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Abstract. Proofs of partial knowledge demonstrate the possession of
certain subsets of witnesses for a given collection of statements x1, . . . , xn.
Cramer, Damg̊ard, and Schoenmakers (CDS), built proofs of partial
knowledge, given “atomic” protocols for individual statements xi, by
having the prover randomly secret share the verifier’s challenge and
using the shares as challenges for the atomic protocols. This simple and
highly-influential transformation has been used in numerous applications,
ranging from anonymous credentials to ring signatures.
We consider what happens if, instead of using the shares directly as
challenges, the prover first hashes them. We show that this elementary
enhancement can result in significant benefits:

• the proof contains a single atomic transcript per statement xi,
• it suffices that the atomic protocols are κ-special sound for κ ≥ 2,
• when compiled to a signature scheme using the Fiat-Shamir heuristic,

its unforgeability can be proved in the non-programmable random
oracle model.

None of the above features is satisfied by the CDS transformation.
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1 Introduction

The focus of this paper is three-move public-coin proof systems. In such protocols,
a prover sends an initial message, a, to the verifier who answers back with a
random challenge, e. The prover finally replies with z, based on which the verifier
accepts or rejects the proof. Σ-protocols [?] are a special class of 3PC protocols
that have been used as building blocks in a wide variety of applications, and
have been the subject of intensive study.

One property that makes a Σ-protocol easy to work with is the so-called
2-special soundness: given any pair of “colliding” transcripts, (a, e, z) and (a, e′, z′)
for e 6= e′, one can efficiently extract a witness w for the instance x being proved.



The zero-knowledge property is exhibited using a specific type of simulator, which
takes x and e as input, and outputs a and z that form an accepting transcript.
Being public-coin, with a uniformly chosen challenge sent by the verifier, the
protocol can be made non-interactive using the Fiat-Shamir heuristic [?], where
the prover generates the challenge e on its own by applying a hash function
modeled as a random oracle to the initial message a.

Several techniques for efficient composition of Σ-protocols can be found in the
literature. Among them, the technique by Cramer, Damg̊ard, and Schoenmakers
(CDS for short) is the most popular and well-studied [?]. In its simplest form,
the CDS technique is used for proving the disjunction of n statements x1, . . . , xn,
convincing the verifier that the prover knows a witness w for at least one of the
statements xi. To this end, the prover shares a given challenge e into challenges
e1, . . . , en under the constraint that e = e1⊕ · · ·⊕ en and uses ei as the challenge
in an individual run of the Σ-protocol for statement xi.

Since the prover can choose in advance all but one shared challenge ei∗ for
which wi∗ is known, it may run the simulator on (xi, ei) for all i 6= i∗ and the
prescribed prover algorithm on (xi∗ , wi∗). This enables the prover to complete
the protocol given a witness for at least one out of n instances. If the atomic
protocols are 2-special sound, the compound protocol is 2-special sound as well.

The way in which the verifier challenge is secret-shared can be generalized
to implement any composition predicate that is efficiently computable by a
monotone span program [?]. Since the compound protocol remains a Σ-protocol,
it can also be made non-interactive via the Fiat-Shamir heuristic. While security
is proved in the random oracle model, it does not necessitate trusted setup which
is often required by efficient non-interactive proofs.

1.1 Our Contribution

We propose a simple enhancement to the CDS composition method and show
that it results in several desirable features. In simple terms, the modification can
be described as follows:

“Hash each share before using it as a challenge.”

As simple as it appears to be, this modification enjoys significant benefits over the
original CDS transformation: (1) in computation and communication efficiency,
(2) in allowing a wider variety of choices for the underlying atomic protocols, and
(3) in the tightness of the analysis in the random oracle model. We now elaborate
on each of these benefits separately.

Recycling of transcripts for repeated statements. In the CDS transformation, the
transcript of the compound protocol contains one instance of the atomic protocol
for each occurrence of a statement xi in the formula or monotone span program.
In contrast, our proposed transformation allows to “recycle” transcripts of atomic
protocols and let them have a single appearance per xi. This may result in savings
in prover computation and communication, whenever base statements xi occur
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repeatedly, especially in cases where the monotone span program describing the
compound statement cannot be simplified to have few occurrences of xi.

Consider for example the following compound statement, described in dis-
junctive normal form: (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x3 ∧ x4). Notice that in this case
the instance x1 appears in two clauses (and so does x3). When applying the
CDS transformation, a prover (wishing to protect w1 from leaking) must run
independent executions of the atomic Σ-protocol for each appearance of x1 in the
formula. Otherwise, in case that the initial message a for proving x1 is shared by
two transcripts (a1, e1, z1) and (a1, e

′
1, z
′
1), it may be the case that e1 6= e′1 which

would yield a colliding pair of transcripts, enabling, even an honest verifier, to
extract the witness w1 for x1. In some cases one may be able to find an equivalent
formula with fewer occurrences of specific variables. However, performing such
simplifications in general is a non-trivial and potentially error-prone process.
Furthermore, in some cases it may simply be not possible. Indeed, a recent
implementation of compound statements [?] is aware of such issues and takes
explicit care to refrain from merging the initial messages for the same statements
in the formula. Their compiler halts when a repeated statement is detected and
let the programmer decide what to do. Such issues were also explicitly considered
in the original CDS protocol. When a share of a challenge exceeds the challenge
space size, CDS explicitly require to repeat the atomic protocol for the same
instance so that the joint challenge space covers the maximum length of the
shared challenges.

By applying a hash function to the secret-shared challenges in all occurrences of
xi we compress and fit the challenge to the original challenge space size. Assuming
that the hash function is modeled as a random oracle, soundness is guaranteed
by the fact that hashed challenges are randomly and uniformly distributed. This
allows us to run the atomic proof for a given instance xi only once, independently
of how many times it appears in the compound formula, hence simplifies the
protocol. Furthermore, it improves both the running time of the prover and verifier,
and reduces the size of the proof. Consider, for instance, the compound statement
(x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x3 ∧ x4) again. The CDS+FS combination would require
six transcripts: one per literal. Ours leads to a proof with simply four transcripts:
one per variable, regardless of the number of occurrences in the formula. More
concretely, our proof consists of four transcripts (a1, e1, z1), ..., (a4, e4, z4) together
with secret shares (s1, s2, s3, s4) where each (ai, ei, zi) is accepting with respect
to the i-th Σ-protocol and ei = H(si). Furthermore, the shares are such that
all qualified sets of shares (according to the dual access structure induced by
formula) recover the secret s := H(a1, . . . , a4). In our example this could be
enforced by setting s1 := {d1, d2}, s2 := {d1}, s3 = {d2, d3}, and s4 = {d3} where
d1 + d2 + d3 = s. See Section 3.2 for a more detailed comparison between our
scheme with previous work in terms of performance and proof size.

Wider choice for special soundness of atomic protocols. Special soundness is, by
definition, restricted to the case where two colliding transcripts are necessary and
sufficient for extracting a witness. However, some protocols in the literature are
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only known to satisfy a more relaxed κ-special soundness requirement, in which
κ > 2 colliding transcripts are necessary and sufficient for witness extraction.

