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Abstract. The cube attack is one of the most important cryptanalytic
techniques against Trivium. Many key-recovery attacks based on cube at-
tacks have been established. However, few attacks can recover the 80-bit
full key information practically. In particular, the previous best practi-
cal key-recovery attack was on 784-round Trivium proposed by Fouque
and Vannet at FSE 2013. To mount practical key-recovery attacks, it
requires a sufficient number of low-degree superpolies. It is difficult both
for experimental cube attacks and division property based cube attacks
with randomly selected cubes due to lack of efficiency. In this paper, we
give a new algorithm to construct candidate cubes targeting linear su-
perpolies. Our experiments show that the success probability is 100% for
finding linear superpolies using the constructed cubes. We obtain over
1000 linear superpolies for 805-round Trivium. With 42 independent lin-
ear superpolies, we mount a practical key-recovery attack on 805-round
Trivium, which increases the number of attacked rounds by 21. The com-
plexity of our attack is 241.40, which could be carried out on a PC with
a GTX-1080 GPU in several hours.

Keywords: Cube Attacks· Key-Recovery Attacks· Trivium· Heuristic
Algorithm· Möbius Transformation.

1 Introduction

Trivium [2] is a bit-oriented synchronous stream cipher designed by De Can-
nière and Preneel, which is one of the eSTREAM hardware-oriented finalists
and an International Standard under ISO/IEC 29192-3:2012. Due to the simple
structure and high level security, Trivium attracts a lot of attention.

The cube attack, first proposed by Dinur and Shamir in [4], is a powerful key-
recovery attack against Trivium. There are two main phases in a cube attack.
In the first phase, called the preprocessing phase, one needs to find appropriate
cubes and recover their superpolies which are generally low-degree polynomials
in key variables. In the second phase, called the on-line phase, by querying the
encryption oracle, one could evaluate the superpolies under the real key and so
obtain a system of equations in key variables. Then, by solving the obtained
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system of equations, some bits of information in key or even the whole key could
be recovered. Since proposed, many improvements have been established on cube
attacks such as cube testers [1], dynamic cube attacks [5, 3, 17], conditional cube
attacks [10, 13], division property based cube attacks [21, 22, 24, 28, 25, 8, 9] and
correlation cube attacks [15].

Most of the previous work tried to recover the ANFs of the superpolies such
that the number of initialization rounds as large as possible. Some attacks could
only recover one or two key bits and some attacks have very marginal online
complexities. For example, in [7–9], cubes of sizes over 74 were used to recover
key bits for 840-, 841- and 842-round Trivium. In these cases, one to three key
bits could be recovered with the superpolies. Then, it needs at least 277 requests
to exhaustively search the remaining key bits. Thus, the total complexity is very
close to that of the brute-force attack using these large cubes.

Those attacks targeting a large number of rounds do not immediately imply a
practical attack. A practical key-recovery attack on Trivium is also an important
security evaluation of Trivium and a measure of the improvement of cube attacks.
Considering a practical key-recovery attack against Trivium, the difficulty lies
in finding a sufficient number of useful superpolies. To randomly search cubes
with linear superpolies for the round-reduced Trivium with over 800 rounds is
almost impossible. Currently, for Trivium, the number of initialization rounds
that could be reached by cube attacks with a practical complexity is 784.

How to construct useful cubes in cube attacks has long been a difficult prob-
lem. In [4] and [6], the authors provided some ideas for finding cubes with linear
superpolies. More specifically, in [4], the authors proposed the random walk
method. This method starts with a randomly chosen set I of cube variables.
Then, an IV variable is removed randomly from I if the corresponding superpoly
is constant and a randomly chosen IV variable is added to I if the corresponding
superpoly is nonlinear. This process is repeated to find cubes which pass through
a sufficient number of linearity tests. If it fails, then the process restarted with
another initial I. With this method, for 767-round Trivium, 35 linear superpolies
were found. In [6], the authors proposed to construct a candidate large cube by
disjoint union of two subcubes yielding 12 zero polynomials on some specific
internal state bits determined by the recursive relation of the six bits involved
in the output function. As a result, for 784-round Trivium, they found 42 linear
superpolies. Furthermore, for 799-round Trivium, the authors declared that the
only way linear superpolies have been found was using this method to construct
cubes.

Besides, the idea of Greedy algorithm has been found useful in constructing
cube distinguishers. In [19], the authors first proposed the GreedyBitSet algo-
rithm to construct cube distinguishers and nonrandomness detectors. Later, in
[18], based on the work in [19], the authors studied the state biases as well as
keystream biases. As a result, they obtained cube distinguishers for 829-round
Trivium and 850-round TriviA-SC. In [12], combining the GreedyBitSet algorith-
m with the degree evaluation method proposed in [14], the authors improved the
work in [18]. As a result, they found good distinguishers on Trivium, Kreyvium
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and ACORN. In particular, they provided a zero-sum distinguisher on 842-round
Trivium and a significant non-randomness up to 850-round Trivium.

1.1 Our Contributions

This paper is devoted to practical key-recovery attacks against 805-round Trivi-
um. To achieve this goal, the key problem is to find lots of cubes with linear su-
perpolies. As mentioned above, this is quite difficult when the number of round
is over 800. Our main contribution is to propose a new method to construct
cubes, which is experimentally verified to be quite effective. It consists of the
following three aspects.

A Heuristic Algorithm to Construct Candidate Cubes. By combin-
ing the GreedyBitSet algorithm with the division property, we propose a new
algorithm to construct cubes targeting linear superpolies. The new algorithm
begins with a small set of cube variables and then extends it iteratively. More
specifically, there are mainly two stages in our algorithm. During the first stage,
we select an IV variable (called ‘steep IV variable’ in this paper) which could
decrease the degrees of the superpolies as fast as possible in each iteration. If we
fail in the first stage, then we step into the second stage, where we pick up IV
variables (called ‘gentle IV variables’ in this paper) which decrease the degrees
of the superpolies as slowly as possible. Benefited from this two-stage algorith-
m, we could successfully construct cubes such that degrees of the superpolies
are close to 1. Note that, the idea of this algorithm is also applicable to other
NFSR-based stream ciphers.

The Preference Bit and an Algorithm to Predict It. Note that all
known linear superpolies of Trivium are very sparse, and the output bit func-
tion of Trivium is the XOR of six internal state bits. It is thought that a linear
superpoly probably comes from a single internal state bit. Hence, to determine
a proper starting set of the above new algorithm, we propose the concept of the
preference bit. Based on the structure analysis of Trivium, an iterative algorithm
is provided to roughly predict the preference bit of r-round Trivium. The exper-
imental results show that our algorithm could predict the preference bit with a
success probability 75.3%.

The Improved Möbius Transformation. In cube attacks, the Möbius
transformation is a powerful tool which could be used to test all the subcubes of
a large cube simultaneously. However, its memory complexity is very large. To
reduce the memory complexity, we divide the original Möbius transformation in-
to two stages. Let f(x0, x1, . . . , xn−1) be a Boolean function on x0, x1, . . . , xn−1.
Let q be a positive integer less than n−1. In the first stage, the Möbius transfor-
mations of f(x0, . . . , xn−q−1, 0, 0, . . . , 0), f(x0, . . . , xn−q−1, 1, 0, . . . , 0), . . . , f(x0,
. . . , xn−q−1, 1, 1, . . . , 1) are calculated and only a part of each Möbius transfor-
mation is stored. In the second stage, based on these partly stored transforma-
tions, we could recover a part of the ANF of f with a method similar to the
Möbius transformation of a q-variable Boolean function. With this technique,
the memory complexity could be decreased from 2n bits to about 2n−q bits.
When it comes to practical cube attacks, this method enables us to test a large
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number of subcubes of a large cube set at once with a reasonable memory com-
plexity. For instance, we could simultaneously test 232.28 subcubes of a cube set
of size 43 with less than 9 GBs memory, while testing such a cube with the
original Möbius transformation requires 243 bits (1024 GBs) memory.
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Fig. 1. The sketch of our idea

As an illustration, we apply our methods , whose sketch is shown in Fig. 1,
to 805-round Trivium. As a result, we obtain more than 1000 cubes with lin-
ear superpolies for 805-round Trivium. Among these linear superpolies, there
are 38 linearly independent superpolies. Besides, by sliding some cubes of 805-
round Trivium to 806-round Trivium, we easily obtain several linear superpolies
for 806-round Trivium. Based on the linear superpolies of 805- and 806-round
Trivium, 42 key bits could be recovered for 805-round Trivium with 241.25 re-
quests. By adding a brute-force attack, the 80-bit key could be recovered within
241.40 requests, which could be practically implemented by a PC with a NVIDIA
GTX-1080 GPU in several hours. This attack on 805-round Trivium improves
the previous best practical cube attacks by 21 more rounds, and it is the first
practical attack for Trivium variants with more than 800 initialization rounds.
As a comparison, we summarize the cube attacks based key-recovery attacks
against the round-reduced Trivium in Table 1. Furthermore, to show the effec-
tiveness of the heuristic algorithm to construct candidate cubes, we also applied
our method to 810-round Trivium. By only testing one 43-dimensional cube, we
find two 42-dimensional cubes with linear superpolies. Since it is almost impos-
sible to find a linear superpoly for 810-round Trivium by random walk algorithm
in [4] and the disjoint union method in [6], it is shown that the new heuristic
algorithm to construct candidate cubes is powerful.

