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Abstract. Garg et al. (Crypto 2015) initiated the study of cryptographic pro-
tocols over noisy channels in the non-interactive setting, namely when only one
party speaks. A major question left open by this work is the completeness of finite
channels, whose input and output alphabets do not grow with the desired level of
security. In this work, we address this question by obtaining the following results:

1. Completeness of Bit-ROT with Inverse Polynomial Error. We show that
bit-ROT (i.e., Randomized Oblivious Transfer channel, where each of the two
messages is a single bit) can be used to realize general randomized function-
alities with inverse polynomial error. Towards this, we provide a construction
of string-ROT from bit-ROT with inverse polynomial error.

2. No Finite Channel is Complete with Negligible Error. To complement the
above, we show that no finite channel can be used to realize string-ROT with
negligible error, implying that the inverse polynomial error in the complete-
ness of bit-ROT is inherent. This holds even with semi-honest parties and for
computational security, and is contrasted with the (negligible-error) complete-
ness of string-ROT shown by Garg et al.

3. Characterization of Finite Channels Enabling Zero-Knowledge Proofs.
An important instance of secure computation is zero-knowledge proofs. Noisy
channels can potentially be used to realize truly non-interactive zero-knowledge
proofs, without trusted common randomness, and with non-transferability and
deniability features that cannot be realized in the plain model. Garg et al. ob-
tain such zero-knowledge proofs from the binary erasure channel (BEC) and
the binary symmetric channel (BSC). We complete the picture by showing
that in fact any non-trivial channel suffices.



1 Introduction

A noisy communication channel is a probabilistic function C : X → Y , mapping a
sent symbol x to a received symbol y. Standard examples include the binary symmet-
ric channel (BSC), which flips a bit x ∈ {0, 1} with probability 0 < p < 1/2, and
the binary erasure channel (BEC), which erases x with probability p. A fundamental
question in information-theoretic cryptography is – what cryptographic protocols can
be constructed from noisy communication channels? This question has been studied
extensively, with respect to various cryptographic tasks and a variety of channels, and
has uncovered a rich landscape of structural relationships. Starting with the pioneer-
ing work of Wyner [30] who showed that the wiretap channel can be used for secure
communication, many works studied the usefulness of noisy channels for additional
cryptographic tasks (e.g., [6, 23, 5, 14, 28, 29, 25]). This culminated in a complete
characterization of the channels on which oblivious transfer, and hence general secure
two-party computation, can be based [12, 13].

Most cryptographic constructions from noisy channels crucially require interaction.
While this is not a barrier for some applications, there are several useful settings which
are inherently non-interactive. A natural question that arises is what cryptographic tasks
can be realized using only one-way noisy channels, namely by protocols over noisy
channels in which only one party speaks. The question of realizing secure communica-
tion in this setting was the topic of Wyner’s work, and is a central theme in the big body
of work on “physical layer security” [8, 24].

A clean way to capture tasks that can potentially be realized using one-way noisy
communication is via a sender-receiver functionality, which takes an input from a
sender S and delivers a (possibly) randomized output to a receiver R. In more de-
tail, such a sender-receiver functionality is a deterministic or randomized mapping
f : A → B that takes an input a ∈ A from a sender S and delivers an output b = f(a)
to a receiver R. In the randomized case, the randomness is internal to the functionality;
neither S nor R learn it or can influence its choice.
Useful instances. Several important cryptographic tasks can be captured as sender-
receiver functionalities. For instance, a foundational primitive in cryptography is non-
interactive zero-knowledge (NIZK) [9, 15], which is typically constructed in the com-
mon random string (CRS) model. NIZK proofs can be captured in the sender-receiver
framework by a deterministic function that takes an NP-statement and a witness from
the sender and outputs the statement along with the output of the verification predicate
to the receiver. As noted by Garg et al. [17], secure implementation of this function over
a one-way channel provides the first truly non-interactive solution to zero knowledge
proofs, where no trusted common randomness is available to the parties. Moreover,
this solution can achieve useful properties of interactive zero-knowledge protocols such
as non-transferability and deniability, which are impossible to achieve in the standard
non-interactive setting. Another example from [17] is that of randomly generating “puz-
zles” without giving any of the parties an advantage in solving them. For instance, the
sender can transmit to a receiver a random Sudoku challenge, or a random image of a
one-way function, while the receiver is guaranteed that the sender has no advantage in
solving the puzzle and can only general a puzzle of the level of difficulty prescribed by
the randomized algorithm that generates it. A third example of a useful sender-receiver
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functionality is randomized blind signatures, which can be used for applications such
as e-cash [10, 11, 3]. Blind signatures are captured by a randomized function that takes
a message and a signing key from the sender and delivers a signature on some random-
ized function of the message to the receiver (for instance by adding a random serial
number to a given dollar amount).6 Another use-case for such randomized blind signa-
tures is a non-interactive certified PKI generation, where an authority can issue to a user
signed public keys, while only the users learn the corresponding secret keys. Applica-
tions notwithstanding, understanding the cryptographic power of noisy channels with
one-way communication is a fundamental question from the theoretical standpoint.

Prior Work. A large body of theoretical and applied work studied how to leverage
one-way communication to construct secure message transmission (see, e.g., [4, 24]
and references therein). More recently, Garg et al. [17] broadened the scope of this
study to include more general cryptographic functionalities. Notably, they showed that
one-way communication over the standard BEC or BSC channels suffices for realiz-
ing NIZK, or equivalently any deterministic sender-receiver functionality. Moreover,
for general (possibly randomized) functionalities, a randomized string-OT channel or
(string-ROT for short) is complete. A string-ROT channel takes a pair of random `-bit
strings from the sender and delivers only one of them, chosen at random by the chan-
nel, to the receiver. This completeness result was extended in [17] to other channels.
However, in all of these general completeness results, the input and alphabet size of
the channel grow (super-polynomially) with both the desired level of security and the
complexity of the functionality being realized. On the negative side, it was shown in
[17] that standard BEC/BSC channels are not complete. A major question that was left
open is the existence of a complete finite channel, whose input and output alphabets do
not grow with the security parameter or the complexity of the functionality. Further-
more, for the special case of deterministic functionalities (equivalently, NIZK), it was
not known whether completeness holds for all non-trivial finite channels.

Next, we describe our framework in a bit more detail, followed by a summary of
our results, which essentially settle the above mentioned questions.

Our Framework. Let C be a finite channel. We define a one-way secure computation
protocol (OWSC) for a functionality f over channel C as a randomized encoder that
maps the sender’s input a into a sequence x of channel inputs, and a decoder that maps
the sequence of receiver’s channel outputs y into an output b. Given an error parameter
ε, the protocol should satisfy the following security requirements: (i) given the sender’s
view, which consists of its input a and the message x that it fed into the channel, the
receiver’s output should be distributed as f(a), and (ii) the view of the receiver, namely
the message y it received from the channel, can be simulated from f(a). Note that
(i) captures receiver security against a corrupt sender as well as correctness, while (ii)
captures sender security against a corrupt receiver.

6 In more detail, the sender can generate an anonymous $100 bill by letting the input be
m =(Sender-name, 100) and the transmitted message be (m, id) for a random identifier id
picked by the functionality. Consider the scenario where multiple $100 bills are sent to differ-
ent receivers. The id is needed to prevent double spending. Anonymity comes from the fact
that the sender doesn’t learn id, so it cannot associate a particular $100 bill with the receiver
to whom it was sent.
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We will construct OWSC protocols for various functionalities over various finite
channels. Of particular interest to us is the randomized `-bit string-ROT channel dis-
cussed above, which we denote by C`ROT, and its finite instance C1ROT that we refer to as
the bit-ROT channel.

1.1 Our Results

We are ready to state our results:

1. Completeness of Bit-ROT with Inverse Polynomial Error. We show that bit-ROT
is complete for randomized functionalities with inverse polynomial simulation error.
Towards this, we provide a construction of string-ROT from bit-ROT with inverse
polynomial error, and appeal to the completeness of string-ROT. This is captured by
the following (formal statement in Theorem 7):

Theorem 1. (Informal) The bit-ROT channel (C1ROT) is complete for one-way secure
computation, with inverse-polynomial error. This holds for both semi-honest and
malicious parties. The protocol establishing completeness can either be efficient in
the circuit size, in which case it is computationally secure using any pseudorandom
generator, or efficient in the branching program size, in which case is it information-
theoretically secure.

2. No Finite Channel is Complete with Negligible Error. To complement the above
positive result, we show that no finite channel is complete for randomized function-
alities with negligible error. This is contrasted with the completeness of string-ROT
discussed above. In more detail, we prove the following theorem (formal statement
in Theorem 9) :

Theorem 2. (Informal): No finite channel is complete for one-way secure compu-
tation, with negligible error, even with semi-honest parties and for computational
security. More concretely, string-ROT cannot be implemented in this setting.