The original CDS transformation was designed to only handle 2-special
soundness, and indeed may totally lose soundness if applied to general κ-sound
protocols for κ > 2 [?]. As an example of 3-special soundness, consider Stern’s
protocol [?], often used in the context of lattices and codes [?, ?, ?, ?]. In its
basic version, a challenge is chosen from {0, 1, 2} and a cheating prover, or zero-
knowledge simulator, having no witness can answer to two preliminary chosen
challenge values out of the three. The original CDS technique for composing
two runs of the protocol suggests to share challenge e as e = e1 + e2 mod 3
and use e1 and e2 as a challenge in each run. This is however totally insecure
since a cheating prover may simulate on e1 ∈ {0, 1} and e2 ∈ {1, 2} and pick
a proper combination of challenge values for e1 and e2 to fulfill the constraint
e = e1 + e2 mod 3 for any challenge e ∈ {0, 1, 2}. Such an attack works even with
parallel repetition of the protocol, with challenge space {0, 1, 2}` for polynomial
`, and even after applying the Fiat-Shamir transformation, as the adversary can
similarly attack each coordinate individually and win with probability 1.

Applying an ideal hash function to e1 and e2 individually makes them uni-
formly distributed over the challenge space. With large enough challenge space,
which can be obtained by parallel repetition of Stern’s basic protocol, this virtually
prevents a cheating prover from controlling the distribution of the challenges.

We prove that this intuition is valid in the random oracle model. As a result,
our scheme is sound even for κ-special sound protocols with κ > 2. Other well-
known examples of κ-special sound protocols ranges from the widely known
GMW protocol for graph 3-colorability [?], and a useful protocol for a binary
opening of Pedersen-like commitments (with 3-special soundness) [?], to a fun
protocol for Sudoku puzzles [?].

Various flavors of soundness. We prove soundness in different flavors in the
programmable and/or non-programmable random oracle models (NPROM) [?].
As shown in [?], when viewed as a non-interactive membership argument system,
CDS composition with Fiat-Shamir (henceforth CDS+FS) is sound in NPROM
provided that underlying protocols are optimally sound. Ours covers more relaxed
statistically sound protocols.

If one of the two hash functions, one used for FS and the other used for hashing
shares, is programmable random oracle, our construction provides simulation
extractability [?], which is a strong form of knowledge soundness. If both are
programmable, and the underlying protocol is unique response where z is unique
for x, a, and e, it is strongly simulation extractable.

Unforgeability in non-programmable random oracle model. In a recent paper,
Fischlin, Harasser, and Janson [?] show that when the CDS protocol is compiled
into a signature scheme via the Fiat-Shamir transform, its unforgeability against
adaptive chosen message attacks cannot be (black-box) proved in NPROM. They
aregue that it contrasts to a sequential composition considered in [?].
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The share-hashing in our construction circumvents this impossibility result.
A key observation in the (im)possibility argument of [?] is that the sequential
composition in [?] makes hash queries for each underlying protocol execution in
some order, and the order of the queries reveals which instance the adversary is
attacking. In contrast, CDS+FS makes a combined hash query for all underlying
protocol executions at once, thus revealing no information which execution the
adversary is attacking. This difference is precisely what renders the signature
scheme via the sequential composition provably unforgeable in the NPROM, and
CDS+FS not.

Since in our transformation hashing is applied for each execution of the
underlying protocol, observing the order of the queries reveals which ones the
adversary is attacking, just as in the example above. We are thus able to prove
unforgeability in the NPROM, using the same proof strategy as developed in [?].

1.2 Applications

Our minor modification to the CDS+FS transformation means that it can serve
as a plug-in replacement for most applications of the CDS protocol, with the
only exceptions being the ones in which using a random oracle is not allowed.

In some cases the applicability of our transformation goes beyond what
could have been achieved by CDS+FS. As a demonstration, consider a generic
construction of a ring signature scheme [?] with the following added features:
(1) it supports any monotone formula access structure, (2) it can be built from
κ-special-sound Σ-protocols for hard languages, (3) it is unforgeable against
chosen message and chosen ring attacks in the NPROM, and (4) it is setup-free
in the sense that players do not need to interact to each other or to access public
parameters (except for security parameter) to set up their public-keys.

The CDS+FS transformation is equipped with all the features mentioned
above, and can be used to construct a secure signature scheme in a standard
manner. However, we do not know how to prove its unforgeability in the NPROM,
the main difficulty being that, unlike the case of a standard signature scheme,
a ring-signature adversary is allowed to specify the access structure. Let us
elaborate on this point further below.

In [?], it is shown that a non-interactive argument system for a simple
cyclic graph representing a sequence of disjunctions can be turned into a secure
signature scheme in the NPROM where the public key is a set of instances of a
hard language. In the security argument, the reduction simulates signatures using
a non-tight qualified set of instances, and, by observing queries to the random
oracle, identifies which instance the adversary is attacking. It is then shown that
replacing the target instance with an incorrect one that has no corresponding
witness does not make much difference to the computationally limited adversary
since those instances are supposed to be indistinguishable and signatures can
still be simulated as the remaining correct instances form a qualified set.

In the attack scenario for ring signatures, however, it is the adversary who
chooses the access structure. The adversary can ask a signature on a full set of
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instances so that the only qualified set is tight. Accordingly, signatures cannot
be simulated if an instance is turned into an incorrect one.

Our solution is to form each key by a disjunctive relation over two instances,
and combine them into a single monotone formula. This allows to simulate
signatures even if one of the pairs is turned into incorrect, and just as in [?]
enables us to argue that attacking the incorrect instance is unsuccessful in the
NPROM. The resulting scheme yields signatures whose size is linear in the
number of involved public keys.

While there exist more compact ring signature schemes, e.g., [?], with
logarithmic-size signatures and without using random oracles, our construc-
tion is more flexible in the choice of underlying building blocks and in the number
of instantiations. This is on top of being the first scheme provable in the NPROM.

1.3 Related Work

Composition of proof systems. The task of proving compound statements in a
zero-knowledge manner can be in principle realized generically by reducing to
some NP-complete language, and in some cases even a flexible and convenient one
such as satisfiability of Quadratic Arithmetic Programs. This approach is flexible,
as it allows to dynamically adjust the statement to be proved depending on the
application at hand. A popular application that has seen prominence recently
is that of proving possession of a preimage of a value under a specified hash
function. Recent implementations demonstrate reasonable performance, though
we are still in early stage of deployment, and further progress is required.

Composition is an active topic also in the context of NIZKs in the common
reference string model. There are number of existing techniques in the literature,
e.g., [?, ?, ?, ?, ?, ?, ?], to implement disjunctive relations for the Groth-Sahai
proofs [?] and Quasi-Adaptive NIZKs [?]. One of the common ideas is to use
arithmetic relations of the form x(x− 1) = 0 that naturally translate to logical
disjunctions: (x = 1) ∨ (x = 0). Another popular approach is to split a common
reference string in two parts so that one of them can be used for simulation,
whereas using a witness for the other part is unavoidable. In [?], Agrawal,
Ganesh, and Mohassel studied efficient monotone composition of algebraic and
non-algebraic statements combining both Σ-protocols and generic NIZKs for NP.