1.2 Organisation

The rest of this paper is organized as follows. In Section 2, we give some ba-
sic definitions and concepts. In Section 3, we show an algorithm to construct
cubes which are potential to have linear superpolies. In Section 4, we propose
an improved Möbius transformation which enables us to test a large mount of
subcubes of a large cube simultaneously with a reasonable memory complexity.
In Section 5, we apply our method to round-reduced Trivium and establish a
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Table 1. A summary of key-recovery attacks on Trivium

Attack type # of rounds
Off-line phase

On-line phase Total time ref.
cube size # of key bits

Practical

672 12 63 217 218.56 [4]
709 22-23 79 < 2 229.14 [16]
767 28-31 35 245 245.00 [4]
784 30-33 42 238 239 [6]
805 32-38 42 238 241.40 Sect. 5

Not practical

799 32-37 18 262 262.00 [6]
802 34-37 8 272 272.00 [27]
805 28 7 273 273.00 [15]
806 34-37 16 264 264 Sect. 5
835 35 5 275 275.00 [15]
832 72 1 279 279.01 [25, 21, 22]
832 72 > 1 279 < 279.01 [29]
840 78 1 279 279.58 [8]
840 75 3 277 277.32 [9]
841 78 1 279 279.58 [8]
841 76 2 278 278.58 [9]
842 78 1 279 279.58 [7]
842 76 2 279 278.58 [9]

practical cube attack on 805-round Trivium. Finally, Section 6 concludes the
paper.

2 Preliminaries

In this section, we introduce some related concepts and definitions.

2.1 Specification of Trivium

Trivium is a bit-oriented synchronous stream cipher which was one of eSTREAM
hardware-oriented finalists. The main building block of Trivium is a 288-bit
nonlinear feedback shift register. For every clock cycle there are three bits of the
internal state updated by quadratic feedback functions and all the remaining
bits of the internal state are updated by shifting. The internal state of Trivium
is initialized by loading an 80-bit secret key and an 80-bit IV into the registers,
and setting all the remaining bits to 0 except for the last three bits of the third
register. Then, after 1152 initialization rounds, the key stream bits are generated
by XORing six internal state bits. Algorithm 1 describes the pseudo-code of
Trivium. For more details, please refer to [2].
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Algorithm 1 Pseudo-code of Trivium

1: (s1, s2, . . . , s93)← (x1, x2, . . . , x80, 0, . . . , 0);
2: (s94, s95, . . . , s177)← (v1, v2, . . . , v80, 0, . . . , 0);
3: (s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1);
4: for i from 1 to N do
5: t1 ← s66 ⊕ s93 ⊕ s91s92 ⊕ s171;
6: t2 ← s162 ⊕ s177 ⊕ s175s176 ⊕ s264;
7: t3 ← s243 ⊕ s288 ⊕ s286s287 ⊕ s69;
8: if i > 1152 then
9: zi−1152 ← s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288;
10: end if
11: (s1, s2, . . . , s93)← (t3, s1, . . . , s92);
12: (s94, s95, . . . , s177)← (t1, s94, . . . , s176);
13: (s178, s179, . . . , s288)← (t2, s178, . . . , s287);
14: end for

2.2 Cube Attacks

The idea of cube attacks was first proposed by Dinur and Shamir in [4]. In a
cube attack against stream ciphers, an output bit z is described as a Boolean
function f in key variables k = (k0, k1, . . . , kn−1) and public IV variables v =
(v0, v1 . . . , vm−1), i.e.,z = f(k,v). Let I = {vi1 , vi2 , . . . , vid} be a subset of IV
variables. Then f can be rewritten as

f(k,v) = tI · pI(k,v)⊕ qI(k,v),

where tI =
∏

v∈I v, pI does not contain any variable in I, and each term in qI is

not divisible by tI . It can be seen that the summation of the 2d functions derived
from f by assigning all the possible values to d variables in I equals to pI , that
is, ⊕

(vi1 ,vi2 ,...,vid
)∈Fd

2

f(k,v) = pI(k,v).

The public variables in I are called cube variables, while the remaining IV vari-
ables are called non-cube variables. The set CI of all 2d possible assignments
of the cube variables is called a d-dimensional cube, and the polynomial pI is
called the superpoly of CI in f . For the sake of convenience, we also call pI the
superpoly of I in f . It is worth noting that the superpoly of I in f is a polyno-
mial in key variables when all the non-cube variables are set to constant. In the
following paper, we set the non-cube variables to 0’s in default.

A cube attack consists of the preprocessing phase and the on-line phase.

- Off-line Phase. The attacker should find cubes whose superpolies in the
output bit are low-degree polynomials.

- On-line Phase. For each cube obtained in the off-line phase, the attacker
inquires the encryption oracle to get the cube summation under the real key.
With the obtained cube summations corresponding to the previously found

6



cubes, a system of low-degree equations in key variables could be set up.
Then, by solving this system of equations, some key bits could be recovered.
Finally, by adding a brute-force attack (if there are some key bits remaining
unknown), the whole key could be recovered.

2.3 The Bit-Based Division Property and A Degree Evaluation
Algorithm Based on It

In [23], the authors proposed the conventional bit-based division property whose
definition is as follows.

Definition 1 (Bit-Based Division Property [23]). Let X be a multi-set
whose elements take a value of Fn

2 . Let K be a set whose elements take an n-
dimensional bit vector. When the multi-set X has the division property D1n

K , it
fulfills the following conditions:⊕

x∈X
xu =

{
unknown if there exists α in K s.t. u ≽ α,
0 otherwise,

where u ≽ α if and only if ui ≥ ki for all i and xu =
∏n−1

i=0 xui
i .

Due to the high memory complexity, the bit-based division property was
confined to be applied to small block ciphers such as SIMON32 and Simeck32
[23]. To avoid such a high memory complexity, in [26], the authors applied the
mixed integer linear programming (MILP) methods to the bit-based division
property. They first introduced the concept of division trails, which is defined as
follows.

Definition 2 (Division Trail [26]). Let us consider the propagation of the
division property {α} = K0 → K1 → K2 · · · → Kr. Moreover, for any vector
α∗i+1 ∈ Ki+1, there exist a vector α∗i ∈ Ki such that α∗i can propagate to α∗i+1 by
the propagation rules of division property. Furthermore, for (α0,α1, . . . ,αr) ∈
K0 ×K1 × · · · ×Kr if αi can propagate to αi+1 for i ∈ {0, 1, . . . , r− 1}, we call
α0 → α1 → · · · → αr an r-round division trail.

In [26], the authors described the propagation rules for AND, COPY and
XOR with MILP models, see [26] for the details. Therefore, they could build
an MILP model to cover all the possible division trails generated during the
propagation. Besides, in [21, 20], the authors simplified those MILP models in
[26]. In particular, in [21], the division property based cube attacks were proposed
for the first time and were applied to attacking Trivium, Grain-128 and Acorn
successfully. Later, to improve the work of [21], in [24], the authors proposed a
degree evaluation algorithm which was based on the following proposition.

Proposition 1 ([24]). Let f(x,v) be a polynomial, where x and v denote the
secret and public variables, respectively. For a set of indices I = {i1, i2, . . . , i|I|} ⊂
{1, 2, . . . ,m}, let CI be a set of 2|I| values where the variables in {vi1 , vi2 , . . . , vi|I|}
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are taking all possible combinations of values. Let kI be an m-dimensional bit
vector such that vI = tI = vi1vi2 · · · vi|I| . Let kΛ be an n-dimensional bit vector.

If there is no division trail such that (kΛ||kI)
f−→ 1, then the monomial xkΛ is

not involved in the superpoly of the cube CI .

If there is d ≥ 0 such that for all kΛ of Hamming Weight hw(kΛ) > d, the
division trail xkΛ does not exist, then it can be seen that d is an upper bound
of the algebraic degree of the superpoly. With the MILP method, this d can be
naturally modeled as the maximum of the objective function

∑n
j=1 xj . Therefore,

for a given set of cube variables, by solving MILP models, an upper bound of
the degree of the superpoly could be obtained. For more details, please refer to
Section 4 of [24]. In the following paper, we shall combine this algorithm with
some greedy strategies to find cubes with linear superpolies.

