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Abstract. We consider the security of two of the most commonly used
cryptographic primitives—message authentication codes (MACs) and
pseudorandom functions (PRFs)—in a multi-user setting with adaptive
corruption. Whereas is it well known that any secure MAC or PRF is
also multi-user secure under adaptive corruption, the trivial reduction
induces a security loss that is linear in the number of users.
Our main result shows that black-box reductions from “standard” as-
sumptions cannot be used to provide a tight, or even a linear-preserving,
security reduction for adaptive multi-user secure deterministic stateless
MACs and thus also PRFs. In other words, a security loss that grows
with the number of users is necessary for any such black-box reduction.

1 Introduction

Message authentication codes (MACs) are one of the most fundamental cryp-
tographic primitives. MACs are secret-key primitives that enable a party to
produce a “tag” for messages in such a way that, while anyone possessing the
secret key can verify the validity of the tag, an adversary without access to the
key is unable to forge a correct tag for a message. This allows the participating
parties to use the tags to confirm that a tagged message is authentic—that is,
that it originated from a trusted sender and was delivered without modification.
A pseudorandom function (PRF) is a related primitive which can easily be used
to construct a MAC; in addition to being unforgeable by an adversary, the out-
put (“tag”) from a PRF is also pseudorandom (i.e., indistinguishable from true
randomness to the adversary).
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Multi-user Security and Adaptive Corruptions MACs and PRFs are also some of
the most commonly used cryptographic primitives in practice; as such, they are
often deployed in contexts with huge numbers of users. For instance, MACs are
used in protocols for secure key exchange (as first formalized in [21]), including
the well-known and widely employed TLS protocol [18–20], which is used today
by major websites with billions of daily active users. A natural question, then,
is to what extent the multi-user setting in which MACs or PRFs are practically
employed affects the security of these primitives. In particular, in a multi-user
setting it is natural to consider an adaptive adversary who may decide to corrupt
a subset of the users (and as a result of the corruption receive their secret
keys); given such an adversary, we would like to guarantee that uncorrupted
users’ instances remain secure. Indeed, various forms of multi-user security have
been considered since the work of Bellare et al. [9] (see also e.g., [7, 8, 10, 36,
39]). In recent work, Bader et al. [3] explicitly consider a notion of adaptive
multi-user security for signature schemes and MACs. They remark that a simple
“guessing” reduction, originally proposed in [9] for multi-user security of PRFs
without corruption, shows that any single-user secure MAC is adaptively multi-
user secure. Specifically, given a multi-user adversary that runs, say, ` instances
of a MAC, one can construct a single-user adversary that, given an instance of
the MAC, simulates the game for the multi-user adversary by embedding its own
instance into a random one of the multi-user instances and generating `−1 keys
to simulate the rest of the instances (including returning the respective keys
for corruption queries). If the multi-user adversary picks the correct instance
to break by forging a tag, then the single-user adversary can use the forgery it
returns to win its own game.

Security loss and linear-preserving reductions. The above argument shows that
any “single-user” secure MAC also is multi-user secure under adaptive corrup-
tion; a similar argument holds also for PRFs [2]. However, security is only “poly-
nomially” preserved; in a concrete sense, the reduction incurs a significant se-
curity loss [32], as one might note that the single-user adversary we describe is
far less efficient than the multi-user adversary on which it is based. In partic-
ular, in a setting where we have a large number ` of instances available to the
adversary, the single-user adversary’s probability of success is indeed reduced
by a proportionate factor of `. As discussed in works such as [36, 39], this has
considerable implications on the concrete security of such a primitive in a setting
where a large number of instances might be in use at once. More formally, the
security loss is defined as the “work”, or expected running time, required by the
reduction to break the underlying assumption (in the above example, single-user
security) using a particular adversary against a primitive (adaptive multi-user
security) as an oracle, divided by the work required by the adversary to break
the primitive. Intuitively, the “best possible” type of reduction is one with a
constant security loss, or a tight [32] reduction, which guarantees that the prim-
itive will inherit roughly the same level of concrete security as the underlying
assumption. A reduction with a security loss equal to a fixed polynomial p(n)
in the security parameter, also known as a linear-preserving reduction, is still
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intuitively desirable. The “guessing” reduction above, however, has a security
loss of `, or the number of instances in the multi-user security game, and so it is
neither tight nor linear-preserving. A natural question, then, is whether we can
do better than this trivial reduction and construct a provably secure MAC with
a linear-preserving reduction.

In fact, the work of [3] shows how to overcome the security loss of this “trivial”
guessing reduction: as a key building block towards an “almost-tightly secure”
authenticated key exchange protocol, the authors present an elegant construc-
tion of an adaptively multi-user secure digital signature scheme with a linear-
preserving reduction. In particular, the security loss of their constructions is
linear in the security parameter n, and independent of the number of users!

On the importance of determinstic tagging. However, the signature construction
given in [3] requires introducing randomness into the signing algorithm. While
this scheme can indeed be interpreted as a MAC, the fact that the signing algo-
rithm is randomized means that the resulting MAC also becomes randomized.
While some theoretical textbooks (see e.g., [25]) allow the tagging mechanism in
the definition of a MAC to be randomized, practical texts (e.g., the Handbook
of Applied Cryptography [34]), as well as NIST standardizations [6], require the
tagging algorithm to be deterministic. As far as we know, all constructions used
in practice, as well as all standardized constructions of MACs, are deterministic;
indeed, there are several good reasons for sticking to deterministic constructions.
First, reliable randomness is hard to generate, and thus randomized construc-
tions are avoided in practice for time-critical primitives that are used repeatedly
and on a large scale, as is the case for MACs. Furthermore, any PRF, when
viewed as a MAC, is by definition deterministic, and additionally is internally
stateless; in fact, we remark that almost all practical MAC constructions are also
stateless, a notable exception being GMAC [22].4 Obtaining a tightly secure PRF
in a multi-user setting requires, at a minimum, a tightly secure deterministic and
stateless MAC.

As such, the current state of affairs leaves open the important problem of
determining the concrete multi-user security of the MACs and PRFs used in
practice today. In particular, focusing on the case of stateless MACs, we consider
the question of whether either deterministic MACs or PRFs can, in an adaptive
multi-user setting, have a security loss that is independent of the number of
users:

Can there exist tight or linear-preserving reductions for proving the adap-
tive multi-user security of any deterministic (and stateless) MAC or any
PRF based on some “standard assumption”?

At first glance, it may seem that answering this question is trivial, since any ran-
domized MAC can be made deterministic. Indeed, as shown in [25] for signature

4 GMAC is deterministic but stateful; it keeps an internal counter to use as an addi-
tional non-reusable input, or nonce. Stateful MACs such as GMAC are not subject
to the results we prove here.
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schemes, one may simply fix the randomness to be the result of applying a PRF
to the input message. This construction, however, only preserves the tightness of
the reduction if the underlying PRF itself is tightly secure in the adaptive multi-
user setting—however, since any such PRF is already trivially a (deterministic)
MAC, we end up precisely where we started.

1.1 Our Results

Our main result, in fact, provides a strong negative answer to the above question.
We demonstrate that there exists no linear-preserving (or, hence, tight) black-
box reduction for basing adaptive multi-user security of any deterministic MAC,
and thus also any PRF, on any secure “standard” assumption. By a “standard”
assumption, we here refer to any assumption that can be modeled as a game, or
an interaction between a challenger C and a polynomial-time adversary A, that
proceeds in an a priori bounded number of rounds—following [38], we refer to
this class of assumptions as bounded-round assumptions.

Theorem 1 (Informal). If there exists a linear-preserving black-box reduc-
tion R for basing adaptive multi-user security of a deterministic MAC on some
bounded-round assumption C, then C can be broken in polynomial time.

In particular, we show that any such black-box reduction (to a secure bounded-
round assumption) requires a security loss of Ω(

√
`), where ` is the number of

users. We remark that since any PRF or deterministic digital signature scheme
trivially implies a deterministic MAC (via a tight security reduction), our the-
orem also directly rules out linear-preserving black-box reductions for basing
adaptive multi-user security of PRFs or deterministic signatures on standard
assumptions.

Related results. A few prior works have in fact dealt with this question for other
types of primitives. Non-adaptive multi-user security was originally introduced
by Bellare, Canetti, and Krawczyk [9] for pseudorandom function families; the
authors also introduced the original version of the classical “guessing” reduction
from multi-user to single-user security in that context. As mentioned above, [3]
introduced adaptive multi-user security in the context of signatures and MACs
(and presented applications for secure key exchange), and [2] considered it in the
context of PRFs. Recently, there has been a wealth of positive results demon-
strating the achievability of tight reductions from multi-user to single-user secu-
rity of authenticated encryption protocols and block cipher-based schemes (see,
e.g., [3,13,27,28,33]); some of these results, as we have noted, consider the case
of randomized or stateful (nonce-based) MACs such as GMAC, which are not
subject to our security bound.

