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Abstract. Public-key encryption (PKE) schemes or key-encapsulation
mechanisms (KEMs) are fundamental cryptographic building blocks to
realize secure communication protocols. There are several known trans-
formations that generically turn weakly secure schemes into strongly (i.e.,
IND-CCA) secure ones. While most of these transformations require the
weakly secure scheme to provide perfect correctness, Hofheinz, Hövel-
manns, and Kiltz (HHK) (TCC 2017) have recently shown that variants
of the Fujisaki-Okamoto (FO) transform can work with schemes that
have negligible correctness error in the (quantum) random oracle model
(QROM). Many recent schemes in the NIST post-quantum competition
(PQC) use variants of these transformations. Some of their CPA-secure
versions even have a non-negligible correctness error and so the tech-
niques of HHK cannot be applied.
In this work, we study the setting of generically transforming PKE
schemes with potentially large, i.e., non-negligible, correctness error to
ones having negligible correctness error. While there have been previ-
ous treatments in an asymptotic setting by Dwork et al. (EUROCRYPT
2004), our goal is to come up with practically efficient compilers in a con-
crete setting and apply them in two different contexts: firstly, we show
how to generically transform weakly secure deterministic or randomized
PKEs into CCA-secure KEMs in the (Q)ROM using variants of HHK.
This applies to essentially all candidates to the NIST PQC based on lat-
tices and codes with non-negligible error, for which we provide an exten-
sive analysis. We thereby show that it improves some of the code-based
candidates. Secondly, we study puncturable KEMs in terms of the Bloom
Filter KEM (BFKEM) proposed by Derler et al. (EUROCRYPT 2018)
which inherently have a non-negligible correctness error. BFKEMs are a
building block to construct fully forward-secret zero round-trip time (0-
RTT) key-exchange protocols. In particular, we show how to achieve the
first post-quantum secure BFKEM generically from lattices and codes
by applying our techniques to identity-based encryption (IBE) schemes
with (non-)negligible correctness error.

Keywords: CPA-to-CCA transformations, Fujisaki-Okamoto trans-
form, non-negligible correctness error, puncturable encryption



1 Introduction

Public-key encryption (PKE) schemes or key-encapsulation mechanisms (KEM)
are fundamental cryptographic building blocks to realize secure communica-
tion protocols. The security property considered standard nowadays is security
against chosen-ciphertext attacks (IND-CCA security). This is important to avoid
pitfalls and attacks in the practical deployments of such schemes, e.g., padding
oracle attacks as demonstrated by Bleichenbacher [12] and still showing up very
frequently [46, 5, 14, 57]. Also, for key exchange protocols that achieve the desir-
able forward secrecy property, formal analysis shows that security against active
attacks is required (cf. [45, 50, 22, 56]). This equally holds for recent propos-
als for fully forward-secret zero round-trip time (0-RTT) key-exchange protocols
from puncturable KEMs [34, 21, 20] and even for ephemeral KEM keys for a
post-quantum secure TLS handshake without signatures [61].

In the literature, various different ways of obtaining CCA security generically
from weaker encryption schemes providing only chosen-plaintext (IND-CPA) or
one-way (OW-CPA) security are known. These can be in the standard model
using the double-encryption paradigm due to Naor and Yung [54], the compiler
from selectively secure identity-based encryption (IBE) due to Canetti, Halevi
and Katz [18], or the more recent works due to Koppula and Waters [49] based on
so called hinting pseudo-random generators and Hohenberger, Koppula, and Wa-
ters [42] from injective trapdoor functions. In the random oracle model (ROM),
CCA security can be generically obtained via the well-known and widely-used
Fujisaki-Okamoto (FO) transform [27, 28] yielding particularly practical effi-
ciency.

Perfect correctness and (non-)negligible correctness error. A property
common to many compilers is the requirement for the underlying encryption
schemes to provide perfect correctness, i.e., there are no valid ciphertexts where
the decryption algorithm fails when used with honestly generated keys. Recently,
Hofheinz, Hövelmanns and Kiltz (HHK) [40] investigated different variants of
the FO transform also in a setting where the underlying encryption scheme has
non-perfect correctness and in particular decryption errors may occur with a
negligible probability in the security parameter. This is interesting since many
PKE or KEM schemes based on conjectured quantum safe assumptions and
in particular assumptions on lattices and codes do not provide perfect correct-
ness. Even worse, some of the candidates submitted to the NIST post-quantum
competition (PQC) suffer from a non-negligible correctness error and so the
FO transforms of HHK cannot be applied. Ad-hoc approaches to overcome this
problem that are usually chosen by existing constructions in practice — if the
problem is considered at all — is to increase the parameters to obtain a suitably
small decryption error, applying an error correcting code on top or implementing
more complex decoders. In practice, these ad-hoc methods come with drawbacks.
Notably, LAC which is a Learning With Errors (LWE) based IND-CCA secure
KEM in the 2nd round of the NIST PQC that applies an error correcting code is
susceptible to a key recovery attack recently proposed by Guo et al. [37]. Also,
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code-based schemes have a history of attacks [36, 59, 26] due to decoding errors.
Recently, Bindel and Schanck [10] proposed a failure boosting attack for lattice-
based schemes with a non-zero correctness error. For some code-based schemes,
the analysis of the decoding error is a non-trivial task as it specifically depends
on the decoder. For instance, the analysis of BIKE’s decoder, another 2nd round
NIST PQC candidate, has recently been updated [62].

Consequently, it would be interesting to have rigorous and simple approaches
to remove decryption errors (to a certain degree) from PKE and KEM schemes.
Immunizing encryption schemes. The study of “immunizing” encryp-
tion schemes from decryption errors is not new. Goldreich, Goldwasser, and
Halevi [32] studied the reduction or removal of decryption errors in the Ajtai-
Dwork encryption scheme as well as Howgrave-Graham et al. [44] in context
of NTRU. The first comprehensive and formal treatment has been given by
Dwork, Naor, and Reingold [25] who study different amplification techniques
in the standard and random oracle model to achieve non-malleable (IND-CCA
secure) schemes. One very intuitive compiler is the direct product compiler
Enc⊗` which encrypts a message M under a PKE Π = (KGen,Enc,Dec) with
a certain decryption error δ under ` independent public-keys from KGen, i.e,.
pk′ := (pk1, . . . , pk`) as Enc′(pk′,M) := (Enc(pk1,M), . . . ,Enc(pk`,M)). Dec′,
given C ′ = (C1, . . . , C`) tries to decrypt Ci, 1 ≤ i ≤ `, and returns the result of
a majority vote among all decrypted messages, yielding an encryption scheme
with some error δ′ ≤ δ. Their asymptotic analysis, however, and limitation to
PKEs with a binary message space does not make it immediate what this would
mean in a concrete setting and in particular how to choose ` for practically
interesting values of δ and δ′. For turning a so-obtained amplified scheme with
negligible correctness error into a CCA-secure one in the ROM, they provide
a transform using similar ideas, but more involved than the FO transform.
Bitansky and Vaikuntanathan [11] go a step further and turn encryption
schemes with a correctness error into perfectly correct ones, whereas they even
consider getting completely rid of bad keys (if they exist) and, thus, completely
immunize encryption schemes. They build upon the direct product compiler of
Dwork et al. and then apply reverse randomization [53] and Nisan-Wigderson
style derandomization [55]. Thereby, they partition the randomness space into
good and bad randomness, and ensure that only good randomness is used for
encryption and key generation.

Our goals. In this work, we are specifically interested in transformations that
lift weaker schemes with non-negligible correctness error into CCA-secure ones
with negligible error. Thereby, our focus is on modular ways of achieving this
and can be seen as a concrete treatment of ideas that have also be discussed by
Dwork et al. [25], who, however, treat their approaches in an asymptotic setting
only. We show that the direct product compiler can be used with variants of the
standard FO transform considered by HHK [40] (in the ROM) as well as Bindel
et al. [9] and Jiang et al. [48] (in the quantum ROM (QROM) [15]). They are
used by many candidates of the NIST PQC, when starting from PKE schemes
having non-negligible correctness error generically. As we are particularly
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interested in practical compilers in a concrete setting to obtain CCA security
for KEMs in the (Q)ROM, we analyze the concrete overhead of this compiler
and its use with widely used variants of the transforms from HHK. Moreover,
we provide a rigorous treatment of non-black-box applications of these ideas
and show that they yield better concrete results than the direct application of
the direct product compiler. Importantly, it gives a generic way to deal with the
error from weaker schemes (e.g., IND-CPA secure ones with non-negligible error)
which are easier to design. An interesting question that we will study is how
does increasing from one to ` ciphertexts compare to increasing the parameters
at comparable resulting decryption errors for existing round-two submissions
in the NIST PQC. As it turns out, our approach performs well in context of
code-based schemes but gives less advantage for lattice-based schemes.

We also study our approach beyond conventional PKEs and KEMs. In par-
ticular, a class of KEMs that have recently found interest especially in context
of full forward-secrecy for zero round-trip time (0-RTT) key-exchange (KE) pro-
tocols are so-called puncturable KEMs [33, 34, 21, 63] and, in particular, Bloom
Filter KEMs (BFKEMs) [21, 20]. BFKEMs schemes are CCA-secure KEMs that
inherently have non-negligible correctness error. Interestingly, however, the non-
negligible correctness error comes from the Bloom filter layer and the under-
lying IBE scheme (specifically, the Boneh-Franklin [16] instantiation in [21]) is
required to provide perfect correctness. Thus, as all post-quantum IBEs have at
least negligible correctness error, there are no known post-quantum BFKEMs.