2.4 The Möbius Transformation

In [5], Dinur and Shamir suggested using the Möbius transformation to compute
all possible subcubes of a large cube at once. Later, in [6], the author showed
some ways to use the Möbius transformation in cube attacks on Trivium.

Let f be a polynomial in F2[x0, x1, . . . , xn−1], whose algebraic normal form
is given by

f(x0, . . . , xn−1) =
⊕

c=(c0,...,cn−1)∈Fn
2

g(c0, . . . , cn−1)
n−1∏
i=0

xci
i ,

where the function g giving the coefficient of each term
∏n−1

i=0 xci
i is the Möbius

transformation of f . With the knowledge of the truth table of f , one could
calculate the ANF of f by using the Möbius transform, see Algorithm 2.

Algorithm 2 The Möbius transformation algorithm

Require: Truth Table S of f with 2n entries
1: for i from 0 to n− 1 do
2: Let Sz ← 2i, Pos← 0
3: while Pos < 2n do
4: for j = 0 to Sz − 1 do
5: S[Pos+ Sz + j]← S[Pos+ j]⊕ S[Pos+ Sz + j]
6: end for
7: Let Pos← Pos+ 2 · Sz
8: end while
9: end for

For Algorithm 2, it can be found that it needs to store the whole truth table
of f and so a large mount of memory is needed. Specifically, for an n-variable
polynomial f , it requires 2n bits of memory. Furthermore, the computational
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complexity of Algorithm 2 is n · 2n basic operations, since the innermost loop
is executed n · 2n−1 times, which consists of a single assignment and a XOR
operation. It is worth noting that Algorithm 2 could be accelerated. For instance,
a 32-bit implementation is presented in [11] which performs roughly 32 times less
operations, and so has a complexity of n · 2n−5 operations.

Now we consider the application of the Möbius transformation to cube at-
tacks. Assume that f(k0, k1, . . . , kn−1, v0, v1 . . . , vm−1) is the output bit of a
cipher in key variables k0, k1, . . . , kn−1 and IV variables v0, v1 . . . , vm−1. Let
I = {vi1 , vi2 , . . . , vid} be a set of cube variables. When all the other variables
are set to constants, the output bit function f is reduced to a polynomial f ′

on cube variables in I only. Given the truth table of f ′, by using the Möbius
transformation, the ANF of f ′ could be recovered. Note that, for a subset I ′ of I,
the coefficient of the term

∏
v∈I′ v is the value of pI′ when the variables in I \ I ′

are set to 0’s, where pI′ is the superpoly of I ′ in f . Based on this fact, with the
Möbius transformation, experimental tests such as linearity tests and quadratic
tests could be done at once for all the subcubes of a large set of cube variables.
It can be seen that the Möbius transformation makes finding linear/quadratic
superpolies easier and so improves the efficiency of cube attacks.

3 Construct Potentially Good Cubes

Finding cubes which could be used to mount key-recovery attacks is a tough
task in cube attacks. Collecting enough such cubes to establish practical attacks
is even more difficult. In this section, combining the idea of GreedyBitSet al-
gorithm with division property, we first devote to constructing cubes which are
potential to have linear superpolies1 through extending a starting cube set iter-
atively. Then, to obtain a proper starting cube set, we propose the concept of
the preference bit and present an algorithm to predict the preference bit based
on a structural analysis of Trivium. Combining these ideas, we could construct
potentially good cubes successfully.

3.1 A Heuristic Algorithm of Constructing Cubes

In cube attacks, linear superpolies are of significance since linear equations in
key variables could be set up based on linear superpolies. To construct cubes
which potentially have linear superpolies, we combine the division property with
heuristic algorithms to extend a small set of cube variables iteratively. Before
illustrating our idea, we shall first give the following definitions.

Definition 3 (Steep IV Variable). Let I = {vi1 , vi2 , . . . , viℓ} be a set con-
taining ℓ cube variables. Then, an IV variable b ∈ B = {v0, v1, . . . , vm−1} \ I is
called a steep IV variable of I if ds(I ∪ {b}) = min{ds(I ∪ {v})|v ∈ B}, where
ds(I) is the degree of the superpoly of I in key variables.

1 Constant polynomials are also linear. However, key bits could not be recovered from
constant superpolies directly. Hence, in this paper, when talking about linear super-
ploies, we do not take the constant linear into consideration.
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Let I be a starting set of cube variables, which is a small set. It can be seen
that a steep IV variable of I is exactly the one which makes the degree of the
superpoly decrease most. To construct a cube with a linear superpoly from I,
a natural idea is to extend I iteratively, where a steep IV variable is added to
the current set I in each iteration. With this strategy, the degree of superpoly
could be decreased fast. However, decreasing the degree of the superpoly too fast
sometimes brings troubles to constructing cubes with linear superpolies. Assume
that I ′ is constructed from I after several iterations, where a steep IV variable
is added in each iteration. Let v be a steep IV variable of I ′. It is possible that
ds(I ′ ∪ v) = 0, while ds(I ′) > 5. It indicates that adding a steep IV variable
could make the degree of the superpoly decrease to 0 suddenly. Hence, it may
fail to construct cubes with linear superpolies by only adding steep IV variables.
We perform experiments on Trivium and the results show that this phenomenon
happens frequently. We provide a concrete example happening in the case of
805-round Trivium, see Example 1.

Example 1. For 805-round Trivium, we try to construct a good cube by extend-
ing {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50}. After
16 iterations, we obtain the set

I ′ = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50,

v2, v69, v79, v8, v27, v0, v1, v28, v71, v13, v45, v23, v26, v38, v76, v47}

by adding a steep IV variable in each iteration. The degree of pI′ is upper
bounded by 9. For I ′, v56 is a steep IV variable. However, after adding v56 to I ′,
the degree of pI′∪{v56} is 0. Namely, v56 decreases the degree of the superpoly
from 9 to 0 suddenly. It indicates that we fail to construct a cube with a linear
superpoly in the output of 805-round Trivium by only adding steep IV variables.

Recall that our aim is to construct cubes with linear superpolies rather than
those with zero-constant superpolies. From Example 1, it can be seen that always
adding a steep IV variable does make our aim break sometimes. To solve this
problem, we propose the concept of gentle IV variables which decrease the degree
of the superpoly slowly. We formally describe the definition of the gentle IV
variable in Definition 4.

Definition 4 (Gentle IV Variable). Let I = {vi1 , vi2 , . . . , viℓ} be a set con-
taining ℓ cube variables. Then, an IV variable b ∈ B is called a gentle IV vari-
able of I if ds(I ∪ {b}) = max{ds(I ∪ {v})|ds(I ∪ {v}) ≤ ds(I), v ∈ B}, where
B = {v0, v1, . . . , vm−1} \ I and ds(I) is the degree of the superpoly of I.

It can be seen from Definition 4 that a gentle IV variable of I is exactly the
one which could decrease the degree of the superpoly as slowly as possible. With
gentle IV variables, the above phenomenon could be avoided by adding gentle
IV variables instead of steep IV variables to I ′, where I ′ is obtained by adding
steep IV variables to I after several iterations.
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Fig. 2. The sketch of our idea

Based on the above ideas, we propose a new heuristic algorithm to construct
cubes with linear superpolies. The sketch of our idea is shown in Fig. 2. Algorithm
3 describes the details of our idea. In Algorithm 3, similar to the GreedyBitSet
algorithm proposed in [19], we start with a small starting set of cube variables.
Then, there are two stages in Algorithm 3. During the first stage, a steep IV
variable is added to the current set I of cube variables so that the degree of
the superpoly could be decreased as fast as possible. To determine the steep IV
variable of I, we use the degree evaluation method based on division property,
which was proposed in [24], to calculate the upper bound of ds(I ∪ v) for each
IV variable which is not in I. As illustrated above, if only steep IV variables
are added, the degree of the superpoly may be decreased to 0 suddenly and so
constructing cubes with linear superpolies fails. If so, Algorithm 3 would step
into the second stage, where we hope to decrease the degree of the superpoly
slowly. During the second stage, we add the first gentle IV variable into the
current cube set in each iteration. To determine the gentle IV variables, the
same method in stage one is used. By gradually adding gentle IV variables,
which make the degree of the superpoly decrease slowly, it is more hopeful to
construct cubes with linear superpolies.

Remark 1. In the second stage of Algorithm 3, for I, it may encounter the case
that ds(I ∪ {v}) > ds(I) or ds(I ∪ {v}) = 0 holds for each v ∈ B, i.e., the gentle
IV variable of I may do not exist. In this case, we select the cube variable b such
that ds(I ∪ {b}) = min{ds(I ∪ {v}) > ds(I)|v ∈ B} to update I.

Construct A Mother Cube. Note that the superpoly of the cube ob-
tained with Algorithm 3 may be not linear still, since the division property based
method only returns an upper bound of the degree of the superpoly. To make it
more possible to find linear superpolies, we attempt to construct a large cube,
called a mother cube in the following paper, and then use the Möbius transfor-
mation to test its subcubes simultaneously. Such a mother cube is constructed
by jointing some cubes obtained in the last iteration.