Concerning negative results, several prior works have ruled out certain re-
stricted classes of linear-preserving reductions from multi-user security of various
primitives. Bellare et al. [8] first introduced the (non-adaptive) notion of multi-
user security for public-key encryption and demonstrated that there does not
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exist an efficient generic reduction from multi-user to single-user security which
works for every encryption scheme. But one may still hope to circumvent this by
constructing a specific encryption scheme for which such a reduction exists, or
by directly basing multi-user security on some other (standard) assumption; in-
deed, [8] does demonstrate certain schemes for which security loss can be avoided.
A later work by Jager et al. [30] proves a negative result for authenticated encryp-
tion, showing that certain restricted types of black-box reductions—in particular,
“straight-line” (i.e., non-rewinding) reductions—from adaptive multi-user secu-
rity to single-user security of any authenticated encryption scheme possessing
a strong “key uniqueness” property (i.e., that any two keys which produce the
same ciphertexts for some polynomial number of inputs must agree on all inputs)
must inherit a similarly large security loss.

Most relevantly to our work, Chatterjee et al. [15] show a negative result for
the case of generic reductions from adaptive multi-user to single-user security
of MACs. Specifically, the authors propose a “collision-finding” attack on multi-
user MAC security whose success probability increases by a factor of roughly `
(the number of instances) in a multi-user setting as compared to its single-user
analogue against an idealized MAC. Similarly to [8], this elegantly demonstrates
that a security loss is inherent in generic reductions from multi-user to single-user
security; however, their results still leave open the question of whether the same
holds true for a reduction to a specific MAC (where, as [8] shows for public-key
encryption, there may be more effective single-user attacks), let alone whether
it holds for directly reducing multi-user security to an underlying assumption
without relying on single-user security.

In contrast to the above results, the bound we show here applies to any (i.e.,
not a restricted class of) black-box reduction and to any “standard” (bounded-
round) assumption; additionally, it applies to any construction of the primitives
we consider (i.e., deterministic MACs and PRFs).

Our work builds on a line of research on using “meta-reductions” [12] to
prove impossibility results for black-box reductions, and in particular to study
the inherent security loss of (single-user) secure digital signatures. Most recently,
expanding upon earlier results [4, 16, 29, 31] which dealt with restricted reduc-
tions, [35] provides a security loss bound ruling out linear-preserving reductions
for single-user security of a primitive called unique signature schemes. While we
rely on a significant amount of insight from these prior results (and in particular
from [35]), adapting their techniques to our setting is quite non-trivial (as we
shall explain below). Indeed, as far as we are aware, all known black-box separa-
tions using the meta-reduction paradigm only apply to primitives that embody
some form of uniqueness or rerandomizability (which in turn can be viewed as
a “distributional uniqueness”) property—we will return to what this uniqueness
property means shortly (and how it is used). In contrast, our impossibility re-
sult does not (explicitly) refer to or require a primitive that embodies such a
property.

Summarizing the above discussion, as far as we know, our results not only
constitute the first “complete” black-box lower bound (in the sense that we

5



consider “unrestricted” reductions) on the security loss of any primitive in the
multi-user setting, but also address the security of two of the most fundamental
primitives—MACs and PRFs—used practically in a multi-user setting. Addi-
tionally, we present the first usage of the meta-reduction paradigm to rule out
reductions from a primitive that does not itself embody a uniqueness (or reran-
domizability) property.

1.2 Overview

The meta-reduction paradigm. We prove our security loss bound using an adap-
tation of the “meta-reduction” paradigm, originally devised in [12] (see also
[1, 5, 11, 14, 23, 24, 26, 38] for related work concerning meta-reductions). The
paradigm was originally used to show black-box impossibility results, but Coron
in [16] pioneered the usage of meta-reductions to instead show lower bounds on
security loss; this line of work was continued in [4,31,35]. Meta-reductions were
first used in relation to multi-user security in [30], which dealt with multi-user to
single-user reductions for authenticated encryption (satisfying a key-uniqueness
property).

At a high level, the meta-reduction paradigm proves the impossibility of any
black-box reduction from a primitive Π to a secure assumption C.5 To illustrate
this approach for the case of an impossibility result, consider attempting to
prove the impossibility of such a reduction R that breaks the assumption C
by using black-box access to some “ideal adversary” A (which in turn breaks
security of the constructed primitive). By definition, if A breaks the primitive
with probability 1, then RA should break C with non-negligible probability, even
if we construct A to be inefficient (e.g., win by brute force).

It remains then to show that, if such an R exists, then C can be broken
efficiently, contradicting the assumption of C’s security. While RA itself clearly
will not break C efficiently ifA uses brute force, one can instead create an efficient
meta-reduction B that efficiently “emulates” A while running R. If one can show
that the meta-reduction B always succeeds in emulating the real interaction RA,
then the meta-reduction breaks C with non-negligible probability.

On the other hand, it might be impossible to create a meta-reduction that
emulatesRA perfectly; instead, it might be the case that we can construct B that
emulates RA with probability at least 1−p(n) for some inverse polynomial p(·).
In this case, if RA breaks C with probability non-negligibly greater than p(n),
then B, being identically distributed to RA except with probability p(n), will in
fact still break C with non-negligible probability, thus ruling out any such R. By
bounding R’s success probability in terms of its running time, this observation
can be used to derive a security loss bound for any reduction R in cases where
such reductions may not be fully impossible.

5 Consider C to be the “challenger” for the security game; an efficient adversary
“breaks” C by forcing it to output Accept with probability non-negligibly better
than a certain threshold t.
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Rewinding techniques. Of course, a useful meta-reduction requires two impor-
tant constructions: (1) the ideal and inefficient adversary A, and (2) the meta-
reduction B. Most importantly, while it would be simple to construct an ad-
versary A that breaks C by brute force, B must also be able to gain enough
information by simulating and receiving responses to A’s messages in order to
determine, with high probability, the secret information necessary to break C
without brute force.

Coron’s original meta-reduction presents an effective way of accomplishing
this in the setting where A breaks the unforgeability of unique signatures, or,
more generally, any “one-more” style security game where an adversary, after
making some number of queries, must then guess the result of querying a new
input. Specifically, if we assume A makes a significant number of queries `(n)
with inputs x1, . . . , x`(n) before brute-forcing its guess (and, importantly, will
return ⊥ instead if the answers to its queries are incorrect), B can make the
same set of queries and, rather than brute-forcing a guess, may instead pick the
new input x∗ and rewind the reduction R up to `(n) different times6, each time
replacing a different one of the messages with x∗ in the hopes that R will provide
a valid response that B can use in the main execution.

This rewinding technique in fact can be shown to emulate A except with
probability O(1/`(n)); intuitively, this is because, if B is unable to extract a
correct response in some rewinding, that rewinding corresponds to a sequence
of randomness where, if it occurs in the non-rewound execution, A receives an
incorrect response to one of its queries and hence does not need to return a
forgery. Hence, at a very high level, for each sequence of messages x1, . . . , x`(n)
where B fails to extract a forgery, B must receive an incorrect response to x∗

in each of the `(n) rewindings, and so there are `(n) sequences where B can
successfully emulate A (as both can return ⊥).

It is important to note where uniqueness of the signature scheme comes in:
to ensure that B is correctly simulating the distribution of A’s messages, we
need to make sure that the forgery extracted by B from R is the same as the
forgery that A would have generated. In the case of a unique signature, we know
there can only be a single valid forgery; as such, B indeed generates the right
distribution if it manages to extract a forgery from R.

The case of adaptive multi-user unforgeability. Coron’s meta-reduction was tai-
lored to the specific case of unique signatures; however, in our case, adaptive
multi-user unforgeability—that is, the security of a MAC—can also be thought
of as a type of “one-more” assumption. Specifically, an adversary against ` in-
stances of a MAC can make ` − 1 key-opening queries and subsequently guess
the last key in order to break the security of the respective unopened instance
(i.e., by guessing the MAC on an unqueried input); a natural approach to cre-
ating a meta-reduction for this case, then, would be to have B rewind these
key-opening queries and try opening the final instance in the rewindings, similar

6 In fact, in Coron’s theorem, it was sufficient to pick a random one of these rewindings,
but this is not sufficient for our result.
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to Coron’s treatment of queries for unique signatures. However, there are several
complications with this approach that, for various reasons, did not need to be
considered in [16]; we next present a high-level overview of these issues and how
we approach them in this work.

“Effective” key uniqueness. First, recall that R does not necessarily need to act
as an honest challenger, and so B must have a way to verify that R’s responses
to its queries (in this case, key-opening queries) are correct. As mentioned above,
this is why Coron’s results (and those following) only applied to unique signa-
tures, and why, for the case of adaptive multi-user security, [30] considered only
schemes with a key uniqueness property.