1.1 Contribution

Our contributions on a more technical level can be summarized as follows:

Generic transform. We revisit the ideas of the direct product compiler of
Dwork et al. [25] (dubbed Cp,r and Cp,d for randomized and deterministic PKEs
respectively) in the context of the modular framework of HHK [40]. In particular,
we present a generic transform dubbed T? that, given any randomized PKE
scheme with non-negligible correctness error, produces a derandomized PKE
scheme with negligible correctness error. We analyze the transform both in the
ROM and QROM and give a tight reduction in the ROM and compare it to
a generic application of the direct product compiler. The transform naturally
fits into the modular framework of HHK [40], and, thus, by applying the U 6⊥

transform, gives rise to an IND-CCA-secure KEM. For the analysis in the QROM,
we follow the work of Bindel et al. [9]. We show that the T? transform also fits
into their framework. Hence, given the additional injectivity assumption, we also
obtain a tight proof for U6⊥. But even if this assumption does not hold, the non-
tight proofs of Jiang et al. [48] and Hövelmanns et al. [43] still apply. Compared
to the analysis of the T transform that is used in the modular frameworks, our
reductions lose a factor of `, i.e., the number of parallel ciphertexts required to
reach a negligible correctness error, in the ROM and a factor of `2 in the QROM.
For concrete schemes this number is small (e.g., ≤ 5) and thus does not impose
a significant loss. An overview of the transformations and how our transform

4



nn-rPKE
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dPKE
OW-PCA

KEM
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nn-dPKE
OW-CPA
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Theorem 7 U6⊥

[40] Thm. 3.4T
[40] Thm. 3.1

Cp,r

Corollary 1

Cp,d/C?
p,d

Corollary 1

U6⊥m
[40] Thm. 3.6

Fig. 1. Overview of the transformations in the ROM with the results related to T?

highlighted in blue. rPKE denotes a randomized PKE. dPKE denotes a deterministic
PKE. The prefix nn indicates encryption schemes with non-negligible correctness error.

nn-rPKE
IND-CPA

dPKE
OW-CPA

KEM
IND-CCA

nn-rPKE
ε-injective

dPKE
FFC

rPKE
IND-CPA

nn-rPKE
DS + IND-CPA

nn-dPKE
OW-CPA

T?

Theorem 8

T?

Lemma 2

U6⊥

[48] Thm. 6

U6⊥

[51] Thm. 4.6

T [9] Thm. 1

Cp,r

Corollary 1

Corollary 1

Cp,d/C?
p,d

U6⊥m ◦ T?

[43] Thm. 3.2†

Fig. 2. Overview of the transformations in the QROM using the notation from Figure 1.
A dashed arrow denotes a non-tight reduction. DS denotes disjoint simulatability.
†: Obtained by applying the modifications from Theorems 7 and 8 to [43, Thm 3.2].

fits into the modular frameworks is given in Figure 1 (ROM) and Figure 2
(QROM). Furthermore, using ideas similar to T?, we discuss a modified version
of the deterministic direct product compiler Cp,d which we denote by C?p,d, that
compared to the original one allows to reduce the number of parallel repetitions
needed to achieve negligible correctness error.

Evaluation. We evaluate T? based on its application to code- and lattice-based
second-round candidates in the NIST PQC. In particular, we focus on schemes
that offer IND-CPA secure versions with non-negligible correctness error such as
ROLLO [4], BIKE [3] and Round5 [30]. We compare their IND-CCA variants with
our transform applied to the IND-CPA schemes. In particular, for the code-based
schemes such as ROLLO we can observe improvements in the combined size of
public keys and ciphertexts, a metric important when used in protocols such as
TLS, as well as its runtime efficiency. We also argue the ease of implementing
our so-obtained schemes which can rely on simpler decoders. For lattice-based
constructions, we find that the use of the transform results in an increase in
the sum of ciphertext and public-key size of 30% even in the best case scenario,
i.e., for an IND-CPA version of KEM Round5 [30]. Nevertheless, it offers easier
constant-time implementations and the opportunity of decreasing the correctness
error without changing the underlying parameter set and, thus, the possibility
to focus on analyzing and implementing one parameter set for both, IND-CPA
and IND-CCA security.
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Bloom Filter KEMs. Finally, we revisit puncturable KEMs from Bloom filter
KEMs (BFKEMs) [21, 20], a recent primitive to realize 0-RTT key exchange
protocols with full forward-secrecy [34]. Currently, it is unclear how to instan-
tiate BFKEMs generically from IBE and, in particular, from conjectured post-
quantum assumptions due to the correctness error of the respective IBE schemes.
We show that one can construct BFKEMs generically from any IBE and even
base it upon IBEs with a (non-)negligible correctness error. Consequently, our
results allow BFKEMs to be instantiated from lattice- and code-based IBEs and,
thereby, we obtain the first post-quantum CCA-secure BFKEM.

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}, and let λ ∈ N be the security
parameter. For a finite set S, we denote by s←$S the process of sampling
s uniformly from S. For an algorithm A, let y ← A(λ, x) be the process of
running A on input (λ, x) with access to uniformly random coins and assigning
the result to y (we may assume that all algorithms take λ as input). To make the
random coins r explicit, we write A(x; r). We say an algorithm A is probabilistic
polynomial time (PPT) if the running time of A is polynomial in λ. A function
f is negligible if its absolute value is smaller than the inverse of any polynomial,
i.e., if ∀c ∃k0 s.t. ∀λ ≥ k0 : |f(λ)| < 1/λc.

2.1 Public-Key Encryption and Key-Encapsulation Mechanisms

Public-key encryption. A public-key encryption (PKE) scheme Π with mes-
sage spaceM consists of the three PPT algorithms (KGen,Enc,Dec): KGen(λ), on
input security parameter λ, outputs public and secret keys (pk, sk). Enc(pk,M),
on input pk and message M ∈M, outputs a ciphertext C. Dec(sk, C), on input
sk and C, outputs M ∈M∪{⊥}. We may assume that pk is implicitly available
in Dec.
Correctness. We recall the definition of δ-correctness of [40]. A PKE Π is
δ-correct if

E

[
max
M∈M

Pr[c← Enc(pk,M) : Dec(sk, C) 6=M ]

]
≤ δ,

where the expected value is taken over all (pk, sk)← KGen(λ).
PKE-IND-CPA, PKE-OW-CPA, and PKE-OW-PCA security. We say
a PKE Π is PKE-IND-CPA-secure if and only if any PPT adversary A has
only negligible advantage in the following security experiment. First, A gets an
honestly generated public key pk. A outputs equal-length messages (M0,M1)
and, in return, gets C∗b ← Enc(pk,Mb), for b←$ {0, 1}. Eventually, A outputs a
guess b′. If b = b′, then the experiment outputs 1. For PKE-OW-CPA security,
A does not receive a ciphertext for A-chosen messages, but only a ciphertext
C∗ ← Enc(pk,M) forM ←$M and outputsM ′; ifM =M ′, then the experiment
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Exp. Exppke-ind-cpa
Π,A (λ)

(pk, sk)← KGen(λ)

(M0,M1)← A(pk)

b←$ {0, 1}
C∗ ← Enc(pk,Mb)

b′ ← A(C∗)

if b = b′ then return 1
else return 0

Exp. Exppke-ow-cpa
Π,A (λ)

(pk, sk)← KGen(λ)

M ←$M
C∗ ← Enc(pk,M)

M ′ ← A(pk, C∗)

if M = M ′ then return
1 else return 0

Exp. Exppke-ow-pca
Π,A (λ)

(pk, sk)← KGen(λ)

M ←$M
C∗ ← Enc(pk,M)

M ′ ← APco(·,·)(pk, C∗)

if M = M ′ then return 1
else return 0

Fig. 3. PKE-x-y security with x ∈ {OW, IND}, y ∈ {CPA,PCA} for Π.

outputs 1. For PKE-OW-PCA security, A additionally has access to a plaintext
checking oracle Pco(M,C) returning 1 if M = Dec(sk, C) and 0 otherwise.

Definition 1. For any PPT adversary A the advantage function

Advpke-ind-cpa
Π,A (λ) :=

∣∣∣∣Pr[Exppke-ind-cpa
Π,A (λ) = 1

]
− 1

2

∣∣∣∣,
is negligible in λ, where the experiment Exppke-ind-cpa

Π,A (λ) is given in Figure 3 and
Π is a PKE as above.

Definition 2. For any PPT adversary A, and y ∈ {CPA,PCA} the advantage
function

Exppke-OW-y
Π,A (λ) := Pr

[
Exppke-OW-y

Π,A (λ) = 1
]
,

is negligible in λ, where the experiments Exppke-ow-cpa
Π,A (λ) and Exppke-ow-pca

Π,A (λ) are
given in Figure 3 and Π is a PKE as above.

We recall a well known lemma below:

Lemma 1. For any adversary B there exists an adversary A with the same
running time as that of B such that

Advpke-ow-cpa
Π,B (λ) ≤ Advpke-ind-cpa

Π,A (λ) +
1

|M|
.

We note that Lemma 1 equivalently holds for the `-IND-CPA notion below.
Multi-challenge setting. We recall some basic observations from [8] regarding
the multi-challenge security of PKE schemes. In particular, for our construction
we need the relation between OW-CPA/IND-CPA security in the conventional
single-challenge and single-user setting and n-OW-CPA/n-IND-CPA respectively,
which represents the multi-challenge and multi-user setting. In particular, latter
means that the adversary is allowed to obtain multiple challenges under multiple
different public keys.