Let I be the set of cube variables before the last iteration. When selecting
cubes, we prefer to choose those cubes such that the degree of the corresponding
superpolies are low. More specifically, for j starting from 1 incrementally, we
gradually update the set I as follows until a mother cube with a desired size is
obtained

I ← I ∪ {v ∈ B| the upper bound of ds(I ∪ v) = j},
where B = {v0, v1, . . . , vm−1} \ I. We offer a concrete example of constructing a
mother cube in Subsection 5.2.

11



Algorithm 3 The algorithm of constructing cubes with linear superpolies
Require: a set of cube variables I = {vi1 , . . . , vic} of size c and the target round r

1: B ← {v0, v1, . . . , vm−1} \ I;
2: d← +∞;

/* The first stage */
3: while d > 1 and |I| is less than a given bound do
4: for v ∈ B do
5: Estimate the upper bound of ds(I ∪ {v}) using the division property based method;
6: end for
7: I ← I ∪ {v}, where v is the first steep IV variable of I;
8: B ← B \ v;
9: d← DS(I ∪ {v}), where DS(I ∪ {v}) is the upper bound of ds(I ∪ {v})
10: end while
11: if d(I) == 1 then
12: return I
13: end if

/* The second stage */
14: if d(I) == 0 then
15: I ← I \ {v}, where v is the steep IV variable added in the last iteration of the first stage.
16: I ← I ∪ {v′}, where DS(I ∪ {v′}) attains minimum except 0 in the last iteration of the first

stage.
17: B ← {v0, v1, . . . , vm−1} \ I;
18: while d > 1 and |I| is less than a given bound do
19: for v ∈ B do
20: Estimate the upper bound of ds(I ∪ {v}) using the division property based method;
21: end for
22: I ← I ∪ {v}, where v is the first gentle IV variable
23: B ← B \ v;
24: d← DS(I ∪ {v})
25: end while
26: end if

3.2 Determine Starting Cube Sets

One critical point of Algorithm 3 is that it requires a small set of cube variables
as its input. In this subsection, based on careful analysis of the structure of
Trivium, we shall present a method to determine a proper starting set of cube
variables to make Algorithm 3 work well.

Recall that the output function of r-round Trivium is the linear combination

of six internal state bits, i.e, zr =
⊕6

j=1 s
(r)
λj

, where {λ1, λ2, λ3, λ4, λ5, λ6} =

{66, 93, 162, 177, 243, 288}.
It is worth noting that all the known linear superpolies of Trivium are sparse,

and most of them contain only a single key variable. It is very likely that there
exists some j ∈ {1, 2, 3, 4, 5, 6} such that pI = pλj and piℓ = 0 for ℓ ̸= j, where

pλℓ
is the superpoly of I in s

(r)
λℓ

for ℓ ∈ {1, 2, 3, 4, 5, 6}. In this paper, for a set
of cube variables I, if there exists some j ∈ {1, 2, 3, 4, 5, 6} such that pI = pλj

and pλℓ
= 0 for ℓ ̸= j then we say that the superpoly pI comes from s

(r)
λj

. The
following is an illustrative example.

Example 2. For 769-round Trivium, the superpoly of

I = {v1, v3, v5, v7, v10, v12, v14, v16, v18, v20, v23, v26, v30, v39, v41,

v42, v43, v47, v50, v52, v53, v55, v58, v60, v61, v64, v69, v71, v78}
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in the output bit z769 is pI = k22. We figure out the superpolies of I in s
(769)
66 ,

s
(769)
93 , s

(769)
162 , s

(769)
177 , s

(769)
243 , s

(769)
288 , respectively. The results show that only p66 =

k22 is linear and the rest five superpolies are 0’s . Namely, the linear superpoly

k22 comes from s
(769)
66 .

Determine a Proper Set of Cube Variables. Inspired by the phenomenon
mentioned above, when constructing cubes with linear superpolies, we could
focus on only one of the six internal state bits in the output function. In the
following, we shall illustrate how to determine a proper set of cube variables.

Assume that s
(r)
λ is the chosen target for r-round Trivium. First, according to

the update function of Trivium, s
(r)
λ could be written as

s
(r)
λ = s

(r−λ)
jλ1

· s(r−λ)
jλ2

⊕ s
(r−λ)
jλ3

⊕ s
(r−λ)
jλ4

⊕ s
(r−λ)
jλ5

. (1)

Then, we choose a set I of cube variables and search all its subcubes to find

those cubes having linear superpolies in s
(r−λ)
jλ1

or s
(r−λ)
jλ2

with the Möbius trans-

formation. If such subcubes are found, then we randomly choose one of them to
be the starting set of Algorithm 3.

Assume that the superpoly pI′ of I ′ = {vl1 , vl2 , . . . , vlu} ⊆ I in s
(r−λ)
jλ1

is

linear. Then, s
(r−λ)
jλ1

could be rewritten as

s
(r−λ)
jλ1

(k,v) = g(k,v) · tI′ · pI′(k)⊕ qI′(k,v),

where tI′ =
∏u

i=1 vli . Since s
(r−λ)
jλ1

·s(r−λ)
jλ2

is the only term of degree 2 in Equ. (1),

it is hopeful that we could extend I ′ to I whose superpoly in s
(r)
λ is linear. Due

to the above phenomenon, it is hopeful that the superpoly of I in the output bit
is linear as well. The following is an illustrative example.

Example 3. In the case of 805-round Trivium, the superpoly of

I = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50}

in s
(739)
286 is k56. Furthermore, we find that the superpoly of

I ′′ = {v1, v2, v4, v6, v8, v10, v11, v13, v15, v17, v19, v21, v23,

v25, v26, v27, v29, v32, v34, v36, v38, v39, v41, v42, v43,

v45, v47, v48, v50, v52, v57, v59, v69, v71, v76, v79}

is also k56 in the output of 805-round Trivium. Note that I ′′ contains all the
cube variables in I. This indicates that it is reasonable to construct cubes with
linear superpolies in the output bit by extending a starting cube selected in the
way illustrated above.
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The Preference Bit. Now, for r-round Trivium, the key point is which internal
state bit in the output function should be chosen so that we could construct cubes
with linear superpolies with a high success probability by extending a small set
I of cube variables.

To study the difference of the six internal state bits in the output function
with respect to constructing linear superpolies, we perform dedicated experi-
ments on Trivium variants with from 400 to 699 initialization rounds. For each
variant, we collect thousands of linear superpolies and check which internal s-
tate bit each linear superpoly comes from. The results show that there exists
significant difference among six internal state bits in the output function with
respect to where a linear superpoly comes from. For example, among the 2953
collected linear superpolies of 699-round Trivium, 2366 linear superpolies come

from s
(699)
243 , i.e., over 80% of the linear superpolies come from s

(699)
243 . Table 2

shows the number of linear supeprolies comes from each internal state bit.

Table 2. The number of linear supeprolies coming from each internal state bit

Internal state bit s
(699)
66 s

(699)
93 s

(699)
162 s

(699)
177 s

(699)
243 s

(699)
288

Number of linear superpolies 162 0 182 246 2366 0

For 699-round Trivium, linear superpolies come from s
(699)
243 most frequently.

Let r be a positive integer. For r-round Trivium, the internal state bit s
(r)
λj

in
the output function such that linear superpolies come from it most frequently
is called the preference bit of r-round Trivium. For these 300 Trivium variants,
there are 230 variants such that more than 40% of the collected linear super-
polies come from the preference bit. It can be seen that the preference bit has
a significant advantage over the other five internal state bits with respect to
where a linear superpoly may come from. In other words, for r-round Trivium,
it is more likely to construct cubes with linear superpolies when targeting the
preference bit than the other internal state bits in the output function.

An Iterative Algorithm to Predict the Preference Bit. According to the
above discussions, if we target the preference bit, then it is more likely to con-
struct cubes with linear superpolies. In this subsection, we design an algorithm
to pick up the preference bit among the six ones. Our algorithm is based on the
following lemma.

Lemma 1. Let I = {vi1 , vi2 , . . . , vid} be a set of cube variables. If the superpoly
of I in f(k,v) is linear in key variables, then there is a term in the form of∏

v∈I v · tv · kj in the ANF of f , where tv is 1 or a product of some non-cube
variables.

Proof. Since the superpoly of I in f is linear in key variables, then there is a
term in the form of tv ·kj in the ANF of pI , where tv is 1 or the product of some
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non-cube variables. Hence, there is a term in the form of
∏

v∈I v · tv · kj in the
ANF of f .