The composition technique most relevant to our work is that of ring-like
sequential composition, introduced in [?] and revisited recently in [?], all of which
admit soundness proofs in the NPROM. Recently, [?] consider a generalization
of sequential composition to so-called acyclicity programming (a model that is
closely related to branching programs), which in some cases goes beyond CDS
composition, the latter being limited to monotone span programs in terms of
expressibility. Still, generally speaking the two transformations are incomparable,
and it should be mentioned that both CDS and our current transformation are
able to easily handle the important case of threshold access structures. Precise
proof sizes and computational costs are also incomparable as they depend on the
structure of the compound relation.
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Fiat-Shamir transform in NPROM and the standard model. The issue of pro-
grammability of random oracles in the case the Fiat-Shamir transform is discussed
in [?, ?]. They present an efficient FS transformation for constructing NIZK in the
common reference and random oracle models whose zero-knowledge property does
not rely on random oracles and only the proof of soundness requires a NPROM.
The proof for soundness in the NPROM in [?] demands optimal soundness from
the underlying protocol: for every false statement and every first message, there
exists at most one challenge that has a valid response satisfying the verification
predicate.

Not relying on programmable random oracles in the soundness argument of
Fiat-Shamir transform may allow to instantiate the hash function under milder
assumptions such as key dependent message secure encryption [?] or lattice-based
assumptions [?, ?] through the notion of correlation intractability [?]. They
require the underlying protocol optimally sound [?] and design the hash function
used in the FS transform so that it hardly outputs the bad challenge for which
a valid response exists. Unfortunately, the additional hashing for generating
challenges in our construction makes it hard to follow their approach as the bad
challenge function will depend on the hash function.

Ring signatures. A fair number of papers devote themselves to improve and
generalize the seminal work of ring signatures scheme in [?]. In [?], a general
monotone access structure is supported for composition of signatures based on
trapdoor permutations. A construction based on Σ-protocols is presented in [?]
and extended in [?] with a simple mechanism for anonymity revocation, and in [?]
with a support for threshold structures. These early works, followed by, e.g., [?],
achieve the setup-free property in the programmable random oracle model. We
note that the scheme in [?] hashes shared challenges to adjust the challenge size
to incorporate RSA keys in a ring. When the ring consists only of the discrete-log
type ones, it can be seen as a special case of our construction, a composition of
Schnorr proofs with hashed shares, but none of the benefits claimed in this paper
were considered.

There are number of schemes, e.g., [?, ?, ?, ?, ?, ?, ?, ?, ?, ?], that require
trusted setup but provide more flexible access structures and/or achieves high
performance when instantiated with mathematically rich primitives such as
pairings, lattices, and codes. A scheme in [?] is favorable in that the security is
proven in the standard model, no trusted setup is needed, and the proof size is
logarithmic in the number of involved public-keys limiting the access structure
only to a ring.

2 Preliminaries

For a finite set S, we write a←S to denote that a is uniformly sampled from S.
We denote the security parameter by λ ∈ N. Given two functions f, g : N→ [0, 1],
we write f ≈ g if the difference |f(λ)− g(λ)| is asymptotically smaller than the
inverse of any polynomial. A function f is said to be negligible if f ≈ 0, whereas
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it is said to be overwhelming when f ≈ 1. For integers m,n, such that n ≥ m, we
denote by [m,n] the range {m,m+1, . . . , n}. We denote by [n] the range [1, n].
By N∗ we denote the space of arbitrarily-long sequences of numbers in N. When
A is a probabilistic algorithm, we denote by A(x; r) an execution of A on input
x and random coin r taken from an appropriate domain defined for A. If the
random coin is not important in the context, we simply write as A(x).

Let R : X ×W → {0, 1} be a binary relation defined over a set of instances
X and a set of witnesses W. We write (x,w) ∈ R as a shorthand for (x,w)
satisfying R(x,w) = 1. For convenience, we separate instances according to the
security parameter. By Rλ, we mean relation R on instances of length λ. Let
LR be the language defined as LR := {x ∈ X | ∃w ∈ W : R(x,w) = 1}. A
statement is a relation on an instance, which is true if and only if the instance
is in the language defined by the relation. We say that LR is a hard language
if (x,w) ∈ R is efficiently and uniformly sampleable, and there exists L̃ that
is efficiently sampleable, has no intersection with LR, and is computationally
indistinguishable from LR. We abuse notation and write (x,w)←R to represent
uniform sampling of (x,w) satisfying R. For a monotone access structure Γ
over [n] and a set of n relations R := (R1, . . . , Rn), we denote by ΓR a relation
obtained by composing relation Ri ∈ R following structure Γ .

2.1 Σ-protocols

A Σ-protocol for relation R is a three-round public-coin proof system that
is special honest verifier zero-knowledge and 2-special sound as defined in the
following. It is witness indistinguishable and statistically sound. We also introduce
additional security notions on which we rely when proving stronger properties
about our construction.

Definition 1 (Three-round public-coin proof system). A three-round public-
coin proof system for relation R consists of algorithms (C,Z,V) where:

• a← C(x,w ; r) computes an initial message, a, for the given instance x and
witness w with a random coin r uniformly taken from an appropriate domain.

• z ← Z(x,w, r, e) computes an answer, z, for the given challenge e ∈ {0, 1}µ,
and coin r used to generate a on x and w.

• 1/0← V(x, a, e, z) outputs 1 or 0 for acceptance or rejection, respectively.

We say a three-round public-coin proof system is complete if for every λ ≥ 1,
every pair (x,w) ∈ R, where |x| = λ, for all e ∈ {0, 1}µ, for all a← C(x,w ; r),
and for all z ← Z(x,w, r, e), V(x, a, e, z) = 1 holds.

Definition 2 (Special Honest Verifier Zero-Knowledge). A three-round
public-coin proof system (C,Z,V) is special honest verifier zero knowledge if there
exists a probabilistic polynomial-time algorithm S such that, for every stateful
PPT adversary A,

Pr
[
(x, e)← A(1λ); a← C(x,w; r); z ← Z(x,w, r, e) : A(a, z) = 1

]
≈ Pr

[
(x, e)← A(1λ); (a, z)← S(x, e) : A(a, z) = 1

]
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where r is sampled form the corresponding distribution and A must output values
such that (x,w) ∈ R and e is in {0, 1}µ.

Definition 3 (Witness Inidistinguishability). A three-round public-coin proof
system (C,Z,V) is witness indistinguishable if for all x ∈ LR, and all w1, w2

satisfying R(x,w1) = R(x,w2) = 1, transcripts (a1, e, z1) and (a2, e, z2) distribute
identically, where ai ← C(x,wi; ri), e← {0, 1}µ, z ← Z(x,wi, ri, e) for i = 1, 2.

Special soundness [?] is a special form of knowledge soundness which guar-
antees that, given two colliding transcripts (x, a, {e1, z1}, {e2, z2}), a witness w
(for x) can be extracted efficiently if e1 6= e2. A generalized form of this notion
appears in the literature, e.g., [?, ?, ?, ?]. Intuitively, κ-special soundness states
that given κ-colliding transcripts (x, a, {e1, z1}, . . . , {eκ, zκ}), a witness w can be
extracted if all values e1, . . . , eκ are distinct. A question is from which distribution
the challenges should be sampled and with how much probability the extraction
should succeed. In some literature it is asked to hold for any ei and to succeed
perfectly. This is however too strong for our purpose as we would like to capture a
wide variety of protocols, including the parallel version of Stern’s protocol where
an exponential number (but still negligible compared to the size of the challenge
space) of colliding transcripts can be prepared without knowing the witness; on
the other hand, a small number of collision over uniformly chosen challenges is
sufficient for successful extraction with high probability. Consequently, we adopt
the following definition.