Theorem 1 (Th. 4.1 [8]). Let Π = (KGen,Enc,Dec) be a PKE scheme that
provides x-CPA security with x ∈ {OW, IND}. Then, it holds that:

Advpke-x-cpa
Π,A (λ) ≥ 1

q · n
· Advn-pke-x-cpa

Π,A (λ),
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Exp. Exppke-ffc
Π,A (λ)

(pk, sk)← KGen(λ)

L← A(pk)

if exists C ∈ L with M ∈ M such that Enc(pk,M) = C and Dec(sk, C) 6= M
then return 1 else return 0

Fig. 4. Finding-failing-ciphertext experiment for Π.

where n is the number of public keys and A makes at most q queries to any of
its n challenge oracles.

Although the loss imposed by the reduction in Theorem 1 can be significant
when used in a general multi-challenge and multi-user setting, in our application
we only have cases where n = 1 and small q (q = 5 at most), or vice versa (i.e.,
q = 1 and n = 5 at most) thus tightness in a concrete setting is preserved.
Finding failing ciphertexts and injectivity. For the QROM security proof
we will need the following two definitions from [9].

Definition 3 (ε-injectivity). A PKE Π is called ε-injective if

– Π is deterministic and

Pr[(pk, sk)← KGen(λ) :M 7→ Enc(pk,M) is not injective ] ≤ ε.

– Π is non-deterministic with randomness space R and

Pr

[
(pk, sk)← KGen(λ),

M,M ′←$M, r, r′←$R
: Enc(pk,M ; r) = Enc(pk,M ′; r′)

]
≤ ε.

Definition 4 (Finding failing ciphertexts). For a deterministic PKE, the
FFC-advantage of an adversary A is defined as

Advpke-ffc
Π,A (λ) := Pr

[
Exppke-ffc

Π,A (λ) = 1
]
,

where the experiment Exppke-ffc
Π,A is given in Figure 4.

Key-encapsulation mechanism. A key-encapsulation mechanism (KEM)
scheme KEM with key space K consists of the three PPT algorithms
(KGen,Encaps,Decaps): KGen(λ), on input security parameter λ, outputs public
and secret keys (pk, sk). Encaps(pk), on input pk, outputs a ciphertext C and
key k. Decaps(sk, C), on input sk and C, outputs k or {⊥}.
Correctness of KEM.We call a KEM δ-correct if for all λ ∈ N, for all (pk, sk)←
KGen(λ), for all (C, k)← Enc(pk), we have that

Pr[Dec(sk, C) 6= k] ≤ δ.

KEM-IND-CCA security. We say a KEM KEM is KEM-IND-CCA-secure if
and only if any PPT adversary A has only negligible advantage in the following
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Exp. Expkem-ind-cca
KEM,A (λ)

(pk, sk)← KGen(λ)

(C∗, k0)← Encaps(pk), k1 ←$K
b←$ {0, 1}
b′ ← ADecaps(sk,·)(pk, C∗, kb)

if b = b′ then return 1 else return 0

Fig. 5. KEM-IND-CCA security experiment for KEM.

security experiment. First, A gets an honestly generated public key pk as well
as a ciphertext-key pair (C∗, kb), for (C∗, k0) ← Encaps(pk), for k1←$K, and
for b←$ {0, 1}. A has access to a decapsulation oracle Dec(sk, ·) and we require
that A never queries Decaps(sk, C∗). Eventually, A outputs a guess b′. Finally,
if b = b′, then the experiment outputs 1.

Definition 5. For any PPT adversary A, the advantage functions

Advkem-ind-cca
KEM,A (λ) :=

∣∣∣∣Pr[Expkem-ind-cca
KEM,A (λ) = 1

]
− 1

2

∣∣∣∣,
is negligible in λ, where the experiment Expkem-ind-cca

KEM,A (λ) is given in Figure 5 and
KEM is a KEM as above.

2.2 Identity-Based Encryption

An identity-based encryption (IBE) scheme IBE with identity space ID and
message space M consists of the five PPT algorithms (KGen,Ext,Enc,Dec):
KGen(λ) on input security parameter λ, outputs master public and secret keys
(mpk,msk). Ext(msk, id) on input identity id ∈ ID, outputs a user secret key
usk id . Enc(mpk, id ,M) on input mpk, id ∈ ID, and message M ∈ M, outputs
a ciphertext C. Dec(usk id , C) on input usk id and C, outputs M ∈M∪ {⊥}.
Correctness of IBE. Analogous to [40] we define δ-correctness of an IBE IBE
for any id ∈ ID as

E

[
max
M∈M

Pr[C ← Enc(mpk, id ,M) : Dec(usk id , C) 6=M ]

]
≤ δ(λ),

where the expected value is taken over all (mpk,msk)← KGen(λ) and usk id ←
Ext(msk, id).

We recall the formal definitions of IBE-sIND-CPA security in the full version.

3 CCA Security from Non-Negligible Correctness Errors

In this section, we present our approaches to generically achieve CCA secure
KEMs in the (Q)ROM with negligible correctness error when starting from an
OW-CPA or IND-CPA secure PKE with non-negligible correctness error. We start
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by discussing the definitions of correctness errors of PKE and KEMs. Then, we
present a generic transform based on the direct product compiler of Dwork et
al. [25] and revisit certain FO transformation variants from [40] (in particular
the T and U transformations), their considerations in the QROM [9] and their
application with the direct product compiler. As a better alternative, we analyze
the non-black-box use of the previous technique yielding transformation T?, that
combines the direct product compiler with the T transformation. Finally, we
provide a comprehensive comparison of the two approaches.

3.1 On the Correctness Error

In this work, we use the δ-correctness for PKEs given by HHK in [40]. With this
definition, particularly bad keys in terms of correctness error only contribute a
fraction to the overall correctness error as it averages the error probability over
all key pairs: if there are negligible many keys with a higher correctness error,
then those keys do not really contribute to the overall correctness error. At the
same time this definition is tailored, via maxing over all possible messages, to the
security proofs of the FO-transforms where an adversary could actively search
for the worst possible message, in order to trigger decryption failure. As also
done by Dwork et al. [25], we explicitly write the correctness error as a function
in the security parameter:

Definition 6. A PKE Π is δ(·)-correct if

E

[
max
M∈M

Pr[C ← Enc(pk,M) : Dec(sk, C) 6=M ]

]
≤ δ(λ),

where the expected value is taken over all (pk, sk)← KGen(λ).

It will be important for our transform to make explicit that the correctness error
depends on the security level, as this allows us to chose a function `(·) such that
δ(λ)`(λ) ≤ 2−λ. We will often just write δ = δ(λ) and ` = `(λ) for simplicity.

An alternative but equivalent definition, as used in [40], can be given in
the following form: a PKE Π is called δ(·)-correct if we have for all (possibly
unbounded) adversaries A that

Advcor
Π,A(λ) = Pr

[
Expcor

Π,A(λ) = 1
]
≤ δ(λ),

where the experiment is given in Figure 6. If Π is defined relative to a ran-
dom oracle H, then the adversary is given access to the random oracle and δ
is additionally a function in the number of queries qH, i.e., the bound is given
by ≤ δ(λ, qH). We note that in [10] an alternative definition of correctness was
proposed, where the adversary does not get access to sk and the adversary’s
runtime is bounded. With this change, it can be run as part of the IND-CCA
experiment which does not change the power of the IND-CCA adversary and ad-
ditionaly removes a factor qH from the correctness error and advantage analysis.
In particular, one can obtain an upper bound for IND-CCA security of a scheme
via the correctness error.
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Exp. Expcor
Π,A(λ)

(pk, sk)← KGen(λ)

M ← A(pk, sk)

if M 6= Dec(sk,Enc(pk,M)) then return 1 else return 0

Fig. 6. Correctness experiment for PKE.

We recall, for completeness, the definition of correctness error, here denoted
as DNR-δ-correctness (from Dwork-Naor-Reingold), used by Dwork et al.:

Definition 7 (Def. 2, Def. 3 [25]). A PKE Π is

– DNR-δ(·)-correct if we have that

Pr[Dec(sk,Enc(pk,M)) 6=M ] ≤ δ(λ),

where the probability is taken over the choice of key pairs (pk, sk)← KGen(λ),
M ∈M and over the random coins of Enc and Dec.

– DNR-(almost-)all-keys δ(·)-correct if for all (but negligible many) keys
(pk, sk)← KGen(λ), we have that

Pr[Dec(sk,Enc(pk,M)) 6=M ] ≤ δ(λ),

where the probability is taken over the choice ofM ∈M and over the random
coins of Enc and Dec.

Correctness error in this sense still allows bad key pairs that potentially have an
even worse error but it is not suited for our security proofs as the probability is
also taken over M ←$M. Recently Drucker et al. [23] introduced the notion of
message agnostic PKE and showed that all the versions of BIKE, a 2nd round
candidate in the NIST PQC, are message-agnostic: in such a PKE, the probabil-
ity that, given (sk, pk), the encryption of a message M ∈ M correctly decrypts
is independent of the message M ∈ M itself. For such PKEs the definitions of
δ-correctness and DNR-δ-correctness coincide (Cor. 1 [23]).