According to Lemma 1, a necessary condition that a linear superpoly comes

from s
(r)
λj

is that s
(r)
λj

has a term in the form of Tv · kj in its ANF, where Tv is a
product of some IV variables. In the rest of this paper, such kind of term is called
a VK-term for simplicity. Note that a VK-term does not always lead to a linear
superpoly. For example, let

∏u
i=1 vji · kl be a VK-term. If

∏u
i=1 vji · kl · kh is in

the ANF of zr, then the superpoliy of {vj1 , vj2 , . . . , vjl} would be nonlinear, i.e.
the VK-term

∏u
i=1 vji · kl does not lead to a linear superpoly. In other words, it

is reasonable that the more VK-terms an internal state bit has, the more linear
superpolies come from it. Thus, it is reasonable to assume that the preference
bit contains the largest number of VK-terms.

However, it is impossible to accurately calculate the number of VK-terms
by the ANF of an internal state bit when the number of initialization rounds
is high. To solve this problem, we propose an iterative algorithm whose results
could reflect the number of VK-terms in each internal state bit at a high level.
With this algorithm, we could predict the preference bit for an arbitrary number
of initialization rounds with a very low computing complexity.

Let s(t) = (s
(t)
1 , s

(t)
2 , . . . , s

(t)
288) be the internal state of Trivium after t rounds.

Note that each internal state bit s
(t)
j (1 ≤ j ≤ 288) is a polynomial in key

variables and IV variables. Denote by NVK
(t)
j the number of VK-terms in the

ANF of s
(t)
j . Let NV

(t)
j be the number of terms in the form of Tv, which are

called V-terms for simplicity, in s
(t)
j , where Tv is a product of some IV variables.

In the following, we take s
(t+1)
94 as an example to illustrate how our algorithm

works. According to the update function of Trivium, s
(t+1)
94 is updated as s

(t+1)
94 =

s
(t)
91 ·s

(t)
92 ⊕s

(t)
93 ⊕s

(t)
66 ⊕s

(t)
171. In s

(t)
91 ·s

(t)
92 , there are three ways to generate a VK-term

which are shown as follows.

• s
(t)
91 provides a V-term(or constant 1) and s

(t)
92 provides a VK-term;

• s
(t)
91 provides a VK-term and s

(t)
92 provides a V-term(or constant 1);

• s
(t)
91 and s

(t)
92 both provide VK-terms, where the key variable in these two

VK-terms are the same.

Generally, the VK-terms formed in the third way are much fewer than those
formed in the first two ways. Besides, the VK-terms obtained by multiplying
constant 1 with VK-terms are also much fewer than those obtained by multi-

plying a V-term and a VK-term. Hence, in our algorithm, we regard NV
(t)
91 ·

NVK
(t)
92 + NV

(t)
92 · NVK

(t)
91 as the number of VK-terms in s

(t)
91 · s

(t)
92 which is

denoted by NVK(s
(t)
91 · s

(t)
92 ). Namely, NVK(s

(t)
91 · s

(t)
92 ) is set as

NVK(s
(t)
91 · s

(t)
92 )← NV

(t)
91 ·NVK

(t)
92 +NV

(t)
92 ·NVK

(t)
91

1.

1 Here, we only consider the VK-terms formed in the first two ways and do not take
the terms which are eliminated by the XOR operation into consideration.
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Consequently, NVK
(t+1)
94 is set as

NVK
(t+1)
94 ← NVK(s

(t)
91 · s

(t)
92 ) +NVK

(t)
93 +NVK

(t)
66 +NVK

(t)
171.

Note that, to calculate NVK
(t+1)
94 , it needs to know NV

(t)
91 and NV

(t)
92 . Hence,

it is necessary to calculate NV
(t+1)
94 as well. According to the update function,

NV
(t+1)
94 could be set as

NV
(t+1)
94 ← NV

(t)
91 ·NV

(t)
92 +NV

(t)
93 +NV

(t)
66 +NV

(t)
171,

since the number of V-terms in s
(t)
91 · s

(t)
92 is dominated by those formed from

multiplying two V-terms together.

Moreover, NVK
(t+1)
1 , NV

(t+1)
1 , NV K

(t+1)
178 , NV

(t+1)
178 could be calculated in a

similar way. Thus, we could update NVK(t+1), NV (t+1) from NVK(t), NV (t),

where NVK(t) = (NVK
(t)
1 , . . . , NV K

(t)
288), and NV (t) = (NV

(t)
1 , . . . , NV

(t)
288).

Now, the remaining problem is how to initialize NVK(0) and NV (0). To
obtain a more accurate result, we initialize NVK(280) and NV (280) by calcu-

lating the ANFs of s
(280)
1 , s

(280)
2 , . . . , s

(280)
288 . With the above method, we could

figure out NVK
(r)
j for 1 ≤ j ≤ 288 gradually. Finally, the bit indexed by

j ∈ {66, 93, 162, 177, 243, 288} such that

NVK
(r)
j = max{NVK

(r)
λ |λ ∈ {66, 93, 162, 177, 243, 288}}

is predicted as the preference bit. We formally describe our idea in Algorithm 4.

Algorithm 4 The algorithm of predicting the preference bit

1: Calculate the ANFs of s
(280)
i to initialise NVK(280) and NV (280);

2: for 280 ≤ t ≤ r − 1 do

3: NVKt1 ← NV
(t)
91 ·NVK

(t)
92 + NV

(t)
92 ·NVK

(t)
91 + NVK

(t)
93 + NVK

(t)
66 + NVK

(t)
171;

4: NVt1 ← NV
(t)
91 ·NV

(t)
92 + NV

(t)
93 + NV

(t)
66 + NV

(t)
171;

5: NVKt2 ← NV
(t)
175 ·NVK

(t)
176 + NV

(t)
176 ·NVK

(t)
175 + NVK

(t)
177 + NVK

(t)
162 + NVK

(t)
264;

6: NVt2 ← NV
(t)
175 ·NV

(t)
176 + NV

(t)
177 + NV

(t)
162 + NV

(t)
264;

7: NVKt3 ← NV
(t)
286 ·NVK

(t)
287 + NV

(t)
287 ·NVK

(t)
286 + NVK

(t)
288 + NVK

(t)
243 + NVK

(t)
69 ;

8: NVt3 ← NV
(t)
286 ·NV

(t)
287 + NV

(t)
288 + NV

(t)
243 + NV

(t)
69 ;

9: for 288 ≥ j ≥ 2 do

10: NVK
(t)
j ← NVK

(t)
j−1;

11: NV
(t)
j ← NV

(t)
j−1;

12: end for
13: NV

(t)
94 ← NVt1 ; NV

(t)
178 ← NVt2 ; NV

(t)
1 ← NVt3 ;

14: NVK
(t)
94 ← NVKt1 ; NVK

(t)
178 ← NVKt2 ; NVK

(t)
1 ← NVKt3 ;

15: end for
16: Choose the bit s

(t)
b such that

NVK
(t)
b = max{NVK

(t)
λ |λ ∈ {66, 93, 162, 171, 243, 288}}

as the preference bit, where b ∈ {66, 93, 162, 171, 243, 288};
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4 An Improved Möbius Transformation

The Möbius transformation is a powerful tool which could be used to search all
the subcubes of a large cube at once. It improves the efficiency of cube attacks
a lot. Note that, for Trivium variants with more than 800 initialization rounds,
the sizes of all known cubes with linear superpolies are larger than 30. Hence,
to find linear superpolies, for a large cube set I, it is not necessary to test its
subcubes of small sizes, and only subcubes of large sizes should be taken into
consideration. However, in the original Möbius transformation, to test all the
subcubes of I, the memory complexity is O(2|I|) which expands exponentially as
|I| increases. In this section, we shall present an improved Möbius transformation
which could recover a part of ANF of f(x0, x1, . . . , xn−1) according to the truth
table of f(x0, x1, . . . , xn−1). With the improved Möbius transformation, we could
test a large number of subcubes of I simultaneously with a reasonable memory
complexity.

Let f(x0, x1, . . . , xn−1) be a Boolean function on x0, x1, . . . , xn−1. The ANF
of f is obtained by writing

f =
⊕

(c0,c1,...,cn−1)∈Fn
2

g(c0, c1, . . . , cn−1)
n−1∏
i=0

xci
i .

Recall that the function g is the Möbius transformation of f . It can be seen
that the Möbius transformation g is actually a Boolean function on n variables.
Furthermore, the Möbius transformations of f(x0, . . . , xn−1), f(x0, . . . , xn−2, 0),
and f(x0, . . . , xn−2, 1) are closely related, i.e. the Möbius transformation of
f(x0, x1, . . . , xn−1) could be obtained from the Möbius transformations of f(x0,
x1, . . . , xn−2, 0) and f(x0, x1, . . . , xn−2, 1), see Chapter 9.2 of [11] for details.
Actually, it could be generalised, see Corollary 1.

