including, current/excluded group
members. Additionally, by comparing two group information infoτ1 and infoτ2
under the convention that τ1 < τ2 if infoτ1 is published before infoτ2 , one can
even identify revoked users at the recent epoch. The formalized fully dynamic
group encryption is defined via the following tuple of algorithms:

• SETUP(λ): This algorithm consists of three procedures and generates group
public key gpk = (pp, pkGM, pkOA) as follows:

– SETUPinit(1
λ): On input the security parameter λ, output public param-

eters pp.

– SETUPGM(pp): Given pp, output the GM’s key pair (pkGM, skGM).

– SETUPOA(pp): Given pp, output a key pair (pkOA, skOA) for the OA.

An interaction occurs between the GM and the OA, successfully creating
group public key gpk at its end, while the GM initializes the group information
info and the registration table reg.

• UKGEN(pp): On input pp, this algorithm produces a user key pair (pkU, skU).

• 〈JOIN(skU), ISSUE(skGM)〉(infoτ , gpk, pkU): This is an interaction run by the
GM and a prospective user at epoch τ , whose successful completion enrolls
a new group member with an identifier uid and makes the algorithm JOIN
and algorithm ISSUE store group member secret key sk[uid] and public key
certificate certpkU in the table reg with same index, respectively.

• GUPDATE(gpk, skGM, infoτcurrent ,S, reg): Given gpk, skGM, infoτcurrent , table reg,
a set S of active users to be removed, GM runs this algorithm to generate new
group information infoτcurrent+1 and update the table reg, while advancing
the epoch and outputting ⊥ if there is no change to the group.

• 〈Gr,R, sampleR〉(pp): Given pp, procedure sampleR samples a statement-witness
pair (x,w) ∈ R by using the key pair (pkR, skR) itself produced by procedure
Gr, where skR may be empty in the most of real realizations.
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• ENC(gpk, pkU, certU, infoτ , x, w, L): This algorithm is executed by sender to
compute a group encryption Ψ on witness w with a label L under some
public key pkU. It returns ⊥ if the target group user is inactive at epoch τ .

• DEC(skU, Ψ, L): The target receiver decrypts the ciphertext Ψ via this algo-
rithm.

• OPEN(skOA, infoτ , reg, Ψ, L): This algorithm is run by OA to return an identity
uid of a group member who has secret information to decrypt the ciphertext
together with a proof π attributing Ψ to user uid or to return (⊥, π) if it fails
to trace the receiver.

• 〈P(pkU, certU, w, coinsΨ ),V(πΨ )〉(gpk, infoτ , x, Ψ, L): This is an interactive pro-
cedure run between sender and verifier which, given inputs, convinces verifier
that the ciphertext Ψ is well-formed and is actually generated for one of active
group members at epoch τ .
For security requirements, as in [21], the FDGE scheme considers correctness,

message secrecy, anonymity and soundness, whose definitions are given via cor-
responding experiments below, respectively.

Correctness asks that a ciphertext generated by a genuine sender is always
decrypted successfully by algorithm DEC, and that procedure OPEN can always
identify the receiver, as well as produces a proof that can be accepted by verifier.

Definition 3. The correctness is satisfied if the following experiment returns 1
with negligible probability.

Experiment Expcorr(λ)

pp← SETUPinit(1
λ); (pkR, skR)← GR(1λ); (x,w)← sampleR(pkR, skR);

(pkGM, skGM)← SETUPGM(pp); (pkOA, skOA)← SETUPOA(pp);
〈pk, sk, certpk|uid, pk, certpk, infoτ 〉 ← 〈Juser, JGM(skGM)〉(pkGM, infoτ );
if IsActive(infoτ , reg, uid) = 0, return 0.
Ψ ← ENC(pkGM, pkOA, pk, certpk, infoτ , w,L);
πΨ ← P(pkGM, pkOA, pk, certpk, infoτ , x, w, Ψ, L, coinsΨ ).
if
(
(w 6= DEC(sk, Ψ,L))∨(pk 6= OPEN(skOA, infoτ , reg, Ψ, L))

∨(V(pkGM, pkOA, infoτ , x, Ψ, L, πΨ )=0)
)
then return 0 else return 1.

Message Secrecy demands that it is difficult for any PPT adversary to dis-
tinguish a ciphertext generated by a random plaintext from a one done by a
specific relation pair, even if the adversary can corrupt all parties except the
honest receiver via accessing to the following stateful and stateless oracles:

- DEC(sk,·): is a stateless decryption oracle with a restriction not to decrypt

a ciphertext-label pair (Ψ,L) termed as DEC¬〈Ψ,L〉.
- CHbror(λ, pk, τ, w, L): is a one-time oracle used for generating real-or-random

challenge ciphertexts according to the choice of coin b at epoch τ . It returns
(Ψ, coinsΨ ) with Ψ ← ENC(pkGM, pkOA, pk, certpk, infoτ , w, L) if b = 1. Oth-
erwise, return (Ψ, coinsΨ ) with Ψ ← ENC(pkGM, pkOA, pk, certpk, infoτ , w

′, L)
where w′ is a uniformly random plaintext of length O(λ) sampled in the
plaintext space, and coinsΨ represents the random coins used to compute Ψ .
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- PROVEbP,P′(pkGM, pkOA, pk, certpk, infoτ , x, w, Ψ, L, coinsΨ ): is a stateful ora-
cle that generates an actual proof πΨ or a simulated proof π′Ψ for epoch τ
by running the real prover P when b = 1 and running the simulator P ′ else
wise. It can be invoked a polynomial number times.

The usage of these oracles describes a experiment where the whole system is
under the control of adversary except the member chosen as recipient. It shows
the advantage of the adversary in mounting the attack against message secrecy.

Definition 4. The message secrecy is achieved if, for any PPT adversary, the
absolute difference of probability of outputting 1 between the following experi-
ments Expsec−1

A (λ) and Expsec−0
A (λ) is negligible.

Experiment Expsec−b
A (λ)

pp← SETUPinit(1
λ); (aux, pkGM, pkOA)← A(pp);

〈pk, sk, certpk|infoτ , aux〉 ← 〈Juser,A(aux)〉(pkGM, infoτ );
(aux, x, w, L, pkR)← ADEC(sk,·)(aux); if (x,w) /∈ R then return 0;
b←↩ {0, 1}; (Ψ, coinsΨ )← CHbror(λ, pk, τ, w, L);

b′ ← APROVEbP,P′ (pkGM,pkOA,pk,certpk,infoτ ,x,w,Ψ,L,coinsΨ ),DEC¬〈Ψ,L〉(sk,·)(aux, Ψ);
Return b′.

Anonymity requires that it is infeasible for any PPT adversary to distinguish
ciphertexts computed under two valid public keys of its choice, even if it controls
the entire system except the OA and two well-behaved users via accessing the
following oracles:

- CHbanon(pkGM, pkOA, pk0, pk1, infoτ , w, L): is a challenge oracle that returns a
pair (Ψ, coinsΨ ) consisting of a ciphertext Ψ ← ENC(pkGM, pkOA, pkb, certpkb ,
infoτ , w, L) and the coin tosses coinsΨ used for generating Ψ when a plaintext
w and two possible public keys pk0, pk1 are given.

- USER(pkGM, τ): is a stateful oracle that simulates two instantiations of Juser
via valid certificates {certpkb}

1
b=0 supplied by adversarial GM in string keys at

epoch τ , where honest outputs termed as {(pkb, skb, certpkb)}
1
b=0 are stored.

- OPEN(skOA, infoτ , reg, ·): is a stateless oracle that executes opening opera-
tion on behalf of OA for the received ciphertext and reveals the identity of
the receiver.

These above oracles can be used in a experiment that models the anonymity
property, which reveals the advantage of adversary in this attack game.

Definition 5. The FDGE scheme satisfies anonymity if, for any PPT adver-
sary, the absolute difference of probability of outputting 1 between the following
experiments Expanon−1

A (λ) and Expanon−0
A (λ) is negligible.

Experiment Expanon−b
A (λ)

pp← SETUPinit(1
λ); (pkOA, skOA)← SETUPOA(pp);

(aux, pkGM)← A(pp, pkOA); aux← AUSER(pkGM,τ),OPEN(skOA,infoτ ,reg,·)(aux);
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if keys 6= (pk0, sk0, certpk0 , pk1, sk1, certpk1 , infoτ ) (aux) then return 0;

(aux, x, w, L, pkR)← AOPEN(skOA,infoτ ,τ,·),DEC(sk0,·),DEC(sk1,·)(aux);
if (x,w) /∈ R return 0; b←↩ {0, 1}; (Ψ, coinsΨ )← CHbanon(pkGM, pkOA, pk0, pk1,
infoτ , w, L);

b′ ← AP(pkGM,pkOA,pkb,certpkb ,infoτ ,x,w,Ψ,L,coinsΨ ),OPEN¬〈Ψ,L〉(skOA,infoτ ,reg,·),

DEC¬〈Ψ,L〉(sk0,·),DEC¬〈Ψ,L〉(sk1,·)(aux, Ψ). Return b′.