3.2 Compiler for Immunizing Decryption Errors

Now we present two variants of a compiler Cp denoted Cp,d (for deterministic
schemes) and Cp,r (for randomized schemes) which is based on the direct prod-
uct compiler by Dwork et al. [25]. We recall that the idea is to take a PKE
scheme Π = (KGen,Enc,Dec) with non-negligible correctness error δ (and ran-
domness space R in case of randomized schemes) and output a PKE scheme
Π ′ = (KGen′,Enc′,Dec′) with negligible correctness error δ′ (and randomness
space R′ := R`, for some ` ∈ N, in case of a randomized schemes). We present a
precise description of the compilers in Figure 7. Note that in Dec′, the message
that is returned most often by Dec is returned. If two or more messages are tied,
one of them is returned arbitrarily and we denote this operation as maj(M ′).
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Π ′.KGen′(λ, `)

// if Cp,r

return Π.KGen(λ)

// if Cp,d

for i ∈ [`]

(pki, ski)← Π.KGen(λ)

pk := (pk1, . . . , pk`)

sk := (sk1, . . . , sk`)

return (pk, sk)

Π ′.Enc′(pk,M)

for i ∈ [`]

// if Cp,r

ri ←$Π.R
Ci ← Π.Enc(pk,M ; ri)

// if Cp,d

Ci ← Π.Enc(pki,M)

C := (C1. . . . , C`)

return C

Π ′.Dec′(sk, C)

C := (C1. . . . , C`)

for i ∈ [`]

// if Cp,r

M ′i := Π.Dec(sk, Ci)

// if Cp,d

M ′i := Π.Dec(ski, Ci)

return maj(M ′1, . . . ,M
′
`)

Fig. 7. Compilers Cp,d and Cp,r.

Analyzing correctness. Dwork et al. in [25] explicitly discuss the amplification
of the correctness for encryption schemes with a binary message space M =
{0, 1} and obtain that to achieve DNR-δ′-correctness ` > c/(1− δ)2 · log 1/δ′ when
starting from a scheme with DNR-δ-correctness. As c is some constant that is
never made explicit, the formula is more of theoretical interest and for concrete
instances it is hard to estimate the number of required ciphertexts. We can
however analyze the probabilities that the majority vote in Dec′ returns the
correct result. As far as the correctness notion used in this work is concerned,
in order to prove an acceptable good lower bound for the δ-correctness of the
direct product compiler, it suffices to find an event, in which the decryption
procedure fails, that happens with a large enough probability. The following
reasoning applies to both its deterministic and randomized versions, Cp,d and Cp,r

respectively. One such case is the following: only 1 ciphertext correctly decrypts
and all other `− 1 ciphertexts decrypt to `− 1 distinct wrong messages. During
the maj operation, one of the “wrong” messages is then returned. The probability
of this event is

`− 1

`

(
`

`− 1

)
δ`−1(1− δ)M − 1

M − 1

M − 2

M − 1
· · ·M − (`− 1)

M − 1
.

Looking ahead to our compiler T∗ presented in Section 3.4, if the message space
is sufficiently large, this probability is bigger than δ`−1(1− δ), which gives that
at least one more ciphertext is needed to achieve the same decryption error as
with our compiler T∗. The results are shown in Table 1. One can compute the
exact probability of decryption error by listing all cases in which the decryption
fails and summing up all these probabilities to obtain the overall decryption
failure of the direct product compiler. This computation is not going to give a
significantly different result from the lower bound that we have just computed.

We note that using 2 parallel ciphertexts does not improve the correctness
error, so the direct product compiler only becomes interesting for ` ≥ 3: indeed
for ` = 2, we have 3 possible outcomes in which the decryption algorithm can
fail: 1) the first ciphertext decrypts and the second does not, 2) vice versa, 3)
both fail to decrypt. In 1), 2), half the time the wrong plaintext is returned.
Summing these probabilities gives exactly δ.
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Table 1. Estimation of the correctness error for the direct product compilers. δ′(`)
denotes the correctness error for ` ciphertexts.

δ δ′(2) δ′(3) δ′(4)

2−32 ≈ 2−32 ≈ 2−63 ≈ 2−94

2−64 ≈ 2−64 ≈ 2−127 ≈ 2−190

2−96 ≈ 2−96 ≈ 2−191 ≈ 2−284

Remark 1. As far as the deterministic direct product compiler Cp,d is concerned,
the correctness error can be improved by modifying the decryption: instead of
relying on the maj operation, we can re-encrypt the plaintexts obtained during
decryption with the respective keys and compare them to the original cipher-
texts. Only if this check passes, the plaintext is returned. If this is done, then
decryption fails iff no ciphertext decrypts correctly, i.e., with probability δ`,
and thereby the number of parallel repetition necessary to achieve negligible
correctness-error is reduced at the cost of a computational overhead in the de-
cryption. We denote this version of the deterministic direct product compiler by
C?p,d.

Their security follows by applying Theorem 1 with q = 1 and n = ` in the
deterministic case, for both Cp,d and C?p,d, or vice versa with q = ` and n = 1 in
the randomized case:

Corollary 1. For any x-CPA adversary B against Π ′ obtained via applying Cp,y

to Π, there exists an x-CPA adversary A such that:

Advpke-x-cpa
Π′,B (λ) ≤ ` · Advpke-x-cpa

Π,A (λ),

where y = d if x = OW and y = r if x = IND.

As the analysis above suggests, ` will be a small constant, so the loss in ` does
not pose a problem regarding tightness.

3.3 Transformations T and U6⊥

Subsequently, we discuss basic transformations from [41] to first transform an
IND-CPA secure PKE into an OW-PCA secure PKE (transformation T in [41])
and then to convert an OW-PCA secure PKE into an IND-CCA secure KEM with
implicit rejection (transformation U6⊥ in [41]) and we discuss alternative trans-
formations later. We stress that these transformations either work for perfectly
correct schemes or schemes with a negligible correctness error.
T: IND-CPA =⇒ OW-PCA (ROM)/OW-CPA (QROM). The transform T is
a simple de-randomization of a PKE by deriving the randomness r used by
the algorithm Enc via evaluating a random oracle (RO) on the message to be
encrypted. More precisely, let Π = (KGen,Enc,Dec) be a PKE with message
spaceM and randomness spaceR and G :M→R be a RO. We denote the PKE
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Π ′.Enc(pk,M)

C := Π.Enc(pk,M ;G(M))

return C

Π ′.Dec(sk, C)

M ′ := Π.Dec(sk, C)

if M ′ = ⊥ or C 6= Π.Enc(pk,M ′;G(M ′))

return ⊥
else return M ′

Fig. 8. OW-PCA-secure scheme Π ′ = T[Π,G] with deterministic encryption.

KEM.KGen(λ)

(pk′, sk′)← Π ′.KGen(λ)

s←$M
sk := (sk′, s)

return (pk′, sk)

KEM.Encaps(pk)

M ←$M
C ← Π ′.Enc(pk,M)

K := H(M,C)

return (K,C)

KEM.Decaps (sk,C)

Parse sk = (sk′, s)

M ′ := Π ′.Dec(sk′, C)

if M ′ 6= ⊥
return K := H(M ′, C)

else return K := H(s, C)

Fig. 9. IND-CCA-secure KEM scheme KEM = U6⊥[Π ′,H].

Π ′ obtained by applying transformation T depicted in Figure 8 as Π ′ = T[Π,G],
where Π ′.KGen = Π.KGen and is thus omitted.

For the ROM, we recall the following theorem:

Theorem 2 (Thm. 3.2 [41] (Π IND-CPA =⇒ Π ′ OW-PCA)). Assume Π to
be δ-correct. Then, Π ′ is δ1(qG) = qG · δ correct and for any OW-PCA adversary
B that issues at most qG queries to the RO G and qP queries to a plaintext
checking oracle Pco, there exists an IND-CPA adversary A running in about the
same time as B such that

Advpke-ow-pca
Π′,B (λ) ≤ qG · δ +

2qG + 1

|M|
+ 3 · Advpke-ind-cpa

Π,A (λ).

And for the QROM, we recall the following theorem:

Theorem 3 (Thm. 1 [9] (Π IND-CPA =⇒ Π ′ OW-CPA)). If A is an
OW-CPA-adversary against Π ′ = T[Π,G] issuing at most qG queries to the
quantum-accessible RO G of at most depth d, then there exists an IND-CPA
adversary B against Π running in about the same time as A such that

Advpke-ow-cpa
Π′,A (λ) ≤ (d+ 1)

(
Advpke-ind-cpa

Π,B (λ) +
8(qG + 1)

|M|

)
.

U6⊥: OW-PCA =⇒ IND-CCA. The transformation U 6⊥ transforms any OW-PCA
secure PKE Π ′ into an IND-CCA secure KEM in the (Q)ROM. The basic idea
is that one encrypts a random message M from the message space M of Π ′
and the encapsulated key is the RO evaluated on the message M and the cor-
responding ciphertext C under Π ′. This transformation uses implicit rejection
and on decryption failure does not return ⊥, but an evaluation of the RO on
the ciphertext and a random message s ∈ M, being part of sk of the resulting
KEM, as a “wrong” encapsulation key. It is depicted in Figure 9.

In the ROM, we have the following result:
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Theorem 4 (Thm. 3.4 [41] (Π ′ OW-PCA =⇒ KEM IND-CCA)). If Π ′ is
δ1-correct, then KEM is δ1-correct in the random oracle model. For any IND-CCA
adversary B against KEM, issuing at most qH queries to the random oracle H,
there exists an OW-PCA adversary A against Π ′ running in about the same time
as B that makes at most qH queries to the Pco oracle such that

Advkem-ind-cca
KEM,B (λ) ≤ qH

|M|
+ Advpke-ow-pca

Π′,A (λ).