Corollary 1. Let f(x0, x1, . . . , xn−1) be a Boolean function on x0, x1, . . . , xn−1.
Assume that g0, g1, . . . , g2q−1 are the Möbius transformations of f(x0, . . . , xn−q−1,
0, . . . , 0), f(x0, . . . , xn−q−1, 1, . . . , 0), . . . , f(x0, . . . , xn−q−1, 1, . . . , 1). Then, the
Möbius transformation g of f could be determined with the knowledge of g0, g1, . . . ,
g2q−1.

Proof. According to Chapter 9.2 of [11], it is sufficient to calculate the Möbius
transformation of f with the Möbius transformations of f(x0, x1, . . . , xn−2, 0)
and f(x0, x1, . . . , xn−2, 1). Similarly, with the knowledge of the Möbius trans-
formations of f(x0, x1, . . . , xn−3, 0, 0) and f(x0, x1, . . . , xn−3, 1, 0), the Möbius
transformation of f(x0, x1, . . . , xn−2, 0) could be deduced. Recursively, for xn−q,
xn−q+1, . . . , xn−1, the Möbius transformation g of f could be determined with
the Möbius transformations of f(x0, . . . , xn−q−1, 0, . . . , 0), f(x0, . . . , xn−q−1, 1,
. . . , 0), · · · , f(x0, x1, . . . , xn−q−1, 1, . . . , 1).

Note that it requires 2q × 2n−q = 2n bits memory to store g0, g1, . . . , g2q−1.
When n is large, a huge amount of bits memory are required. To reduce the mem-
ory complexity, one natural idea is to store only a part values of g0, g1, . . . , g2q−1.
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In fact, by storing a part values of g0, g1, . . . , g2q−1, a part of the ANF of f could
still be recovered. We formally describe this fact in Proposition 2.

Proposition 2. Let f , g0, g1, . . . , g2q−1 be defined as Corollary 1. Assume that
c = (c0, c1, . . . , cn−q−1) is an arbitrary element in Fn−q

2 . With the knowledge of

g0(c), g1(c), . . . , g2q−1(c), we could obtain the coefficients of
∏n−q−1

i=0 xci
i , xn−q ·∏n−q−1

i=0 xci
i , . . . , xn−q · xn−q+1 · · ·xn−1 ·

∏n−q−1
i=0 xci

i . in the ANF of f .

Proof. Assume that (bn−q, bn−q+1, . . . , bn−1) takes an arbitrary value of Fq
2. Fol-

lowing the proof of Corollary 1, g(c0, . . . , cn−q−1, bn−q, . . . , bn−1) could be deter-
mined by

h0(c0, . . . , cn−q−1, bn−q, . . . , bn−2) and h1(c0, . . . , cn−q−1, bn−q, . . . , bn−2),

where h0 and h1 are the Möbius transformations of f(x0, x1, . . . , xn−2, 0) and
f(x0, x1, . . . , xn−2, 1) respectively. Furthermore, the value of h0(c0, . . . , cn−q−1,
bn−q, . . . , bn−2) can be deduced from

h0,0(c0, . . . , cn−q−1, bn−q, . . . , bn−3) and h0,1(c0, . . . , cn−q−1, bn−q, . . . , bn−3),

where h0,0 and h0,1 are the Möbius transformations of f(x0, . . . , xn−3, 0, 0) and
f(x0, . . . , xn−3, 1, 0) respectively. Recursively, it is sufficient to calculate g(c0, . . . ,
cn−q−1, bn−q, . . . , bn−1) with the knowledge of g0(c), g1(c), . . . , g2q−1(c). Since
(bn−q, bn−q+1, . . . , bn−1) takes an arbitrary value in Fq

2, it indicates that g(c0, . . . ,
cn−q−1, 0, 0, . . . , 0), g(c0, . . . , cn−q−1, 1, 0, . . . , 0), . . . , g(c0, . . . , cn−q−1, 1, 1, . . . , 1)
could be obtained. Namely, we could recover the coefficients of

n−q−1∏
i=0

xci
i , xn−q ·

n−q−1∏
i=0

xci
i , . . . , xn−q · · ·xn−1 ·

n−q−1∏
i=0

xci
i

in the ANF of f .

Based on Proposition 2, we propose an improved Möbius transformation by
breaking the original Möbius transformation into two stages and only store a
part of the results during the first stage to reduce the memory complexity. We
formally describe the improved Möbius transformation in Algorithm 5. During
the first stage of Algorithm 5, for each 0 ≤ j ≤ 2q−1, the Möbius transformation
of gj is calculated one by one so that the memory could be used repeatedly.
Furthermore, for each gj , only the values gj under elements whose Hamming
Weights are not smaller than ω is stored, where ω is a given bound. Then, during
the second stage, by using a way similar to calculate the Möbius transformation
of a q-variable polynomial, a part of the ANF of f could be recovered.

The Memory Complexity. The memory needed in Algorithm 5 consists
of two parts.

– The size of S is 2n−q, and so it costs 2n−q bits memory.
– For each j, the size of FS[j] is t, and so it requires 2q×t bits memory totally.

To sum up, it requires 2q × t+ 2n−q bits in Algorithm 5. If t ≪ 2n−q, then
2q × t + 2n−q ≪ 2n which indicates that the memory could be decreased to
about 2n−q bits from 2n bits.
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Algorithm 5 An Improved Möbius Transformation
Require: A Boolean function f , the parameter q, the bound ω

/* the first stage */
1: for (c0, c1, . . . , cq−1) from (0, 0, . . . , 0) to (1, 1, . . . , 1) do
2: S ← the truth table of f(x0, x1, . . . , xn−q−1, c0, c1, . . . , cq−1);
3: Call Algorithm 2 to do Möbius transformation on S;

4: t← 0, j ←
∑q−1

l=0 2lcl;

5: for i from 0 to 2n−q − 1 do
6: tmp← (b0, b1, . . . , bn−q−1), where i =

∑n−q−1
l=0 bl · 2l;

7: if wt(tmp) ≥ ω then
8: FS[j][t]← S[i];
9: t← t + 1;
10: end if
11: end for
12: end for

/* the second stage */
13: for i from 1 to q do
14: Sz ← 2i, Pos← 1;
15: while Pos < 2q do
16: for b from 0 to Sz − 1 do
17: for a from 0 to t− 1 do
18: FS[Pos + Sz + b][a]← FS[Pos + Sz + b][a]⊕ FS[Pos + b][a];
19: end for
20: end for
21: Pos← Pos + 2× Sz;
22: end while
23: end for

5 Experimental Results

In this section, we first perform experiments to illustrate the effect of Algorithm
4. Then, utilising the starting sets determined with the method described in
Section 3.2, we attempt to find linear superpolies for Trivium variants with at
least 805 initialization rounds. As a result, we find over 1000 linear superpolies
for 805-round Trivium as well as several linear superpolies for 806-round Trivium
and 810-round Trivium. Based on the found linear superpolies, we establish a
practical attack on 805-round Trivium.

5.1 The Effect of Algorithm 4

To verify the effect of Algorithm 4, we perform extensive experiments on r-round
Trivium with 400 ≤ r ≤ 699. As mentioned in Section 3.2, for r-round Trivium,
we collect thousands of linear superpolies and test which internal state bit each
linear superpoly comes from, where r ranges from 400 to 699. Thus, we could
determine the preference bit of each Trivium variant experimentally. As a com-
parison, we predict the preference bit of r-round Trivium by Algorithm 4. The
results show that the preference bits are correctly predicted for 226 variants of
Trivium out of the total 300 variants. This indicates that the preference bit could
be predicted with a success probability 75.3% by Algorithm 4. Furthermore, in
the experiment on 400- to 699-round Trivium, the success rate increases as the
number of initialization rounds increases. More specifically, for 600- to 699-round
Trivium, we could predict the preference bit with a success probability around
84% which is higher than the average value 75.3%, and for 634- to 699-round
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Trivium the success probability is 100%. Hence for a higher number of rounds,
say 805 or more, the probability probably will not drop. Moreover, based on the
preference bit predicted by our method, we practically found a large number of
cubes with linear superpolies for the 805-round Trivium. This indicates that our
method could predict the preference bit with a good success probability for a
higher round.

Remark 2. In the formula of computing NVK(s91 ·s92), we dropped the terms of
the form (

∏
v∈I v ·kj)(

∏
v∈J v ·kj), that is, the key variables in the two VK-terms

of s91 and s92 are the same. Because this number is very small compared with
other cases. To verify this, we performed experiments which take the dropped
terms into consideration in our formula. For the 300 Trivium variants from 400
to 699 initialization rounds, the result showed that only one of the 300 predicted
preference bits was changed.

5.2 A Practical Key-Recovery Attack on 805-Round Trivium

In this subsection, we target 805-round Trivium. We first predict the preference
bit of 805-round Trivium. Then, aiming at the preference bit, we determine some
proper starting sets of Algorithm 3. For each proper starting set, we construct
a potentially good cube with Algorithm 3. Finally, to find linear superpolies,
we simultaneously test a large number of subcubes of the potentially good cube
with the improved Möbius transformation.