3. Every Non-Trivial Finite Channel is Complete for Zero-Knowledge. As dis-
cussed above, a particularly compelling use case for one-way communication over
noisy channels is truly non-interactive zero-knowledge proofs, without a trusted
common randomness setup and with desirable features such as non-transferability
and deniability. The results of Garg et al. [17] obtain such NIZK proofs from the
binary erasure channel (BEC) and the binary symmetric channel (BSC). This raises
the question whether all non-trivial channels enable NIZK.
We show that this is indeed the case if we define a “trivial” channel to be one that
either does not enable communication at all, or is essentially equivalent to a noiseless
channel, when used by malicious senders. In more detail, we prove the following
theorem (see Section 5 for a formal statement):

Theorem 3. (Informal): Given a language L ∈ NP \BPP, a one-way secure com-
putation protocol over channel C for zero-knowledge for L exists if and only if C is
non-trivial.
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1.2 Our Techniques

In this section we provide an overview of our techniques.
Completeness of Bit-ROT with inverse polynomial error. We show that bit-ROT
is complete for randomized functionalities with inverse polynomial error. Towards this,
we show, in Theorem 6, that (`-bit) string-ROT can be realized with polynomially many
invocations of bit-ROT channel with inverse-polynomial error. The OWSC protocol is
efficient in ` and is secure even against malicious adversaries.

In more detail, we use average case secret sharing, which is a weak version of
ramp secret sharing, where both the reconstruction and privacy conditions are to be
satisfied for a random set of r players and t players respectively, where r and t are the
reconstruction and privacy thresholds, respectively. Theorem 4 provides a construction
of OWSC protocol for string-ROT using bit-ROT given an average case secret sharing
schemes (Avg-SSS) with sufficiently small gap parameter. The analysis of this theorem
crucially uses the anti-concentration bound for Bernoulli sums for a small window
around the mean. In Theorem 5, we construct efficient Avg-SSS for N players in which
the gap between r and t is inverse polynomial in N and which have inverse polynomial
privacy guarantee. The scheme we construct and its analysis build on techniques for
secret sharing with binary shares that were recently introduced by Lin et al. [22] (for a
different goal). Our result on efficient realization of string-ROT from bit-ROT directly
follows from combining the above two results.

Impossibility of String-ROT from Finite Channel with Negligible Error. Next, we
show that string-ROT cannot be constructed from bit-ROT with negligible error. We es-
tablish our result in two steps. Our first negative result in Theorem 8 shows that string-
ROT cannot be realized with polynomially many invocations of bit-ROT channel while
guaranteeing negligible error. Our proof is inspired by [17]. In more detail, we use an
isoperimetric inequality for Boolean hypercubes (Harper’s theorem), to show the exis-
tence of strategies that can efficiently guess both input strings in any implementation of
string-ROT with polynomially bounded number of bit-ROT invocations, which is a vio-
lation of the ROT security. The machine we describe for guessing the two input strings
is computationally efficient, hence our impossibility result applies to computationally
bounded semi-honest adversaries.

We then extend this result in Theorem 9 to show that no finite channel can be used
to realize string-ROT using polynomially many invocations of the channel while guar-
anteeing negligible error. To show this, we model a channel as a function from the input
of the channel and its internal randomness to the output of the channel. We then pro-
ceed to prove the impossibility in a manner similar to the impossibility for the bit-ROT
channel.

Impossibility of Completeness of Finite Channels with Negligible Error. Theorem 9
shows that string-ROT cannot be realized over any finite channel efficiently (in terms
of the number of channel invocations) and with negligible error, even in the computa-
tional setting. Since string-ROT is a simple functionality which has a small description
in many functional representation classes, we obtain an impossibility result that strikes
off the possibility of a complete channel with negligible error for most function repre-
sentation classes of interest.
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Characterization of Finite Channels Enabling Zero-Knowledge Proofs. It is a fun-
damental question to understand which channels enable ZK proofs. We give a complete
characterization of all finite channels over which a OWSC protocol for zero-knowledge
(proof of knowledge) functionality is possible. In fact, we show that the only channels
which do not enable zero-knowledge proofs are “trivial” channels (a proof over a triv-
ial channel translates to a proof over a plain one-way communication channel which is
possible only for languages in BPP). Over any other finite channel, we build a statis-
tical zero-knowledge proof of knowledge, which is unconditionally secure. Our result
generalizes a result of [17], which gave OWSC zero-knowledge proof protocols over
Binary Erasure Channels (BEC) and Binary Symmetric Channels (BSC) only. Extend-
ing this result to all non-trivial channels requires new ideas, exploiting a geometric view
of channels.

2 Preliminaries

To begin, we define some notation that we will use throughout the paper.

Notation 1. A member of a finite set X is represented by x and sampling an indepen-
dent uniform sample from X is denoted by x $← X . A vector in Xn is represented by
x ∈ Xn, whose coordinate i ∈ [n] is represented by either xi or x(i).

For a vector x ∈ Xn and a setA ⊆ [n], the restriction of x to the setA, represented
by x|A is the vector with all the coordinates outside ofA replaced by an erasure symbol
⊥ which is not a member of X . That is, x|A (i) = x(i) if i ∈ A and x|A (i) = ⊥
otherwise. Finally,∆ (µ0, µ1) denotes the total variation distance between distributions
µ0 and µ1.

2.1 Sender-Receiver Functionalities and Channels

This work addresses secure computation tasks that are made possible by one-way com-
munication over a noisy channel. Such tasks can be captured by sender-receiver func-
tionalities, that take an input from a sender S and deliver a (possibly) randomized output
to a receiver R. More precisely, a sender-receiver functionality is a randomized map-
ping f : A → B that takes an input a ∈ A from a sender S and delivers an output
b = f(a) to a receiver R. We will sometimes refer to f simply as a function and write
f(a; ρ) when we want to make the internal randomness of f explicit.

In order to realize f , we assume that S and R are given parallel access to a channel
C : X → Y , which is a sender-receiver functionality that is typically much simpler than
the target function f . We will typically view C as being finite whereas f will come from
an infinite class of functions. We will be interested in the number of invocations of C
required for realizing f with a given error ε (if possible at all).

We will be particularly interested in the following channel.

Definition 1 (ROT channel). The `-bit randomized string oblivious transfer channel
(or `-bit string-ROT for short), denoted by C`ROT, takes from S a pair of strings a0,a1 ∈
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{0, 1}`, and delivers to R

C`ROT(a0,a1) =

{
(a0,⊥) w.p. 1

2 ,

(⊥,a1) w.p. 1
2 .

Finally, it is sometimes convenient to assume that a sender-receiver functionality
f can additionally take a public input that is known to both parties. For instance, in
a zero-knowledge proof such a public input can include the NP-statement, or in blind
signatures it can include the receiver’s public verification key (allowing f to check the
validity of the secret key). All of our definitions and results can be easily extended to
this more general setting.

2.2 Secure Computation with One-Way Communication

A secure protocol for f : A → B over a channel C is formalized via the standard
definitional framework of reductions in secure computation. Our default setting shall
be that of information-theoretic security against semi-honest parties, with extensions to
the setting of computational security and malicious parties. All our negative results in
fact hold for the weakest setting of computational security against semi-honest parties.
All our positive results hold for (either information-theoretic or computational) security
against malicious parties.
OWSC protocols. A one-way secure computation protocol for f over C specifies a
randomized encoder that maps the sender’s input a into a sequence of channel inputs
x, and a decoder that maps the receiver’s channel outputs y into an output b. Given
an error parameter ε, the protocol should satisfy the following security requirements:
(i) given the sender’s view, which consists of an input a and the message x that it fed
into the channel, the receiver’s output should be distributed as f(a), and (ii) the view
of the receiver, namely the message y it received from the channel, can be simulated
from f(a). Note that (i) captures receiver security against a corrupt sender as well as
correctness, while (ii) captures sender security against a corrupt receiver. We formalize
this below.

Definition 2 (One-way secure computation). Given a randomized function f : A →
B and a channel C : X → Y , a pair of randomized functions 〈S,R〉, where S : A →
XN and R : YN → B is said to be an (N, ε) OWSC protocol for f over C if there exists
a simulator SimR : B → YN , such that for all a ∈ A,

∆ ((S(a), f(a)) , (S(a),R(C(S(a)))) ≤ ε
∆
(
SimR(f(a)), C(S(a))

)
≤ ε

OWSC for malicious parties. In this case, our security requirement coincides with UC
security, but with simplifications implied by the communication model. Specifically,
since a corrupt receiver has no input to the functionality nor any message in the protocol,
UC security against a malicious receiver is the same as in the semi-honest setting. UC
security against a malicious sender, on the other hand, requires that from any arbitrary
strategy of the sender, a simulator is able to extract a valid input.
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Formally, an OWSC protocol for f over C is secure against malicious parties if,
in addition to the requirements in Definition 2, there exists a randomized simulator
SimS : XN → A such that for every x ∈ XN ,

∆
(
f(SimS(x)),R(C(x))

)
≤ ε.