We do not want to require any sort of inherent “key uniqueness” for the class
of MACs we rule out; hence, we instead move to considering a more elaborate
“ideal” adversary A. In particular, we let A first make a large number of random
tag queries to each instance of the MAC; then, upon receiving a response to a
key-opening query, A will verify that all of the responses to the tag queries are
consistent with the returned key. Towards analyzing this technique, we present
an information-theoretic lemma showing that if the number of queries q(n) is
sufficiently larger than the length of the key n, then, with high probability, any
pair of keys that are consistent with one another on the q(n) tag queries is such
that the keys will also agree on another random input (i.e., the input for which
we produce the forgery to break security of the MAC).

In essence, then, our approach makes keys “effectively” unique in the sense
that, with high probability, they operate indistinguishably on random inputs
with respect to our particular ideal adversaryA. As far as we know, this stands in
contrast to all prior impossibility results following the meta-reduction paradigm,
which explicitly worked only with primitives where the adversary’s responses to
the queries to be rewound are unique or “distributionally unique” (i.e., reran-
domizable).

Reductions with concurrency and rewinding. Furthermore, Coron’s result in [16],
as well as many subsequent security loss bounds proven using meta-reductions
(e.g., [4,30,31]) only apply to restricted reductions that are “straight-line” in the
sense that R will never attempt to rewind A and R will always finish executing a
single instance of A before starting another one. In general, reductions may run
multiple instances of the adversary concurrently, which can be highly problem-
atic for rewinding-based meta-reductions, as B may have to rewind a “nested”
instance of its adversary to produce a correctly-distributed output while already
in the middle of rewinding another instance. If many instances need to be re-
wound concurrently, the running time of B can potentially be super-polynomial,
which fails to uphold the requirement that B break C efficiently.

Luckily, some recent works have presented meta-reductions that deal with
concurrent interactions, primarily by using techniques from concurrent zero-
knowledge (see [35, 38]). We build on the technique established in the general-
ization of Coron’s bound given in [35], which shows that B can safely ignore any
rewindings which would require any sort of nested rewinding. At a high level, if
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R runs few instances of A, then other instances rarely interfere with rewinding
during B, resulting in virtually no change to the failure probability; on the other
hand, if R runs many instances, then the time taken by R compared to A will
be the dominant factor in the security loss, so the increase in failure probability
caused by potentially having many ignored rewindings has very limited relevance
in the analysis.

This approach nonetheless requires non-trivial modification to work in our
case, due to the additional caveat that R may attempt to rewind instances of
A. While [35] relied on a “rewinding-proof” construction of A and B where the
randomness was determined at the start, so that the uniqueness property would
guarantee only a single possible accepting transcript (thus making rewinding
pointless), recall that we no longer have a guaranteed uniqueness property, but
instead one that holds “most of the time”. Furthermore, we can no longer con-
struct A to be fully resilient to rewinding, due to the additional complexity of
having both tag queries and key-opening queries; instead, we construct A to
be resilient to most rewinding—particularly, all rewinding except from the key-
opening query phase to the tag query phase—and prove our bound in terms of
how often “meaningful” rewinding (i.e., rewinding that does affect the result)
can occur in addition to the number of instances of A.

This requires some additional care, however: while A can easily be made
rewinding-proof (with the exception of the “meaningful” rewinding), we in fact
can only show that B is resilient to rewinding as long as key uniqueness holds;
otherwise, while A can always pick a determinstic one of the brute-forced keys
for a forgery, B cannot necessarily do this efficiently just from the responses to
rewound queries, and so R could theoretically rewind B to try and get multiple
different forgeries to correspond to multiple different keys. We thus require a
hybrid argument with an unconditionally rewinding-proof but inefficient hybrid
B′ (which acts identically to B when uniqueness holds and to A when it does
not) for the majority of our analysis, subsequently showing that B′ is identically
distributed to B except in the rare case when uniqueness fails.

Interactive assumptions. Lastly, many of the preceding works were restricted
to ruling out reductions to non-interactive, or two-round, assumptions, since
B rewinding the reduction R might require additional, or different, queries to
be made to the challenger C for the underlying assumption, which cannot be
rewound and whose output may be dependent on the number, order, or content
of queries made. However, as demonstrated in earlier rewinding-based meta-
reductions such as [35, 38], we may once again safely ignore rewindings that
contain such external communication as long as the number of rounds of external
communication is bounded by some polynomial r(·) in the security parameter—
that is, as long as the underlying assumption is a bounded-round assumption.

2 Preliminaries and Definitions

We note that the definitions we provide in Sections 2.2 through 2.4 are adapted
from [35].
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2.1 Multi-User Secure MACs under Adaptive Corruption

First, we define the notion of a message authentication code.

Definition 1. We refer to a tuple of efficient (poly(n)-time) algorithms Π =
(Gen,Tag,Ver), where:

– Gen(1n)→ k takes as input a security parameter n and outputs a secret key
k ∈ {0, 1}n,

– Tagk(m) → σ takes as input a secret key k and a message m from some
message space Mn of size super-polynomial in n, and outputs a tag σ for
the message, and

– Verk(m,σ) → {Accept,Reject} takes as input a secret key k, a message
m, and a tag σ, and outputs Accept or Reject denoting whether the tag
σ is valid for the message m, specifically in such a manner that Pr[k ←
Gen(1n);Verk(m,Tagk(m))→ Accept] = 1 for any valid message m ∈Mn,

as a message authentication code (MAC). If, in addition, the following hold:

– Tagk(m) is a deterministic function, and
– Verk(m,σ)→ Accept if and only if Tagk(m) = σ,

then we refer to Π as a deterministic MAC.

Note that we focus here on MACs having both an input (message) and output
(tag) space superpolynomial in the length of a key (the security parameter n), a
property which is satisfied by virtually all standard definitions and constructions.

The traditional notion of security for a MAC states that, given some instance
of a MAC (i.e., a secret key k ← Gen(1n)), an efficient adversary given an oracle
for the Tag algorithm is unable to forge a valid tag for a new message (i.e., return
a pair (m,σ) where Verk(m,σ)→ Accept) without having queried a tag for that
message using the oracle. Our definition of multi-user security with adaptive
corruption expands this to a polynomial number `(n) of instances of the MAC,
and allows the adversary to make key-opening queries (i.e., to “corrupt” an
instance and recover its key) in addition to tag queries; the adversary wins if
they produce a valid forgery (m,σ) for some instance without having either
queried the tag for m on that instance or corrupted the instance itself. Formally:

Definition 2. A MAC Π = (Gen,Tag,Ver) is an `(n)-key unforgeable MAC
under adaptive corruption (or adaptively `(n)-key unforgeable) if, for any
interactive oracle-aided non-uniform probabilistic polynomial-time algorithm A,
there is a negligible function ε(·) such that, for all n ∈ N,

Pr
[
〈A, C`(n)Π 〉(1n) = Accept

]
≤ ε(n)

where C`(n)Π is the interactive challenger that does as follows on input 1n:

– Let (k1, . . . , k`(n))← Gen(1n). Initialize empty transcript τ .
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– Upon receiving a tag query (Query, i,m) for i ∈ [`(n)], append ((Query, i,m),
Tagki(m)) to τ and send τ .

– Upon receiving a key-opening query (Open, i) for i ∈ [`(n)], append the tuple
((Open, i), ki) to τ and send τ .

– Upon receiving a forgery (m∗, σ∗, i∗) from A, output Reject if one of the
following three conditions is true:
• τ contains a key opening query (Open, i∗).
• τ contains an oracle query (Query, i∗,m∗).
• Verki∗ (m∗, σ∗)→ Reject.

– Otherwise, output Accept.

We call a MAC Π an adaptively multi-key unforgeable MAC if it is
adaptively `(n)-key unforgeable for every polynomial `(·).

For syntactic clarity, we will assume that a machine interacting with a multi-
key MAC adversary will begin interaction with a new instance of the adversary
by sending a special message (Init, s), where s is the “identifier” for the instance,
and communicate with the adversary by sending a partial transcript and receiv-
ing a next message as described above for oracle interaction.

2.2 Intractability Assumptions

We define a notion of “game-based security assumptions” as in [37, 38]. Infor-
mally, an assumption can be thought of as a pair of a challenger and a threshold
function, where an adversary is able to “break” the assumption by causing the
challenger to accept an interaction with probability non-negligibly greater than
the given threshold.

Definition 3. For polynomial r(·), we call a pair (C, t(·)) an r(·)-round in-
tractability assumption if t(·) ∈ [0, 1] is a function and C is a (possibly ran-
domized) interactive algorithm taking input 1n and outputting either Accept or
Reject after at most r(n) rounds of external communication.

Given a probabilistic interactive algorithm A which interacts with C, we say
that A breaks the assumption (C, t(·)) with some non-negligible probability p(·)
if, for infinitely many n ∈ N: Pr [〈A, C〉(1n) = Accept] ≥ t(n) + p(n).

Conversely, we refer to C as secure if there exists no A which breaks C with
non-negligible probability.