Determine Proper Starting Sets. To determine a proper starting set,
we first need to predict the preference bit of 805-round Trivium. With Algo-

rithm 4, we have that the predicted preference bit is s
(805)
66 . Since s

(805)
66 =

s
(739)
286 ·(739)287 ⊕s(739)243 ⊕ s

(739)
288 ⊕ s

(739)
69 , we choose cubes of sizes 22 and use the

Möbius transformation to search all the subcubes to find proper cubes whose

superpolies in s
(739)
286 are linear. Finally, we select some subcubes with linear

superpolies to be the starting sets of Algorithm 3. In the following, we take

I1 = {v2, v4, v6, v8, v10, v11, v15, v17, v19, v21, v23, v25,

v29, v30, v32, v34, v36, v39, v41, v43, v45, v50}

as an example to illustrate how to determine a proper starting set in details.

First, we search all its subcubes to find cubes with linear superpolies in s
(739)
286

and hundreds of such cubes are obtained. When choosing a starting set from
these cubes, we prefer to choose cubes with relatively large sizes. Among these
cubes, there are two cubes of size 17 and the others have smaller sizes. Among
these two cubes, we randomly choose

I2 = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50}

as a proper starting set. With similar procedure, we determine some other start-
ing sets of Algorithm 3.
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Table 3. The chosen cube variables in the last iteration

Chosen cube I5 ∪ {v48} I5 ∪ {v59} I5 ∪ {v58} I5 ∪ {v63}

Upper bound of the degree of superpolies 1 1 2 3

Construct Candidate Cubes. There are two main stages of constructing
a potentially good cube in Algorithm 3. We take I2 as an example to make an
illustration. In the first stage, Algorithm 3 adds steep IV variables to decrease the
degree of the superpoly as quickly as possible. For I2, the first stage of Algorithm
3 terminates after 17 iterations, since the superpoly pI3 is zero-constant, where

I3 = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50,

v2, v69, v79, v8, v27, v0, v1, v28, v71, v13, v45, v23, v26, v38, v76, v47, v56}.

Then, the second phase is started with

I4 = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50,

v2, v69, v79, v8, v27, v0, v1, v28, v71, v13, v45, v23, v26, v38, v76, v47, v52},

since the upper bound of the degree of pI4 attains minimum expect 0 among all
the cubes obtained after 17 iterations. In this stage, our aim is to decrease the
degree of the superpoly slowly to obtain cube with linear superpolies instead of
zero-sum distinguishers. After three iterations, we obtain two cubes such that
the degree of their superpolies are upper bounded by 1. Besides, we also obtain
several cubes such that the degree of their superpolies are not larger than 3.
By jointing 4 cubes, we constructed a potentially good cube of size 40. Table 3
shows the cubes and the upper bounds of the degrees of their superpolies, where

I5 = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50, v2,

v69, v79, v8, v27, v0, v1, v28, v71, v13, v45, v23, v26, v38, v76, v47, v52, v57, v42}.

Finally, the potentially good cube I6 constructed from I2 is as follows,

I6 = I5 ∪ {v48, v58, v59, v63}.

Linear Superpolies for 805-Round Trivium. After obtaining a poten-
tially good cube, we use the improved Möbius transformation to search its sub-
cubes which miss few cube variables. For instance, in the case of I6, we set the
parameter q = 7 and ω = 26 in the improved Möbius transformation, and we
find 201 subcubes with linear superpolies eventually. Among these 201 linear
superpolies, there are 22 linear superpolies which are linearly independent. To-
gether with some other candidate cubes, we find more than 1000 cubes with
linear superpolies in the output of 805-round Trivium. Among these cubes, we
could pick up 38 cubes whose superpolies are linearly independent, see Table 4.
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Table 4. Linear superpolies for 805-round Trivium

Cube indices Superpoly

0,1,2,4,6,8,11,13,15,17,19,21,23,26,27,28,29,32,34,
36,38,39,41,42,45,47,48,50,52,53,57,69,71,75,76,79

1 ⊕ k2 ⊕ k65

0,1,2,4,6,8,10,11,12,13,15,16,19,21,23,25,26,27,29,
31,34,36,38,39,40,43,45,47,49,62,64,70,74,77,79

1 ⊕ k3

0,1,2,4,6,8,10,11,13,15,17,19,21,23,26,27,29,31,
34,36,38,39,40,41,43,45,47,49,58,62,64,77,79

k4 ⊕ k19 ⊕ k34

0,1,2,4,6,8,10,13,15,17,19,21,23,25,26,27,28,29,32,34,
36,38,39,41,42,43,47,48,50,52,57,59,69,71,75,76,79

k14

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,29,32,34,
36,38,39,41,42,43,47,48,50,52,53,57,59,69,71,76,79

k15

0,1,2,4,6,8,10,13,15,17,19,21,23,25,26,27,28,29,32,
34,36,38,39,41,42,43,47,48,50,52,59,69,71,75,76,79

1 ⊕ k16

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,28,29,32,
34,36,38,39,41,42,43,45,47,48,50,53,57,69,71,75,76,79

1 ⊕ k17

0,1,2,4,6,8,10,11,12,13,15,16,19,21,23,25,27,28,
29,34,36,38,40,41,43,45,47,49,50,64,70,74,77,79

k18

0,1,2,4,6,8,10,11,12,13,15,16,19,23,25,27,28,31,34,
36,38,39,40,41,43,45,47,49,50,58,62,64,74,77,79

1 ⊕ k19 ⊕ k34 ⊕ k51

0,2,4,6,8,10,12,13,15,17,19,21,23,25,26,27,28,29,31,
34,38,39,40,41,43,45,47,49,50,58,62,64,70,74,77,79

k21

1,2,4,6,8,10,11,12,13,15,17,19,21,23,25,26,27,28,29,
31,34,36,38,39,40,41,43,47,49,50,58,62,70,74,77,79

1 ⊕ k29

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,29,32,34,
36,38,39,42,43,45,47,48,50,52,53,57,59,69,71,75,76,79

k31 ⊕ k46 ⊕ k56

0,1,2,4,6,8,10,13,15,17,19,21,23,25,26,28,29,32,34,
36,38,39,41,42,45,47,48,50,52,57,59,69,71,75,76,79

k17 ⊕ k32

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,29,32,34,
36,38,39,42,43,45,47,48,50,52,53,57,59,69,71,76,79

1 ⊕ k33

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,29,32,
34,36,39,41,42,43,45,47,48,50,52,57,59,69,71,76,79

k34

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,29,32,
34,36,38,39,41,42,43,45,47,50,52,53,57,69,71,75,79

k36

0,1,2,4,6,8,10,12,13,15,17,19,21,23,25,26,27,28,
29,31,34,36,39,40,41,43,47,49,50,62,64,70,77,79

k40

0,1,2,4,6,8,10,11,13,15,17,19,21,23,26,27,28,31,
34,36,38,40,41,43,45,47,49,50,58,62,64,70,77,79

k42

0,1,2,4,6,8,10,11,13,15,16,19,21,23,26,27,28,29,31,
34,36,38,39,41,43,45,47,49,50,58,62,64,74,77,79

k43

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,29,32,
34,36,38,42,45,47,48,50,53,57,59,69,71,75,76,79

k44

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,28,29,
32,34,36,38,41,42,43,45,47,50,53,59,69,71,76,79

1 ⊕ k45

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,28,29,32,
34,36,38,39,42,43,45,48,50,52,57,59,69,71,75,76,79

k46 ⊕ k56

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,29,32,34,
36,38,39,41,42,43,45,47,48,50,57,59,69,71,76,79

1 ⊕ k47

0,1,2,4,6,8,11,13,15,17,19,21,23,26,27,28,29,
34,36,38,41,43,45,47,49,50,62,64,70,74,77,79

k49

0,1,2,4,6,8,11,13,15,17,19,21,23,25,27,28,29,32,34,
36,38,39,41,42,43,45,47,52,53,57,69,71,75,76,79

k51

0,2,4,6,8,10,11,12,13,15,16,19,21,23,25,26,27,28,29,
31,34,36,38,39,41,43,47,49,58,62,64,70,74,77,79

k53

0,1,4,6,8,10,11,13,15,17,19,21,23,25,26,28,29,32,34,36,
38,39,41,42,43,45,47,48,50,52,53,57,59,69,71,75,76,79

k54

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,29,32,34,
36,38,39,42,43,45,47,48,50,53,57,59,69,71,75,79

k56

0,1,2,4,6,8,10,11,12,13,15,17,19,21,23,25,26,27,28,
29,31,34,36,38,39,40,41,45,47,49,58,62,64,70,79

k57 ⊕ k59

0,1,2,4,6,8,10,13,15,17,19,21,23,25,27,28,29,32,
34,36,38,39,42,43,45,47,48,53,57,59,69,71,75,79

k58

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,28,29,
32,34,36,38,39,41,42,43,45,47,50,53,57,59,69,76,79