Soundness requires that it is infeasible for any PPT adversary to produce a
convincing valid ciphertext that opens to unregistered group member or invalid
public key, even if it can choose OA’s key, and is given access to the REG oracle.
In the following, database,PK and C are respectively used to represent the sets
of registered public keys, valid keys and valid ciphertexts.

Definition 6. An FDGE scheme is sound if, for any PPT adversary, the exper-
iment below returns 1 with negligible probability.

Experiment Expsound
A (λ)

pp← SETUPinit(1
λ); (pkOA, skOA)← SETUPOA(pp);

(pkGM, skGM)← SETUPGM(pp);
(pkR, x, Ψ, πΨ , pkGM, aux, infoτ )← AREG(skGM,·)(pp, pkGM, pkOA, skOA, infoτ );
if V(Ψ,L, πΨ , pkGM, pkOA, infoτ ) = 0 return 0;
pk← OPEN(skOA, infoτ , reg, Ψ, L); if

(
(pk /∈ database) ∨ (pk /∈ PK) ∨

(Ψ /∈ Cx,L,pkR,pkGM,pkOA,pk)
)
then return 1 else return 0.

To meet the above security requirement that pk must belong to the language of
valid public keys, we use the Gaussian short vectors as shown in Section 5.1 to
generate dense space for public keys, which simplifies our definitions.

4 The Underlying Zero-Knowledge Layer

In this section, we first introduce the needed decomposition techniques in Sec-
tion 4.1. Then, we provide two generic and efficient zero-knowledge proofs for
inequality relations of binary vectors (one is for non-zero binary vectors, and
the other is for Hamming distance) that can work well in any lattice-based ZK
framework and serve for our argument system. Finally, based on the techniques
prepared in previous sections, we establish the argument system in Section 4.3
in the Yang et al.’s framework [43] recalled in Section 2.4. The argument system
obtains great efficiency gains compared to that run in the Stern-type framework
[41] since our system avoids using the “decomposition-extension-permutation”
techniques (which at least increases the witness size double to four times) and
also avoids repeating the protocol hundreds times (which incurs a drastic increase
in communication cost) towards a negligible soundness as in [41].

4.1 Warm-up: Decompositions

We briefly recall several decomposition techniques from [24,30] that would be
used in constructing our argument system. We start with the integer decompo-
sition function, i.e., for any non-negative integer i, let δi = dlog(i + 1)e, define



Lattice-Based Group Encryption with Full Dynamicity 11

bin(i) = (i(1), ..., i(δi))> ∈ {0, 1}δi and gδi = (1, 2, ..., 2δi−1), then it follows that

i =
∑δi
j=1 2j−1 · i(j) = gδi · bin(i).

To decompose any integer i ∈ [0, β] for a positive integer β, set δβ : =

dlog2(β+1)e and compute an integer sequence {β1, ..., βδβ} via βj = bβ+2j−1

2j c,∀j ∈
[1, δβ ]. Then, we have i =

∑δβ
j=1 βj · i(j) = g′δβ · bin

′(β), where g′δβ = (β1, ..., βδβ )

and bin′β(i) = (i(1), ..., i(δβ)) ∈ {0, 1}δβ which is a binary tuple computed in an
interactive manner. This defines an integer decomposition function as idecβ(i) =
(i(1), ..., i(δβ))> ∈ {0, 1}δβ for any integer i ∈ [0, β]. Combining with Hm,β =
Im⊗g′δβ , we can similarly define decomposition functions for vectors and matri-

ces (see, [25,26]):

• vdecm,β : [0, β]
m → {0, 1}mδβ maps any β-bounded non-negative vector v =

(v1, ..., vm)
>

to (idecβ(v1)
>‖ ... ‖idecβ(vm)

>
)> by applying idecβ(·) to each

entry of v, which holds that Hm,β · vdecm,β(v) = v.
• mdecn,m,q : Zm×nq → {0, 1}nmδq−1 maps a matrix X= [x1| ... |xn] ∈ Zm×nq

to the size-nmδq−1 binary vector (vedcm,q−1(x1)
>‖ ... ‖vedcm,q−1(xn)

>
)
>

by imposing vdecm,q−1(·) on the each column of X and concatenating the
obtained binary vectors in the increasing order of the indexes of columns.

We note that, hereunder this section, when needing to decompose a bounded-
β vector v ∈ [−β, β]m, we will first lift it to v + β ∈ [0, 2β]m, then perform
vdecm,2β(·) on the transformed vector where β = (β, ..., β) consists of m’s β,
with taking appropriate modifications for the involved matrices and vectors. This
transformation-and-decomposition strategy will be quite useful for the construc-
tion of our ZK argument system.

4.2 Proving Inequality Relations for Binary Vectors

In this section, we first provide a ZK proof for demonstrating a binary vector p
is non-zero (used to demonstrate a group user is activated) that can efficiently
work well in any lattice-based ZK framework, on which we construct a ZK proof
for the Prohibitive message filtering policy (used to demonstrate the validity of
the encrypted witness) which is achieved over lattices at the first time and is
generic and efficient. Startlingly, our proof methods can be extended to prove
inequalities of general vectors, thus it is independent of interest.

Proving Binary Vectors p 6= 0. Let n, q be positive integers with n < q and
p ∈ {0, 1}n, our aim is to prove the secret p 6= 0 in the Yang et al.’s framework
[43]. Actually, this problem has been solved in the Stern-like framework [31]
in spite of inefficiency and worse usability (i.e., it can not work in the Yang
et al.’s framework [43]), where the system was established by appending n − 1
“dummy” entries to extend the targeted vector p ∈ {0, 1}n to p′ ∈ {0, 1}2n−1

of Hamming weight n exactly and running the Stern-like protocol. To handle
the task in the Yang et al.’s framework [43], one may find a possible solution
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in [27] where numerous lattice-based range arguments were developed to prove
private integer relations such as X ∈ [α, β] for public integers α, β ≥ 0. But the
techniques used there are invalid in proving that one knows at least a private
Xj among a given set {X1, ..., Xn} each of which is bounded by [αi, βi] with
i ∈ [n] satisfies that αj < Xj ≤ βj , which essentially generalizes our problem
when setting p = (X1, ..., Xn)> and αi = 0 and βi = 1 for all i ∈ [n]. We now
develop new techniques to address this problem.

An important observation is that, the task to prove p 6= 0 is equivalent to
that proving that there is at least an entry of p is > 0. To end this, intuitively,
it suffices to prove the p’s Hamming weight is ≥ 1. In the following, we provide
two efficient solutions, where the first is somewhat tedious, and then second is
succinct and will be applied in the construction of our argument system.

Let Jn = (1, ..., 1)> ∈ Znq of which all entries are 1’s. Suppose that the
Hamming weight of binary vector p is ≥ 1, then we can establish our argument
system by proving that one knows a complementary binary vector q ∈ {0, 1}n
with Hamming weight ≤ n− 1 such that p + q = Jn mod q. The inequality can
be solved by decomposing J>n · q via the vector g′δβ with setting β = n− 1 as in
Section 4.1. Then, it suffices for a prover to prove that he knows private vectors
p,q ∈ {0, 1}n and q′ ∈ {0, 1}δn−1 such that the following conditions hold:{

p + q = Jn mod q,

J>n · q = g′δn−1
· q′ mod q.

(2)

Note that the above solution not only works well in the Yang et al.’s frame-
work [43] but does well in the Stern-like framework [31], and is more efficient
when used in the previous framework. In fact, to further achieve efficiency gains,
we can directly go to prove the Hamming weight of p is ≥ 1, i.e., go to prove
J>n · p ≥ 1. Interestingly, we observe that the proof for this relation can be
reduced to that one knows a secret non-negative integer b ≤ n− 1 such that
J>n ·p = 1 + b. Combining with the decomposition techniques defined in Section
4.1, we equally write the relation as (assuming a private vector q ∈ {0, 1}δn−1)

J>n · p− g′δn−1
· q = 1 mod q. (3)

The last above solution is more efficient since it saves 50% size compared to
the previous one, and both present solutions are generic and more efficient when
working in [43] than that of [31]. Besides, our solutions can be readily extended
to prove that one knows a private x having l∞ or l2 norm bounded by [α, β]
with integers α, β ≥ 0.