In our (positive) results in this setting, we shall require the simulator to be computation-
ally efficient as well.
OWSC with computational security. We can naturally relax the above definition of
(statistical) (N, ε) OWSC to computational (N,T, ε) OWSC, for a distinguisher size
bound T , by replacing each statistical distance bound ∆ (A,B) ≤ ε by the condition
that for all circuits C of size T , |Pr(C(A) = 1)− Pr(C(B) = 1)| ≤ ε.
Complete channels for OWSC. So far, we considered OWSC protocols for a concrete
function f and with a concrete level of security ε. However, in a cryptographic context,
one is typically interested in a single “universal” protocol that takes a description f̂ of a
function f and a security parameter λ as inputs and runs in polynomial time in its input
length.

To meaningfully specify the goal of such a universal OWSC protocol, we need to fix
a representation classF that defines an association between a bit-string f̂ and the (deter-
ministic or randomized) function f it represents. The representation classes F we will
be interested in include circuits (capturing general polynomial-time computations) and
branching programs (capturing logarithmic-space computations and logarithmic-depth
circuits). The string-ROT channel C`ROT can also be viewed as a degenerate function
class F in which f̂ = 1` specifies the string length.

If a channel C enables a universal protocol for F , we say that C is OWSC-complete
for F . We will distinguish between completeness with inverse-polynomial error and
completeness with negligible error, depending on how fast the error vanishes with λ. We
will also distinguish between completeness with statistical and computational security.
We formalize this notion of completeness below.

Definition 3 (OWSC-complete channel). LetF be a function representation class and
C be a channel. We say that C is OWSC-complete for evaluating F with (statistical)
inverse-polynomial error if for every positive integer c there is a polynomial-time pro-
tocol Π = 〈S,R〉 that, on common input (1λ, f̂), realizes (N, ε) OWSC of f over C,
where ε = O( 1

λc ) and N = poly(λ, |f̂ |). We say that C is complete with negligible
error if there is a single Π as above such that ε is negligible in λ. We similarly define
the computational notions of completeness by requiring the above to hold with (N,T, ε)
instead of (N, ε), for an arbitrary polynomial T = T (λ).

As discussed above, useful instances ofF include circuits, branching programs, and
string-ROT. We will assume statistical security against semi-honest parties by default,
and will explicitly indicate when security is computational or against malicious parties.

2.3 OWSC Zero-Knowledge Proof of Knowledge

For a language L in NP, let RL denote a polynomial time computable relation such
that x ∈ L if and only if for some w of length polynomial in the length of x, we have
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RL(x,w) = 1. In the classic problem of zero-knowledge proof, given a common input
x ∈ L, a polynomial time prover who has access to a w such that RL(x,w) = 1 wants
to convince a polynomial time verifier that x ∈ L, without revealing any additional
information about w. On the other hand, if x 6∈ L, even a computationally unbounded
prover should not be able to make the verifier accept the proof, except with negligible
probability.

While classically, the prover and the verifier are allowed to interact with each other,
or in the case of Non-Interactive Zero-Knowledge (NIZK), are given a common random
string generated by a trusted third party, in a ZK protocol in the OWSC model, a single
string is transmitted from the prover to the receiver, over a channel C, with no other
trusted set up. We shall require information-theoretic security, with both soundness and
zero-knowledge properties defined via simulation. As simulation-based soundness cor-
responds to a proof of knowledge (PoK), we shall refer to this primitive as OWSC/C
ZK-PoK.7

Definition 4 (OWSC Zero-knowledge Proof of Knowledge). Given a channel C, a
pair of PPT algorithms (PZK ,VZK) is a OWSC/C zero-knowledge proof of knowl-
edge (ZK-PoK) for an NP language L with an associated relation RL if the following
hold:
Completeness. There is a negligible function negl, such that ∀x ∈ L and w such that
RL(x,w) = 1,

Pr
[
VZK(1λ, x, C(PZK(1λ, x, w))) 6= 1

]
= negl(λ)

(where the probability is over the randomness of PZK and VZK and that of the chan-
nel).
Soundness. There exists a probabilistic polynomial time (PPT) extractor E such that,
for all x and all collection of strings zλ (collection indexed by λ)

RL
(
x,E(1λ, x, zλ)

)
= 0 ⇒ Pr

[
VZK(1λ, x, C(zλ)) = 1

]
= negl(λ).

Zero-Knowledge. There exists a PPT simulator S such that, for all x ∈ L, and w such
that RL(x,w) = 1,

C(PZK(1λ, x, w)) ≈negl(λ) S(1
λ, x),

where ≈ represents computational indistinguishability.

In our construction we use the notion of oblivious zero-knowledge PCP, which was
explicitly defined in [17]. In the problem of oblivious zero-knowledge PCP, a prover
with access to x ∈ L and w such that RL(x,w) = 1 would like to publish a proof.
The verifier’s algorithm probes a constant number of random locations in the published
proof and decides to accept or reject while guaranteeing correctness and soundness. The
notion of oblivious zero-knowledge requires that the PCP is zero-knowledge when each
bit in the proof is erased with finite probability.

7 Indeed, an OWSC/C ZK-PoK protocol is equivalent to an information-theoretic UC-secure
protocol for the ZK functionality in the C-hybrid model, with an additional requirement that
the protocol involves a single invocation of C and no other communication.
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Definition 5 (Oblivious ZK-PCP). [17, Definition 1] (PoZK ,VoZK) is a (c, ν)-oblivious
ZK-PCP with knowledge soundness κ for an NP language L if, when λ is the security
parameter, PoZK ,VoZK are probabilistic algorithms that run in polynomial time in λ
and the length of the input x and satisfy the following conditions.

Completeness. ∀(x,w) ∈ RL when π $← PoZK(x,w, λ), Pr(VoZK(x, π∗)) = 1 for
all choices of π∗ obtained by erasing arbitrary locations of π.

c-Soundness. There exists a PPT extractor E such that, for all x and purported proofs
π′, if (x,E(x, π′)) /∈ RL then

Pr(VoZK(x, g(π′)) = 0) ≥ κ,

where the probability is taken over the random choices of g, where g is any function that
replaces all but c locations of π′ with ⊥ (and leaves the other locations untouched).

ν-Zero-Knowledge. There exists a PPT simulator S such that, for all x ∈ L, the
following distributions are statistically indistinguishable:

- Sample π $← PoZK(λ, x, w), replace each bit in π with⊥ with probability 1−ν and
output the resultant value.

- S(x, λ).

As described in [17], the following result is implied by a construction in [2]:

Proposition 1. [17, Proposition 1] For any constant ν ∈ (0, 1), there exists a (3, ν)-
oblivious ZK-PCP with a knowledge soundness κ = 1 − 1

p(λ) , where p(λ) is some
polynomial in λ.

3 String-ROT from Bit-ROT with Inverse Polynomial Error

In this section, we construct string-ROT from bit-ROT with inverse polynomial error,
and apply this to show that bit-ROT is complete for general sender-receiver functional-
ities with inverse-polynomial error. Since the intuition was discussed in Section 1, we
proceed directly with the construction.

3.1 Average Case Secret Sharing

An N player average case secret sharing scheme, for `-bit secrets with reconstruction
threshold r and privacy threshold t, consists of a sharing algorithm Share and a recon-
struction algorithm Recst which guarantees that a random subset of t players learns
nothing about the secret and that a random set of r players can reconstruct the secret
with high probability. This is formalized by the next definition, where the following
notation will be useful.

Notation 2. For integers 1 ≤ s ≤ N , we use the following families of subsets of [N ]:
As = {A ⊆ [N ] : |A| = s}, A≥s = {A ⊆ [N ] : |A| ≥ s}, and A≤s = {A ⊆ [N ] :
|A| ≤ s}.
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Definition 6. A (`,N, t, r, ε) average-case secret-sharing scheme (Avg-SSS, for short)
is a pair of randomized algorithms 〈Share,Recst〉 such that,

Share : {0, 1}` ×R → {0, 1}N and Recst : {0, 1,⊥}N → {0, 1}`,

whereR is the private randomness, that satisfy the following properties.
Reconstruction Property: Recst must be able to reconstruct any secret from a uni-
formly random set of r shares produced by Share, with at least 1 − ε probability. For-
mally, for all s ∈ {0, 1}`,

Pr(Recst(Share(s)|A) = s) ≥ 1− ε,

where the probability is over the randomness used by Share and the choice of A $← Ar.
Privacy property: t random shares of every pair of secrets are ε-close to each other
in statistical distance. Formally, for all s, s′ ∈ {0, 1}`, and A $← At,

∆ ((Share(s)|A) , (Share(s′)|A)) ≤ ε.