1 ⊕ k47 ⊕ k59

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,28,29,32,
34,36,38,39,41,42,43,45,47,48,50,59,69,71,75,76,79

k60

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,28,29,32,
34,36,38,39,41,42,43,45,47,48,50,52,59,71,76,79

k61

0,2,4,6,8,10,11,12,13,15,16,19,21,23,25,26,27,28,31,
34,36,38,39,40,41,43,45,47,49,50,58,62,64,77,79

k62

0,1,2,4,6,8,10,11,13,15,16,19,21,23,25,27,28,29,31,
34,36,39,41,43,45,47,49,62,64,70,74,77,79

k63

0,1,4,6,8,10,11,12,13,15,17,19,21,23,25,26,27,28,29,
34,36,38,39,41,43,45,47,49,58,62,64,70,74,77,79

k64

0,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,28,29,32,
34,36,39,41,43,45,47,48,50,52,57,59,69,71,76,79

k65

0,1,2,4,6,8,11,12,13,15,17,19,21,23,25,27,28,29,31,
34,36,39,40,41,43,45,47,49,50,62,64,70,74,77,79

k68

Linear Superpolies for 806-Round Trivium. For the cubes found for
805-round Trivium, we slide some of them, i.e. decrease the index of each cube
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variables by 1, to find cubes with linear superpolies for 806-round Trivium.
Finally, we find several cubes whose superpolies in the output bit of 806- round
Trivium, see Table 5.

Table 5. Linear superpolies for 806-round Trivium

Cube indices Superpoly

0,1,3,5,7,9,10,11,12,14,15,18,20,22,24,27,28,30,33,35,37,39,40,42,44,46,48,49,57,61,63,73,76,78 k14 ⊕ k44
0,1,3,5,7,9,10,11,12,14,15,18,20,22,24,26,28,30,33,35,37,39,40,42,44,46,48,49,57,61,63,73,76,78 k15
0,1,3,5,7,9,10,11,12,14,15,18,20,22,24,26,28,30,33,35,37,39,40,42,44,46,48,49,57,61,63,76,78 1 ⊕ k17

0,1,3,5,7,9,10,11,12,14,16,18,20,22,24,25,26,27,28,30,33,35,37,38,39,40,42,46,48,49,57,61,69,73,76,78 1 ⊕ k28
0,1,3,5,7,9,10,11,12,14,15,16,18,20,22,24,25,26,27,28,30,33,35,37,38,39,40,42,46,48,49,57,61,63,76,78 k32

0,1,3,5,7,9,10,11,12,14,15,18,20,22,24,26,27,28,33,35,37,39,40,42,44,46,48,49,57,61,63,73,76,78 k33
0,3,5,7,9,11,14,15,18,20,22,24,25,26,27,30,33,35,37,39,40,42,44,46,48,49,57,61,63,69,73,76,78 k41

0,1,3,5,7,9,10,11,12,14,15,18,20,22,24,26,27,28,30,33,35,37,40,42,44,46,48,49,57,61,63,73,76,78 k42
1,3,5,7,9,10,11,12,14,16,18,20,22,24,25,26,27,28,30,33,35,37,38,39,40,42,46,48,49,57,61,63,73,76,78 k44

0,1,3,5,7,9,10,12,14,16,18,20,22,24,26,27,28,30,33,35,37,38,40,42,44,46,48,57,61,63,73,76,78 k46
0,1,3,5,7,9,10,11,12,14,16,18,20,22,24,26,27,28,33,35,37,39,40,42,44,46,48,49,57,61,63,76,78 k52

0,1,3,5,9,10,11,12,14,16,18,20,22,24,26,27,28,30,33,35,37,38,40,42,44,46,48,49,57,61,63,69,73,76,78 k55
0,1,3,5,7,9,10,11,12,14,16,18,20,22,24,26,27,28,30,33,35,37,38,42,44,46,48,49,57,61,63,69,76,78 k58

0,1,3,5,7,9,10,11,12,14,15,18,20,22,24,25,26,27,28,30,33,35,37,38,39,40,42,46,48,57,61,63,69,76,78 k59
0,1,3,5,7,9,11,12,14,15,16,18,20,22,24,25,27,28,30,33,35,37,38,40,42,44,46,48,49,57,61,63,69,73,76,78 k63
0,3,5,7,9,10,11,12,14,15,18,20,22,24,25,26,27,28,33,35,37,38,39,40,42,44,46,48,57,61,63,69,73,76,78 k65

A Practical Key-Recovery Attack on 805-Round Trivium. Based on
the linear superpolies of 805- and 806-round Trivium, we could recover 42 key bits
for 805-round Trivium. The sizes of the chosen cubes are from 32 to 38, and 42
key bits could be recovered with 241.25 requests. By adding a brute-force attack,
the remaining 38 key bits could be recovered within 238 requests. Consequently,
to recover the whole key for 805-round Trivium, the on-line complexity is not
larger than 241.40 requests. Under a PC with a GTX-1080 GPU, we could recover
42 key bits in several hours. For remaining key bits, they could be recovered in
less than 238 requests which is much easier. Consequently, our attack on 805-
round Trivium is practical.

5.3 Experimental Results on 810-Round Trivium

We do the similar experiments on 810-round Trivium. In this case, the preference

bit is s
(810)
66 as well. We perform experiments on the starting cube set

I7 = {v2, v6, v8, v10, v11, v15, v19, v21, v25, v29, v30, v32, v34, v36, v39, v41, v43, v45, v50}.

With Algorithm 3, we finally get a cube I8 given by

I8 = {v2, v6, v8, v10, v11, v15, v19, v21, v25, v29, v30, v32,

v34, v36, v39, v41, v43, v45, v50, v0, v75, v12, v22,

v16, v27, v23, v72, v4, v14, v20, v52, v55, v60, v37,

v79, v62, v64, v47, v54, v69, v51, v71, v18, v53}.
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The size of I8 is 44. Because it is too time consuming to perform linearity tests,
we try to remove some cube variables from I8 to obtain a smaller cube with
low-degree superpolies. Finally, we obtain the cube I9 of size 43, where

I9 = {v2, v6, v8, v10, v11, v15, v19, v21, v25, v29, v30, v32,

v34, v36, v39, v41, v43, v45, v50, v0, v75, v12, v22,

v16, v27, v23, v72, v4, v14, v20, v52, v55, v60,

v37, v79, v62, v64, v47, v54, v69, v71, v18, v53}.

and the degree of the superpoly of I9 is upper bounded by 2. By using a computer
with four NVIDIA V100 GPUs, we search a part of subcubes which only misses
few cube variables in I9. With the original Möbius transformation, to search
subcubes of a 43-dimensional cubes, it needs 243 bits memory. Benefited from
the improved Möbius transformation, we could perform linearity tests on 232.28

subcubes of I9 with several GBs memory which is much less than the memory
(1024 GB) required by the original Möbius transformation. Finally, we find 2
different cubes with linear superpolies, which are listed in Table 6.

Table 6. Linear superpolies for 810-round Trivium

Cube indices Superpoly

0,2,4,6,8,10,11,12,14,15,16,18,19,20,21,22,23,25,27,29,30,32,
34, 36,37,39,41,43,45,47,50,53,54,55,60,62,64,69,71,72,75,79

k62

0,2,4,6,8,10,11,12,14,15,16,18,19,20,21,22,23,25,27,29,30,32,
34, 36,37,39,41,43,45,47,50,51,53,54,60,62,64,69,71,72,75,79

k62

Remark 3. We put our codes and all the found superpolies on https://github.com
/YT92/Practical-Cube-Attacks.

6 Conclusion

In this paper, we focus on practical full key-recovery attacks on Trivium. We de-
sign a new framework for finding linear superpolies in cube attacks by presenting
a new algorithm to construct cubes which potentially yield linear superpolies.
With this new framework, we find sufficiently many linear superpolies and es-
tablish a practical full key-recovery attack on 805-round Trivium. To show the
effectiveness of our algorithm for constructing cubes, we also tried 810-round
Trivium. As a result, by constructing one 43-dimensional cube, we find two sub-
cubes of size 42 with linear superpolies for 810-round Trivium. So far the success
rate of our algorithm for finding linear superpolies is 100%. The 805-round Triv-
ium is just chosen for an example. We believe that the new algorithm could
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also be applicable to Trivium up to 810 rounds with a bit more time since cube
sizes increases a little. Since we use linearity test and Moebius transformation
to recover superpolies, large cube sizes could not be explored. Recently, Hao
et al. at EUROCRYPT 2020 proposed a new MILP modeling method for the
three-subset division property which could be used to recover the exact super-
poly for a given cube. Combing our new algorithm for selecting cubes with the
three-subset division property to recover low-degree superpolies for large cubes
will be one subject of our future work.
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