For the QROM, we have the following non-tight result:

Theorem 5 (Thm. 6 [48] (Π ′ OW-PCA =⇒ KEM IND-CCA)). Let Π ′ be
a deterministic PKE scheme which is independent of H. Let B be an IND-CCA
adversary against the KEM U 6⊥[Π ′,H], and suppose that A makes at most qd
(classical) decryption queries and qH queries to quantum-accessible random or-
acle H of depth at most d, then there exists and adversary B against Π ′ such
that

Advkem-ind-cca
U6⊥[Π′,H],A(λ) ≤

2 · qH√
|M|

+ 2 ·
√
(qH + 1)(2 · δ + Advpke-ow-cpa

Π′,B (λ)).

If we assume ε-injectivity and FFC, respectively, we have tighter bounds:

Theorem 6 (Thm. 4.6 [51] (Π ′ OW-CPA + FFC =⇒ KEM IND-CCA)).
Let Π ′ be an ε-injective deterministic PKE scheme which is independent of
H. Suppose that A is an IND-CCA adversary against the KEM U 6⊥[Π ′,H], and
suppose that A makes at most qd (classical) decryption queries and qH queries
to quantum-accessible random oracle H of depth at most d, then there exist two
adversaries running in about the same time as A:

– an OW-CPA-adversary B1 against Π ′ and
– a FFC-adversary B2 against Π ′ returning a list of at most qd ciphertexts,

such that

Advkem-ind-cca
U 6⊥[Π′,H],A(λ) ≤ 4d · Advpke-ow-cpa

Π′,B1
(λ) + 6Advpke-ffc

Π′,B2
(λ) + (4d+ 6) · ε.

FO 6⊥[Π,G,H]. By combining transformation T with U 6⊥ one consequently obtains
an IND-CCA secure KEM KEM from an IND-CPA secure PKE Π. Note that the
security reduction of the FO 6⊥ := U 6⊥ ◦T variant of the FO is tight in the random
oracle model and works even if Π has negligible correctness error instead of
perfect correctness.
FO 6⊥[Π,G,H] in the QROM. Hofheinz et al. in [41] also provide variants of the
FO transform that are secure in the QROM, but they are (highly) non-tight.
Bindel et al. [9] presented a tighter proof for U 6⊥ under an additional assump-
tion of ε-injectivity. This result was recently improved by Kuchta et al. [51].
Additionally, Jiang et al. [48] provided tighter proofs for the general case.
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U⊥, U⊥m, U6⊥m and other approaches. Besides the transform with implicit re-
jection, U6⊥, one can also consider explicit rejection, U⊥ and versions of both
where the derived session key depends on the ciphertext, U6⊥m and U⊥m, respec-
tively. Bindel et al. [9] show that security of implicit rejection implies security
with explicit rejection. The opposite direction also holds if the scheme with ex-
plicit rejection also employs key confirmation. Moreover, they show that the
security is independent of including the ciphertext in the session key derivation.

A different approach was proposed by Saito et al. [58], where they start
from a deterministic disjoint simulatable PKE and apply U6⊥m with an additional
re-encryption step in the decryption algorithm. While the original construction
relied on a perfectly correct PKE, Jiang et al. gave non-tight reductions for
schemes with negligible correctness error in [47]. Hövelmanns et al. [43] improve
over this approach by giving a different modularization of Saito et al.’s TPunc.

Black-box use of the compiler Cp,d/C
?
p,d/Cp,r. Using Cp,d, C?p,d or Cp,r from

Section 3.2, we can transform any deterministic or randomized PKE with non-
negligible correctness error into one with negligible correctness error. Conse-
quently, Theorem 1 as a result yields a scheme that is compatible with all the
results on the T and variants of the U transformations in this section. Note
that in particular this gives us a general way to apply these variants of the FO
transform to PKE schemes with non-negligible correctness error.

3.4 Non Black-Box Use: the Transformation T?

Since the direct product compiler is rather complicated to analyze, we alterna-
tively investigate to start from an IND-CPA secure PKE Π with non-negligible
correctness error δ and introduce a variant of the transform T to de-randomize
a PKE, denoted T?. The idea is that we compute ` independent encryptions of
the same message M under the same public key pk using randomness G(M, i),
i ∈ [`], where G is a RO (see Figure 10 for a compact description). The resulting
de-randomized PKE Π ′ has then correctness error δ′ := δ`, where ` is chosen in
a way that δ` is negligible. To the resulting PKE Π ′ we can then directly apply
the transformation U6⊥ to obtain an IND-CCA secure KEM KEM with negligible
correctness error in the (Q)ROM.

Note that as we directly integrate the product compiler into the T transform,
the correctness of the message can be checked via the de-randomization. Hence,
we can get rid of the majority vote in the direct product compiler. With this
change the analysis of the concrete choice of ` becomes simpler and, more impor-
tantly, allows us to choose smaller ` than in the black-box use of the compiler.

Remark 2. Note that in Figure 10 we explicitly consider the case where Dec
of the PKE scheme Π may return something arbitrary on failed decryption.
For the simpler case where we have a PKE scheme Π which always returns
⊥ on failed decryption, we can easily adapt the approach in Figure 10.
Namely, we would decrypt all ` ciphertexts Ci, i ∈ [`]. Let h ∈ [`] be the
minimum index such that res[h] 6= ⊥. Then for every element j ∈ [`] run
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Π ′.Enc(pk,M)

for i = 1, . . . , ` do

Ci := Π.Enc(pk,M ;G(M, i))

C := (C1, . . . , C`)

return C

Π ′.Dec(sk, C)

res← ⊥, check← ⊥
for i = 1, . . . , ` do

res[i] := Π.Dec(sk, Ci)

for i ∈ [`] s.t. res[i] 6= ⊥ do

if ∀j ∈ [`] : Cj = Π.Enc(pk, res[i],G(res[i], j))
check← i

if check 6= ⊥
return res[check]

return ⊥

Fig. 10. OW-PCA-secure scheme Π ′ = T?[Π,G] with deterministic encryption and
correctness error δ` from IND-CPA secure scheme Π with correctness error δ.

C ′j := Π.Enc(pk, res[h];G(res[h], j). If for all j ∈ [`] we have C ′j = Cj we
return res[h]. If this is not the case we return ⊥. Note that all ` C ′j have to
be re-encrypted and checked against Cj , as otherwise IND-CCA-security is not
achieved. The difference is, that only ` encryptions instead of `2 are required.

We now show the following theorem.

Theorem 7 (Π IND-CPA =⇒ Π ′ OW-PCA). Assume Π to be δ-correct.
Then, Π ′ is δ1(qG, `) ≤

qG

`
· δ` correct and for any OW-PCA adversary B that

issues at most qG queries to the random oracle G and qP queries to a plaintext
checking oracle Pco, there exists an IND-CPA adversary A running in about the
same time as B such that

Advpke-ow-pca
Π′,B (λ) ≤ qG

`
· δ` + 2qG + 1

|M|
+ 3` · Advpke-ind-cpa

Π,A (λ).

We provide the proof which closely follows the proof of [41, Thm 3.2] in the full
version. Note that we lose an additional factor of `. Additionally, when using the
bounded δ-correctness notion from Bindel. et al. [10], the factor of qG disappears.

We now have an OW-PCA secure PKE Π ′ with negligible correctness error
and can thus directly use U 6⊥ and by invoking Theorem 4 obtain an IND-CCA
secure KEM KEM. Note that all steps in the reduction are tight. For the secu-
rity in the QROM, we can directly conclude from Corollary 1 that the generic
framework of Bindel et al. [9] can be applied to Cp,d and Cp,r with the additional
constraint of ε-injectivity and FFC, respectively. Without these additional con-
straints, the results of Jiang et al. [48] or Hövelmanns et al. [43]1 apply without
the tighter reductions that the Bindel et al.’s and Kuchta et al.’s results offer.

The security of the T? transform in the QROM follows in a similar vein.
To highlight how ` influences the advantages, we follow the proof strategy of
Bindel et al. [9]. Therefore, we first show that a randomized IND-CPA-secure
1 Without restating [43, Thm 3.2], note that we can adopt it the same way we highlight
in Theorems 7 and 8. So, we start with their Punc to obtain disjoint simutability
and then apply T? and U6⊥m .
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PKE scheme with a non-negligible correctness error is transformed to OW-CPA-
secure deterministic PKE scheme with negligible correctness error. Second, we
prove that if the T?-transformed version is also ε-injective, then it provides FFC.
With these two results in place, we can apply Theorem 6 to obtain an IND-CCA-
secure KEM.

In the following theorem, we prove OW-CPA security of the T? transform in
the QROM (see the full version). We follow the strategy of the proof of [9, Thm.
1] and adapt it to our transform. Compared to the T transform, we lose a factor
of `2. Once the loss is incurred by Theorem 1 and once by the semi-classical
one-way to hiding Theorem [2].

Theorem 8 (Π IND-CPA =⇒ Π ′ OW-CPA). Let Π be a non-deterministic
PKE with randomness space R and decryption error δ. Let ` ∈ N such that δ`
is negligible in the security parameter λ. Let G : M× [`] → R be a quantum-
accessible random oracle and let qG the number queries with depth at most d.
If A is an OW-CPA-adversary against T?[Π,G, `], then there exists an IND-CPA
adversary B against Π, running in about same time as A, such that

Advpke-ow-cpa
T?[Π,G,`],A(λ) ≤ (d+ `+ 1)

(
` · Advpke-ind-cpa

Π,B (λ) +
8(qG + 1)

|M|

)
.

We refer to the full version for the proof. Next, we show that the transform
provides the FFC property (cf. [9, Lemma 6]).