We will typically be interested in (`,N, t, r, ε)-Avg-SSS where `, t, r, ε are functions
of N and require Share,Recst to be probabilistic algorithms with poly(N) complexity.

3.2 String-ROT from Bit-ROT and Average Case Secret Sharing

In this section, we show that an average case secret sharing scheme can be used to
reduce string ROT to bit ROT. The following theorem demonstrates such a reduction.

Theorem 4. For δ ∈ (0, 12 ) and for sufficiently largeN , given a (`,N, t, r, ε)-Avg-SSS,
with t =

⌊
N
2

⌋
−Nδ , r =

⌈
N
2

⌉
+Nδ and ε = Nδ− 1

2 , there exists a secure (even against
malicious parties) (N, 4Nδ− 1

2 ) OWSC protocol for C`ROT over C1ROT. If the Avg-SSS
scheme is efficient in N , then so is our protocol.

Proof: Let 〈Share,Recst〉 be an (`,N, t, r, ε)-Avg-SSS. The protocol that realizes C`ROT

in the OWSC/C1ROT model proceeds as follows.
Let (a0,a1) ∈ {0, 1}` × {0, 1}` be the input to the C`ROT. Sender computes x0 =

Share(a0) and x1 = Share(a1). For i = 1, . . . , N , sender sends (x0(i),x1(i)) in the
i-th invocation of the C1ROT channel.

The receiver gets x0|A , x1|[N ]\A, where A is a uniformly random subset of [N ]. If
|A| ≥ r, it uniformly samplesA0 ⊆ A such that |A0| = r and outputs (Recst(x0|A0

),⊥),
and if |[N ]\A| ≥ r, it uniformly samples A1 ⊆ [N ]\A such that |A1| = r and outputs
(⊥,Recst(x1|A1

)). If |A| ∈ (t, r), R samples a0,a1
$← {0, 1}` and i $← {0, 1} and

outputs (a0,⊥) if i = 0 and (⊥,a1) if i = 1.
Complexity. The complexity of this reduction is N . If Avg-SSS is efficient, the proto-
col is efficient as well.
Security. We first show that the receiver’s output is consistent with probability at least
1− 3Nδ− 1

2 . That is, if the input to the sender is (a0,a1), with probability 1− 3Nδ− 1
2 ,

the receiver outputs either (⊥,a1) or (a0,⊥). To show this, we bound the probability
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of the event |A| ∈ (t, r) using an anti-concentration bound on Bernoulli sums and
then argue that conditioned on |A| /∈ (t, r), the receiver’s output is consistent with
probability ≥ 1− ε.

Claim 1. Let Xi be i.i.d Bernoulli( 12 ) random variables for i ∈ [N ]. Then, for all
δ ∈ (0, 1/2),

Pr



∣∣∣∣∣∣
∑

i∈[N ]

Xi −
⌈
N

2

⌉∣∣∣∣∣∣
< Nδ


 ≤ 2Nδ− 1

2 .

Proof: This follows from the fact that,

∀k ∈ [N ], Pr


∑

i∈[N ]

Xi = k


 ≤ Pr


∑

i∈[N ]

Xi = dN/2e


 ≤ N−1/2.

�

Denote the event |A| /∈ (t, r) byE. Since r−t = 2Nδ , Pr(E) ≥ 1−2Nδ− 1
2 by the

above claim. Conditioned on |A| ≥ r, A is uniformly distributed in A≥r. Hence, A0 is
uniformly distributed in Ar. The receiver is correct if Recst(Share(a0)|A0

) = a0. By
the reconstruction property of 〈Share,Recst〉, for all a0 ∈ {0, 1}`, we have

Pr(Recst(Share(a0)|A0
) = a0) ≥ 1− ε = 1−Nδ− 1

2 ,

where the probability is over the randomness used by Share and A0
$← Ar. Similar

bound applies for Pr(Recst(Share(a1)|A1
) conditioned on the event |A| ≤ t. From

these observations, the probability that the receiver outputs (a0,⊥) or (⊥,a1) when
the sender’s input is (a0,a1) can be lower bounded as,

Pr(E) · Pr(Receiver outputs (a0,⊥) or (⊥,a1)|E) ≥ (1− 2Nδ− 1
2 )(1−Nδ− 1

2 ) ≥ 1− 3Nδ− 1
2 .

Furthermore, when |A| /∈ (t, r), the events |A| ≥ r and N − |A| ≥ r are equiprobable.
That is, the index on which the receiver outputs⊥ is decided entirely by the randomness
in the channel. Hence, for all a0,a1 ∈ {0, 1}`,

∆
((

a0,a1, S(a0,a1),R(C1ROT(S(a0,a1)))
)
,
(
a0,a1,S(a0,a1), C`ROT(a0,a1)

))
≤ 3Nδ− 1

2 .

We now analyze security against the receiver. We claim that conditioned on the event
|A| ≤ t, for any a0,a

′
0,a1 ∈ {0, 1}`, the view of the receiver when the input to the

sender is (a0,a1) is sufficiently close to its view when the sender’s input is (a′0,a1).
Note that conditioned on |A| ≤ t, |A| is a uniformly random set of size at most t. Our
claim is that for all a0,a

′
0 ∈ {0, 1}` and A $← A≤t,

∆ (Share(a0)|A , Share(a′0)|A) ≤ ε = Nδ− 1
2 .

To show this, note that the output distributions of the following two experiments are the
same for every a ∈ {0, 1}`:

12



(1) Choose 0 ≤ k ≤ t with probability Pr
S

$←A≤t
(|S| = k). When A $← At, let B be a

uniformly random subset of A of size k. Output Share(a)|B .
(2) A $← A≤t, output Share(a)|A.
Hence, the distribution Share(a0)|A whereA $← A≤t can be generated by post-processing
the distribution Share(a0)|A where A $← At. The claim now follows from the pri-
vacy guarantee of Avg-SSS and the fact that statistical distance only decreases on post-
processing.

On input (⊥,a1) the simulator SimR proceeds as follows: Sample a $← {0, 1}`
and run the algorithm of the sender with input (a,a1), to generate (x0,x1). Sample
A

$← A≤t and output (x0|A , x1|[N ]\A). The case for (a0,⊥) is symmetric.
That SimR satisfies sender’s privacy follows from the following observations: (a)

The event |A| /∈ (t, r) happens with probability at least 1 − 2Nδ− 1
2 . (b) a0 (resp.

a1) is decoded correctly with probability 1 − Nδ− 1
2 when |A| ≥ r (resp. |A| ≤ t).

Furthermore, conditioned on both these events, the receiver’s view for input (a0,a1)

and for input (a′0,a1) are at most Nδ− 1
2 far in statistical distance, for all a0,a

′
0 ∈

{0, 1}`. Hence,

∆
(
SimR(C`ROT(a0,a1)), C1ROT(S(a0,a1))

)
≤ 4Nδ− 1

2

UC-security against malicious adversaries. For any x ∈ {0, 1}N , simulator SimS
works as follows. Sample A≥r

$← A≥r and A≤t
$← A≤t (this can be done efficiently

by rejection sampling). Let (b0,⊥) = R(x|A≥r ) and (⊥, b1) = R(x|A≤t). Sample

A
$← [N ], if |A| ∈ (t, r), output (s0, s1), where s0, s1

$← {0, 1}`, else output (b0, b1).
We claim that distribution C1ROT(SimS(x)) is identical to the output distribution of

the receiver when a malicious sender sendsx. In the event that |A| ∈ (t, r), the output of
the receiver is distributed as if the input to the string-ROT were a pair of random strings.
In the events A ∈ A≤t and A ∈ A≥r, R outputs according to a random erasure from
A≤t and A≥r respectively. This is indeed the distribution generated by the simulator
and so this proves the theorem. �

Remark 1. The OWSC protocol is said to be Las-Vegas if it either aborts after return-
ing ⊥ or is correct conditioned on not aborting, i.e., outputs (a0,⊥) or (⊥,a1) with
equal probability. Suppose the Avg-SSS is Las-Vegas in the following sense. For every
A ∈ Ar, Recst either reconstructs the secret correctly or aborts after returning ⊥. We
can tweak the above OWSC protocol to output ⊥ whenever |A| ∈ (t, r) and to return
whatever the Recst outputs when |A| ≥ r makes the OWSC protocol also Las-Vegas.
This guarantees that in Theorem 4, if Avg-SSS is Las-Vegas, then OWSC protocol is
also Las-Vegas. In the next section, we will construct an Avg-SSS scheme which is
Las-Vegas.