Proving Bounded Hamming Distance. In general, there two commonly
used message filtering policies termed as “Permisive” and “Prohibitive”. Our task
is to establish the argument system for the latter, and that for previous is trivial
and is omitted in this work. Given positive integers m ≥ t ≥ d, and binary
vectors m ∈ {0, 1}m and yi ∈ {0, 1}t with i ∈ [m − t + 1], we use yi @ m to
mean that yi is a substring of m, i.e., there exist strings xi, zi ∈ {0, 1}≤m−t



Lattice-Based Group Encryption with Full Dynamicity 13

such that [x>i |y>i |z>i ]> = m. Actually, the relation yi @ m is equivalent to the
equality Bi ·m = yi where Bi ∈ Zt×mq is a public matrix of the form [0|It|0].
Now we define the message filtering policy “Prohibitive” used in this work:

Rprohi = {((si)ei=1,m) ∈ ({0, 1}t)e × {0, 1}m : dH(si,y) ≥ d,∀i ∈ [e],∀y @ m)}.

To build an argument system for the relation Rprohi, we begin with building a
system for the simple relation dH(x,y) ≥ d with x,y ∈ {0, 1}n being public
and secret. In the context of lattices, the proof is needed to be proceeded in
mod q (involved with the dimension n for security, e.g., q ≥

√
n) instead of

mod 2, which is always an open problem. Now we use a novel idea to address
it. For any x, y ∈ {0, 1}, we observe that x ⊕ y = x + y − 2x · y, which follows
that x⊕ y = x + y− 2(x1 · y1, ..., xn · yn)> for binary vectors x = (x1, ..., xn)>

and y = (y1, ..., yn)>. Then, the task to prove dH(x,y) ≥ d can be reduced to
proving ‖x+y−2(x1 ·y1, ..., xn ·yn)>‖1 ≥ d. By extending the proof method just
developed above, in the setting of mod q, our task is reduced to proving that we
hold a secret vector z ∈ {0, 1}δn−d such that the following equation holds:

J>n · (x + y− 2(x1 · y1, ..., xn · yn)>)− g′δn−d · z = d mod q.

Based on the above result, for each i ∈ [e], j ∈ [m − t + 1], let si =
(si,1, ..., si,t)

>, yj = Bj · m with yj = (yj,1, ..., yj,t) and B>j,1, ...,B
>
j,t be the

row vectors of Bj (which essentially ensures that yj,k = B>j,k ·m). Then, the
task to prove the relation Rprohi is equal to proving that one knows secret vec-
tors zi,j ∈ {0, 1}δm−d such that (∀i ∈ [e], j ∈ [m− t+ 1]):

J>n · (si + Bj ·m− 2(si,1 ·B>j,1, ..., si,t ·B
>
j,t)
> ·m)− g′δm−d · zi,j = d mod q. (4)

Then, let Bi,j = J>n ·(Bj−2(si,1 ·B>j,1, ..., si,t ·B
>
j,t)
>) ∈ Z1×m

q and di,j = d+

J>n · si ∈ Zq, which is followed by B[i] = [B>i,1, ...,B
>
i,m−t+1]> ∈ Z(m−t+1)×m

q and

B = [B>[1], ...,B
>
[e]]
> ∈ Z(m−t+1)e×m

q . Accordingly, build z[i] = [z>i,1, ..., z
>
i,m−t+1]>

∈ Z(m−t+1)δm−d
q , z = [z>[1], ..., z

>
[e]]
> ∈ Z(m−t+1)eδm−d

q , and d[i] = [di,1, ..., di,m−t+1]>

∈ Zm−t+1
q and d = [d>[1], ...,d

>
[e]]
> ∈ Z(m−t+1)e

q . Combining with the definition
Ig′ = I(m−t+1)e ⊗ g′δm−d , the relation Rprohi is equally written as:

[B, Ig′ ] ·
(

m
z

)
= d mod q. (5)

Run the above result in the Yang et al.’s framework [43], then the argument
for bounded Hamming distance is established. It is seen that the above proof
method is also generic and efficient.

4.3 The Underlying ZKAoK

We now state our argument system under the abstract framework provided in [43]
as recalled in Section 2.4 for a wide of lattice relations to fulfill our intricate task.
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Given the same settings of parameters as in Section 5.1, let bin(j) = (j1, ..., j`) ∈
{0, 1}`, j = bin(j)>, A = [A1|A2] and aj,i = mdecn,m,q(U

>
j,i) for each i ∈ {1, 2}.

As in [31,26], take the operator ext(·, ·) to express ext(b,v) =

(
b̄ · v
b · v

)
. Our

protocol can be summarized as follows:
Public input: Matrices A, G, F, B, Arec, Aoa, Uoa,1, Uoa,2, I′g, and vectors

uτ , Jnk, g′δnk−1
, {c(1)

rec,i, c
(2)
rec,i, c

(1)
oa,i, c

(2)
oa,i}i∈{1,2},d.

Prover’s goal: Prove possession of the secret inputs in the following system

j = (j1, ..., j`)
>,
(
pj , (w

(j)
` , ...,w

(j)
1 )
)
∈ ({0, 1}nk)`+1 with pj 6= 0,

qj ∈ {0, 1}δnk−1 ,aj,1,aj,2 ∈ {0, 1}nmk,
m ∈ {0, 1}m, z ∈ {0, 1}(m−t+1)eδm−d ,

i = 1, 2 : srec,i, soa,i ∈ {0, 1}n,
xrec,i,yrec,i,xoa,i ∈ [−B,B]m,yoa,i ∈ [−B,B]`

(6)

such that the following system of modular linear equations holds:

G · uτ = A · ext(j1,v(j)
1 ) + A · ext(j̄1,w(j)

1 ) mod q,v
(j)
` = pj ,

i ∈ [1, `− 1] :

0 = A · ext(ji+1,v
(j)
i+1) + A · ext(j̄i+1,w

(j)
i+1) + (−G) · v(j)

i mod q,

1 = J>nk · pj + (−g′δnk−1
) · qj mod q,

0 = G · pj + (−F) · (a>j,1||a>j,2)> mod q,

r = {1, 2} : c
(1)
rec,r = A>rec · srec,r + xrec,r mod q,

c
(2)
rec,r = U>j,r · srec,r + yrec,r + m · b q2e mod q,

d = [B, I′g] · [m>, z>]> mod q,

c
(1)
oa,r = A>oa · soa,r + xoa,r mod q,

c
(2)
oa,r = U>oa,r · soa,r + yoa,r + j · b q2e mod q,

(7)

To proceed the proof, we first build two argument systems Π1 suitable for
accumultor values problem and plain encryption, and Π2 suitable for encryption
with hidden matrices, respectively, then establish the final system ΠGE which
covers all the above involved relations. The concrete steps are made as follows:

Build system Π1. This system covers (`+ 6) equations consisting of the first
(` + 2) and the last four ones from the above equation system (7). Our task is
to construct a ZKAoK system for the following relation:

R1 = {(M1,y1), (x1) : M1 · x1 = y1 ∧ x1 ∈ cond1}. (8)

In the above, the matrix M1 consists of the involved public matrices and vectors
{A,G,Jnk,g

′
δnk−1

,F,Aoa,Uoa,1,Uoa,2} by an appropriate arrangement, and vec-

tors x1 and y1 are similarly made by private inputs {j, {vi}i, {wi}i,pj ,qj ,q′j ,
{soa,i}i, {xoa,i}i, {yoa,i}i} and public vectors {G ·uτ ,Jnk, {c(1)

oa,i, c
(2)
oa,i}i}, and the
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cond1 is the set of conditions that the private inputs should meet given in system
(6). We now describe the constructions of desired variables.

We achieve our goal by a sequence of steps. Let b1,b2 be constant vectors,
respectively, of the form b1 = (B, ..., B)> ∈ Zmq and b2 = (B, ..., B)> ∈ Z`q.
Then, conduct the following.

1. Transform the inputs bounded by some positive integer to ones with non-
negative entries. Concretely, for each i ∈ {1, 2}, set x′oa,i = xoa,i + b1 ∈
[0, 2B]m, and y′oa,i = yoa,i + b2 ∈ [0, 2B]`.

2. Decompose the above newly transformed vectors x′oa,i,y
′
oa,i. For each i ∈

{1, 2}, apply the operator vdec(·) defined in Section 4.1 to the above tar-
geted vectors to produce binary vectors x′′oa,i,y

′′
oa,i of size mδ2B and `δ2B ,

respectively, such that x′oa,i = Hm,2B · x′′oa,i and y′oa,i = H`,2B · y′′oa,i.
3. Modify the involved public vectors accordingly. For each i ∈ {1, 2}, set c

(1)′

oa,i =

c
(1)
oa,i + b1 and c

(2)′

oa,i = c
(2)
oa,i + b2.