Lemma 2. If Π is a δ-correct non-deterministic PKE with randomness space
R, ` ∈ N such that δ` is negligible in the security parameter λ, G :M× [`]→ R
is a random oracle so that Π ′ = T?[Π,G, `] is ε-injective, then the advantage for
any FFC-adversary A against Π ′ which makes at most qG queries at depth d to
G and which returns a list of at most qL ciphertexts is bounded by

Advpke-ffc
Π′,A (λ) ≤

(
(4d+ 1)δ` +

√
3ε
)
(qG + qL) + ε.

For the proof we refer to the full version.

3.5 Comparison of the Two Approaches

The major difference between the generic approach using the direct product
compiler Cp,y, y ∈ {r, d}, and T? (or the modified deterministic direct product
compiler C?p,d) is the number of ciphertexts required to reach a negligible correct-
ness error. As observed in Section 3.2, the analysis of the overall decryption error
is rather complicated and Cp,y requires at least ` ≥ 3. With T?/C?p,d however,
the situation is simpler. As soon as one ciphertext decrypts correctly, the overall
correctness of the decryption can be guaranteed. Also, for the cases analysed in
Table 1, Cp,y requires at least one ciphertext more than T? and C?p,d. For the
correctness error, we have a loss in the number of random oracle queries in both
cases. For the comparison of the runtime and bandwidth overheads, we refer
to Table 2. Note that if the Dec of the underlying PKE Π reports decryption
failures with ⊥, then the overhead of T? for Dec is only a factor ` (cf. Remark 2).

18



Table 2. Comparison of the runtime and bandwidth overheads of Cp,y, y ∈ {r, d}, with
` ciphertexts and T? and C?p,d with `′ ciphertexts such that ` ≥ `′ + 1.

|pk| |C| KGen Enc Dec

Cp,y 1 (r) / ` (d) ` 1 (r) / ` (d) ` `
C?p,d `′ `′ `′ `′ `′

T? 1 `′ 1 `′ `′2 / `′ (⊥)

4 Our Transform in Practice

The most obvious use-case for IND-CCA secure KEMs in practice is when consid-
ering static long-term keys. Systems supporting such a setting are for example
RSA-based key exchange for SSH [39] or similarly in TLS up to version 1.2.
But since the use of long-term keys precludes forward-secrecy guarantees, using
static keys is not desirable. For ephemeral keys such as used in the ephemeral
Diffie-Hellman key exchange, an IND-CPA secure KEM might seem sufficient.
Yet, in the post-quantum setting accidental re-use of an ephemeral key leads to
a wide range of attacks [7]. But also from a theoretical viewpoint it is unclear
whether CPA security actually would be enough. Security analysis of the TLS
handshake protocol suggests that in the case of version 1.2 an only passively
secure version is insufficient [45, 50] (cf. also [56]). Also, security analysis of the
version 1.3 handshake requires IND-CCA security [22]. Thus, even in the case
of ephemeral key exchanges, using a IND-CCA secure KEM is actually desirable
and often even necessary as highlighted by Schwabe et al. [61].

For comparing KEMs in this context, the interesting metric is hence not the
ciphertext size alone, but the combined public key and ciphertext size. Both
parts influence the communication cost of the protocols. Additionally, the com-
bined runtime of the key generation, encapsulation and decapsulation is also an
interesting metric. All three operations are performed in a typical ephemeral key
exchange and hence give a lower bound for the overall runtime of the protocol.

In the following comparison, we assume that the underlying PKE never re-
turns ⊥ on failure, but an incorrect message instead. Thereby we obtain an upper
bound for the runtime of the Decaps algorithm. For specific cases where Decaps
explicitly returns ⊥ on failure, the runtime figures would get better since the
overhead to check the ciphertexts is reduced to a factor of ` (cf. Remark 2).

4.1 Code-Based KEMs

KEMs based on error correcting codes can be parametrized such that the decod-
ing failure rate (DFR) is non-negligible, negligible, or 0. Interestingly, the DFR
rate is also influenced by the actual decoder. Even for the same choice of code
and the exact same instance of the code, a decoder might have a non-negligible
DFR, whereas another (usually more complex) decoder obtains a negligible DFR.
For the submissions in the NIST PQC we can observe all three choices. The
candidates providing IND-CPA-secure variants with non-negligible DFR include:
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Table 3. Sizes (in bytes) and runtimes (in ms and millions of cycles for BIKE), where
O denotes the transformed scheme. The LEDAcrypt instances with postfix NN refer
to those with non-negligible DFR. Runtimes are taken from the respective submission
documents and are only intra-scheme comparable.

KEM δ pk C
∑

KGen Encaps Decaps

O[ROLLO-I-L1,5] 2−150 465 2325 2790 0.10 0.02/0.10 0.26/1.30
ROLLO-II-L1 2−128 1546 1674 3220 0.69 0.08 0.53

O[ROLLO-I-L3,4] 2−128 590 2360 2950 0.13 0.02/0.08 0.42/1.68
ROLLO-II-L3 2−128 2020 2148 4168 0.83 0.09 0.69

O[ROLLO-I-L5,4] 2−168 947 7576 8523 0.20 0.03/0.12 0.78/3.12
ROLLO-II-L5 2−128 2493 2621 5114 0.79 0.10 0.84

O[BIKE-2-L1,3] 2−147 10163 30489 40652 4.79 0.14/0.42 3.29/9.88
BIKE-2-CCA-L1 2−128 11779 12035 23814 6.32 0.20 4.12

O[LEDAcrypt-L5-NN,2] 2−128 22272 22272 44544 5.04 0.14/0.29 1.55/3.11
LEDAcrypt-L5 2−128 19040 19040 38080 4.25 0.84 2.28

BIKE [3], ROLLO [4], and LEDAcrypt [6]. We discuss the application of our
transform to those schemes below. For the comparison in Table 3, we consider
the DFR as upper bound for correctness error.

In Table 3, we present an overview of the comparison (see the full version
for the full comparison). First we consider ROLLO, and in particular ROLLO-
I, where we obtain the best results: public key and ciphertext size combined
is always smaller than for ROLLO-II and the parallel implementation is faster
even in case of a `2 overhead. For both BIKE (using T?) and LEDAcrypt (using
C?p,d since it starts from a deterministic PKE), we observe a trade-off between
bandwidth and runtime.

4.2 Lattice-Based KEMs

For lattice-based primitives the decryption error depends both on the modulus
q and the error distribution used. As discussed in [60], an important decision
that designers have to make is whether to allow decryption failures or choose
parameters that not only have a negligible, but a zero chance of failure. Hav-
ing a perfectly correct encryption makes transforms to obtain IND-CCA security
and security proofs easier, but with the disadvantage that this means either de-
creasing security against attacks targeting the underlying lattice problem or de-
creasing performance. The only NIST PQC submissions based on lattices which
provide parameter sets achieving both negligible and non-negligible decryption
failure are ThreeBears [38] and Round5 [30]. The IND-CCA-secure version of
ThreeBears is obtained by tweaking the error distribution, hence, our approach
does not yield any improvements. For Round5 we achieve a trade-off between
bandwidth and runtime. We also considered FrodoKEM [52], comparing its ver-
sion [17] precedent to the NIST PQC, which only achieved non-negligible failure
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probability, to the ones in the second round of the above competition, but we
do not observe any improvements for this scheme. For the full comparison we
refer to the full version. It would be interesting to understand the reasons why
the compiler does not perform well on lattice-based scheme compared to the
code-based ones and whether this is due to the particular schemes analysed or
due to some intrinsic difference between code- and lattice-based constructions.

4.3 Implementation Aspects

One of the strengths of T? compared to the black-box use of Cp,y, y ∈ {r, d}
(and Cp,d

?), is that besides the initial generation of the encapsulated key, all the
random oracle calls can be evaluated independently. Therefore, the encryptions
of the underlying PKE do not depend on each other. Thus, the encapsulation
algorithms are easily parallelizable – both in software and hardware. The same
applies to the decapsulation algorithm. While in this case only one successful
run of the algorithm is required, doing all of them in parallel helps to obtain a
constant-time implementation. Then, after all ciphertexts have been processed,
the first valid one can be used to re-compute the ciphertexts, which can be done
again in parallel. For software implementations on multi-core CPUs as seen on
today’s desktops, servers, and smartphones with 4 or more cores, the overhead
compared to the IND-CPA secure version is thus insignificant as long as the error
is below 2−32. If not implemented in a parallel fashion, providing a constant-time
implementation of the decapsulation algorithms is more costly. In that case, all of
the ciphertexts have to be dealt with to not leak the index of invalid ciphertexts.
Note that a constant-time implementation of the transform is important to avoid
key-recovery attacks [35].

The T? transform also avoids new attack vectors such as [37] that are intro-
duced via different techniques to decrease the correctness error, e.g., by applying
an error-correcting code on top. Furthermore, since the same parameter sets are
used for the IND-CPA and IND-CCA secure version when applying our trans-
forms, the implementations of proposals with different parameter sets can be
simplified. Thus, more focus can be put on analysing one of the parameter sets
and also on optimizing the implementation of one of them.