Lastly, we call an assumption (C, t(·)) a bounded-round intractability as-
sumption if there exists some polynomial r(·) such that (C, t(·)) is an r(·)-round
intractability assumption.

The general notion of an intractability assumption captures any standard
cryptographic assumption, including our earlier definition of adaptive multi-
key unforgeability. Specifically, this would be the unbounded-round assumption

(C`(n)Π , 0) (using the challenger defined in Definition 2). Clearly, we cannot hope
to rule out tight reductions from, say, adaptive multi-key unforgeability to itself;
as such, we focus on ruling out only reductions to bounded-round assumptions,
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but we note that virtually all “standard” cryptographic assumptions fall into
this category. 7

2.3 Black-Box Reductions

We next formalize what it means to “base the security of one assumption (C1) on
another assumption (C2)”. Intuitively, this requires a proof that, if there exists
an adversary breaking C1, then there likewise must exist an adversary breaking
C2, which implies the desired result by contrapositive.

In practice, virtually all reductions are “black-box” reductions, where the
adversary breaking C2 is given by an efficient oracle-aided machine R which
interacts in a “black-box” manner with an adversary which breaks C1 and uses
the view of the interaction to break C2. Formally:

Definition 4. Given a probabilistic polynomial-time oracle-aided algorithm R,
we say that R is a black-box reduction for basing the hardness of as-
sumption (C1, t1(·)) on that of (C2, t2(·)) if, given any deterministic algorithm
A that breaks (C1, t1(·)) with non-negligible probability p1(·), RA breaks (C2, t2(·))
with non-negligible probability p2(·).

Furthermore, if on common input 1n RA queries A only on input 1n, we
refer to R as fixed-parameter.

We notably allow reductions to rewind their oracles (by sending a transcript
from earlier in the interaction) and even run multiple, potentially interleaved,
instances of their oracle.

The restriction to deterministic oracles A may seem strange at first, but we
stress that we can (and will) in fact simply model a randomized oracle by a
family of deterministic oracles (where each deterministic oracle represents some
fixed setting of the randomness). Using deterministic oracles enables us to reason
about cases where the reduction R can rewind or restart the oracle. We also
will restrict to fixed-parameter reductions: this is a restriction inherent to the
meta-reduction paradigm, yet it is a natural one (since, as far as we know, all
reductions in practice are indeed fixed-parameter).

Of course, we can apply the definition of a reduction to adaptive unforgeabil-
ity as defined above, using the natural formulation as an intractability assump-
tion:

Definition 5. We shall refer to a probabilistic polynomial-time oracle-aided al-
gorithm R as a fixed-parameter black-box reduction for basing adaptive
`(n)-key unforgeability of a MAC Π on the hardness of an assumption
(C, t(·)) if it is a fixed-parameter black-box reduction for basing the hardness of

assumption (C`(n)Π , 0) on that of (C, t(·)), where C`(n)Π is as given in Definition 2.

7 An example of a “non-standard” assumption that does not fit this definition would
be a non-falsifiable assumption, e.g., a “knowledge of exponent” assumption (see,
e.g., [17]).
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We refer to a probabilistic polynomial-time oracle-aided algorithm R as a
fixed-parameter black-box reduction for basing adaptively secure un-
forgeability of a MAC Π on the hardness of an assumption (C, t(·))
if there exists polynomial `(·) for which R is a fixed-parameter black-box reduc-
tion for basing adaptively secure `(n)-key unforgeability of Π on the hardness of
(C, t(·)).

2.4 Security Loss

Finally, we define a notion of the “inherent efficiency” of a reduction, or the
security loss, intuitively representing a worst-case ratio between the “work” (ex-
pected time) needed to break the assumption C2 (i.e., the underlying assumption)
and the “primitive” C1 (in our case, adaptive multi-key unforgeability). If the
primitive is significantly easier to break than the underlying assumption, this in-
dicates that the reduction is intuitively “less powerful” at guaranteeing security
for the primitive, which corresponds to a higher security loss.

Definition 6. Let R be a black-box reduction for basing the hardness of assump-
tion (C1, t1(·)) on that of (C2, t2(·)). Given any deterministic A, we define the
following, where τM(x) denotes the time taken by an algorithmM in experiment
x, rA denotes all random coins used by A and C1 in the experiment 〈A, C1〉, and
rR denotes all random coins used by A, C2, and R in the experiment 〈RA, C2〉:

– SuccessA(n) = PrrA [〈A, C1〉rA(1n) = Accept]− t1(n)
– SuccessRA(n) = PrrR [〈RA, C2〉rR(1n) = Accept]− t2(n)
– TimeA(n) = maxrA(τA([A ↔ C1]rA(1n)))
– TimeRA(n) = maxrR(τRA([RA ↔ C2]rR(1n))).

Then the security loss [32] of R is defined as:

λR(n) = maxA

(
SuccessA(n)

SuccessRA(n)

TimeRA(n)

TimeA(n)

)
If there exists polynomial p(·) for which λR(n) ≤ p(n) given sufficiently large

n ∈ N, we call R linear-preserving. If there exists a constant c for which
λR(n) ≤ c given sufficiently large n ∈ N, we call R tight.

3 Main Theorem

We present our main result, which rules out the possibility of basing the provable
security of a deterministic MAC on any “standard” (bounded-round) assumption
with a linear-preserving reduction:

Theorem 2. Let Π be a deterministic MAC. If there exists a fixed-parameter
black-box reduction R for basing adaptive multi-key unforgeability of Π on some
r(·)-round intractability assumption (C, t(·)) (for polynomial r(·)), then either:

(1) R is not a linear-preserving reduction, or
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(2) there exists a polynomial-time adversary B breaking the assumption (C, t(·)).

As we mentioned in the introduction, Theorem 2 can be generalized fairly
directly to apply as written to several other primitives besides simply determin-
istic MACs; however, as we focus on the case of MACs in this paper, we present
our result for deterministic MACs in full here and opt to refer the interested
reader to the full version of our paper for detailed discussion of its applications
to other primitives. Specifically, in the full version, we show that we can rule out
linear-preserving reductions from adaptively multi-key unforgeable deterministic
digital signature schemes to bounded-round assumptions, and that we can rule
out linear-preserving reductions from adaptive multi-key pseudorandomness of
a family of functions (i.e., adaptive multi-key PRFs) to bounded-round assump-
tions.

To prove Theorem 2, we first present the following crucial lemma, which we
prove in full in Section 4:

Lemma 1. Let Π be a deterministic MAC, and let (C, t(·)) be some r(·)-round
intractability assumption for polynomial r(·). If for some polynomial `(·) there
exists a fixed-parameter black-box reduction R for basing adaptive `(n)-key un-
forgeability of Π on the hardness of (C, t(·)), then either R’s security loss is at
least

λR(n) ≥
(

1− 1

2`(n)2

)
(
√
`(n)− (r(n) + 2))

for all sufficiently large n ∈ N, or there exists a polynomial-time adversary B
that breaks the assumption (C, t(·)).

Because p(·) in the definition of a linear-preserving reduction is an a priori
fixed polynomial, and in particular cannot depend on `(n), this lemma will prove
Theorem 2, as follows:

Proof. Let R be a reduction from adaptive multi-key unforgeability of Π to the
hardness of (C, t(·)). Assume for the sake of contradiction that Lemma 1 is true,
yet R is linear-preserving and (C, t(·)) is secure. Because R is linear-preserving,
there is some polynomial p(·) such that λR(n) ≤ p(n) for sufficiently large n.
Furthermore,R is by definition a reduction from adaptive `(n)-key unforgeability
for every polynomial `(n), including, say, `(n) = (2p(n)+r(n)+3)2, so by Lemma
1 we have:

λR(n) ≥
(

1− 1

2`(n)2

)
(
√
`(n)− (r(n) + 2)) ≥ 1

2
(2p(n) + 1) > p(n)

which is a clear contradiction. ut

3.1 Technical Overview

Next, we shall explain the methodology for the proof of Lemma 1 at a high level.
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The ideal adversary. We begin by constructing and investigating an “ideal”
adversary A. To summarize, A will first make q(n) random tag queries (where
q(n) is a polynomial to be determined later) to each of the `(n) instances of the
MAC Π, continue by opening all but one of the keys in a random order (while
also verifying that the challenger or R answered its queries consistently with the
opened keys), and lastly, if it received correct responses for the opened instances,
use the information gained from the queries for the remaining instance to attempt
to brute-force a forgery for that instance. (On the other hand, if verification fails,
A will “reject”, returning ⊥ instead of a forgery.)

In virtually all meta-reductions to date, the ideal adversary is able to per-
fectly brute-force the challenger’s secret information and break the primitive with
probability 1. Here, however, that is not the case; A is limited to a polynomial
number of tag queries (which is necessary for simulatability) and furthermore
has no way to publicly verify whether a certain key or forgery is correct. The
most A can do, in fact, is brute-force the set of all keys consistent with the tag
queries it makes for the unopened instance, pick one of those keys, and use it to
generate a forgery in the hopes that it will match with the key the challenger
has selected.