Definition 4 (κ-Special Soundness). A three-round public-coin proof sys-
tem is κ-special sound with knowledge error ε if, there exists a deterministic
polynomial-time algorithm E such that, for any stateful probabilistic polynomial-
time adversary A, and for all t polynomial in λ, it holds:

Pr


(x, a) ←A(1λ)

e1, . . . , et ←{0, 1}µ
(z1, . . . , zt) ←A(e1, . . . , et)
w ← E(x, a, {e1, z1}, . . . , {et, zt})

:

∑t
i=1 V(x, a, ei, zi) ≥ κ

∧
R(x,w) = 0

 ≤ ε
where every ei is distinct. It is special sound if ε is a negligible function and κ is
polynomial in the security parameter. In particular, we say that it is perfectly
special sound if ε = 0.

There are different flavors of soundness as a proof of membership. An example
is optimal soundness, which asserts that for any false instance x and any a, there
exists at most one challenge e for which the transcript will pass the verification.
In other words, for any x 6∈ LR and any a, and for all values e ∈ {0, 1}µ (except
at most one), V(x, a, e, ·) is the zero function. We use more general statistical
soundness allowing negligible error probability.

Definition 5 (Statistical Soundness). A three-round public-coin proof sys-
tem (C,Z,V) is statistically sound with soundness error εst if for any (possibly
unbounded) adversary A, for all x /∈ LR and all a ∈ {0, 1}∗,

Pr[e← {0, 1}µ; z ← A(x, a, e) : V(x, a, e, z) = 1] < εst .
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We say it is statistically sound if εst is negligible in λ.

In other words, a three-round public-coin proof system is statistical sound
with bound εst if and only if for every x /∈ LR and any a ∈ {0, 1}∗, at most a εst
fraction of challenges has an answer that passes the verification.

In order to achieve stronger variant of simulation soundness, we require the
uniqueness of z for (x, a, e). This is the so-called unique response property [?, ?]
and was stated in [?] in a general form as follows.

Definition 6 (Quasi-unique response). A Σ-protocol has quasi-unique re-
sponses if for any security parameter λ ∈ N, any polynomial-size ν ∈ {0, 1}∗,
and for any PPT algorithm, the probability that, given 1λ and ν as input, the
adversary outputs (x, a, e, z, z′) satisfying V(x, a, e, z) = V(x, a, e, z′) = 1 and
z 6= z′ is negligible in λ.

2.2 Non-Interactive Arguments

We define non-interactive argument systems in a way that captures Σ-protocols
transformed by the Fiat-Shamir heuristics in the random oracle model. Let R be
a random oracle that returns an independently and uniformly chosen value in an
appropriate domain for every distinct input.

Definition 7 (Non-Interactive Argument System). A non-interactive ar-
gument system for relation R in the random oracle model is a pair of polynomial-
time oracle algorithms (Prove,Verify) that, for random oracle R:

• π ← ProveR(x,w) is a probabilistic algorithm that takes an instance x and a
witness w and outputs a proof π.

• 0/1 ← VerifyR(x, π) is a deterministic algorithm that takes x and π, and
outputs either 1 or 0 representing acceptance or rejection, respectively.

It is complete if, for every sufficiently large λ∈N, and every (x,w) ∈ R,
VerifyR(x,ProveR(x,w)) outputs 1 except with negligible probability in λ. The
probability is taken over coins of Prove and R.

Definition 8 (Zero-Knowledge). A non-interactive argument system (Prove,
Verify) for relation R is zero-knowledge in the random oracle model if there exists a
PPT stateful algorithm Sim that for all probabilistic polynomial-time distinguisher
D, Pr[1 ← DR,O1(1λ)] − Pr[1 ← DO2(1λ)] is negligible in λ. O1 is an oracle
that, given (x,w) as input, returns ⊥ if (x,w) /∈ R, else returns the output of
ProveR(x,w). O2 and Sim have two input interfaces. O2 forwards any string
given through the first interface to the first interface of Sim and returns its output.
Given (x,w) as input to the second interface, O2 returns ⊥ if (x,w) /∈ R, else
forwards x to the second interface of Sim and returns the output. The probability
is taken over coins of D, R, Prove, and Sim.

Definition 9 (Soundness). A non-interactive argument system (Prove,Verify)
for LR is sound if for any PPT oracle algorithm A, any x /∈ LR, Pr[π ← AR(x) :
1 = VerifyR(x, π)] is negligible in λ. The probability is taken over coins of A and
R.
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Simulation extractability is a stronger notion of simulation soundness. Intu-
itively, it guarantees that even after having seen simulated proofs on arbitrary
instances, the adversary cannot create a valid proof on a fresh instance for which
the knowledge extraction fails. This notion was defined in the common reference
string model in [?] and in the random oracle model in [?].

Definition 10 (Simulation Extractability). A non-interactive zero-knowledge
argument system (Prove,Verify) for relation R with zero-knowledge simulator Sim
is simulation extractable in the random oracle model if, for any PPT oracle
algorithm A, there exists an expected polynomial-time algorithm E for which the
following experiment returns 1.

ExprseA(λ) :

1. Run (x, π)← ASim(1λ).
2. Output 1 if 0 ← VerifySim(x, π) or x has been queried to the second

interface of Sim.
3. Run w ← EA(x, π, σ).
4. Output b := R(x,w).

Parameter σ is the view of Sim. It is strongly simulation extractable if the freshness
condition in Step 2 is on (x, π) as a pair instead of just on x.

The above definitions are for the programmable random oracle model. To cast
non-programmable random oracles in the definitions, allow every entity direct
access to the oracle [?].

3 The Share-then-Hash technique

3.1 Construction

Let n be a polynomial in λ. Let SS be a perfect secret sharing scheme over {0, 1}µ
for an access structure over [n] of size polynomial in n. Let Share be the sharing
algorithm of SS, and D(s) be distribution of outputs from Share(s). For qualified
set A and secret s ∈ {0, 1}µ, we denote by DA(s) the joint distribution of shares in
A. We denote by Ac the set [n]\A and byDAc the distribution of shares for the non-
qualified set Ac of A, which is independent of the secret (due to SS being a perfect
secret sharing scheme). For a set of shares S := (s1, . . . , sn) and a set A ⊆ [n],
we denote by SA the set of shares indexed by A, i.e., SA := {si ∈ S | i ∈ A}. For
the sake of readability, we assume that SA identifies A from its data structure. A
perfect secret sharing scheme over secret space {0, 1}µ for polynomial µ in λ is
semi-smooth [?] if on top of standard polynomial-time and space requirements it
satisfies the following properties:

• There exists a polynomial-time algorithm, CheckShares that, given a full set
of shares and a secret, returns 1 if all qualified sets of shares recover the
secret. It returns 0, otherwise.
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• There exists a polynomial-time algorithm, Complete that, for any secret s,
any non-qualified set Ac, and any set of shares SAc ∈ DAc , outputs a set of
shares in D(s) that includes SAc as shares for Ac.

Note that the presence of CheckShares does not imply that SS is a verifiable
secret sharing scheme where, given a share si and public parameters, one can
assure consistency of the share. Semi-smooth secret sharing schemes exist for
threshold and general monotone access structures represented by monotone span
programs [?].