5 Application to Bloom Filter KEMs

A Bloom Filter Key Encapsulation Mechanism (BFKEM) [21, 20] is a specific
type of a puncturable encryption scheme [33, 34, 21, 63] where one associates
a Bloom Filter (BF) [13] to its public-secret key pair. The initial (i.e., non-
punctured) secret key is associated to an empty BF where all bits are set to 0.
Encapsulation, depending on an element s in the universe of the BF, takes the
public key and returns a ciphertext and an encapsulation key k corresponding to
the evaluation of BF (s), i.e., k hash evaluations on s yielding indexes in the size
m of the BF. Puncturing, on input a ciphertext C (associated to s) and a secret
key sk′, punctures sk′ on C and returns the resulting secret key. Decapsulation,
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on input a ciphertext C (with an associated tag s) and secret key sk′ is able
to decapsulate the ciphertext to k if sk′ was not punctured on C. We want to
mention, as in [20], we solely focus on KEMs since a Bloom Filter Encryption
(BFE) scheme (which encrypts a message from some message space) can be
generically derived from a BFKEM (cf. [27]).

The basic instantiation of a BFKEM in [21, 20] is non-black box and based
on the pairing-based Boneh-Franklin IBE (BF-IBE) scheme [16], where sk con-
tains an IBE secret key for every identity i ∈ [m] of the BF bits and puncturing
amounts to inserting s in the BF and deleting the IBE secret keys for the corre-
sponding bits. Although the BFKEM is defined with respect to a non-negligible
correctness error, the underlying BF-IBE has perfect correctness. So the non-
negligible error in the BFKEM is only introduced on an abstraction (at the level
of the BF) above the FO transform applied to the k BF-IBE ciphertexts (so
the application of the FO can be done as usual for perfectly correct encryption
schemes).

However, if one targets instantiations of BFE where the underlying IBE does
not have perfect correctness (e.g., lattice- or code-based IBEs), it is not obvious
whether the security proof using the BF-IBE as presented in [21, 20] can easily
be adapted to this setting.2

We first recall necessary definitions and then show a generic construction of
BFKEM from any IBE scheme with (non-)negligible correctness error.

Due to space constraints, we present the definition of Bloom filters with its
formal properties in the full version.
Bloom Filter key encapsulation mechanism. We recap the Bloom
Filter Key Encapsulation Mechanism (BFKEM) and its formal properties
from [20] that tolerates a non-negligible correctness error and the key gen-
eration takes parameters m and k as input which specify this correctness
error. A BFKEM BFKEM with key space K consists of the PPT algorithms
(KGen,Encaps,Punc,Decaps).

KGen(λ,m, k) : Key generation, on input security parameter λ and BF param-
eters m, k, outputs public and secret keys (pk, sk0).

Encaps(pk) : Encapsulation, on input pk, outputs a ciphertext C and key k.
Punc(sk, C) : Secret-key puncturing, on input sk and C, outputs an updated

secret key sk′.
Decaps(sk, C) : Decapsulation, on input sk and C, outputs k or {⊥}.

Definition 8 (Correctness). For all λ,m, k, n ∈ N and any (pk, sk0) ←
KGen(λ,m, k), we require the following. For any (arbitrary interleaved) sequence
of invocations of skj+1 ← Punc(skj , Cj), where j ∈ {0, . . . , n}, and (Cj , kj) ←
2 Note that we want the size of the BFKEM public key to be independent of the BF
parameters for practical reasons (besides the descriptions of the hash functions).
Right now, we only can guarantee this with IBE schemes as such schemes allow
for exponentially many secret keys with a short master public key and, hence, we
consider IBE schemes as a main building block of our BFKEM constructions.
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Encaps(pk), it holds that

Pr [Decaps(skn+1, C
∗) 6= k∗] ≤

(
1− e−

(n+1/2)k
m−1

)k
+ ε(λ),

where (C∗, k∗)← Encaps(pk) and ε(·) is a negligible function in λ.

Definition 9 (Extended Correctness). For all λ,m, k, n ∈ N and any
(pk, sk0) ← KGen(λ,m, k), we require the following. For any (arbitrary inter-
leaved) sequence of invocations of skj+1 ← Punc(skj , Cj) where j ∈ {0, . . . , n}
and (Cj , kj)← Encaps(pk), it holds that:

1. Impossibility of false-negatives: Decaps(skn+1, Cj) = ⊥ for all j ≤ n.
2. Perfect correctness of the initial secret key: Decaps(sk, C) = k for all (C, k)←

Encaps(pk).
3. Semi-correctness of punctured secret keys: If Decaps(skj+1, C) 6= ⊥ then

Decaps(skj+1, C) = Decaps(sk0, C).

All probabilities are taken over the random coins of KGen, Punc, and Encaps.
We recall additional properties (i.e., separable randomness, publicly-checkable
puncturing, and γ-spreadness) and formal definitions of BFKEM-IND-CPA and
BFKEM-IND-CCA security in the full version.

5.1 IBE with Negligible from Non-Negligible Correctness Error

We follow the approach for randomized PKE schemes in Section 3.2 adapted
for the IBE case (cf. Figure 11).3 Let IBE = (KGen,Ext,Enc,Dec) be an IBE
scheme with identity, message spaces, and randomness spaces ID, M, and R,
respectively, with non-negligible correctness error δ(λ), we construct an IBE
scheme IBE′ = (KGen′,Ext′,Enc′,Dec′) with identity and message spaces ID′ :=
ID and M′ := M, respectively, with negligible correctness error δ′(λ). The
construction is as follows. Set KGen′ := KGen and Ext′ := Ext while Enc′ and
Dec′ are given in Figure 11. See that ` = `(λ) can be chosen appropriately to
accommodate a negligible correctness error δ′(λ).

As for randomized PKE schemes, by an analogue of Theorem 1 for IBEs with
q = ` and n = 1, the security claim follows.

Corollary 2. For any IBE-sIND-CPA adversary B against IBE′ obtained via
applying the above transformation to IBE, there exists an IBE-sIND-CPA adver-
sary A such that:

Advibe-sind-cpa
IBE′,B (λ) ≤ ` · Advibe-sind-cpa

IBE,A (λ).

The correctness error analysis is again equivalent to the one in the PKE scenario.
We refer to Section 3.2 for a more in depth discussion.
3 We explicitly mention that we are only concerned with randomized IBEs. Adopting
Cp,d for deterministic IBEs will work as well. Though in the latter case, one can
further optimize the compiler depending on whether the IBE has deterministic or
randomized key extraction Ext.
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Enc′(mpk, id ,M)

for i ∈ [`]

ri ←$R
Ci ← Enc(mpk, id ,M ; ri)

return (C1, . . . , C`)

Dec′(usk id , C)

C =: (C1, . . . , C`)

for i ∈ [`]

M ′i := Dec(usk id , Ci)

return maj(M ′1, . . . ,M
′
`)

Fig. 11. Compiler for Enc′ and Dec′ for constructing IBE with negligible correctness
error from IBE with non-negligible correctness error.

5.2 BFKEM from IBE with Negligible Correctness Error

The intuition for our generic construction from any IBE with negligible correct-
ness error is as follows. We associate “user-secret keys” of IBE with the indexes
i ∈ [m] of the Bloom filter BF and annotate sk′0 as a special key for “fixed
identity” 0. We consider the encapsulation key as k0 ⊕ k1 where one share is en-
crypted under “identity” 0 (yielding C0) while the other share is encrypted under
the “identities” (ij)j of indexes of the BF that are determined by C0. Put differ-
ently, C0 acts as a tag of the overall ciphertext while the other IBE-ciphertexts
(Cij )j are utilized for correct decryption. The secret key is punctured on “tag”
C0. Note that the secret key sk′0 is not affected by the puncturing mechanism
and one can always at least decrypt C0. However, one additionally needs the
encapsulation-key share from the other ciphertexts (Cij )j ; those ciphertexts can
only be decrypted if at least one secret key sk′i∗ is available which can be checked
with BFCheck.

Let IBE = (IBE.KGen, IBE.Ext, IBE.Enc, IBE.Dec) be an IBE-sIND-CPA-
secure IBE scheme with identity and message spaces ID = [m] ∪ {0} and
M = {0, 1}λ, respectively, with negligible correctness error δ = δ(λ), and BF =
(BFGen,BFUpdate,BFCheck) a BF with universe U , we construct a BFKEM-
IND-CPA-secure BFKEM scheme BFKEM = (KGen,Encaps,Punc,Decaps) with
key space K :=M = {0, 1}λ as a stepping stone towards a BFKEM-IND-CCA-
secure BFKEM as follows.

KGen(λ,m, k): on input security parameter λ and BF parameters m, k, compute
(mpk,msk)← IBE.KGen(λ), sk′id ← IBE.Ext(msk, id), for all id ∈ [m]∪ {0},
and (H,T0)← BFGen(m, k). Return pk := (mpk,H) and sk := (T0, (sk

′
id)id)

(we assume that pk is available to Punc and Decaps implicitly).
Encaps(pk): on input (mpk,H) := pk, sample k0, k1←$K and compute C0 ←

Enc(mpk, 0, k0). For id j := Hj(C0) with (Hj)j := H and all j ∈ [k], compute
Cidj

← Enc(mpk, id j , k1) and output

((C0, (Cidj
)j), k0 ⊕ k1).

Punc(sk, C): on input (T, sk′0, (sk
′
id)id∈[m]) := sk and (C0, . . .) := C, compute

T ′ := BFUpdate(H,T,C0) and set

sk′′id :=

{
sk′id if T ′[id ] = 0,

⊥ if T ′[id ] = 1,
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for T ′[id ] the id -th bit of T ′. Return (T ′, sk′0, (sk
′′
id)id∈[m]).