This is where the “key uniqueness” property discussed in the introduction
will first factor in. We show that, since the key picked by the adversary agrees
with the key picked by the challenger on all q(n) tag queries, then it must with
overwhelming probability also agree on a large fraction (1−2n/q(n)) of possible
messages. Hence, A will have a 1−2n/q(n) chance of producing a correct forgery
when it evaluates the Tag function using the key it extracts on a random message
m∗ (i.e., the message it eventually will randomly select for its forgery)—that is,
SuccessA(n) ≥ 1− 2n/q(n).

Before proceeding to discuss the meta-reduction, we need to address one final
technical issue with the ideal adversary. Namely, since A works by returning the
“next-message” function given a transcript of the interaction thus far, we need
to ensure that R must actually complete the full interaction with A in order
to cause A to accept and return a forgery, rather than potentially guessing a
“fake” accepting transcript for a later point in the interaction to “skip” or avoid
responding to certain queries from A. In particular, a reduction R that skips
key-opening queries would be extremely problematic in our analysis of the meta-
reduction later on, since the meta-reduction will rely on R’s responses to these
queries to properly emulate the ideal adversary A.

Unfortunately, it turns out thatA’s key-opening queries, since they convey no
information besides the instance to open, have low entropy and thus are easy to
predict (and skip) by R. To fix this, we introduce additional “dummy” queries—
specifically, random tag queries to instances whose keys have not yet been
opened—made after each of the key-opening queries. These serve the purpose
of increasing the entropy present in the key-opening phase of the transcript—
which guarantees that R must answer all `(n)− 1 of A’s key-opening queries to
successfully complete the interaction (unless it can correctly guess the random
input for the dummy query)—but are otherwise ignored.

15



The meta-reduction. In our discussion of A, we were able to bound SuccessA(n);
thus, we turn next to investigating SuccessRA(n). To do this, we construct a
meta-reduction B which runs R while attempting to efficiently emulate the in-
teraction between R and A. B will simulate instances of A by, exactly as before,
making q(n) random tag queries to each instance, opening the key for all but
one instance (in a random order and with the interleaved tag queries as above),
and checking R’s responses for consistency.

The key difference, of course, is that B cannot brute-force a forgery; instead,
for the unopened instance, B will attempt to extract a correct key from R by
rewinding the interaction to the key-opening queries and substituting the un-
opened instance for each other instance in turn. If R responds to any of the valid
queries with a key that matches with the tag queries for that instance, then B
will apply that key to a random message m∗ to generate a forgery. If B does not
receive a valid key in this fashion, then it will abort, returning Fail.

Notably, B will also have to ignore rewindings where, before returning its re-
sponse to the key-opening query, either R attempts to communicate externally
with C (which could change the state of the challenger if forwarded), R requests
a forgery from another instance of A (as this would require additional “nested”
rewinding which could grow exponentially), or R would rewind A (which pre-
cludes R returning a key); this will factor into the analysis of the failure proba-
bility later.

The main task in proving our lemma, then, reduces to that of bounding
Pr[〈RA, C〉 → Accept] − Pr[〈B, C〉 → Accept]. Intuitively, if we come up with
such a bound (call it p(n)), then, if SuccessRA is non-negligibly higher than
p(n)—that is, 〈RA, C〉 accepts with such a probability—then 〈B, C〉 will accept
with non-negligible probability, hence breaking C. Bounding this probability p(n)
is in fact quite non-trivial, as one cannot, say, näıvely apply earlier techniques for
meta-reduction analysis to the meta-reduction B. Intuitively, this is because we
no longer have a strong “uniqueness” property characteristic of meta-reductions
to date—that is, there is no longer a unique possible valid forgery B can ex-
tract from its rewinding. Not only does this make it difficult to guarantee that
A and B produce close distributions of forgeries, but, in conjunction with B’s
rewinding strategy, this makes analyzing the failure probability problematic for
more complex reasons. For example, consider a reduction R which might try
to rewind A and change its responses to queries in order to attempt to change
the forgery generated; it is straightforward to see that proof techniques such as
that of [35] immediately fail (due to a potentially unbounded number of nested
forgery requests) if R can theoretically expect to receive many different forgeries
by repeatedly rewinding the same instance.

A “hybrid” meta-reduction. We present a way to effectively separate dealing
with the issues of uniqueness and rewinding, namely by defining a “hybrid”
meta-reduction B′ which, while inefficient, is easy to compare to either A or B.

At a high level, we construct B′ so that it behaves identically to B as long as
there is only a single possible forgery to return, and so that it behaves identically
to A whenever rewinding succeeds. More specifically, it acts identically to B
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until after rewinding finishes, then, if it obtains a forgery, brute-forces one in the
same manner as A. Clearly, B′ can only diverge from B if the forgery B extracts
is different from the one B′ brute-forces. A straightforward application of our
earlier “key uniqueness” lemma shows that this happens with at most 2n/q(n)
probability per forgery returned by B′.

On the other hand, B′ will always return the same forgery as A if it returns
a forgery, but we still need to determine the probability with which B′ fails to
return a forgery due to unsuccessful rewinding. Luckily, since B′ now does have
the uniqueness property, we can proceed along the same lines as in [35] and
bound the rewinding failure probability by effectively bounding the probability
that a randomly chosen ordering of key-opening queries can result in rewinding
failure (while assuming that the rest of the randomness in the interaction is
fixed arbitrarily, as, if the bound applies to arbitrarily fixed randomness, it must
likewise apply when taken over all possible assignments of the same randomness).

The intuition behind the argument is that, if we assume a bound of W (n)
on the number of times R will rewind past when B′ generates the ordering π of
the key-opening queries (and note that, due to uniqueness and careful construc-
tion, W (n) will also be a bound on the number of distinct forgery requests R
can make, as we show that any others will be internally simulatable and thus
“pointless”), every sequence π that causes B′ to fail must do so because all of its
rewindings fail, and the rewindings specifically correspond to other sequences π
that can occur. Furthermore, if a rewinding fails due to R responding to a query
incorrectly (as opposed to, e.g., external communication or a nested forgery re-
quest), then this rewinding corresponds to a “good” sequence where A and B′
return ⊥ (and emulation is successful). So, if some sequence π contains more
than W (n) + r(n) + 1 queries at which rewindings of other sequences fail, then,
since we can have at most W (n) (unique) forgery requests and r(n) rounds of ex-
ternal communication, at least one query must fail due to an incorrect response,
which shows that π is a “good” sequence. A counting argument then allows us
to achieve a bound of (W (n) + r(n) + 1)/`(n) on the failure probability of B′
each time it performs rewinding, or W (n)(W (n) + r(n) + 1)/`(n) overall failure
probability.

Bounding security loss. Combining all of the facts so far, we know that the
above quantity is equivalent to the probability with which A and B′ diverge,
while the probability with which B′ and B diverge is 2nW (n)/q(n) (i.e., the
probability that uniqueness fails for at least one of the W (n) forgeries). Thus,
SuccessRA(n), as we have argued, is bounded above by the sum of these, which
(taking q(n) sufficiently large) is at most W (n)(W (n) + r(n) + 2)/`(n). Further-
more, TimeRA(n)/TimeA(n) ≥ W (n) by our assumption that in the worst case
R runs W (n) instances of A. Lastly, SuccessA(n) ≥ 1 − 2n/q(n) as we noted
earlier.

Hence, either (C, t(·)) is insecure (and our bound for SuccessRA(n) does not
apply), or, by the above facts and case analysis (to deal with the possibility that
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W (n) might be arbitrarily large), we obtain the result:

λR(n) ≥
(

1− 1

2`(n)2

)
(
√
`(n)− (r(n) + 2))

4 Proof of Lemma 1

We continue by formally proving Lemma 1. Assume a deterministic MAC Π, a
reduction R, and an assumption (C, t(·)) as defined in the statement of Lemma
1. Consider an ideal but inefficient adversary A, which technically is given by a
random selection from a family of inefficient adversaries A ← {AO} (where O is
a uniformly chosen random function) defined as in Figures 1 and 2; also consider
an efficient meta-reduction B defined as in Figures 3 and 4.

Before analyzing the properties of A and B, we verify that B runs efficiently
through the following claim, proven in the full version:

Claim 1 B(1n) runs in time polynomial in n.

4.1 Analyzing the Ideal Adversary

In order to establish a bound to the security loss λR(n), we shall determine
bounds for SuccessA(n) and SuccessRA(n); time analysis will follow naturally.