Let Γ be a monotone access structure over [n], and Γ ∗ be the dual of Γ defined
as A ∈ Γ ∗ ⇔ Ac /∈Γ [?]. (Note that the dual operation is an involution, i.e.,
(Γ ∗)∗=Γ .) Let SS = (Share,CheckShares,Complete) be a semi-smooth perfect
secret sharing scheme over {0, 1}µ for Γ ∗. Let x := (x1, . . . , xn) be a set of
instances and w := (w1, . . . , wn) be a witness set where for a qualified set
A ∈ Γ , let relation Ri(xi, wi) = 1 hold for all i ∈ A. Let Σi = (Ci,Zi,Vi) be
a sigma-protocol for relation Ri. We assume all Σ-protocols have a common
challenge space {0, 1}µ for certain polynomial µ in security parameter λ. Let
He : {0, 1}∗ → {0, 1}µ and Hc : {0, 1}∗ → {0, 1}µ be hash functions.

Theorem 1. Figure 1 describes a non-interactive argument system for ΓR:

• It is complete and witness indistinguishable.
• It is zero-knowledge if Hc or He are modeled as programmable random oracles.
• It is a sound membership proof for language LΓR

if Hc and He are modeled
as non-programmable random oracles and all Σi are statistically sound.

• It is simulation extractable if Hc and He are random oracles and at least one
is programmable and if and all Σi are κ-special sound.

• It is strongly simulation extractable if both Hc and He are programmable
random oracles, and all Σi are κ-special sound and unique response.

Completeness and witness indistinguishability can be shown as in the original
CDS+FS scheme. Zero-knowledge in the programmable random oracle model
is assured by inspecting the simulators from Figure 2. The first simulator is
for the case where Hc is programmable and the second one is for the case
where He is programmable. In the following, we focus on soundness in different
flavors and present a proof sketch for them, without stating concrete bounds, but
our arguments are detailed enough to derive full proofs. We use the following
proposition taken from [?].

Proposition 1. Let Γ be monotone. A set is qualified in Γ if and only if it has
a non-empty intersection with every qualified set in Γ ∗.

Proof (Of soundness as a membership proof system). Suppose that an adversary
A outputs a valid proof π̂ = {(âi, ẑi), ŝi}i∈[n] on instance x̂ = (x̂1, . . . , x̂n) and
access structure Γ after making at most q queries to the random oracles. For the
forged proof to be considered a valid forgery (in the soundness game), x̂ must be
a false instance (with respect to Γ ), i.e., for every qualified set A∈Γ , there must
exist some i∈A such that xi /∈LRi . Furthermore, CheckSharesΓ∗(ŝ, ŝ1, . . . , ŝn)
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ProveΓ (x,w) :

1. Set A := { i |Ri(xi, wi) = 1 ∀i ∈ [n]} and Ac := [n] \A.

2. Sample s′←{0, 1}µ, and set (s′1, . . . , s
′
n)← ShareΓ∗(s

′), SAc := {s′i | i ∈ Ac}.
3. For all i ∈ Ac, set ei := He(Γ,x, i, s

′
i), and run (zi, ai)← Si(xi, ei).

4. For all i ∈ A, set ai ← Ci(xi, wi; ri).
5. Set s := Hc(Γ,x, a1, . . . , an), and (s1, . . . , sn)← CompleteΓ∗(s, SAc).

6. For all i ∈ A, set ei := He(Γ,x, i, si), and run zi ← Zi(xi, wi, ri, ei).
7. Return π := {(ai, zi), si}i∈[n].

VerifyΓ (x, π):

1. Parse π as {(ai, zi), si}i∈[n].

2. Set s := Hc(Γ,x, a1, . . . , an) and ei := He(Γ,x, i, si) ∀i ∈ [n].

3. Return
∧
i∈[n] Vi(xi, ai, ei, zi) ∧ CheckSharesΓ∗(s, s1, . . . , sn).

Fig. 1: Share-then-Hash CDS+FS for relation ΓR.

must be 1, for ŝ := Hc(Γ, x̂, â1, . . . , ân); and Vi(x̂i, âi, êi, ẑi) must be accepting
for êi := He(Γ, x̂, i, ŝi) and all i∈ [n].

If for some i∗ ∈ [n] such that xi∗ /∈LRi∗ the adversary did not make query
He(Γ, x̂, i

∗, ŝi), since value êi∗ is assigned uniformly at random by He, the
probability that 1 = Vi∗(xi∗ , ai∗ , ei∗ , zi∗) for already fixed xi∗ , ai∗ , and zi∗ is
at most εst := maxi∈[n](εsti) where εsti is the statistical soundness error of
Σi. Similarly, if Hc(x̂, â1, . . . , ân) was not queried by the adversary, after the
random assignemt of ŝ, by Hc, the probability that CheckSharesΓ∗(ŝ, ŝ1, . . . , ŝn) is
successful is at most 2−µ (ŝ must be equal to the value determined by ŝ1, . . . , ŝn).

Now, let Ω be the set of indices i ∈ [n] where xi /∈LRi holds and êi :=
He(Γ, x̂, i, ŝi) appears before ŝ := Hc(Γ, x̂, â1, . . . , ân) in the view of A. First,
assume that for all qualified sets A∈Γ , A∩Ω is not empty. In virtue of Proposi-
tion 1, Ω must be a qualified set in Γ ∗ and thus, {ŝi}i∈Ω uniquely determines
a secret, s∗. Therefore, CheckSharesΓ∗(ŝ, ŝ1, . . . , ŝn) = 1 will be satisfied only if
ŝ equals s∗, which happens with probability at most 2−µ since ŝ is randomly
assigned by Hc independently of {ŝi}i∈Ω .

Finally, suppose that there exists A∈Γ with A∩Ω = ∅. In this case, there
must exist i∗ ∈A with xi∗ /∈LRi∗ (remember that x̂ is a false instance) and such
that query êi∗ := He(Γ, x̂, i

∗, ŝi∗) appears after query ŝ := Hc(Γ, x̂, â1, . . . , ân)
in the view of A. Then, the probability that there exists a ẑi∗ that can satisfy
Vi∗(x̂i∗ , âi∗ , êi∗ , ẑi∗) = 1 for fixed (x̂i∗ , âi∗) is upper-bound by the statistical
soundness error of Σi∗ , which is upper-bounded by εst.

Accordingly, a valid proof on a false statement can be produced with proba-
bility at most 2εst + 2−µ. ut
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Sim1Γ (x) :

1. Sample s←{0, 1}µ, and set (s1, . . . , sn)← ShareΓ∗(s).

2. For all i ∈ [n], set ei := He(Γ,x, i, si), and (zi, ai)← Si(xi, ei).
3. Program Hc to output s on input (Γ,x, a1, . . . , an).

4. Return π := {(ai, zi), si}i∈[n].

Sim2Γ (x) :

1. For all i ∈ [n], set ei ← {0, 1}µ, and (zi, ai)← Si(xi, ei).
2. Set s := Hc(Γ,x, a1, . . . , an), and (s1, . . . , sn)← ShareΓ∗(s).

3. For all i ∈ [n], program He to output ei on input (Γ,x, i, si).

4. Return π := {(ai, zi), si}i∈[n].

Fig. 2: Zero-knowledge simulators.

Proof (Of simulation extractability). We first prove the case where Hc is pro-
grammable and He is non-programmable. Suppose that adversary A playing in
the simulation extractability game, running in time t and performing at most q
queries to the random oracle, outputs an instance x̂ = (x̂1, . . . , x̂n) and a valid
proof π̂ = {(âi, ẑi), ŝi}i∈[n] on x̂ with probability δ. For the output to be valid,
it must hold that CheckSharesΓ∗(ŝ, ŝ1, . . . , ŝn) = 1 for ŝ := Hc(Γ, x̂, â1, . . . , ân)
and, additionally, for all i ∈ [n], Vi(x̂i, âi, êi, ẑi) = 1, where êi := He(Γ, x̂, i, ŝi).
Furthermore, x̂ must be different from any instance x observed by the simulation
oracle.