4. Rewrite the first ` equations. For each i ∈ [1, `], by A = [A1|A2] and the

operator ext(·, ·), we have A · ext(ji,v(j)
i ) + A · ext(j̄i,w(j)

i ) = A1 · vi +
(A2 − A1) · jivi + A2 · wi + (A1 − A2) · jiwi. Let A(1,2) = [A1|A2 −
A1|A2|A1 − A2], A[1,2] = [−G|03|A1|A2 − A1|A2|A1 − A2] (where 03

means a block of form [0|0|0] ∈ (Zn×mq )3) and u′ = [(G · uτ )>|0>]>, set a

matrix A[1,`] =

A(1,2)

A[1,2]

. . .

 consisting of a A(1,2) and (` − 1)’s A[1,2] such

that, for each i ∈ [2, ` − 1], the component −G from the i-th block A[1,2]

and the component A1 from the last block A(1,2) or from the last A[1,2]

are in the same column. Accordingly, for each i ∈ [1, `], we set xi,vi,wi =
[v>i |(jivi)>|w>i |(jiwi)

>]>, and further set x`,v,w = [x>1,v1,w1
| · · · |x>`,v`,w` ]

>,
which gives that u′ = A[1,`] · x`,v,w.

After the above treatments, the targeted system is equally changed as:

u′ = A[1,`] · x`,v,w,
1 = J>nk · pj + (−g′δnk−1

) · qj ,
0 = G · pj + (−F) · [a>j,1|a>j,2]> mod q,

i ∈ {1, 2} : c
(1)′

oa,i = Aoa · soa,i + Hm,2B · x′′oa,i mod q,

c
(2)′

oa,i = U>oa,i · soa,i + H`,2B · y′′oa,i + j · b q2c mod q.

(9)

Basing on the above preparations, we obtain the desired variables as follows:

1. Build the public matrix M1 and the public vector y1. Set A′ := A[1,`−1],A
′
1 :=

A2−A1,A
′
2 := A1−A2, I

′
` := b q2c · I`, g′ := −g′δnk−1

, F′ := −F, G′ := −G

and H′k := Hk,2B with k ∈ {`,m}. Use the matrices in (9) to construct
the desired matrix M1 and vector y1 as (here we abuse notation and use
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[A
′>|G

′>]> to represent that the matrix G′ and the component A1 from
the last row of A′ are in the same column)

0 A′ 03 0 0 0 0 0 0 0 0 0 0 0 0 0
0 G′ 03 A1 A′1 A2 A′2 0 0 0 0 0 0 0 0 0

0 0 03 0 0 0 0 J>nk g′ 0 0 0 0 0 0 0
0 0 03 0 0 0 0 0 0 Aoa H′m 0 0 0 0 0

I′` 0 03 0 0 0 0 0 0 U>oa,1 0 H′` 0 0 0 0
0 0 03 0 0 0 0 0 0 0 0 0 Aoa H′m 0 0

I′` 0 03 0 0 0 0 0 0 0 0 0 U>oa,2 0 H′` 0
0 0 03 G 0 0 0 0 0 0 0 0 0 0 0 F′


,



u′

1

c
(1)′

oa,1

c
(2)′

oa,1

c
(1)′

oa,2

c
(2)′

oa,2

0


.

2. Build the private input x1. Arrange the modified private inputs shown in the
system (9), establish the desired private vector x1 = (j>,x>`,v,w,q

>
j , s
>
oa,1,

x
′′>
oa,1,y

′′>
oa,1, s

>
oa,2,x

′′>
oa,2,y

′′>
oa,2,a

>
j,1,a

>
j,2)> with size n1, where n1 = ` + 2n +

δnk−1 + 2(m+ `)δ2B + 4`nk + 2nmk.

3. Build the set of conditions cond1. LetM1 be the set of triple indexes (h, i, l)
of x1 with h, i, l ∈ [n1] such that x1[h] = x1[i]·x1[l]. The setM1 is equivalent
to the set cond1. We now state the structure of M1:

a. Observe that all entries of x1 are binary, we note that the choices (h, i, l) =
(i, i, i)i∈[n1] are in the set M1.

b. Now consider the corresponding choices ofM1 for jivi, jiwi for all i ∈ [`]:
for jivi, the choices consist of (h, i, l) = (`+ (4i′− 3)nk+ l′, i′, `+ (4i′−
4)nk+ l′)i′∈[`],l′∈[nk]. Whereas, for jiwi, the desired indexes are given by
(h, i, l) = (`+ (4i′ − 1)nk + l′, i′, `+ (4i′ − 2)nk + l′)i′∈[`],l′∈[nk].

This constructs the argument system Π1 for the relation R1, and by running the
protocol in Section 4.3, the desired argument system is obtained.

Build system Π2. This system covers the remaining five equations from the
system (7). Our task is to construct a similar ZKAoK system for the following
relation:

R2 = {(M2,y2), (x2) : M2 · x2 = y2 ∧ x2 ∈ cond2}. (10)

As in the above system Π1, the involved variables are respectively defined. We
take similar strategies to proceed the present task.

1. For each i ∈ {1, 2}, transform the private inputs xrec,i,yrec,i to ones that
only have non-negative entries. Concretely, set x′rec,i = xrec,i + b1,y

′
rec,i =

yrec,i + b1,∈ [0, 2B]m.

2. Decompose the above newly generated vectors. For each i ∈ {1, 2}, impose
the function vdec(·) on these vectors, respectively, to yield size-mδ2B binary
vectors x′′rec,i and y′′rec,i such that x′rec,i = Hm,2B ·x′′rec,i,y′rec,i = Hm,2B ·y′′rec,i.
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3. Change the corresponding public matrices and vectors. Consider the decom-

position of U>j,i · srec,i with i = 1, 2. Let U>j,i = [u
(1)>
j,i |...|u

(n)>
j,i ] ∈ Zm×nq

and srec,i = (s
(1)
rec,i, ..., s

(n)
rec,i)

> ∈ {0, 1}n. In light of operators vdec(·) and

mdec(·), we have U>j,i · srec,i = Σn
t=1u

(t)>
j,i · s

(t)
rec,i = Σn

t=1Hm,q−1 · a(t)
j,i · s

(t)
rec,i =

Hm,q−1 · s>rec,i,mk · aj,i, where a
(t)
j,i ∈ {0, 1}mk is the binary decomposition of

the vector u
(t)>
j,i and srec,i,mk = (

mk′s times︷ ︸︸ ︷
s

(1)
rec,i, ..., s

(1)
rec,i, ...,

mk′s times︷ ︸︸ ︷
s

(n)
rec,i, ..., s

(n)
rec,i)

>. Addition-

ally, for all i = 1, 2, set vectors as: c
(1)′

rec,i = c
(1)
rec,i + b1 and c

(2)′

rec,i = c
(2)
rec,i + b1.

After making the above treatments, the targeted system is equally changed as:
i ∈ {1, 2} : c

(1)′

rec,i = A>rec · srec,i + Hm,2B · x′′rec,i mod q,

c
(2)′

rec,i = Hm,q−1 · s>rec,i,mk · aj,i + Hm,2B · y′′rec,i + m · b q2e mod q,

d = [B, I′g] · [m>, z>]> mod q,

(11)

This proceeds the following constructions of variables.

1. For simplicity, let H′′m = Hm,q−1 and I′m = b q2cIm. Similar to what in system
Π1, build the public matrix M2 and the public vector y2 as


0 A>rec 0 H′m 0 0 0 0 0 0 0
0 0 H′′m 0 H′m 0 0 0 0 I′m 0

0 0 0 0 0 A>rec 0 H′m 0 0 0
0 0 0 0 0 0 H′′m 0 H′m I′m 0
0 0 0 0 0 0 0 0 0 B I′g

 and


c

(1)′

rec,1

c
(2)′

rec,1

c
(1)′

rec,2

c
(2)′

rec,2

d

 .

2. Build the private input x2. According to the public variables M2 and y2

above, we build the private vector x2 = (a>j,1,a
>
j,2, s

>
rec,1, (s

>
rec,1,mk·aj,1)>,x

′′>
rec,1,

y
′′>
rec,1, s

>
rec,2, (s

>
rec,2,mk ·aj,2)>,x

′′>
rec,2,y

′′>
rec,2,m

>, z>)> which has size n2 = m+
2n+ 2m(k + nk + 2δ2B) + (m− t+ 1)eδm−d.

3. Consider the set of conditions cond2. Similarly, let M2 be the set of triple
indexes (h, i, l) of x2 with h, i, l ∈ [n2] such that x2[h] = x2[i] · x2[l]. It can
be seen that the defined set of indexes is equal to the original set cond2. Now
we present the structure of set M2:
a. Observe that all components of x2 are binary vectors, which gives that

such indexes (h, i, l) = (i, i, i) with i ∈ [n2] are in cond2.
b. In addition, the hidden matrix constraint in the original system is equally

to the conditions s>rec,i,mkaj,i = s>rec,i,mk · aj,i for each i ∈ {1, 2} as
in system (11). This allows us to compute another choice of indexes
(h, i, l) = (2nmk+n+(i′−1)mk+ l′, 2nmk+i′, l′)i′∈[n],l′∈[mk]∪(3nmk+
2n+2mδ2B+(i′−1)mk+l′, 3nmk+n+2mδ2B+i′, nmk+l′)i′∈[n],l′∈[mk].