We begin by analyzing the probability SuccessA(n). This is fairly straight-
forward, following from the critical “key uniqueness” lemma which states that
two keys agreeing on all of the q(n) tag queries made by A are overwhelmingly
likely to agree on “most” messages m. Hence, the key chosen by A, even if not
the same as that chosen by the challenger, is by definition consistent with it on
all of the tag queries and thus should agree on a large fraction of the possible
forgery inputs m∗. Formally:

Claim 2 There exists a negligible function ν(·) such that:

SuccessA(n) ≥ 1− 2n

q(n)
− ν(n)

Proof. The claim follows readily from the following lemma (and the fact that
there is only a negligible chance that A generates an invalid m∗):

Lemma 2. There exists negligible ν(·) such that, for any family of functions U =
{fk : Xn → Yn}k∈{0,1}n,n∈N, except with probability ν(n) over q(n) uniformly

random queries (x1,j∗ , . . . , xq(n),j∗)← (Xn)q(n), for any k1, k2 ∈ ({0, 1}n)2 such
that fk1(xi,j∗) = fk2(xi,j∗) for all i ∈ [q(n)], it is true that:

Pr [x∗ ← Xn : fk1(x∗) = fk2(x∗)] ≥ 1− 2n

q(n)
(1)
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– On receiving an initialization message (Init, s), let m1,1 denote a uniformly
random message inMn generated by random coins resulting from applying
the oracle O to the input (s, 1, 1, 1), and send (Query, 1,m1,1).

– On receiving a transcript of the form

τ = (q1,1, q1,2, . . . , q1,`(n), q2,1, . . . , qi,j)

where either i < q(n) or i = q(n) and j < `(n), such that each qu,v is of the
form ((Query, v,mu,v), σu,v), do the following:
• Let j′ = (j mod `(n)) + 1.
• Let i′ = i+ 1 if j′ = 1 and i′ = i otherwise.
• Let mi′,j′ be a uniformly random message inMn generated by random

coins resulting from applying the oracle O to the input (s, i′, j′, 1).
• Return (Query, j′,mi′,j′).

– On receiving a transcript of the form τ = τ1||τ2, where

τ1 = (q1,1, q1,2, . . . , q1,`(n), q2,1, . . . , qq(n),`(n))

and where each qu,v is of the form ((Query, v,mu,v), σu,v), do the following:
• Let c be the number of Open queries that have so far appeared in τ2.
• Let π = (π1, . . . , π`(n)) be a uniformly random permutation of [`(n)],

generated by random coins resulting from applying O to the input τ1.
• If τ2 is empty or ends with messages of the form ((Open, j), kj), then:
∗ Generate ωc+1 as a uniformly random message in Mn generated

by random coins resulting from applying the oracle O to the input
τ1||(s, q(n) + 1, c + 1,Valid(O, τ∗, s)) and return (Query, q, ωc+1),
where q is the lexicographically first instance for which τ2 does not
contain an Open query.

• Otherwise, if c < `(n)− 1 and the last part of τ2 contains messages of
the form ((Query, q, ωc+1), ·), then return (Open, πc+1).

• Lastly, if τ2 ends with ((Query, q, ω`(n)), ·) and c = `(n) − 1, return a
forgery as follows:

∗ If Valid(O, τ, s) = 0, return ⊥.
∗ Otherwise, use exhaustive search to find the set K∗ of all keys
k∗ such that, given j∗ = π`(n) as determined above, and for each
i ∈ [q(n)], Verk∗(mi,j∗ , σi,j∗) = Accept. If K∗ is empty then return
⊥.

∗ Lastly, using random coins generated by applying O to a new in-
put τ1||(s, q(n) + 2, 0, 1), generate a uniformly random message m∗

(which will be distinct from all mi,j∗ with all-but-negligible proba-
bility) and take the lexicographically first element k∗ of K∗. Return
the forgery (m∗,Tagk∗(m

∗), j∗).

Fig. 1: Formal description of the “ideal” adversary AO (1).

Proof. For any key pair (k1, k2), let

Sk1,k2 , {x∗ ∈ Xn : fk1(x∗) = fk2(x∗)}
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Let the predicate Valid(O, τ, s) be defined as follows:

– Parse τ as τ1||τ2, where

τ1 = (q1,1, q1,2, . . . , q1,`(n), q2,1, . . . , qq(n),`(n))

such that each qu,v is of the form ((Query, v,mu,v), σu,v). If τ cannot be
parsed as such, return 0.

– Let π = (π1, . . . , π`(n)) be a permutation of [`(n)] generated in the same
manner as in A, using random coins generated by applying O to the input
τ1.

– Parse
τ2 = (q∗1 , q

∗
2 , . . . , q

∗
c [, q∗c+1])

such that each q∗i is of the form ((Query, qi, ωi), ·, (Open, πi), kπi) and q∗c+1,
if present, is of the form ((Query, qi, ωc+1), ·). If τ2 cannot be parsed as such,
or if c > `(n)− 1, return 0.

– Verify that each qi in τ2 is equal to the lexicographically first instance
q ∈ [`(n)] such that q does not appear in an Open query earlier in τ2. If not
true, return 0.

– Verify that, for all i ∈ [q(n)] and all j ∈ {π1, . . . , πc}, Verkj (mi,j , σi,j) =
Accept. (Do not verify the responses to queries ωi in τ2.) If not true, return
0.

– Verify that every mi,j parsed from the transcript is correctly generated by
random coins resulting from applying O to the input (s, i, j, 1) (for i ∈
[q(n)]) and that each ωj is correctly generated by random coins resulting
from applying O to the input τ1||(s, q(n) + 1, j, 1). If not true, return 0.

– Otherwise, return 1.

Fig. 2: Formal description of the “ideal” adversary AO (2).

be the set of inputs where the two keys’ outputs are identical.

So, if (1) is false for some pair (k1, k2), i.e., |Sk1,k2 | ≤ |Xn|
(

1− 2n
q(n)

)
; then

the probability over {xi,j∗} that both keys agree in all q(n) queries to f made
by A, or equivalently the probability that q(n) uniformly random queries {xi,j∗}
lie in Sk1,k2 , is bounded above by:(

1− 2n

q(n)

)q(n)
=

((
1− 2n

q(n)

)q(n)/2n)2n

<

(
1

e

)2n

= exp(−2n)

There exist no more than (2n)2 = 22n possible key pairs (k1, k2) ∈ ({0, 1}n)2,
each of which by the above must either have the property (1) or be such that

Pr
[
(x1,j∗ , . . . , xq(n),j∗)← (Xn)q(n) : fk1(xi,j∗) = fk2(xi,j∗)∀i ∈ [q(n)]

]
= Pr

[
(x1,j∗ , . . . , xq(n),j∗)← (Xn)q(n) : xi,j∗ ∈ Sk1,k2∀i ∈ [q(n)]

]
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≤ exp(−2n)

Then the probability over {xi,j∗} that some key pair exists which does not have
property (1) yet does have fk1(xi,j∗) = fk2(xi,j∗) for all xi,j∗ is, by a union
bound, at most:

Pr
[
(x1,j∗ , . . . , xq(n),j∗)← (Xn)q(n) : ∃(k1, k2) ∈ ({0, 1}n)2 :

xi,j∗ ∈ Sk1,k2∀i ∈ [q(n)] and |Sk1,k2 | ≤ |Xn|
(

1− 2n

q(n)

)]
≤

∑
(k1,k2)∈({0,1}n)2

1|Sk1,k2
|≤|Xn|(1−2n/q(n))Pr

[
(x1,j∗ , . . . , xq(n),j∗)← (Xn)q(n) :

xi,j∗ ∈ Sk1,k2∀i ∈ [q(n)]]

< 22ne−2n = (2/e)2n

which is clearly negligible in n. ut

To prove the claim, we consider the above lemma, letting fk be the determin-
istic function Tagk. When interacting with an honest challenger, the responses
to tag queries for each instance will always be consistent with the respective
keys, and so A will never return ⊥ due to the Valid predicate failing or K∗ be-
ing empty. Furthermore, for the instance π`(n) for which A outputs a forgery,
it is overwhelmingly likely (with probability 1 − ν(n)), by Lemma 2, that all
keys in the set K∗ recovered by A will agree with the correct (challenger’s) key
k′ for that instance on a large (1 − 2n/q(n)) fraction of random messages m∗.
Specifically, this means that, given any choice of key k∗ from K∗, A will pro-
duce a correct forgery (m∗, σ∗) (i.e., such that σ∗ = Tagk′(m

∗), or equivalently
Verk′(m

∗, σ∗) = Accept) given random m∗ with probability at least 1− 2n/q(n).
Thus, A succeeds in the interaction in the event that Lemma 2 does not fail

(i.e., property (1) holds for every key pair) and that A chooses a “good” m∗ (i.e.,
one which does not repeat a previous query and produces the same tag under k∗

as under the challenger’s key k′) given its choice of k∗ ← K∗; the claim follows
from the union bound over these events. ut

We require one additional claim concerning the adversary, which states that
the reduction R must have actually responded to all `(n)−1 key-opening queries
to have a non-negligible chance of receiving a forgery. This will be important
later, to ensure that R cannot “cheat” by sending a fake transcript while inter-
acting with B.