The extractor runs the code of A, simulating the proving oracle using Sim1
in Figure 2 until a valid proof π̂ = {(âi, ẑi), ŝi}i∈[n] on an instance x is produced.
The extractor then identifies the query Hc(Γ, x̂, â1, . . . , ân) in the adversaries
execution and forks the execution at this point by providing a different uniformly
chosen value as an answer to this query. By repeating the above forking 2τ/δ
times for τ := κn, the extractor obtains τ valid proofs with a constant probability.
We now argue that, if τ random secrets ŝ(i) for i = 1, . . . , τ are shared to n
players in a way that they pass CheckShares consistency check, then, for every
qualified set of players, there is a player who receives at least κ distinct shares.
The following lemma states it formally.

Lemma 1. For sufficiently large polynomial µ in λ, for any semi-smooth secret
sharing scheme over {0, 1}µ, for any small constant κ, for any constant τ ≥
κn − 2n + 2, for any stateless unbound algorithm B, the following experiment
returns 1 with negligible probability in λ.

1. For i = 1 to τ , do s(i) ← {0, 1}µ, and (s(i)1 , . . . , s
(i)
n )← B(s(i)).
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2. Return 1 if 1 = CheckSharesΓ∗(s
(i), s(i)1 , . . . , s

(i)
n ) for all i = 1, . . . , τ and there

exists a qualified set, A, such that, for each j ∈ A, number of distinct shares
among s(1)j , . . . , s

(τ)

j is less than κ. Return 0, otherwise.

We first prove the following claim.

Claim 1. Let A be a qualified set and assume τ ≥ κ|A|−2|A|+2. The probability
that for all j ∈ A, the set S(τ)

j = {s(1)j , . . . , s(τ)j } has size less than κ is at most

(τ − 1)(κ− 1)|A|2−µ.

Proof (Of Lemma 1). Set τ = κn− 2n+ 2. By Claim 1 and a union bound, the
probability that there exists a qualified set A such that |S(τ)

j | < κ for all j ∈ A is
at most 2n · (τ − 1)(κ − 1)n2−µ. If this is not the case, then the set A of all j
such that |S(τ)

j | < κ is not qualified. ut

Proof (Of Claim 1). We will show that as long as all sets S(i)

j , j ∈ A have
size less than κ, the probability that

∑
j∈A |S

(i+1)

j | =
∑
j∈A |S

(i)

j | is at most

(κ − 1)|A|2−µ. Initially,
∑
j∈A |S

(1)

j | = |A|. By a union bound over 1 ≤ i < τ ,∑
j∈A |S

(τ)

j | ≥ |A|+τ−1 with probability at least 1−(τ−1)(κ−1)|A|2−µ. By our

choice of τ , this condition implies |S(τ)

j | ≥ κ for some j ∈ A. By the reconstruction
property, there is an injective function RA that maps valid sequences (sj : j ∈ A)
of shares to secrets s ∈ {0, 1}µ. Assuming |S(i)

j | < κ for all j ∈ A, the image of

RA evaluated on the product set
∏
j∈A S

(i)

j can have size at most (κ− 1)|A|. So
if s(i+1) is chosen at random from {0, 1}µ, then the probability it belongs to the
image of RA(

∏
j∈A S

(i)

j ) is at most (κ− 1)|A|2−µ. By the injectivity of RA, for

any sequence (s(i+1)

j : j ∈ A) that reconstructs to s(i+1), s(i+1)

j must reside outside
S(i)

j for at least one party j ∈ A, so the sum
∑
j∈A |S

(i)

j | grows as desired. ut

According to Lemma 1, with non-negligible probability, it holds that, for every
qualified set A ∈ Γ ∗, there exists i ∈ A that yields (âi, (ŝ

(1)

i , ẑ
(1)

i ), . . . , (ŝ(κ)i , ẑ(κ)

i ))
that satisfies 1 = Vi(x̂i, âi, ê(j)i , ẑ

(j)

i ) for ê(j)i := He(Γ, x̂, i, ŝ
(j)

i ). Since all ê(j)i are
distinct except for negligible probability due to the uniform output from He, we
have κ-colliding transcript (âi, (ê

(1)

i , ẑ
(1)

i ), . . . , (ê(κ)i , ẑ(κ)

i )) over uniformly chosen
challenges, which allows to extract ŵi with overwhelming probability. What
remains is the same as the knowledge soundness proof of the original CDS
scheme; according to Proposition 1, there exists a qualified set A in Γ for which
ŵi for all i ∈ A are extracted.

We next sketch a proof for the case where Hc is non-programmable and He

is programmable. This time we do not require Lemma 1. The extractor first runs
the adversary until it obtains a valid forgery. Proof queries from the adversary
is answered by executing Sim2 in Figure 2, which programs at most n random
points on He in each invocation. Then the extractor rewinds the adversary to
the point where it first receives ŝ for query Hc(Γ, x̂, â1, . . . , ân). The extractor
then continues the simulation as well as the first run except that it answers every
fresh query to He with an independently chosen random value. These queries
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to He made after receiving ŝ from Hc are for a qualified set, A ∈ Γ , as we
observed in the proof of soundness since otherwise CheckSharesΓ∗(ŝ, ŝ1, . . . , ŝn)
in the verification returns 1 with probability at most 2−µ. By repeating the above
rewinding 2κ/δ times, the extractor obtains κ valid forged proofs on (x, â1, . . . , ân)
with a constant probability. The forged proofs constitute κ colliding transcripts
for each xi∈A unless random assignments to He collide by chance. Thus, by
running the κ-special soundness extractor with the colliding transcripts as an
input, a valid witness is obtained except for a negligible probability. We finally
note that Hc must still be modeled as (non-programmable) random oracle to
assure that âi is fixed before ŝi is queried to Hc. ut

Proof (Of strong simulation extractability). This time, we relax the condition on
(x̂, π̂) so that it must be different from any pair (x, π) observed by the simulation
oracle. As we have already proved the case of x̂ 6= x in the above, we consider
x̂ = x and π̂ 6= π happens for some (x, π) observed by the simulation oracle.
Let π = {(ai, zi), si}i∈[n]. If (â1, . . . , ân) 6= (a1, . . . , an), then we fork at query
Hc(Γ, x̂, â1, . . . , ân) and do the same as done in the proof of simulation extractabil-
ity. Otherwise, if (â1, . . . , ân) = (a1, . . . , an) and (ŝ1, . . . , ŝn) 6= (s1, . . . , sn), we
again fork at query Hc(Γ, x̂, â1, . . . , ân). Observe that the query is made by zero-
knowledge simulator. So we cannot answer to the newly assigned value with the
same âi. We instead simulate by using the same (ai, ei, zi) for every i ∈ [n]. It can
be done by programming He with the same output êi on a new input si in each
fork. More precisely, for every new assignment of s(j) to Hc(Γ, x̂, â1, . . . , ân) in
the j-th fork, compute (s(j)1 , . . . , s(j)n )← ShareΓ∗(s