3.3 Construction of Average Case Secret Sharing

In this section, we construct an average case secret sharing scheme. Our construction
is similar to the construction of constant rate secret sharing schemes in [22]. The only
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difference is that the reconstruction and privacy properties are with respect to random
corruptions, hence we are able to use randomized erasure correcting codes with better
error parameters. Before we describe the construction, we provide the following defini-
tions.

Definition 7. A function Ext : {0, 1}d × {0, 1}n → {0, 1}` is a (k, ε) strong seeded
extractor if for every random variable X , with alphabet {0, 1}n and min-entropy k,
when z $← {0, 1}d and r $← {0, 1}`,

∆ ((Ext(z, X), z), (r, z)) ≤ ε.

A randomized map Ext−1 is an inverter map of Ext if it maps z ∈ {0, 1}d, s ∈ {0, 1}` to
a sample from the uniform distribution over {0, 1}n, i.e. Un, subject to (Ext(z, Un) =
s).

The following lemma describes an improvement of Trevisan’s extractor [27] due to
Raz et al. [26]. The statement itself is from [22].

Lemma 1. [22, Lemma 4] There is an explicit linear (k, ε) strong seeded extractor
Ext : {0, 1}d × {0, 1}n → {0, 1}` with d = O(log3 n/ε) and ` = k −O(d).

The other component in our construction is an erasure correcting code. Since Avg-SSS
allows for shared randomness between the sharing algorithm Share and the reconstruc-
tion algorithm Recst, we could use randomized erasure correcting codes.

Definition 8. An (n, k, r, ε)-linear erasure correcting scheme (Enc,Dec) consists of a
linear encoder Enc : {0, 1}k → {0, 1}n and a decoder Dec : {0, 1}n → {0, 1}k such
that, for all x ∈ {0, 1}k,

Pr
A

$←Ar
(Dec(Enc(x)|A) 6= x) ≤ ε.

Lemma 2. For all k ≤ r ≤ n, there exist efficient (n, k, r, ε)-linear erasure correcting
schemes with ε = 2k−r.

A proof of the lemma is provided in the full version [1], where we will also ar-
gue that the erasure correcting code we construct is Las-Vegas i.e., the decoder either
aborts or correctly decodes the message. It can be verified that the Avg-SSS scheme we
construct is Las-Vegas whenever the erasure correcting scheme is Las-Vegas.

Theorem 5. For parameters t < n < n + d < r < N and `, ε, let Ext : {0, 1}d ×
{0, 1}n → {0, 1}` be a linear (n − t, ε) strong seeded extractor with inverter map
Ext−1. Let (Enc,Dec) be a (N,n+ d, r, ε)-randomized linear erasure correcting code.
Then, 〈Share,Recst〉, described below, is a (`,N, t, r, 8ε)-Avg-SSS:

Share(s) = Enc(z||Ext−1(z, s)),where z $← {0, 1}d,
Recst(v|A) = Ext(z||x),where z||x = Dec(v|A)

where s ∈ {0, 1}` and A ⊂ [N ], when (·||·) is the concatenation operator.
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Proof: We show that the scheme satisfies the reconstruction and privacy properties.
Reconstruction. By the performance guarantee of the error correcting code, for any
v ∈ {0, 1}n+d,

Pr
A

$←Ar
(Dec(Enc(v)|A) = v) ≥ 1− ε.

Hence, Recst(v|A) = s, for a random A, with probability 1− ε.
Privacy. We use the following result from [22]:

Lemma 3. [22, Lemma 13] Let Ext : {0, 1}d × {0, 1}n → {0, 1}` be a linear (k, ε)
strong extractor. Let fA : {0, 1}n+d → {0, 1}t be an affine function with t ≤ n − k.
For any s, s′ ∈ {0, 1}`, when (Z,X) = (Ud, Un)|(Ext(Ud, Un) = s) and (Z ′, X ′) =
(Ud, Un)|(Ext(Ud, Un) = s′), we have

∆ (fA(Z,X), fA(Z
′, X ′)) ≤ 8ε.

Enc is a linear function and for any A ⊆ [N ] the restriction operator (·)|A is a
projection. Hence, for any s ∈ {0, 1}` and A ⊆ [N ] such that |A| = t, Share(s)|A is
an affine map with range {0, 1}t applied to (Ud, Un)|(Ext(Ud, Un) = s). Ext used in
the theorem is a (n − t, ε) extractor, hence the privacy follows directly from the above
lemma. �

For any N and δ ∈ (0, 1/2), Lemma 1 guarantees an explicit linear (Nδ, 1
8N )

strong seeded extractor Ext : {0, 1}d × {0, 1}N2 → {0, 1}` with d = O(log3N) and
` = Nδ − O(log3N). Furthermore, Lemma 2 guarantees a (N, k, r, ε)-linear erasure
correcting code for k = N

2 +d, r = N
2 +Nδ and ε = 1

8N (in fact, the lemma gives much
better maximum error probability guarantees, but we would not need this). Note that
both Ext−1 and (Enc,Dec) are efficient. Using this extractor and the erasure correcting
scheme in Theorem 5, we obtain the following corollary.

Corollary 1. For large enough N and δ ∈ (0, 12 ), when ` = Nδ

2 , t =
N
2 − Nδ, r =

N
2 +Nδ and ε = 1

N , there exists an efficient (`,N, t, r, ε)-Avg-SSS.

Given such a Avg-SSS, we appeal to the Theorem 4 to get the following theorem.

Theorem 6. For δ ∈ (0, 12 ), there exists an efficient protocol that realizes (N, ε) secure
OWSC for C`ROT over C1ROT, with ε = O(Nδ− 1

2 ), and ` = Nδ

2 . In particular, bit-ROT is
complete for string-ROT with inverse-polynomial error.

3.4 General Completeness of Bit-ROT with Inverse Polynomial Error

In the previous section, we showed that bit-ROT is complete for string-ROT with inverse-
polynomial error. Garg et al. [17] (Theorem 11) showed that string-ROT is complete
for arbitrary finite functionalities even for the case of malicious parties, where the (sta-
tistical) error is negligible in the ROT string length `. Combined with our reduction
from string-ROT to bit-ROT, this gives a similar completeness result for bit-ROT with
inverse-polynomial error. Below we extend this to functions represented by branching
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programs and circuits, where in the latter case we need to settle for computational se-
curity using any (black-box) pseudorandom generator. Thus, assuming the existence of
a one-way function, bit-ROT is complete with inverse-polynomial computational error
for any polynomial-time computable functionality.

Theorem 7 (Bit-ROT is complete with inverse-polynomial error). The bit-ROT chan-
nel C1ROT is OWSC-complete, with inverse-polynomial error, for evaluating circuits with
computational security against malicious parties, assuming a (black-box) pseudoran-
dom generator. Moreover, replacing circuits by branching programs, the same holds
unconditionally with inverse-polynomial statistical error.

Proof: We start by addressing the simpler case of semi-honest parties. In this case, the
computational variant follows by combining the reduction from string-ROT to bit-ROT
with Yao’s garbled circuit construction [31] in the following way. Given a randomized
sender-receiver functionality f(a; r), define a deterministic (two-way) functionality f ′

that takes (a, r1) from the sender and r2 from the receiver, and outputs f(a; r1 ⊕ r2)
to the receiver. Using Yao’s protocol to securely evaluate f ′ with uniformly random
choices of r1, r2, we get a computationally secure reduction of f to (chosen-input)
string-OT where the receiver’s inputs are random. Replacing the random choices of
the receiver by the use of a string-ROT channel, we get a computational OWSC proto-
col for f over string-ROT using any (black-box) PRG. Finally, applying the reduction
from string-ROT to bit-ROT with a suitable choice of parameters, we get the inverse-
polynomial completeness result for circuits with semi-honest parties. A similar result
for branching programs with statistical (and unconditional) security can be obtained
using information-theoretic analogues of garbled circuits [20, 16, 18].

To obtain similar protocols for malicious parties, we appeal to a result of [19], which
obtains an analogue of Yao’s protocol with security against malicious parties by only
making a black-box use of a pseudorandom generator along with parallel calls to a
string-OT oracle.8 (This result too has an unconditional version for the case of branch-
ing programs.) Unlike Yao’s protocol, the protocol from [19] encodes the receiver’s
input before feeding it into the parallel OTs. However, this encoding has the property
that a random receiver input is mapped to random OT choice bits. Thus, the same re-
duction as before applies. �

The unconditional part of Theorem 7 implies polynomial-time statistically-secure
protocols (with inverse-polynomial error) for the complexity classes NC1 and Logspace.
This is a vast generalization of the positive result for C`ROT. In the result for general cir-
cuits, the use of a pseudorandom generator is inherent given the current state of the art
on constant-round secure computation.

8 Note that the conceptually simpler approach of applying NIZK proofs is not applicable here,
since in the setting of secure computation over noisy channels there is no public transcript to
which such a proof can apply.