This completes the task of constructing argument system Π2 by running the
protocol given in Section 4.3.
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Build system ΠGE. The final system is the desired one which covers the system
Π1 and the system Π2 simultaneously, whose definition is shown as follows:

RGE = {(M,y), (x) : M · x = y ∧ x ∈ cond}. (12)

To build the system, we write M1 = [M1,1|M1,2] and M2 = [M2,1|M2,2], then

build M =

(
M1,1 M1,2 0

0 M2,1 M2,2

)
, where the blocks M1,2 and M2,1 respectively

represent the last column and the first column of M1 and M2. Accordingly, we

build x =

(
x1

x2/{[a>j,1|a>j,2]>}

)
, y =

(
y1

y2

)
and cond = cond1 ∩ cond2, then a

system that is suitable for the framework established in [43] is obtained. Now
the familyM of triples corresponding to the set cond is somewhat modified, i.e.,
M =M1 ∪M′2, where M′2 = {(h, i, l)} = {(i, i, i)}i∈[n1+1,n1+n2−2nmk] ∪ (n1 +
n+(i′−1)mk+ l′, n1 +i′, n1−2nmk+ l′)i′∈[n],l′∈[mk]∪(n1 +nmk+2n+2mδ2B+
(i′− 1)mk+ l′, n1 +nmk+n+ 2mδ2B + i′, n1−nmk+ l′)i′∈[n],l′∈[mk]. Then, the
prover runs an interactive protocol with the verifier as shown in [43], and the
desired ZKAoK system is established.

5 Our Fully Dynamic Lattice-Based Group Encryption

This section describes how to make use of the LNWX accumulator [31], GPV
dual encryption [18] and the ZKAoK system built in Section 4 to construct our
fully dynamic lattice-based group encryption in a relatively simple manner. In
our design, this scheme first achieves the “Prohibitive” message filtering policy in
the lattice setting and is free of lattice trapdoors throughout the design, resulting
into great efficiency gains. All of these efforts yield a much more practical group
encryption, also secure against the potential quantum attacks. We now briefly
interpret the overview of our techniques.

Our inspiration begins with a main observation that, by using an updatable
accumulator [31], one can directly upgrade the static group signature scheme
[26] to one offering full dynamicity [31] at a reasonable cost, where the GM
creates and revokes group membership via altering the hash value p of user’s
public key (non-zero for activated users and 0 otherwise). Following the idea,
combining with the GPV dual encryption [18], we consider: For a group of
N = 2` members, given Arec ∈ Zn×mq , users sample two random short ma-
trices Ej,1,Ej,2 ∈ Zm×mq from a given Gaussian distribution to generate nearly
uniform Uj,i = A · Ej,i ∈ Zn×mq with i ∈ {1, 2}, resulting secret/public key

pairs (skj , pkj) = (Ej,1, (Uj,1,Uj,2)) with hash values pj = bin(F · [a>j,1|a>j,2]>) ∈
{0, 1}nk where aj,i = mdecn,m,k(U>j,i) ∈ {0, 1}nmk. Then, the manager builds an
efficiently updatable tree on top of values p0, · · · ,pN−1 and publishes the tree
root u as well as the witness for the fact pj was accumulated in u. Particularly,
the GM conducts: (i)-For an invalid user who has not joined the group or has
been excluded from the group, set the j-th leaf value pj as 0; (ii)-For a valid
user who joins the group and has not left the group, set the corresponding value
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as pj , the hash value of the public key pkj ; (iii)-With these rules, the GM can
build an efficiently updatable tree with comparative complexity O(logN), for
which he only needs to alter the values at specific leaves and along their paths
to the root rather than to reconstruct the whole tree when group information
changes. These executions guarantee that all active users (with p 6= 0) in the
given epoch can be accumulated into the dynamic root while no any inactive
user cannot, which effectively separates active users who can receive the valid
ciphertexts from those who cannot in any growing epoch.

When moving to the stage of generating a group encryption, the sender fetches
the public key (Uj,1,Uj,2) and the associated membership witness w(j) of the
target group member from group information, then samples a witness in light of
the given Prohibitive message filtering policy and computes the ciphertext (we
apply the Naor-Yung transformation technique [34] for CCA-2 secuirity) and an
associated proof which shows that the ciphertext is well-formed and pj 6= 0. In
order for the proof to work in the Yang et al.’s ZK framework [43], we use the
proof techniques we just provided in Section 4.2 and then resort to the argument
system built in Section 4.3.

We also note that the dynamicity described in [31] is de facto limited to once
enrollment and once revocation. To realize stronger dynamicity that users are
allowed to join or leave the group at will, some modifications on procedures
〈JOIN, ISSUE〉 and GUPDATE are needed. Concretely, we take some significant
modifications for the procedures of user registering and user leaving, such that
group users indeed obtain the expected dynamicity as long as their reasonable
applications are accepted by the GM.

5.1 Description of the Scheme

As in [35], we assume that our scheme allows encrypting witness m ∈ {0, 1}m
that meets both message filtering policies termed as Permissive 6 and Prohibitive
(shown in Section 4.2), which use constraints stronger than those used in [21,25].
For simplicity, we only take the latter policy in our scheme. Procedures of con-
structing the FDGE scheme are shown as follows.

• SETUPinit (1λ): This algorithm conducts the following:

– Set the possibly maximum number of group users as N = 2` = poly(λ).

– Select integer n = O(λ) and prime q = Õ(n2). Let k = dlog qe, m = 2nk.
– Pick a discrete distribution χ over Z of the bound B =

√
nω(log n).

– Select a Gaussian parameter σ = Ω(
√
n log q log n), and build a discrete

Gaussian distribution DZ,σ with upper bound β = σ · ω(log n).
– Take public parameters ppCOM for the homomorphic commitment scheme

like [5] which serves as a key building block in the construction of the
interactive game 〈P,V〉.

– Pick a random matrix F←↩ Zn×2nmk
q which hashes users’ public keys

from Zn×2m
q to Znq .

6 It is defined as Rpermi = {((si)ei=1,m) ∈ ({0, 1}t)e × {0, 1}m : ∃i ∈ [e] s.t. si @ m}
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– Set a gadget matrix G = In ⊗ gk with the definition given in Section
4.1. Pick matrices Arec,Aoa ←↩ U(Zn×mq ) that will be used to generate
public keys for group users and the opening authority, respectively.

Output
pp= {N, `, λ, n, q, k,m,B, χ, σ, β, ppCOM,F,G,Arec,Aoa}.

• SETUPGM (pp): This algorithm picks a random matrix A = [A1|A2]←↩ Zn×mq

consisting of two same-size matrices, and samples skGM ←↩ {0, 1}m and com-
putes pkGM = A · skGM, resulting a key pair (pkGM, skGM) for the GM. Here,
we take pkGM as an identifier of the group and assume that only the GM
(i.e., the party holding skGM) can edit and publish the group information.

• SETUPOA (pp): This procedure samples two short secret matrices Eoa,i with i ∈
{1, 2} from the distribution D`

Zm,σ to generate two corresponding matrices

Uoa,i = Aoa ·Eoa,i ∈ Zn×`q , which forms the secret key skOA = Eoa,1 ∈ Zm×`q

and the public key pkOA = (Uoa,1,Uoa,2) ∈ (Zn×`q )2 for the OA.
When GM receives pkOA sent from the OA, it executes the following:

1. Build table reg: =({reg[j][i]}j∈[0,N−1],i∈{1,2}) initialized as reg[j][1] =

0nk and reg[j][2] = 0. Note that the former records the user’s registered
public key, while the latter stores the epoch at which an execution of
joining protocol is performed.

2. Build a Merkle tree T on top of {reg[j][1]}j∈[0,N−1] whose initial values
are zero and then changed with users’ public keys by the GM when one
successfully joins the group or the group executes an updating operation.

3. Set the counter of users c := 0.

Then, GM outputs gpk=(pp,pkGM,pkOA) and publicizes the initial group in-
formation info = ∅, while T as well as c is kept by him self.

• UKGEN(pp): For each j ∈ [0, N − 1] and each i ∈ {1, 2}, user Uj samples
two secret matrices Ej,i from the Gaussian distribution Dm

Zm,σ to generate

two corresponding public matrices Uj,i = Arec · Ej,i ∈ Zn×mq , which forms
the secret key skj = Ej,1 ∈ Zm×mq and the public key pkj = (Uj,1,Uj,2) ∈
(Zn×mq )2. Then, the user computes a hash value pj = bin(F · (a>j,1||a>j,2)>) ∈
{0, 1}nk with aj,i = mdecn,m,q(U

>
j,i) ∈ {0, 1}nmk for each i ∈ {1, 2}. We

note that all honestly generated pkj ’s are non-zero and pairwise distinct,
since the probability that users take zero-matrix Uj,i or same matrix (i.e.,
Uj,i = Uj′,i′ for some j 6= j′ or i 6= i′ ), or finds a collision for hash function
F is negligible (due to the assumed hardness of the SIS problem).