(j)). Then define He(Γ,x, i, s
(j)

i )
by ei used in the original run and answer with the same zi. Accordingly, though
shares si appear in the respective challenge round differ in every fork, simulated
transcript (ai, ei, zi) remains the same. Now, τ successful forks leads to extracting
witness in a qualified set in Γ as before. Due to the quasi-unique response property,
we are already done since (x̂i, âi, ŝi) = (x(k)

i , a
(k)

i , s
(k)

i ) cannot accommodate with
restriction (x̂i, âi, ŝi, ẑi) 6= (x(k)

i , a
(k)

i , s
(k)

i , z
(k)

i ) except for negligible probability.
ut

3.2 Comparison with CDS

In order to illustrate the efficiency gain and the recycling technique of our new
construction, consider the following general DNF formula on n-variables:

f(x1, . . . , xn) = (xj{1,1} ∧ . . . ∧xj{1,m1}
)∨ . . . ∨ (xj{̀ ,1} ∧ . . . ∧xj{̀ ,m`}) , (1)

and let N :=
∑`
i=1mi be the total number of literals in f . Let Γ be the access

structure over [n] induced by f , and consider the following well-known and widely
used perfect secret sharing of s ∈ Zp (for some µ-bits prime p) under policy Γ ∗:

ShareΓ∗(s) :

sample d1, . . . , d`←Zp uniformly restricted to d1 + . . . + d` = s;

set si :=
{
dk | i ∈ {j{k,1}, . . . , j{k,mk}} ∀k∈ [`]

}
∀i ∈ [n];

return (s1, . . . , sn).
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Proof system

Property CDS+FS Share-then-Hash CDS+FS

Proof size N(α+ ζ) + µ` n(α+ ζ) + µ`

Optimized proof size† Nζ + µ` nζ + µ`
Support for (κ > 2)-special soundness

Unforgeability in NPROM‡

† When every a is uniquely identified and efficiently recoverable given (e, z).
‡ When considered as a signature scheme. See Section 4.

Table 1: Comparison between previous work ([?, ?]) and the Share-then-Hash
CDS (this work). Values N , n and ` represent the number of literals, number of
variables and number of clauses in the DNF formula (1) respectively. Value α
(respectively ζ) represents the size in bits of the first message (respectively last
message) of sigma protocols Σi. (Challenges are assumed to belong in {0, 1}µ.)

The CDS+FS technique would yield a proof for ΓR consisting of N transcripts
where for all k ∈ [`] and k′ ∈ [mk], transcript (a{k,k′}, ek, z{k,k′}) is accepting with
respect to the j{k,k′}-th Σ-protocol. Also, for s := H(Γ,x, a{1,1}, . . . , a{̀ ,m`}), it
must hold e1 + · · ·+ e` = s. This results in a total proof size in bits of:

µ`+
∑
k∈[`]

(∑
k′∈[mk] |a{k,k′}|+ |z{k,k′}|

)
.

Instead, with our scheme from Figure 1, the resulting proof consists of
n transcripts {(ai, zi)}i∈[n] together with a set of shares {si}i∈[n] produced
by the above Share algorithm. Transcript (ai, ei, zi) is accepting with respect
the i-th Σ-protocol, where ei := H(Γ,x, i, si) for every i ∈ [n] and for s :=
H(Γ,x, a1, . . . , an), CheckShares(s, s1, . . . , sn) = 1. In this case, the total proof
size in bits results in:

|(s1, . . . , sn)|+
∑
i∈[n] |ai|+ |zi| =1 µ`+

∑
i∈[n] |ai|+ |zi|

We refer to Table 1 for a more detailed comparison between the two proof
systems. For simplicity, we assume that all Σ-protocols require first messages
of similar length say |a| = α, and also last messages of similar length |z| = ζ.
Some Σ-protocols are such that, given (e, z), there exists a unique value of a
that makes the transcript accepting and that can be efficiently computed. In
those cases, it is possible to optimize the proof size by not including the a value
of any transcript. During verification, the omitted values are computed from
the corresponding (e, z). Notice that this optimization can be applied to both
schemes and it does not compromise soundness, since the prover has committed
to the final share s (dependent of the a values) through the random oracle H.

1 Although the total length of secrets (s1, . . . , sn) is µN , as above it is enough to store
the ` disjunction values (d1, . . . , d`) sampled by Share.
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Further optimizations may be possible, e.g. reducing the number of shares that
appear in the proof, depending on the access structure.

Observe that the size of proofs produced with the share-then-hash technique
can be dramatically smaller than the size of proofs with standard CDS+FS since,
in general, N can be much larger than n. This improvement comes from the fact
that share-then-hash proofs include exactly 1 transcript per atomic statement,
which is a notable improvement since many practical scenarios involve complex
and heavy sigma protocols. Having to produce (and then verify) independent
transcripts for the same statement would be undesirable. Finally, notice that this
optimization also brings computational savings since fewer transcripts need to
be produced.

4 Application

This section presents a general ring signature scheme that supports monotone
structures and is unforgeable against chosen message and chosen ring attacks
in the NPROM. Note that when n = 1 the syntax and unforgeability of ring
signature schemes reduce to those for ordinary signature schemes.

Definition 11 (General Ring Signature Scheme). A ring signature scheme
RS is triple of polynomial-time algorithm, described by (KeyGen,Sign,Verify) such
that

• KeyGen(1λ) : It takes an input the security parameter 1λ and outputs a pair
(vk , sk) of verification and signing key. This execution is proceeded individually
by each player.

• Sign(vk, sk,msg , Γ ) : It takes a set of verification keys vk := (vk1, . . . , vkn),
a monotone access structure Γ over [n], a set of secret keys sk, and a message
msg ∈ {0, 1}∗ and outputs a signature σ.

• Verify(vk,msg , σ, Γ ) : It takes vk,msg , σ, and Γ , and outputs either 1 for
acceptance, or 0 for rejection.

It is correct, if, for every λ ∈ N, n ≥ 1, any monotone access structure Γ
over [n], any vk := (vk1, . . . , vkn) and sk := (sk1, . . . , skn) that there exists
A ∈ Γ such that (vk i, sk i) ∈ KeyGen(1λ) holds for all i ∈ A, for all msg ∈
{0, 1}∗, RS.Verify(vk,msg ,Sign(vk, sk,msg , Γ ), Γ ) = 1 holds except for negligible
probability.

Definition 12 (Signer Anonymity). A ring signature scheme is anonymous
if, for any λ ∈ N, any n ≥ 1, any monotone structure Γ over [n], any vk =

(vk1, · · · , vkn), and any sk(b) := (sk
(b)
1 , . . . , sk (b)

n ) for b = 0, 1 that there ex-

ists A ∈ Γ such that (vk i, sk
(b)
i ) ∈ KeyGen(1λ) holds for all i ∈ A, and for

any msg ∈ {0, 1}∗, two distributions (vk,msg ,Sign(vk, sk(0),msg , Γ ), Γ ) and

(vk,msg ,Sign(vk, sk(1),msg , Γ ), Γ ) are statistically indistinguishable.
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Definition 13 (Unforgeability). A ring signature scheme is unforgeable against
adaptive chosen message and chosen ring attacks if for any sufficiently large λ,
any n ≥ 1, any polynomial-time adversary A, the following experiment returns 1
only with negligible probability in λ.

ExpreufRS,A(λ) :

1. Run (vk i, sk i)← RS.KeyGen(1λ) for i ∈ [n]. Initialize U with ∅.
2. Run (v̂k, m̂sg , π̂, Γ̂ )← AS,C(vk) where S and C are oracles that:
S: Given (vk′,msg , Γ, A) as input, if vk′ ⊆ vk, Γ is a monotone structure

over [n′] := [|vk′|], and A ∈ Γ , it returns σ ← RS.Sign(vk′, sk′,msg , Γ )
where sk′ = (sk1, . . . , skn′) that (vk i, sk i) ∈ RS.KeyGen(1λ) for all
i ∈ A and sk i = ⊥ for all i ∈ [n′] \A. It returns ⊥, otherwise.