Decaps(sk, C): on input (T, (sk′id)id∈[m]∪{0}) := sk and (C0, (Cidj
)j∈[k]) := C,

output ⊥ if BFCheck(H,T,C0) = 1. Otherwise, there exists a small-
est id∗ ∈ [m] such that sk′id∗ 6= ⊥, compute k0 := Dec(sk′0, C0) and
k1 := Dec(sk′id∗ , Cid∗), and output k0 ⊕ k1.

We prove the correctness (Definition 8), extended correctness (Definition 9),
separable randomness, publicly-checkable puncturing, and γ-spreadness proper-
ties of BFKEM in the full version.
BFKEM-IND-CPA security of BFKEM. We start by showing the BFKEM-
IND-CPA security of BFKEM = (KGen,Encaps,Punc,Decaps).

Theorem 9. If IBE is IBE-sIND-CPA-secure, then BFKEM is BFKEM-IND-
CPA-secure. Concretely, for any PPT adversary A there is a distinguisher D
for the IBE-sIND-CPA security experiment such that

Advbfkem-ind-cpa
BFKEM,A (λ,m, k) ≤ k ·m · Advibe-sind-cpa

IBE,D (λ). (1)

Proof. We show the BFKEM-IND-CPA-security of BFKEM for any valid PPT
adversary A in series of games where:

Game 0. Game 0 is the BFKEM-IND-CPA-experiment.
Game i. Game i is defined as Game i − 1 except that the i-th challenge-

ciphertext element Cidi
in C∗ is independent of the challenge bit, for i ∈ [k].

Game k + 1. Game k + 1 is defined as Game k except that the encapsulation
key in the challenge ciphertext is independent of b′.

We denote the event of the adversary winning Game i as Si. In Game k+1,
A has no advantage (i.e., success probability of Pr[Sk+1] = 1/2) in the sense
of BFKEM-IND-CPA. We argue in hybrids that the Games i ∈ [k + 1] are
computationally indistinguishable from Game 0.
Hybrids between Games 0 and k + 1. Each hybrid between Games i − 1
and i, i ∈ [k], is constructed as follows: on input m and k, D samples (H,T0)←
BFGen(m, k), for H =: (Hj)j∈[k] and sets T0 = 0m. Next, D samples id∗←$ [m]
and sends id∗ to its IBE-sIND-CPA-challenger. D retrieves mpk in return and
sets pk := (mpk,H).

Furthermore, for all id ∈ ([m] ∪ {0}) \ {id∗}, D retrieves sk0 := (usk id)id
from its Ext-oracle. (Note that D does not have a secret key for id∗ and A has
to query the challenge ciphertext to the Punc′-oracle in order to receive secret
keys via the Cor-oracle, which results in “deleting” the secret key for id∗ if there
were any. Particularly, all Cor-queries can be answered correctly.)

Furthermore, D sends k
(0)
1 , k

(1)
1 ←$M = {0, 1}λ to its IBE-sIND-CPA-

challenger and retrieves C∗id∗ ← Enc(mpk, id∗, k(b)), for some b←$ {0, 1}.
D samples b′←$ {0, 1}, computes C0 ← Enc(mpk, 0, k0), for k0 ← M, and

sets (id j)j := (Hj(C0))j∈[k]. If id i 6= id∗, abort. (See that this happens with
probability (m− 1)/m.) Otherwise, D computes Cidj

← Enc(mpk, id j , k
(b′)
1 ), for

all (id j)j∈[k]\[i], and Cidj
← Enc(mpk, id j , k

′
1), for all (id j)j∈[i−1], for k′1←$M.
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D sets Cidi
:= C∗id∗ and sends (pk, C∗ := (C0, (Cidj

)j), k
(b′)) to A, for k(b

′) :=

k
(b′)
1 ⊕ k0.
A has access to a Punc′(C)-oracle which runs ski+1 ← Punc(ski, C) for each

invocation i = 0, 1, . . . , q and sets L := L ∪ {C} for initially empty set L. The
Cor-oracle returns ski+1 iff C∗ ∈ L. Eventually, A outputs a guess b∗ which D
forwards as b∗ ⊕ b′ to its IBE-sIND-CPA-challenger.

In the hybrid between Games k and k + 1: proceed as in Game k, but send
(pk, C∗ := (C0, (Cidj )j), k

′), for uniform k′ ←M to A.
Analysis. In the hybrids between the Games j − 1 and j, for j ∈ [k], we have
that if b′ = b = 0 or b′ = b = 1, then the distribution of the challenge ciphertext
is correct and a successful A should output b∗ = 0 whereD forwards b∗⊕b′ = b as
guess to its challenger which yields a successful IBE-sIND-CPA distinguisher D.
If b′ 6= b, then A is used to distinguish the j-th challenge-ciphertext component,
i.e., a successful A should output b∗ = 1 where D forwards b∗⊕b′ = b as guess to
its challenger which, again, yields a successful IBE-sIND-CPA distinguisher D.
In the hybrid between the Games k and k+1, the change is information-theoretic,
i.e., the challenge ciphertext encapsulates uniformly random key-elements (in-
dependent of b′) and the encapsulation key is sampled uniformly at random
which yields Pr[Sk+1] = 1/2. In each hybrid, we have that Pr[id i = id∗] = 1/m.
Putting things together, for k + 1 hybrids, Equation (1) holds. ut
BFKEM-IND-CCA security of BFKEM′. We construct a slight variant
of our BFKEM scheme above, dubbed BFKEM′, via the FO transform [27]
along the lines of [21]. We want to mention that the FO transform does not
work generically for any BFKEM and no generic framework as in the case of
KEMs exists. Hence, we consider the direct product compiler in Section 5.1
and, in the vein of [21], to prove BFKEM-IND-CCA security of our BFKEM,
we introduce further properties (i.e., separable randomness, publicly-checkable
puncturing, and γ-spreadness) in the full version. Furthermore, [21] requires
perfect correctness for unpunctured keys which our BFKEM definition cannot
guarantee. Hence, we have to reprove the BFKEM-IND-CCA-security for
BFKEM′, although the proof techniques are almost the same as presented
in [21]. We construct a BFKEM-IND-CCA-secure BFKEM as follows. Let
BFKEM = (KGen,Encaps,Punc,Decaps) be a randomness-separable BFKEM-
IND-CPA-secure BFKEM scheme with key space K = {0, 1}λ and correctness
error δ = δ(λ), we construct a BFKEM-IND-CCA-secure BFKEM scheme
BFKEM′ = (KGen′,Encaps′,Punc′,Decaps′) with key space K′ = K using a
variant of the FO transform as follows. Let G : K′ → {0, 1}ρ+λ be a hash
function modeled as random oracle (RO) in the security proof.
KGen′(λ,m, k): same as KGen(λ,m, k).
Encaps′(pk): on input pk, sample k′←$K′, compute (r, k) := G(k′) ∈ {0, 1}ρ+λ

and (C, k′)← Encaps(pk; (r, k′)), and return (C, k).
Punc′(sk, C): same as Punc(sk, C).
Decaps′(sk, C): on input secret key sk and ciphertext C, compute k′ ←

Decaps(sk, C) and return ⊥ if k′ = ⊥. Otherwise, compute (r, k) := G(k′)
and return k if (C, k′) = Encaps(pk; (r, k′)), else output ⊥.
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We prove the correctness (Definition 8), extended correctness (Definition 9),
separable randomness, publicly-checkable puncturing, and γ-spreadness proper-
ties of BFKEM′ in the full version.

Theorem 10. If a BFKEM BFKEM is BFKEM-IND-CPA-secure with the sep-
arable randomness, publicly-checkable puncturing, and γ-spreadness properties,
and negligible correctness error probability δ = δ(λ), then BFKEM′ is BFKEM-
IND-CCA-secure. Concretely, for any PPT adversary A making at most qG =
qG(λ) queries to the random oracle G there is a distinguisher D in the BFKEM-
IND-CPA-security experiment such that

Advbfkem-ind-cca
BFKEM′,A (λ,m, k) ≤ Advbfkem-ind-cpa

BFKEM,D (λ,m, k) + 2δ +
qG

2γ
. (2)

Due to space constraints, we show the proof in the full version.

5.3 Comparison of BFKEM Instantiations

To instantiate BFKEM′ from post-quantum IBE schemes, we investigating in-
stantiations based on a selectively IND-CPA secure lattice-based or code-based
IBEs. As far as lattices are concerned, the first such construction was [31] after
which numerous others followed [1, 19, 24, 64]. To compute the dimension of
a lattice-based BFKEM, we start from the GVP-IBE instantiation of [24], for
which an implementation and concrete dimensions were given for 80 and 192-bit
quantum security. We set the parameter of the BFKEM as in [21], i.e., targeting
the maximum number of allowed punctures to n = 220, which amounts to adding
212 elements per day to the BF for a year, and allowing for a false-positive prob-
ability of 10−3, we obtain m = 1.5 · 107 and k = 10. A similar procedure can be
applied to the code-based IBE of Gaborit et al. (GHPT) [29] achieving 128-bit
quantum security. We note though that with recent advances in the cryptanal-
ysis, these instances may provide less security. Table 4 provides an overview
including the pairing-based BFKEM from [21]. For the latter, we assume the
use of the pairing-friendly BLS12-381 curve with 120-bit classical security.

Table 4. Sizes of BFKEM when instantiated with GVP or GHPT.

IBE assumption sk pk C

GVP-80 lattice-based 19.21 GB 1.62 KB 17.46 KB
GVP-192 lattice-based 47.15 GB 3.78 KB 40.28 KB

GHPT-128 code-based 643.73 GB 252 KB 215.79 MB

Boneh-Franklin [21] pairing-based 717.18 MB 95.5 B 255.5 B
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