• 〈JOIN(sk); ISSUE(skGM)〉(gpk, pk, infoτ ): Let S0 be a set of indexes i of which as-
sociated public keys of group users are zero, with the initialization {reg[j][1]}.
When a user holding key pair (pk, sk) with binary hash p wants to join the
group at the epoch τ , he sends p to the GM who proceeds the following
procedures with him after the request is accepted:

1. GM picks a random j ∈ S0 and sets a member identifier bin(j) ∈ {0, 1}`
for the user, and executes the following:

– Update T by running procedure TUpdateA(bin(j),pj).
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– Register the user to table reg as reg[j][1] := pj .
– Update the set S0 := S0 − {j}, increase the counter c := c+ 1.

2. When specific enrollment requests at a same epoch are ending, basing
on the above updated results (note that the update process is essentially
like that of running algorithm TAccA(·) on reg[·][1] = {reg[j][1]}j for
the generation of root value u, thus same results are led), the GM runs
algorithm TWitnessA(reg[·][1],pj) to output a witness

w(j) =
(
(j1, ..., j`) ∈ {0, 1}`, (w(j)

` , ...,w
(1)
1 ) ∈ ({0, 1})`

)
to the fact that pj is accumulated in u.

3. User checks the validity of w(j) by algorithm TVerifyA(u,pj , w
(j)) and

outputs ⊥ if it is unaccepted. Otherwise, set witj = (u, w(j)) as the
witness of pkj being accumulated into the root u, which plays the similar
role to a certificate of public key issued by the GM.

• GUPDATE(gpk, skGM, infoτcurrent ,S, reg): GM updates the group information
while advancing the epoch by running this algorithm as follows.

1. Let S be a set of verified public keys of group users to be removed. If
S = ∅, go to Step 2. Otherwise, let S = {reg[ji][1]}ri=1 for some r ∈ [1, N ]
and ji ∈ [0, N − 1] for all i ∈ [r], then GM runs TUpdateA(bin(ji),0

nk)
to update the tree T , followed by S0 := S0

⋃
S.

2. By construction, each zero-value leaf in T corresponds to an inactive
user, i.e., one that is revoked or has not yet got membership. This means
that only active users capable of decrypting well-formed ciphertexts gen-
erated in the new epoch τnew will have non-zero hash values of public
keys {pj}j , that are accumulated in the root uτnew of the updated tree.

For each j, let w(j) ∈ {0, 1}`×({0, 1}nk)` be the witness showing that pj
is accumulated in uτnew . GM publishes the updated group information:

infoτnew =
(
uτnew , {w(j)}j

)
.

As described below, in order to verify ciphertexts bound to epoch τ , the verifier
only needs to download the first component uτ of size Õ(λ) bits. Meanwhile,
to compute a well-formed ciphertext, it is sufficient for sender to download the
witness of size Õ(`λ) of some active user.

• 〈Gr, sampleR〉: Algorithm Gr outputs parameters (t, e) for the Prohibitive policy
to form (pkR,skR)= ((t, e), ε). Then algorithm sampleR takes pkR as input,
and returns a set {s1, ..., se} ∈ ({0, 1}t)e and a witness m ∈ {0, 1}m such
that they hold for the relation Rprohi (i.e., meet the equation (5)).

• ENC(pkGM, pkOA, pkj ,witj , infoτ , {si}ei=1,m, L): To encrypt the sampled wit-
ness m with the group information infoτ at epoch τ , sender first checks
whether a witness associated with bin(j) is contained in infoτ . If it is not
this case, return ⊥. Otherwise, the sender downloads uτ and some witness
(bin(j), (w`, ...,w1)) from infoτ , then parses pkOA as (Uoa,1,Uoa,2) and witj
as (uτ , w

(j)) for some j ∈ [0, N − 1], and proceeds as follows.
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1. Encrypt the witness m ∈ {0, 1}m under Uj ’s public key pkj ∈ (Zn×mq )2.
For each i ∈ {1, 2}, randomly take a tuple (srec,i,xrec,i,yrec,i) ∈ U({0, 1}n)×
(χm)2 to form the private parameter set randrec = (srec,i,xrec,i,yrec,i)i∈{1,2}.

Compute the corresponding ciphertext crec,i = (c
(1)
rec,i, c

(2)
rec,i) ∈ (Zmq )2 as

c
(1)
rec,i = A>rec ·srec,i+xrec,i mod q, c

(2)
rec,i = U>j,i ·srec,i+yrec,i+m·bq

2
e, (13)

which follows the ciphertext crec = (crec,1, crec,2) ∈ (Zmq × Zmq )2.

2. Encrypt the user identifier j ∈ {0, 1}` of user Uj by taking similar opera-
tions as above. First take a random tuple (soa,i,xoa,i,yoa,i) ∈ U({0, 1}n)×
χm × χ` for each i ∈ {1, 2}, which forms the private randomness set
randoa = (soa,i,xoa,i,yoa,i)i. Compute the corresponding ciphertext coa,i =

(c
(1)
oa,i, c

(2)
oa,i) ∈ (Zmq × Z`q) as

c
(1)
oa,i = A>oa · soa,i + xoa,i mod q, c

(2)
oa,i = U>oa,i · soa,i + yoa,i + j · bq

2
e, (14)

which follows the identity ciphertext coa = (coa,1, coa,2) ∈ (Zmq × Z`q)2.

Finally, put the above ciphertexts together, we obtain the ciphertext Ψ =(
crec, coa

)
and the state information coinsΨ =

(
randrec, randoa

)
.

• DEC(skj , Ψ, L): This algorithm takes the following steps to decrypt Ψ :

1. Parse the secret key skj as Ej,1 and the ciphertext Ψ as
(
crec, coa

)
.

2. Use the secret key Ej,1 to proceed the decryption of crec as

m =
⌊(

c
(2)
rec,1 −E>j,1 · c

(1)
rec,1

)
/
⌊q

2

⌉⌉
. (15)

Then, output m if it satisfies the relation Rprohi. Otherwise, return ⊥.

• OPEN(skOA, infoτ , reg, Ψ, L): This algorithm decrypts the ciphertext coa =
(coa,1, coa,2) by proceeding the following steps:

1. Parse the secret key skoa as Eoa,1 and the ciphertext Ψ as
(
crec, coa

)
.

2. To reveal the targeted recipient, use Eoa,1 to decrypt the coa,1 as

j′ =
⌊(

c
(2)
oa,1 −E>oa,1 · c

(1)
oa,1

)
/
⌊q

2

⌉⌉
. (16)

3. Check that whether the group information infoτ includes a witness con-
taining j′ or not, and return ⊥ if it is not this case.

4. Let j′ ∈ [0, N − 1] be the integer whose binary decomposition is j′, if
reg[j′][1] = 0nk in table reg, then return ⊥.

• 〈P(pkj ,witj ,m, coinsΨ ),V(πΨ )〉(gpk, infoτ , {si}ei=1, Ψ, L): Given the common
inputs gpk, infoτ , {si}ei=1, Ψ and L. The prover’s secret inputs consist of a wit-
ness m ∈ {0, 1}m, pkj = (Uj,1,Uj,2) ∈ (Zn×mq )2, certificate witj = (uτ , w

(j))

and random coins coinsΨ =
(
srec,i,xrec,i,yrec,i; soa,i,xoa,i,yoa,i

)
i∈{1,2}, while
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the verifier takes πΨ as its private input.

The prover constructs a zero-knowledge argument system πΨ to convince
the verifier that the secret inputs he makes satisfy the following conditions
(details of which are shown in Section 4):

– G · pj = F · (a>j,1||a>j,2)> mod q.

– TVerifyA
(
u,pj , w

(j)
)

= 1 and pj 6= 0.
– Witness m satisfies the relation Rprohi defined in Section 4.2.
– For each i ∈ {0, 1}, vectors srec,i, soa,i are of the form {0, 1}, and vectors

xrec,i,yrec,i,xoa,i,yoa,i have infinity B-bounded norm.
– Equations of (13) and (14) hold.

Correctness. The correctness of the proposed group encryption follows from
correctly decrypting the GPV dual ciphertexts, which may cause some decryp-
tion errors. Indeed, during the decryption procedure of DEC(skj , Ψ,L), we have:

c
(2)
rec,1 −E>j,1 · c

(1)
rec,1 = yrec,1 −E>j,1 · xrec,1 + m ·

⌊q
2

⌋
. (17)

Note that ‖xrec,1‖∞ and ‖yrec,1‖∞ both have upper bound B, and ‖Ej,1‖∞ is

bounded by β. Then ‖yrec,1−E>j,1 ·xrec,1‖∞ ≤ B+mβB and is further bounded

by Õ(n1.5) which is smaller than q/5 = Õ(n2). As a result, the decryption
algorithm returns m with overwhelming probability. This gives the correctness
of DEC(skj , Ψ,L). For OPEN(skOA, Ψ,L), a similar analysis is proceeded and

‖yoa,1 −E>oa,1 · xoa,1‖∞ is also bounded by Õ(n1.5).
Finally, we argue that if a sender honestly follows all the prescribed algorithms

for the specific certified group user, valid witness-vectors to be used in the pro-
tocol 〈P,V〉 are able to be computed and the present proof is accepted by the
verifier, thanks to the completeness of the argument system in Section 4.3.