16



〈S,R〉(a0,a1)

1. (x0,x1) = S(a0,a1).

2. Sample s
$← {0, 1}N and let (y0,y1) = fNC1

ROT
((x0,x1), s).

3. (b0, b1) = R(y0,y1).
4. Output ((a0,a1), (x0,x1), (y0,y1), (b0, b1)).

Fig. 1: Execution of a protocol 〈S,R〉 for OWSC of C`ROT over C1ROT channel. Here
a0,a1 are the `-bit input strings for C`ROT, the N -bit strings x0,x1 are the inputs for
the N invocations of the C1ROT channel, y0,y1 are the outputs of these N invocations,
and b0, b1 are the outputs of C`ROT.

4 Impossibility of String-ROT from Bit-ROT with Negligible
Error

In this section we show that string-ROT with negligible error is impossible to achieve
from bit-ROT. Moreover, this holds even against a computationally bounded semi-
honest adversary.

Theorem 8. For sufficiently large N and ` ≥ 2 logN , an (N, 1
N2 ) OWSC protocol

for C`ROT over C1ROT is impossible even against semi-honest parties. In fact, the same
holds even if one settles for OWSC with computational security. That is, there exists a
polynomial T = T (N) such that there is no computational (N,T, 1

N2 ) OWSC protocol
for C`ROT over C1ROT.

Proof: C1ROT may be equivalently described as a randomized function fC1ROT
from the

input of the channel and the internal randomness of the channel to the output of the
channel. Formally, For (x0, x1) ∈ {0, 1} × {0, 1}, and s ∈ {0, 1},

fC1ROT
((x0, x1), s) =

{
(x0,⊥) if s = 0,

(⊥, x1) if s = 1.

Observe that for all (x0, x1) ∈ {0, 1}×{0, 1}, the following distributions are identical:
(1) C1ROT(x0, x1) and (2) Sample s $← {0, 1} and output fC1ROT

((x0, x1), s). Similarly,
N invocations of C1ROT are equivalent to the randomized function fNC1ROT

which on input

(x0,x1) ∈ {0, 1}N × {0, 1}N , samples s $← {0, 1}N and outputs (y0,y1), where
(y0(i),y1(i)) = fC1ROT

((x0(i),x1(i)), s(i)).
Suppose 〈S,R〉 is a (N, 1

N2 ) OWSC protocol for C`ROT over C1ROT channel. The
joint distribution generated by this protocol for an input (pair of strings) (a0,a1) ∈
{0, 1}`×{0, 1}` is described in Figure 1. The receiver’s algorithm R can be assumed to
be deterministic w.l.o.g. since we may fix the randomness in the decoder incurring only
a constant hit to the ε = 1

N2 parameter. This is because, for most values of (y0,y1),
R should decode one of the indices with low probability of error and should be almost
entirely unsure of the other index. Refer to the full version [1] for a formal proof.

In the sequel, for brevity, we would represent the tuples (a0,a1), (x0,x1), (y0,y1)
and (b0, b1) also by a,x,y and b, respectively, whenever this does not cause confu-
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M(y0,y1)

1. Compute (b0, b1) = R(y0,y1) (suppose (b0, b1) = (â0,⊥) w.l.o.g).

2. Compute (ŷ0, ŷ1) as follows: Sample j $← [N ]. For i ∈ {0, 1} and k ∈ [N ] \ {j},
set ŷi(k) = yi(k). If yi(j) = ⊥, sample ŷi(j)

$← {0, 1}, and if yi(j) 6= ⊥ then
ŷi(j) = ⊥.

3. Compute (b̂0, b̂1) = R(ŷ0, ŷ1).
4. If (b̂0, b̂1) = (⊥, â1), then output (â0, â1); else, abort.

Fig. 2: Execution of the machine M

sion. For (a0,a1) ∈ {0, 1}` × {0, 1}`, consider the joint distribution 〈S, R〉(a0,a1)
described in Figure 1. We now make some claims about this distribution.

Lemma 4. There exists a set X ⊆ {0, 1}N × {0, 1}N such that Pr(x ∈ X) ≥ 1− 2
N

and for all x ∈ X ,

Pr(b0 = ⊥|x) ≥ 1

2
− 1

N
and Pr(b1 = ⊥|x) ≥ 1

2
− 1

N
.

The lemma is a consequence of computational 1
N2 -security against sender. Intu-

itively, the sender can guess the index of the message output by the receiver with sub-
stantial probability if Pr(x ∈ X) < 1 − 2

N . Refer to the full version [1] for a formal
proof.

We now design a machine M that guesses both a0 and a1 from (y0,y1) with sub-
stantial probability, contradicting sender’s privacy. On receiving y, machine M uses the
receiver’s strategy R(y) to decode one of the messages, say ai, where i is either 1 or
0. It then computes a1−i by ‘guessing’ a random neighbor of y, say ŷ and comput-
ing R(ŷ). We would show that with substantial probability, R(ŷ) yields a1−i, breaking
sender’s privacy property. M is formally described in Figure 2.

Analysis of M: We show that M outputs (a0,a1) with substantial probability. We
would analyze the output of the machine M for a fixed x ∈ X , where X is as guar-
anteed by Lemma 4. Define function fx : {0, 1}N → {0, 1} such that when y =
fNC1ROT

(x, s), fx(s) = 1 if R(y) = (b0, b1) such that b0 = ⊥ and 0 otherwise. We
next observe a property of fx which is a consequence of an isoperimetric inequality on
Boolean hypercubes (Harper’s Lemma). For binary strings u,v ∈ {0, 1}n, denote the
Hamming distance between them by |u− v|.

Lemma 5. For any function f : {0, 1}n → {0, 1}, if Pr
v

$←{0,1}n
(f(v) = i) ≥ 1

2 (1− 1√
n
)

for each i ∈ {0, 1}, then Pr
v

$←{0,1}n
(∃ṽ : |v − ṽ| = 1 and f(ṽ) = 1− f(v)) ≥ Ω( 1√

n
).

In words, the lemma says that if f is a 2-coloring of the Boolean hypercube, where
the colors are (almost) balanced, then a significant fraction of the nodes of the hyper-
cube, have a neighbor of a different color.

By Harper’s Lemma, Hamming balls have the smallest vertex boundary amongst all
sets of the same probability. W.l.o.g, the probability of f(v) = 1 is at most 1

2 and at
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least 1
2 (1− 1√

n
) and Pr

v
$←{0,1}n

(|v−0| =
⌊
n
2

⌋
) ≥ 1

2
√
n

, where 0 is the all zero string.

Hence the Hamming ball centered at 0 with probability at most 1
2 and at least 1

2 (1− 1√
n
)

has strings with
⌊
n
2

⌋
or
⌊
n
2

⌋
− 1 number of 1’s in its boundary. Consequently, the size

of this boundary is Ω( 1√
n
).

For any x ∈ {0, 1}N × {0, 1}N , the input to M is y = fNC1ROT
(x, s), where s $←

{0, 1}N . The process of generating ŷ in M(y) is equivalent to the following process.
Compute (x̂0, x̂1) and ŝ as follows: Sample j ← [N ], set ŝ(j) = 1 − s(j) and
(x̂0(j), x̂1(j))

$← {0, 1}×{0, 1}. For all k 6= j, set ŝ(k) = s(k) and (x̂0(k), x̂1(k)) =
(x0(k),x1(k)). Compute ŷ = fNC1ROT

(x̂, ŝ). We make the following observations about
the above process.

(i.) ŝ is uniformly distributed over {0, 1}N and |s− ŝ| = 1.
(ii.) ŷ = fNC1ROT

(x, ŝ) with probability 1
2 .

(iii.) For any x ∈ X , Pr(fx(s) = 1− fx(ŝ)) ≥ Ω( 1
N
√
N
).

(i) follows from s being uniform in {0, 1}N and ŝ being obtained by flipping the
value of a random coordinate of s. (ii) can be verified easily from the process descrip-
tion. When x ∈ X and s $← {0, 1}N , Pr(fx(s) = i) ≥ 1

2 (1− 1√
N
) for i ∈ {0, 1}, by

Lemma 4. Hence, by Harper’s Lemma,

Pr (∃s̃ : |s− s̃| = 1 and fx(s̃) = 1− fx(s)) ≥ Ω(
1√
N

).