Claim 3 There exists a negligible function ν(·) such that, for all n ∈ N, the

probability, over all randomness in the experiment [RAO ↔ C](1n), that some
instance of A returns a forgery (i.e., something besides ⊥) to R without having
received responses to all `(n)− 1 (Open, i) (key-opening) queries from R, is less
than ν(n).
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Proof. We demonstrate that, if A returns a forgery (i.e., not ⊥) to R after R
responds to strictly fewer than `(n) − 1 distinct key-opening queries from A,
then this requires R to guess a uniformly random message generated using the
output of A’s random oracle O on a new input, which can happen with at
most probability p(n)/|Mn| for some polynomial p(·) due to O being uniformly
random.

Assume that R responds to fewer than `(n) − 1 key-opening queries. Then
there exists some i ∈ [`(n)− 1] for which R does not send A a partial transcript
ending with ((Open, πi), kπi) (i.e., a response to A’s ith key-opening query). By
the definition of the Valid predicate, in order forR to receive a final message from
A that contains a forgery (and not ⊥), R must send to A a complete transcript

τ = τ1||(. . . , (Open, πi), kπi
, (Query, q, ωi+1), . . .)

where ωi+1 is a uniformly random message generated by random coins resulting
from applying O to τ1||(s, q(n) + 1, i+ 1, 1).

By construction of A and the assumption that R does not send A a partial
transcript ending with ((Open, πi), kπi

), however, R can never have received ei-
ther ωi+1 or any message depending on the correct input τ1||(s, q(n) +1, i+1, 1)
to O. Hence, since ωi+1 is uniformly distributed and independent of any other
message, we can conclude that R will send the correct ωi+1 in its final transcript
with at most probability 1/|Mn| (i.e., by guessing a random message correctly).
While R can attempt to retrieve a forgery multiple times, it is restricted to
polynomial time, so the probability with which it can guess ωi+1 (which is nec-
essary to receive a forgery from A) is bounded above by ν(n) = p(n)/|Mn| for
polynomial p(·), which is negligible because we assume the message space to be
super-polynomial (asymptotically greater than any polynomial) in n. ut

4.2 Analyzing the Meta-Reduction

The remaining part of the proof is devoted to analyzing the success probability
SuccessRA(n). This, as previously discussed, involves investigating the probabil-
ity with which the meta-reduction B and the ideal adversary RA diverge while
interacting with C. We formalize this with the following claim:

Claim 4 If (C, t(·)) is a secure assumption and we can bound

Pr[〈RA, C〉 → Accept]− Pr[〈B, C〉 → Accept] ≤ p(n)

then there is a negligible ε(·) such that SuccessRA(n) ≤ p(n) + ε(n).

Proof. Since B is efficient and (C, t(·)) is secure, there is a negligible ε(·) such
that Pr[〈B, C〉 → Accept] ≤ t(n) + ε(n).

So, given Pr[〈RA, C〉 → Accept] − Pr[〈B, C〉 → Accept] ≤ p(n), then we
conclude that Pr[〈RA, C〉 → Accept] ≤ t(n) + p(n) + ε(n), and thus:

SuccessRA(n) = Pr[〈RA, C〉 → Accept]− t(n) ≤ p(n) + ε(n)

ut
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– Set initial view v ← ⊥ and set J ← 1. Execute R, updating the current
view v according to the following rules.

– WhenR begins a new instance ofA with some message (Init, s), label this in-
stance as instance J . Generate and store `(n)q(n) uniformly random queries
m1
J = (m1

J,1,1, . . . ,m
1
J,q(n),`(n)). Also initialize a variable kJ ← {}. Lastly,

respond with τ∗J = (Query, 1,m1
J,1,1) and increment J .

– When R attempts to communicate externally with C, forward the message,
return C’s response to R, and update v accordingly.

– For any i ∈ [q(n)], when R sends to some instance I of A a transcript of
the form

τ = (q1,1, q1,2, . . . , q1,`(n), q2,1, . . . , qi,j)

where either i < q(n) or i = q(n) and j < `(n), such that each qu,v is of the
form ((Query, v,mu,v), σu,v), do the following:
• Let j′ = (j mod `(n)) + 1.
• Let i′ = i+ 1 if j′ = 1 and i′ = i otherwise.
• Return the response (Query, j′,m1

I,i′,j′).
– When R sends to some instance I of A a transcript of the form τ = τ1||τ2,

where
τ1 = (q1,1, q1,2, . . . , q1,`(n), q2,1, . . . , qq(n),`(n))

and where each qu,v is of the form ((Query, v,mu,v), σu,v), do the following:
• Let c be the number of Open messages appearing in τ2 so far.
• If there is some tuple (τ1, I, π,ω,m

∗) stored, let π, ω, and m∗ be
as stored in the tuple. Otherwise, let π = (π1, . . . , π`(n)) be a uni-
formly random permutation of [`(n)], generate 2`(n) additional mes-
sages ω = (ω0

1 , . . . , ω
0
`(n), ω

1
1 , . . . , ω

1
`(n)) and a target forgery m∗, and

store the tuple (τ1, I, π,ω,m
∗).

• Consider the suffix transcript τ2. If τ2 is empty or ends with messages of
the form ((Open, j), kj), then return (Query, q, ω

Valid(τ,I)
c+1 ), where q is the

lexicographically first instance for which τ2 does not contain an Open
query.

• Otherwise, if c < `(n) − 1 and τ2 ends with messages of the form
((Query, q, ωc+1), ·), then return (Open, πc+1).

• Otherwise, if τ2 ends with ((Query, q, ω`(n)), ·) and c = `(n)−1, generate
a forgery as follows:

∗ If Valid(τ, I) = 0, then return ⊥.
∗ Otherwise, run the procedure Rewind below for the instance I.
∗ If, after running Rewind, there is a stored key kI , then return the

forgery (m∗,TagkI (m∗), π`(n)) and continue executing R as above.
Otherwise, abort the entire execution of B and return Fail.

Let the predicate Valid(τ, I) be defined as follows:

– Parse τ as τ1||τ2, where τ1 = (q1,0, q1,1, . . . , q1,`(n)−1, q2,0, . . . , qq(n),`(n)) such
that each qu,v is of the form ((Query, v,mu,v), σu,v). If τ cannot be parsed
as such, return 0.

Fig. 3: Formal description of the meta-reduction B (1).
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– If there is a stored tuple (τ1, I, π,ω,m
∗) then set π = (π1, . . . , π`(n)) equal

to the third element of this tuple and set ω = (ω0
1 , . . . , ω

0
`(n), ω

1
1 , . . . , ω

1
`(n))

equal to the fourth element. If there is no such tuple then return 0.
– Parse τ2 = (q∗1 , q

∗
2 , . . . , q

∗
c [, q∗c+1]) such that each q∗i is of the form

((Query, qi, ωi), ·, (Open, πi), kπi) and q∗c+1, if present, is of the form
((Query, qi, ωc+1), ·). If τ2 cannot be parsed as such, or if c > `(n) − 1,
return 0.

– Verify that each qi in τ2 is equal to the lexicographically first instance
q ∈ [`(n)] such that q does not appear in an Open query earlier in τ2. If not
true, return 0.

– Verify that, for all i ∈ [q(n)] and all j ∈ {π1, . . . , πc}, Verkj (mi,j , σi,j) =
Accept. (Do not verify the responses to queries ωi in τ2.) If not true, return
0.

– Verify that every mi,j parsed from the transcript τ1 is equal to the stored
m1
I,i,j , and that every ωj parsed from τ2 is equal to the respective ω1

j . If
not, then return 0. Otherwise, return 1.

Rewind procedure:

– Given instance I, for j ∈ [`(n)] let V j denote the view immediately before
the query (ωπj , (Open, πj)) for instance I (i.e., the query corresponding to

the opening of the jth instance after the order of instances π to open is
randomized).

– For j ∈ [`(n)], “rewind” the view to V j as follows: Let J ′ ← J , let π′

be identical to π except with π`(n) and πj swapped (i.e., π′j = π`(n) and
π′`(n) = πj), and begin executing R from the view V ′ ← V j as in the main
routine, with the following exceptions:

• Replace any instances of π with π′ (including in Valid).
• When R begins a new instance of A, label this instance as instance J ′

and increment J ′.
• When R attempts to communicate externally with C or “rewind” the

current instance of A by sending a message corresponding to a point
in the interaction before V j , abort the rewinding and continue to the
next repetition.

• When R sends an end message for a valid instance I ′ 6= I of A (i.e., a
transcript τ such that A’s next message would be a forgery (m∗, σ∗) for
instance I ′), abort the rewinding and continue to the next repetition.
(If instead A’s next message would be ⊥ because Valid(τ, I) = 0, return
⊥.)