5.2 Analysis of the Scheme

Security Analysis. We provide provable security analysis for our scheme under
the SIS and LWE hardness assumptions via the classical reduction methods.
These security results and associated proofs are shown in the following.

Theorem 1. The anonymity is satisfied if the LWEn,q,χ assumption holds.

Proof. We prove the anonymity using a sequence of indistinguishable games,
where we begin with running the experiment Expanon−0

A and end with the exper-
iment Expanon−1

A from Definition 5 to show that the advantage for the adversary
succeeding in the last game is negligible. For simplicity, hereunder we take PPT
algorithms A and B as the adversary and challenger, respectively, and denote
by Wi the event that the adversary A returns b′ = 1 in game i.
Game 1: This is the real experiment Expanon−0

A except that B retains Eoa,2,
which makes no any difference in the adversary’s view since Eoa,2 is not used
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in the following real experiment. Concretely, the challenger B publicizes the pa-
rameters pp containing Arec,Aoa ∈ Zn×m,F ∈ Zn×2nmk

q as a part, and sends
the opening public key pkOA = (Uoa,1,Uoa,2) ∈ (Zn×mq )2 to A who certifies
the honest group members on behalf of GM by invoking the USER oracle. Spe-
cially, after receiving two users’ public keys pk0 = (U0,1,U0,2) ∈ (Zn×mq )2 and
pk1 = (U1,1,U1,2) ∈ (Zn×mq )2 of challenger’s choice, A registers the keys in
the table reg and conducts a number of queries w.r.t. opening and decryp-
tion algorithms, whose response is handled by B by using skOA = Eoa,1 and
sk0 = E0,1, sk1 = E1,1. Then, the adversary moves to the challenge phase to
provide a valid witness m ∈ {0, 1}m satisfying the Prohibitive for challenge. In
return, the challenger takes the bit b = 0 and computes a group encryption
Ψ∗ = (c∗rec, c

∗
oa) of the witness m under pkb = (Ub,1,Ub,2), and the user iden-

tity jb = j0 under pkoa = (Uoa,1,Uoa,2) with coa = (coa,1, coa,2), which follows
real proofs π∗Ψ∗ of Ψ∗ and queries of opening and decryption under the natural
restrictions of the security definition. When A halts, it returns a bit b′ ∈ {0, 1}
and the challenger B returns 1 iff b′ = b. Otherwise, B outputs 0 indicating that
the adversary fails in this game, which gives the success probability Pr[W1 = 1].
Game 2: This game is like Game 1 except one change in executing the ci-
phertext opening oracle OPEN(skoa, .). Concretely, B uses Eoa,2 ∈ Zm×`q instead

of skoa = Eoa,1 ∈ Zm×`q to decrypt coa among the ciphertext Ψ = (crec, coa).
It can be seen that, in the A’s view, this game is the same as Game 1 until
the event F1 that A queries the opening oracle OPEN(skoa, .) for a ciphertext
Ψ = (crec, coa,1, coa,2) where coa,1, coa,2 encrypt two distinct `-size identities. By
the soundness of our argument presented in Section 4.3, Pr[W2] − Pr[W1] is
bounded by Pr[F1] which itself is bounded by Advsound

B (λ).
Game 3: This game is identical to Game 2 except a modification in the genera-
tion of proofs π∗Ψ∗ . Instead of employing the real random coins coins∗Ψ = ({s∗rec,i}i,
{x∗rec,i}i, {y∗rec,i}i, {s∗oa,i}i, {x∗oa,i}i, {y∗oa,i}i) used for Ψ∗ to generate proofs, we
employ the zero-knowledge simulator of argument system described in Section
4.3 once invoking PROVEbP,P′ after the challenge phase (note that, given trusted
public parameters, the computationally indistinguishable simulation is achieved
via the techniques [17] without increasing the number of rounds). Here the com-
putational ZK property ensures that, for any PPT adversary, the change is un-
noticed: |Pr[W3]− Pr[W2]| ∈ negl(λ).
Game 4: This game is same as Game 3 except that we modify the generation of
Ψ∗ = (c∗rec, c

∗
oa) with c∗oa = (c∗oa,1, c

∗
oa,2) by encrypting a random size-` identity j1

as c∗oa,1, while still retaining c∗oa,2 for the encryption of the index j0 correspond-
ing to user U0. By the semantic security of GPV dual encryption [18] (assuming
the hardness of LWE problem) for public key pkoa = (Uoa,1,Uoa,2), this game is

identical to Game 3, i.e., |Pr[W4]− Pr[W3]| ≤ AdvLWE(λ).
Game 5: This game makes one change by switching back to the application
of Eoa,1 ∈ Zm×`q for the OPEN(skoa, ·) queries with discarding Eoa,2, and the
modification is invariant to the adversary except the event F2, where the queries
to the DEC for a valid ciphertext Ψ containing c∗oa,1, c

∗
oa,2 encrypting distinct

`-size identities j0 and j1, happens. But, the occurrence of F2 implies that the
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simulation soundness of the underlying ZKAoK system used to generate ΠGE is
broken. This results into |Pr[W5 = 1]− Pr[W4 = 1]| ≤ Advsound

ΠGE
(λ) = negl(λ).

Game 6: Here, this experiment performs a modification to the Game 5 only by
taking coa,2 as the encryption of j1 for the challenge ciphertext Ψ∗ = (c∗rec, c

∗
oa)

with c∗oa = (c∗oa,1, c
∗
oa,2). Note that this change is unnoticed to A due to the

semantic security the encryption shares for public key Uoa,2, and also for the
application of Eoa,1 to the OPEN, we have |Pr[W6 = 1]−Pr[W5 = 1]| = negl(λ).
Game 7: This experiment generates a real proof for ciphertext Ψ∗ = (c∗rec, c

∗
oa)

instead of using simulated proof, which is the only modification different from
Game 6. The computational zero-knowledgeness of the underlying ZKAoK sys-
tem makes the difference between Game 6 and Game 7 negligible, i.e., Pr[W6 =
1] ≈ Pr[W7 = 1]. This is actually the experiment Expanon−1

A (λ), which di-
rectly leads that Pr[W7 = 1] = Expanon−1

A (λ). By these above games, we have
|Expanon−1

A (λ)−Expanon−0
A (λ)| = negl(λ). This proves the anonymity. ut

Theorem 2. The message secrecy is satisfied if the LWEn,q,χ assumption holds.

Proof. In a similar manner to that used in proving Theorem 1, we complete the
proof via a sequence of indistinguishable games in which the first one is exactly
the experiment Expsec−1

A which generates a real ciphertext and an associated
real proof while the last one is the experiment Expsec−0

A that outputs a random
ciphertext and an associated simulated proof. For simplicity, we use A,B to rep-
resent the adversary and challenger, respectively. In addition, we also denote by
Wi the event that the adversary A returns b′ = 1 in game i.
Game 1: This is the real experiment Expsec−1

A except that B retains Ej,2, which
makes no any difference in the adversary’s view since Ej,2 is not used in the
following real experiment. Concretely, A is first fed with public parameters pp
including Arec ∈ Zn×mq by challenger. Then, under its whole control, the ad-
versary generates public keys pkOA = (Uoa,1,Uoa,2) ∈ (Zn×mq )2 and pkGM, and
triggers the JOIN protocol with the challenger to register and certify the public
key pkj = (Uj,1,Uj,2) ∈ (Zn×mq )2 for some honest receiver of the challenger’s
choice. After that, the adversaryAmakes a polynomial number of queries to DEC
oracle which is faithfully handled by the challenger using Ej,1. Then, A provides
a valid witness m ∈ {0, 1}m satisfying the Prohibitive for challenge. Subsequently,
the challenger take b = 1 and computes a ciphertext Ψ∗ = (c∗rec, c

∗
oa) which con-

tains a group encryption of the real plaintext m under pkj and returns it back
as a challenger ciphertext. Then, a polynomial number of real proofs π∗Ψ∗ which
are associated with the challenge ciphertext Ψ∗ are followed, and the decryption
oracle with obvious restrictions is further granted. After doing this, A halts this
game and outputs its guess bit b′ ∈ {0, 1}.
Game 2: This game is identical to Game 1 except one change in handling the
ciphertext decryption oracle DEC(skj , .). Concretely, B uses Ej,2 ∈ Zm×mq in-
stead of skj = Ej,1 ∈ Zm×mq to decrypt crec among the ciphertext Ψ = (crec, coa).
In the A’s view, this game is the same as Game 1 until the event F3 that A
queries a ciphertext Ψ = (crec,1, crec,2, coa) where crec,1, crec,2 encrypts two dis-
tinct m-size messages. By the soundness of our argument presented in Section
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4.3, Pr[W2]− Pr[W1] is bounded by Pr[F3] ≤ Advsound
B (λ).