Conditioned on the event that such a s̃ exists, ŝ = s̃ with probability at least 1
N . This

proves (iii).
(b0, b1) is said to be correct if it is either (a0,⊥) or (⊥,a1). Let E1 be the event

‘b = R
(
fNC1ROT

(x, s)
)

is correct’. Since s is uniform in {0, 1}N , by the correctness

property, E1 happens with probability 1− 1
N2 . Let E2 be the event ‘b = R(fNC1ROT

(x, ŝ)

is correct’. By (i), ŝ is also uniform in {0, 1}N , hence E2 happens with probability
1 − 1

N2 . From (ii) and (iii) we conclude that, when x ∈ X , M(y) outputs (â0, â1)
(instead of aborting) with probability Ω( 1

N
√
N
). Since x ∈ X happens with probability

(1− 2
N ), we may conclude that with probability at least (1− 2

N )Ω( 1
N
√
N
), the following

event E3 occurs: ŷ = fNC1ROT
(x, ŝ) and M outputs (â0, â1). In the event E1 ∩ E2 ∩ E3,

the machine M guesses the input correctly and outputs (a0,a1). By a union bound,
E1 ∩ E2 ∩ E3 happens with probability (1 − 2

N )Ω( 1
N
√
N
) − 2

N2 . Hence, M predicts
(a0,a1) with probability Ω( 1

N
√
N
). This is a contradiction since, when ` = 2 logN

and the protocol is 1
N2 -secure, the adversary can succeed in guessing both inputs with

at most 2−2 logN + 1
N2 = 2

N2 probability. This proves the theorem. �

4.1 Extending Impossibility to All Finite Channels

In this section we show that the negative result from the previous section applies not
only to bit-ROT but, in fact, to all finite channels. W.l.o.g we consider channels with
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rational conditional probability matrices. We begin by modeling an arbitrary finite chan-
nel as a randomized function.

Definition 9. Consider a channel C : X → Y with rational conditional distribution
matrix. We define the states of C as a finite set C.states and the channel function fC :
X × C.states→ Y , such that for all x ∈ X and y ∈ Y ,

Pr(C(x) = y) = Pr
s

$←C.states
(f(x, s) = y).

We emphasize that our channels are all memoryless, and that “states” in this context
should be interpreted as the internal randomness of the channel used in each invocation
(uniform distribution over the set C.states).

The existence of C.states and fC is proved in the full version [1]. For the conve-
nience of modeling we have defined fC in such a way that the state is chosen uniformly
at random from C.states. Given the above definition, for a fixed input x ∈ X , the chan-
nel C essentially samples a state uniformly from C.states and deterministically maps x
to the output y. This model motivates our next observation about multiple uses of the
channel.

For a finite N , let x = (x1, . . . , xN ) ∈ XN and let y = (y1, . . . , yN ) ∈ YN be
the output of N independent uses of C with input x. Then the distribution (x,y) can be
thought to be generated by the following equivalent process: Sample s = (s1, . . . , sN )←
(C.states)N and for i = 1, . . . , N , compute yi = fC(xi, si).

Before we state the next lemma, we set up some notation for generalizing distance
between strings over finite alphabets. For x, x̃ ∈ Xn, |x − x̃| = 1 if they differ in
exactly one of the n coordinates, i.e., there exists i ∈ [n] such that xi 6= x̃i and xj =
x̃j for all j 6= i. The following lemma is an extension of the isoperimetric bound in
Lemma 5 that we used for proving Theorem 8. The lemma is formally proved in the
full version [1].

Lemma 6. Let X be a finite set such that |X | = 2k for some k. For any function
f : Xn → {0, 1}, if Pr

x
$←Xn

(f(x) = i) ≥ 1
2 − 1√

k·n , for each i ∈ {0, 1}, then

Pr
x

$←Xn
(∃x̃ : |x− x̃| = 1 and f(x̃) = 1− f(x)) ≥ Ω

(
1√
k · n

)
.

We are now ready to state the generalization of Theorem 8.

Theorem 9. Let C be a finite channel. For sufficiently large N and ` ≥ 2 logN , an
(N, 1

N2 ) OWSC protocol for C`ROT over C is impossible even against semi-honest par-
ties. In fact, the same holds even if one settles for computational security.

Proof: We proceed in the same way we showed the impossibility in Theorem 8. To
prove a contradiction, suppose 〈S,R〉 is a (N, 1

N2 ) OWSC protocol for C`ROT over C.
The joint distribution, generated by the protocol for input (a0,a1) ∈ {0, 1}` ×{0, 1}`,
is described in Figure 3. We would use a machine M similar to the one used in the proof
of Theorem 8 to guess both a0 and a1 from the received y with substantial probability,
contradicting sender’s privacy. The machine is described in Figure 4. Intuitively, M
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〈S,R〉(a0,a1)

1. x
$← S(a0,a1).

2. Sample r
$← (C.states)N .

3. Compute y where yi = fC(xi, ri).
4. (b0, b1) = R(y).
5. Output ((a0,a1),x,y, (b0, b1)).

Fig. 3: Execution of a protocol 〈S,R〉 for OWSC of C`ROT over channel C : X → Y .
Here a0,a1 are the `-bit input strings for C`ROT, the N -bit strings x0,x1 are the inputs
for the N invocations of C, y0,y1 are the outputs of these N invocations, and b0, b1 are
the outputs of C`ROT.

M(y)
1. Compute (b0, b1) = R(y).

2. Sample i $← [N ], x
$← X , r $← C.states.

3. Compute ỹ, where ỹi = fC(x, r) and ỹj = yj for all j 6= i.
4. Compute (b̃0, b̃1) = R(ỹ).
5. If (b1, b̃0) = (⊥,⊥), output (b0, b̃1) and if (b0, b̃1) = (⊥,⊥), output (b̃0, b1); else,

abort.

Fig. 4: Execution of the machine M

tries to obtain one string from y (due to correctness of the ROT protocol) and the other
string, by changing one item of y, and hoping to get into a case where the receiver
outputs the other string.
Analysis of M. We show that M outputs (a0,a1) with substantial probability. As ob-
served in Lemma 4, since the protocol is 1

N2 -secure, due to the receiver’s privacy prop-
erty, there exists a set X ⊆ XN such that Pr(x ∈ X) ≥ 1− 2

N and for all x ∈ X ,

P (b0 = ⊥|x) ≥ 1

2
− 1

N
and P (b1 = ⊥|x) ≥ 1

2
− 1

N
.

Fix an x ∈ X . Recall that for a fixed x ∈ XN , the output y of the channel is a
deterministic function of the state of the channel r, i.e., y = fNC (x, r). Here fNC (x, r)
outputs y such that yi = fC(xi, ri). Define function fx : (C.states)N → {0, 1} as
follows: for r ∈ (C.states)N , when fNC (x, r) = y and (b0, b1) = R(y), then fx(r) =
0 if b0 = ⊥ and fx(r) = 1 otherwise. Hence, for all x ∈ X , function fx is such that
Pr

r
$←(C.states)N

(f(x) = i) ≥ 1
2− 1

N for i = 0, 1. When 1
N2 ≤ 1

k·N , invoking Lemma 6,

Pr
r

$←(C.states)N
(∃r̃ : |r − r̃| = 1 and fx(r) = 1− fx(r̃)) ≥ Ω

(
1√
k · n

)
.

Note that y is generated by x and a random state r ← (C.states)N (see Figure 3).
On input y, machine M can be equivalently thought to be computing ỹ as fNC (x̃, r̃),
where x̃ and r̃ can be described as follows: Choose a random coordinate i $← [N ] (see
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Figure 4) and x̃ is computed as x̃i
$← X and x̃j = xj for j 6= i and r̃ is computed as

r̃i
$← C.states and r̃j = rj for j 6= i. We make the following simple observations.

(i). r̃ is distributed uniformly in (C.states)N and |r − r̃| = 1.
(ii). Pr(x̃ = x) = 1

|X | .

(iii). With probability Ω( 1
N
√
N
), we have fx(r̃) = 1− fx(r).

Here, (i) and (ii) are clear from the process. For any s ∈ {0, 1}N such that |r− s| = 1,
r̃ = s with probability 1

N ·|C.states| =
1

2k·N . Hence, when x ∈ X and r $← {0, 1}N , the
probability of the event ‘fx(r) = 1− fx(r̃))’ is at least 1

2k·N ·Ω( 1√
k·N ) = Ω( 1

N
√
N
).

We are now ready to show that M outputs a0,a1 with substantial probability. Let
E1 be the event ‘x̃ = x and fx(r̃) = 1 − fx(r)’. We have already established that
conditioned on any x ∈ X , the event E1 occurs with probability Ω( 1

N
√
N
). Since

Pr(x ∈ X) ≥ 1 − 2
N , the probability of E1 is at least (1 − 2

N ) · Ω( 1
N
√
N
). Let E2 be

the event ‘R(fNC (x, r)) is correct’ and E3 be the event ‘R(fNC (x, r̃)) is correct’. Since
r and r̃ are uniformly distributed in {0, 1}N , by the correctness of the protocol, E2 and
E3 occur with probability at least 1 − 1

N2 . In the event E1 ∩ E2 ∩ E3, the machine
M guesses the input correctly and outputs (a0,a1). By a union bound, E1 ∩ E2 ∩ E3

happens with probability (1 − 2
N )Ω( 1

N
√
N
) − 2 1

N2 . Hence, M predicts (a0,a1) with
probability Ω( 1

N
√
N
). Note that this is a contradiction since, when ` = 2 logN , such a

machine should not exist when the protocol is 1
N2 -secure. This proves the theorem. �

5 Zero-Knowledge Proofs from Any Non-Trivial Channel

In this section, we characterize finite channels that allow OWSC of zero-knowledge
proofs of knowledge. Our result states that zero-knowledge proofs of knowledge (ZK
PoK) can be realized with OWSC over a channel if and only if the channel is non-
trivial. A trivial channel is one which is essentially equivalent (as formalized below) to
a noiseless channel, when used by actively corrupt senders.