• If v′ ever contains a message whose transcript contains a response kI
to any query for (Open, π`(n)) (i.e., (Open, π′k)), then, if it is the case
that VerkI (mI,i,π`(n)

, σI,i,π`(n)
) = Accept for every i ∈ [q(n)] (letting m

and σ variables be defined as in the Valid predicate), store kI and end
the Rewind procedure (i.e., return to the outer execution); if kI is not
a correct key, store nothing to kI and continue to the next repetition.

Fig. 4: Formal description of the meta-reduction B (2).
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So it suffices to bound Pr[〈RA, C〉 → Accept] − Pr[〈B, C〉 → Accept]. In or-
der to do so, we begin by defining an inefficient “hybrid” meta-reduction B′
which acts identically to B, with the sole exception that, during the Rewind
procedure, if B′ encounters a response kI to a query for (Open, π`(n)) (i.e., a
key for the instance for which B′ must produce a forgery), and if the recov-
ered kI is valid (i.e., VerkI (mI,i,π`(n)

, σI,i,π`(n)
) = Accept for every i ∈ [q(n)]),

then B′ will first determine, using brute force, whether there are any other
keys k′ such that Verk′(mI,i,π`(n)

, σI,i,π`(n)
) = Accept for every i ∈ [q(n)] but

Tagk′(m
∗
I) 6= TagkI (m∗I). If not (i.e., either kI is the only such key or there is a

unique correct forgery (m∗I , σ
∗
I )), then B′ stores kI , identically to B; otherwise,

B′ stores the lexicographically first such key k′ and uses that key instead of kI
to produce the forgery (identically to A).

For ease of notation, let us further define some experiments and variables:

– Let Real(1n) denote the experiment [B ↔ C](1n), and Output[Real(1n)] the
output distribution 〈B, C〉(1n). Let Hyb(1n) and Output[Hyb(1n)] be defined
analogously for the “hybrid” experiment [B′ ↔ C](1n), and lastly Ideal(1n)
and Output[Ideal(1n)] for the “ideal” experiment [RA ↔ C](1n).

– For any such experiment, let {mI , πI} define the randomness used to gener-
ate, respectively, all query variables (m(·) or ω(·)) and the permutation π for
an instance I (real or simulated) of A (including the case where a query or
permutation might be regenerated after, e.g., rewinding). Let Oext denote all
other randomness. Furthermore, let M(n) be an upper bound to the number
of instances of A started by R.

– For instance, an experiment Real{mI ,πI}I∈[M(n)]\J ,Oext
(1n) (which we hence-

forth abbreviate as Real{mI ,πI}−J ,Oext
(1n)) would indicate the interaction

between B and C with all randomness fixed except for the variables m and
π for a particular instance J of A (simulated by B).

– Naturally, an experiment denoted by, e.g., Real{mI ,πI}I∈[M(n)],Oext
(1n), has

all randomness fixed and hence is deterministic.

Let Unique({mI , πI}I∈[M(n)],Oext) be the “key-uniqueness” predicate on the
randomness of Real (or Ideal) which is true if, during execution of the experiment
Real{mI ,πI}I∈[M(n)],Oext

(1n), whenever B returns a forgery (m∗, σ∗), it is the case
that σ∗ = Tagk∗(m

∗), where k∗ is the lexicographically first key k such that
Verk(mI,i,πI,j

, σI,i,πI,j
) = Accept for all i ∈ [q(n)]. That is, Unique is true when-

ever, given the randomness of an experiment, B (if rewinding succeeds) returns
the same forgery as A would in the Ideal experiment. The occurrence of Unique
is hence fully determined by the randomness ({mI , πI}I∈[M(n)] and Oext) that
fully determines the execution of Real or Ideal.

We must also deal with the fact that R may rewind A. Let W (n) be a
polynomial upper bound to the number of times that R causes A to generate
a permutation π (including by rewinding) in the experiment Ideal(1n), and note
that, trivially, W (n) ≥M(n).

Now, with setup completed, we can proceed in two major steps. Our goal is
to bound

|Pr[Output[Real(1n)] = Accept]− Pr[Output[Ideal(1n)] = Accept]|
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which we can do by bounding

|Pr[Output[Real(1n)] = Accept]− Pr[Output[Hyb(1n)] = Accept]|

and

|Pr[Output[Hyb(1n)] = Accept]− Pr[Output[Ideal(1n)] = Accept]|

4.3 Comparing the Real and Hybrid Experiments

We begin with the first of these quantities, which is relatively straightforward to
bound. Informally, whenever Unique holds (the probability of which is dictated
by Lemma 2), B and B′ behave identically by construction. The complete proof
is given in the full version.

Claim 5 There exists negligible ν(·) such that, for all n ∈ N:

|Pr[Output[Real(1n)] = Accept]− Pr[Output[Hyb(1n)] = Accept]|

<
2nW (n)

q(n)
+ ν(n)

taken over the randomness of {mI , πI}I∈[M(n)] and Oext.

4.4 Comparing the Hybrid and Ideal Experiments

To relate the hybrid B′ to the “ideal” interaction with RA, we next present
the following claim, which informally holds because, by construction, B′ behaves
identically to A as long as rewinding does not fail (in which case it would return
Fail). The complete proof is again given in the full version.

Claim 6

|Pr[Output[Hyb(1n)] = Accept]− Pr[Output[Ideal(1n)] = Accept]|

≤ Pr[Output[Hyb(1n)] = Fail]

taken over the randomness of {mI , πI}I∈[M(n)] and Oext.

4.5 Bounding the Hybrid’s Failure Probability

So all that remains is to investigate the probability of Hyb outputting Fail; to do
this we can make a critical observation about rewinding in the context of our
construction. Formally, we prove the following:

Proposition 1. There exists a negligible function ε(·) such that, for all n ∈ N,
taken over the randomness of {mI , πI}I∈[M(n)] and Oext:

Pr[Output[Hyb(1n)] = Fail] ≤W (n)

(
W (n) + r(n) + 1

`(n)

)
+ ε(n)
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Proof. First, we show that without loss of generality R can never rewind except
from a point after π is generated to a point before π is generated; intuitively,
this is because all of A’s queries to R are dependent only on (1) the permutation
π and (2) the validity of R’s responses, and as such any rewinding that does not
result in π being regenerated can in fact be internally simulated by R. Formally,
we state the following claim, which we prove in the full version:

Claim 7 Given any R that rewinds any instance of A either (1) from a point
before π is generated or (2) to a point after π is generated, there exists an R′
with identical success probability that does not perform such rewinding.

Hence, we assume without loss of generality that R sends at most W (n) “end
messages” (i.e., forgery requests) requiring rewinding, as π is by assumption gen-
erated no more than W (n) times and the responses to any further end messages
are effectively simulatable by R. We disregard end messages sent for instances
for which R has not answered all `(n) − 1 key opening queries, since, with all-
but-negligible probability, A or B′ can directly respond to these with ⊥ (as Valid
will evaluate to 0 unless R guesses a random and unknown ωi correctly).

At this point, we have shown that our hybrid experiment gives us a setting
with minimal rewinding and guaranteed key uniqueness, much like the setting
discussed in [35] for the case of unique signatures. Hence, we can leverage this ob-
servation to prove the following claim, analogous to the key “rewinding lemma”
therein. Consider the following for any possible execution Hyb{mI ,πI}−J ,mJ ,Oext

(
1n) (i.e., for any fixed setting of all randomness aside from πJ), and notice that,
since it applies to arbitrarily fixed randomness, it must thus apply over all pos-
sible randomness of the experiment Hyb(1n):

Claim 8 Given any experiment Hyb{mI ,πI}−J ,mJ ,Oext
(1n), the probability, over

the uniformly chosen permutation πJ , that the simulated instance J will return
Fail when rewinding any end message, is, for all n ∈ N, at most

W (n) + r(n) + 1

`(n)

The claim is nearly identical to its analogue in [35], but for completeness we
provide a proof in the full version of our paper. We can conclude as desired that
the probability of any forgery request causing B′ to return Fail in the experiment
Hyb is at most

W (n)

(
W (n) + r(n) + 1

`(n)

)
+ ε(n)

by combining Claim 8 (taken over all possible assignments of the fixed random-
ness) with the union bound over our bound of W (n) possible (unique) forgery
requests for which R has answered all key-opening queries. For any requests for
which this is not the case, we know by Claim 3 that the probability of such
requests causing B′ to return anything besides ⊥ is negligible, so, since R is
polynomial-time, these requests add at most a negligible ε(n) to the probability
of Hyb returning Fail. ut
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4.6 Bounding the Security Loss

Finally, we must translate this bound on the failure probability of B′ into a
bound on the security loss of the reduction R. As the argument is fairly similar
to that of [35], we defer the complete argument to the full version of our paper;
to conclude, we derive that, if (C, t(·)) is secure, then:

λR(n) ≥
(

1− 1

2`(n)2

)
(
√
`(n)− (r(n) + 2))

which finishes the proof of Lemma 1.
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