C: Given i ∈ [n], it adds vk i to U , and returns sk i.
3. Output 1 if all the following conditions are met.

• 1 = RS.Verify(v̂k, m̂sg , π̂, Γ̂ )
• v̂k ⊆ vk
• ∀A ∈ Γ̂ , {v̂ki ∈ v̂k | i ∈ A} 6⊆ U
• (v̂k, m̂sg , Γ̂ ) has never been submitted to S

Otherwise output 0.

For binary relation R, let R∨ be disjunctive relation R∨((x1, x2), (w1, w2)) :=
R(x1, w1) ∨R(x2, w2). Let DecompOR be an algorithm that, given a monotone
access structure Γ over [n] as input, outputs a monotone access structure Λ over

[2n] that ΓR∨ = ΛR holds for R∨ := (R
(1)
∨ , . . . , R

(n)
∨ ) and R := (R(1), . . . , R(2n)).

Let Σ = (C,Z,V) be a Σ-protocol for R. Let (Prove,Verify) be a scheme in
Figure 1 using Σ. We present our construction of ring signature scheme for
monotone access structure in Figure 3.

Theorem 2. The scheme in Figure 3 is a ring signature scheme for monotone
access structure. It is signer anonymous if Σ is witness indistinguishable. It is
unforgeable against chosen message and ring attacks if LR is a hard language, Σ
is witness indistinguishable and statistically sound, and hash functions Hc and
He are non-programmable random oracles for output space 2µ for sufficiently
large µ.

Proof. Correctness and signer anonymity is almost directly from the completeness
and witness indistinguishability of the underlying Σ respectively. Thus we focus
on proving unforgeability. Outline of our proof follows that of [?].

Game 1: This is the same as the experiment for the chosen message and
chosen ring attack. Let Gi be the event that the experiment in Game i outputs
1. We have Pr[G1] = Pr[ExpreufRS,A(λ) = 1] by definition.

Let C ⊆ [n] be the index of the corrupted verification keys in the game. Let v̂k,
m̂sg , π̂, and Γ̂ be the final output from the adversary. Without loss of generality,
we assume that v̂k = vk and Γ̂ is over [n]. (The adversary can choose Γ̂ over a
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RS.KeyGen(1λ):

1. Sample (x1, w1)← Rλ and (x2, w2)← Rλ independently.
2. Output vk := (x1, x2) and sk := (w1, w2).

RS.Sign(vk, sk,msg , Γ ):

1. Parse vk = (vk(1), . . . , vk(n)) as x = (x1, . . . , x2n), and sk = (sk(1), . . . , sk(n))
as w = (w1, . . . , w2n). (Some sk(i) can be ⊥. Then w2j = w2j+1 = ⊥.)

2. Run Λ← DecompOR(Γ ).
3. Run π ← ProveΛ(x,w) including msg in all hashings as input.
4. Output π as a signature.

RS.Verify(vk,msg , π, Γ ):

1. Parse vk = (vk(1), . . . , vk(n)) as x = (x1, . . . , x2n).
2. Run Λ← DecompOR(Γ ).
3. Run b← VerifyΛ(x, π) including msg in all hashings as input.
4. Output b

Fig. 3: Proposed ring signature scheme for access structure Γ .

subset of [n]. We can turn such an adversary to one that outputs Γ̂ as we want.)
Let π̂ be parsed to π̂ = {(âi, ẑi), ŝi}i∈[2n]. As a valid forgery, it satisfies C /∈ Γ̂ .
Furthermore, every (âi, ẑi), ŝi verifies as 1 = CheckSharesΛ̂∗(ŝ, ŝ1, . . . , ŝ2n) for ŝ :=

Hc(Λ̂,x,msg , â1, . . . , â2n), and 1 = Vi(x̂i, âi, êi, ẑi) for êi := He(Λ̂,x,msg , i, ŝi)
for i ∈ [2n].

Game 2: We clean up the game by halting at win-by-chance events. As we
argued in the proof of soundness, the adversary must make relevant hash queries
to the corresponding oracles by itself. As also shown in the same place, there
must exist a qualified set A∗ in Λ̂ that, for all i ∈ A∗, êi := He(Λ̂,x,msg , i, ŝi)
appears after ŝ := Hc(Λ̂,x,msg , â1, . . . , â2n) in the view of the adversary. If any
of these are not the case at the end, we let the experiment output 0.

Since these events happen only by chance over the choices of Hc and He for
large enough domain {0, 1}µ, we have |Pr[G2]− Pr[G1]| < O(q/2µ) for at most
q times of queries to the random oracles throughout the game.

Game 3: Uniformly choose i∗ ← [2n] and select xi∗ as a no-instance, i.e.,
xi∗ ← L̃(λ) where L̃ is a language that is indistinguishable from LR and has no
intersection with it.

Let i∗c denote bi∗/2c, which is the index of the verification key containing
xi∗ . For now, suppose that i∗c /∈ C happens. Answering to the signing queries
from the adversary can be done by using the remaining witnesses since they are
in a qualified set of Λ. It is perfect due to the WI property of the underlying
proofs. If the output distribution of the experiment changes noticeably from that
in the previous game, we can construct a successful distinguisher for LR and L̃.
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Let εhd denote the bound for indistinguishability of LR. We have |Pr[G3 | i∗c /∈
C]− Pr[G2]| ≤ εhd.

We now evaluate Pr[G3 | i∗c /∈ C]. Since C /∈ Γ̂ , there exists i† ∈ A∗ that
i†

c
/∈ C. We have i† = i∗ with probability 1/2n for uniform i∗. (Note that, for

this case, i∗c /∈ C holds as well.) For xi∗ /∈ LR and fixed âi∗ , probability that
challenge êi∗ uniformly chosen by He(Λ̂,x,msg , i∗, ŝi∗) can have ẑi∗ that satisfies
1 = V(xi∗ , âi∗ , êi∗ , ẑi∗) is bound by the statistical soundness error, denoted by
εst, of Σ. We thus have Pr[G3 | i∗c /∈ C ∧ i† = i∗] = 1

2n · Pr[G3 | i∗c /∈ C] < εst.

By accumulating the all above bounds, we have Pr[ExpreufRS,A(λ) = 1] <
O(q/2µ) + εhd + 2nεst which is negligible if q, n, and µ are polynomials in λ, and
εhd and εst are negligible in λ as stated. ut

5 Concluding remarks

In this work, we have revisited the CDS composition technique and proposed a
modification, that we coin the share-then-hash methodology. Our simple technique
enhances the previous composition in several flavors, including more compact
proofs (one single transcript per atomic statement), better generality (it is not
limited to 2-special sound atomic protocols) and security proofs under weaker
assumptions (soundness can be proven in the non-programmable random oracle
model). Consequently, our results can lead to more efficient, general and secure
cryptographic primitives that rely on proofs of partial knowledge.

Proving lower bounds on the proof size and communication complexity of
partial proofs of knowledge is an appealing target for future work. In particular,
it would be interesting to know if our construction is optimal under some measure
or criteria. Another interesting direction for future work would be explore the
application of our share-then-hash technique to other scenarios.
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