Game 3: This game is like Game 2 except a modification in generating proofs
π∗Ψ∗ . Instead of employing the real random coins coins∗Ψ = ({s∗rec,i}i, {x∗rec,i}i,
{y∗rec,i}i, {s∗oa,i}i, {x∗oa,i}i, {y∗oa,i}i) used for Ψ∗ to generate proofs, we rather
to apply the zero-knowledge simulator presented in Section 4.3 once invoking
PROVEbP,P′ after the challenge phase (i.e., given trusted public parameters, the
computationally indistinguishable simulation is achieved with the techniques
[17]). Here the computational ZK property ensures that, for any PPT adversary,
the change is unnoticed: |Pr[W3]− Pr[W2]| ∈ negl(λ).
Game 4: In this game, we modify the generation of Ψ∗ = (c∗rec, c

∗
oa) with

c∗rec = (c∗rec,1, c
∗
rec,2) by encrypting a random size-m message m′ ∈ Rpro as c∗rec,1,

while still retaining c∗rec,2 for the encryption of m ∈ Rpro. By the semantic se-
curity of GPV dual encryption [18] (under the hardness assumption of the LWE
problem) for public key pkj = (Uj,1,Uj,2), this game is identical to Game 3, i.e.,

|Pr[W4]− Pr[W3]| ≤ AdvLWE(λ).
Game 5: This game makes one change by switching back to the application of
Ej,1 ∈ Zm×mq for the DEC(skj , ·) queries with discarding Ej,2, and the modifica-
tion is invariant to the adversary except the event F4, where the queries to the
DEC for a valid ciphertext Ψ containing c∗rec,1, c

∗
rec,2 encrypting distinct messages

satisfied the RPro relation, happens. But, the occurrence of F4 implies that the
simulation soundness of the underlying ZKAoK system used to generate ΠGE is
broken. This results into |Pr[W5 = 1]− Pr[W4 = 1]| ≤ Advsound

ΠGE
(λ) = negl(λ).

Game 6: Here, this experiment performs a modification to the Game 5 only by
taking crec,2 as the encryption of m′ ∈ RPro for the challenge ciphertext Ψ∗ =
(c∗rec, c

∗
oa) with c∗rec = (c∗rec,1, c

∗
rec,2). Note that this change is unnoticed to A due

to the semantic security the encryption shares for public key Uj,2, and also for
the application of Ej,1 to the DEC, we have |Pr[W6 = 1]−Pr[W5 = 1]| = negl(λ).
Game 7: Here, this experiment generates a real proof for ciphertext Ψ∗ =
(c∗rec, c

∗
oa) instead of using simulated proof, which is the only modification dif-

ferent to Game 6. The computational zero-knowledgeness of the underlying
ZKAoK system makes the difference between Game 6 and Game 7 negligible, i.e.,
Pr[W6 = 1] ≈ Pr[W7 = 1]. This is actually the experiment Expsec−0

A (λ), which
directly leads that Pr[W7 = 1] = Expsec−0

A (λ). Thus, we have |Expsec−1
A (λ) −

Expsec−0
A (λ)| = negl(λ), which proves the message security. ut

Theorem 3. The scheme is sound assuming that the SIS assumption holds.

Proof. It suffices for us to prove these facts: for a given message filtering policy
Prohibitive, a ciphertext Ψ∗ = (crec∗ , coa∗), a Label L and an associated with
proof Ψ∗, the public key associated with the identity revealed by the adversary
is valid, certified, unique and the provided ciphertext Ψ∗ is encrypted under this
key. By the lemma 2, the distribution of public keys is uniform, which ensures
the public key is dense. In other words, the public is valid. In addition, the
public key is unique since an occurring collision breaks the injective property of
the mapping F · [a>1 |a>2 ]. Thus, we only need to prove the other two cases.
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a. The public key is certified (activated). If not, for some some j ∈ [0, N − 1],
there is an associated binary vector pj 6= 0 being accumulated into the

published root value u, but it is not equal to any value bin(F · [a>1 |a>2 ]),
which contradicts the security of the accumulator.

b. The ciphertext is actually an encryption of witness m under this public
key. If not, this event implies a breach in the computational soundness of
our argument system and the binding property of the commitment scheme,
which breaks the assumed hardness of the SIS problem. ut

Efficiency Analysis. It can be seen that all algorithms used for the construc-
tion of the present group encryption are polynomially effective. The efficiency
evaluation of the scheme is shown as follows.

– The public key of GM is a vector with bit-size Õ(λ), and that of OA and

users are respectively a matrix of bit-size Õ(λ2).

– The GM’s secret key is given by a bit string of size Õ(λ), and the secret keys

of OA and users are respectively a small-norm matrix of bit size Õ(λ2).
– The ciphertext Ψ consists of crec = (crec,1, crec,2) ∈ (Zmq × Zmq )2 and coa =

(coa,1, coa,2) ∈ (Zmq × Z`q)2, which leads the total bit size Õ(λ+ `).
– The communication cost of the protocol 〈P,V〉 largely relies on the bit-size

of witness x with size n2 = m+ 2n+ 2m(k+nk+ 2δ2B) + (m− t+ 1)eδm−d
shown in Section 4.3, which leads Õ(λ2) bit-size.

In Table 1, given a security parameter λ, let N = 2`, κ and Σ be the group size,
the number of protocol repetitions and a one-time signature, respectively, we give
a somewhat rough comparison between our scheme and the currently existing
post-quantum secure group encryption schemes [25] (lattice-based variant) and
[35] (code-based variant) in terms of functionality, efficiency and security. In the
solid security, the full dynamicity is achieved with a highly reasonable cost: the
GM only needs to update values of size Õ(`λ) when group information changes.

Table 1. Comparison between schemes [25],[35] and ours

Scheme
GM OA U

Ciph. Commu. Dynam. Model
pk sk pk sk pk sk

[25] Õ(`λ2) Õ(λ2) Õ(λ2) Õ(λ2) Õ(λ2) Õ(λ2) Õ(λ) + |Σ| κÕ(λ2) partial Std.

[35] Õ(λ) Õ(λ) Õ(λ2) Õ(λ2) Õ(λ2) Õ(λ2) Õ(λ2) κÕ(λ2) full RO.

Ours Õ(λ) Õ(λ) Õ(λ2) Õ(λ2) Õ(λ2) Õ(λ2) Õ(λ) Õ(λ2) full Std.

To better understand the advantage of our design, we also give a slightly
concrete efficiency comparison between our scheme and the post-quantum safe
schemes [25] and [35] for a same group size N = 210 toward the 80-bit security.
By using the security analysis techniques shown in [43,35, and references therein],
we choose the trade-off parameters as (n, q) = (2795, 1125899906842679 ≈ 250),
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(n, k1, t1, k2, t2,m, tm, p, t, k) = (8192, 7997, 7, 7711, 18, 238, 279, 1024, 64, 10) and
(n, q, t, e, d) = (222, 524309 ≈ 219, 64, 10, 10) for these schemes and ours, respec-
tively. The results are shown in Table 2 where all the sizes of keys, ciphertexts and
communication cost are almost highly superior than those of previous schemes.
Particularly, our scheme obtains the drastic efficiency gains compared to [25] due
to the free-of-trapdoor design. Besides, the group update cost of [35] and ours
is 10.00KB and 5.15KB, respectively.

Table 2. Efficiency comparison between schemes [25],[35] and ours

GM OA U
Ciph. Commu.

pk sk pk sk pk sk

[25] 68.60GB 482.55GB 2.37GB 38.86GB 2.37GB 38.86GB 2.36TB 3728TB

[35] 1.00KB 32.00GB 15.62MB 46.86MB 15.06MB 45.24MB 4.00KB 66107TB

Ours 0.54KB 1.08KB 10.85KB 129.50KB 9.40MB 112.30MB 0.13MB 10.32GB

6 Conclusion

In this paper, we provide a re-formalized definition and security model of FDGE
that is essentially equal to but more succinct than that of [35]. Then, we provide
two generic and efficient zero-knowledge proof methods for demonstrating the
inequalities of binary vectors, which can be readily extended to the case of gen-
eral vectors. Finally, combining the appropriate cryptographic materials and the
proof techniques just presented, we achieve the first lattice-based group encryp-
tion system which meanwhile offers the full dynamicity and the message filtering
policy. Our scheme is constructed in a simpler manner and nearly outweighs the
post-quantum secure ones [25,35] in terms of functions, efficiency and security.
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