Theorem 10 (Informal). Given a languageL ∈ NP\BPP, an OWSC/C zero-knowledge
protocol for L exists if and only if C is non-trivial.

Previously, this result was known only for two special channels, namely, BEC and
BSC [17]. To extend it to all non-trivial channels, we need to take a closer look at the
properties of abstract channels. To understand what a non-trivial channel is, it is helpful
to geometrically model a channel as we do below.
Redundant Inputs, Core and Trivial Channels. Given a channel C : X → Y , for
each input α ∈ X , define a |Y|-dimensional vector µα with coordinates indexed by
elements of Y , such that µα(β) = Pr(C(α) = β) for each β ∈ Y . We define the
convex polytope RC associated with C as the convex hull of the vectors {µα|α ∈ X}.

Any α ∈ X such that µα is a convex combination of {µα′ |α′ ∈ X \ {α}} is
a redundant input, because a sender could perfectly simulate the use of α with a lin-
ear combination of other inputs, without being detected (and possibly obtaining more
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information about the output at the receiver’s end). Geometrically, a redundant input
corresponds to a point in the interior of (possibly a face of) RC (or multiple inputs that
share the same vertex of the polytope). Consider a new channel Ĉ without any redun-
dant inputs, obtained by restricting C to a subset of inputs, one for each vertex of the
convex hull. Ĉ is called the core of C.9

We note that C : X → Y can be securely realized over Ĉ : X̂ → Y , with security (in
fact, UC security) against active adversaries. In this protocol, when the sender is given
an input α ∈ X \ X̂ , it samples an input α′ from X̂ according to a distribution that
results in the same channel output distribution as produced by α (this is always possible
since RC is the same as RĈ). Correctness (when both parties are honest) and security
against a corrupt receiver are immediate from the fact that the output distribution is
correct; security against a corrupt sender follows from the fact that its only action in the
protocol – sending an input to Ĉ– can be carried out as it is in the ideal world involving
C, with the same effect. This means that there is a secure OWSC protocol over C only
if such a protocol exists over Ĉ. In turn, since Ĉ has no redundant inputs, it suffices to
characterize which channels among those without redundant inputs, admit ZK proofs.

A channel without any redundant inputs is trivial if the output distributions for
each of its input symbols are disjoint from each other. Such a channel corresponds to
a noiseless channel, as the receiver always learns exactly the symbol that was input to
the channel. Over a noiseless channel, zero-knowledge proofs exist only for languages
in BPP.

Our main goal then, is to show that if a channel C without redundant inputs is non-
trivial, then every language in NP has an OWSC/C zero-knowledge protocol. We start
by providing some intuition about how we achieve this.

5.1 Intuition Behind the Construction

The ZK protocol involves sending many independently generated copies of an Obliv-
ious ZK-PCP over the channel, after encoding it appropriately; the verifier tests the
proof using a carefully designed scheme before accepting it. The encoding and testing
are designed to ensure, on one hand, erasure of a large fraction of the bits in the proofs
(to guarantee zero-knowledge) and, on the other hand, delivery of sufficiently many bits
so that the verifier can detect if the transmitted proof is incorrect (for soundness). At a
high-level, the transmission and testing of the proof takes place over three “layers”: (i)
an inner-most binary channel layer at the bottom, (ii) an erasure layer over it, and (iii)
an outer PCP layer.

The inner-most and outer-most layers are used to ensure soundness while the middle
and outer-most layers work in tandem to obtain the zero-knowledge property.

Binary-Input Channel Layer. A given channel C (without redundant inputs) may have
an arbitrary number of inputs, which may provide the prover with room for cheating in
the protocol. The binary-input channel layer involves a mechanism to enforce that the
prover (mostly) uses only a prescribed pair of distinct input symbols α0 and α1. We

9 The notions of redundancy and core were defined more generally in [21], in the context of
2-party functionalities where both parties have inputs and outputs. Here we present simpler
definitions that suffice for the case of channels.
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require that over several uses of the channel, if the sender uses a different symbol sig-
nificantly often, then the receiver can detect this from the empirical distribution of the
output symbols it received. This requires that the sender cannot simulate the effect of
sending a combination of these two symbols by using a combination of some other sym-
bols. Using the geometric interpretation of the channel, this corresponds to the require-
ment that the line segment connecting the two vertices µα0

and µα1
of the polytope

RC actually form an edge of the polytope. However, for the erasure layer (described
below) to work we require that the output distributions of α0 and α1 have intersecting
supports. In Lemma 7, we show that in any non-trivial channel C (without redundant
inputs), there indeed exist α0, α1 which satisfy both these requirements simultaneously.
Then, in Lemma 8, we show that there is a statistical test — whose parameters are de-
termined by the geometry of the polytope RC — that can distinguish between a sender
who sends a long sequence of these two symbols from a sender who uses other symbols
in a significant fraction of positions.

Erasure Layer. We can obtain a non-zero probability of perfect erasure by encoding 0
as the pair (α0, α1) and 1 as the pair (α1, α0), to be transmitted over two independent
uses of the channel C. Since there is some symbol β such that both q0 := Pr(C(α0) =
β) > 0 and q1 := Pr(C(α1) = β) > 0, the probability of the receiver obtaining
(β, β) is the same positive value q0q1, whether 0 or 1 is sent as above.10 Hence, one can
interpret the view of the receiver as obtained by post-processing the output of a BEC
with erasure probability q0q1, so that the erasure symbol is mapped to the outcome
(β, β).

At the receiver’s end, we use a maximum likelihood decoding, that always outputs
a bit (rather than allowing an erasure symbol as well); if the likelihood of a received
pair of symbols is the same for 0 and 1, it is decoded as a uniformly random bit. Note
that if the sender sends a pair (α0, α0) or (α1, α1), then the decoding strategy will have
the same effect as when the sender sends the encoding of a random bit – namely, it will
be decoded to a uniformly random bit. Thus, the net effect of these two layers is that
the prover communicates with the verifier using bits sent via a BSC, except for a few
positions where the sender may arbitrarily control the channel characteristics. While the
receiver’s view includes more information than the output of the BSC, it can be entirely
simulated from the output of a BEC.

PCP Layer. At the outer-most layer, our proof resembles the OWSC/BSC ZK pro-
tocol of [17], but is in fact somewhat simpler.11 Here, the prover simply sends several
independently generated copies of an Oblivious ZK-PCP (routed through the inner lay-
ers discussed above). As we noted above, the view of the receiver is obtained by post-
processing the output of a BEC; hence, by choosing the parameters of the ZK-PCP
appropriately, we can ensure that the receiver’s view can be statistically simulated.

10 This is essentially identical to the Von Neumann extractor trick.
11 In [17], an encoding scheme was used to argue that with some probability, the bits sent through

the BSC are “erased.” But this encoding turns out to be redundant, as a BSC implicitly guaran-
tees erasure: Concretely, a BSC with error probability p can be simulated by post-processing
a BEC with erasure probability 2p. The post-processing corresponds to decoding the erasure
symbol as a uniformly random bit.
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Ensuring soundness requires more work. The receiver, after obtaining the bits de-
coded from the inner layers (provided that no deviation was detected at the inner-most
layer), can try to execute the PCP verification on each proof. However, it cannot re-
ject the proof on encountering a single proof that fails the verification, because, even
if the prover is honest, the channel can introduce errors in the received bits. As such,
the verifier should be prepared to tolerate a certain probability of error. One may expect
that if the proof was originally incorrect, then the probability of error would increase.
However, this intuition is imprecise: it is plausible that a wrong proof can match or even
surpass some honest proofs in the probability of passing the PCP verification.

To deal with this, we note that it is not necessary to carry out the original PCP
verification test on the received bits, but rather one should design a statistical test that
separates all correct proofs from incorrect proofs, as received through the inner layers.
We show that for any predicate used by the original PCP verifier, there is an error-score
one can assign to the bits decoded from the BSC, so that the expected error-score of
the decoded bits is lower when they originally satisfy the PCP verifier’s predicate. The
verifier accepts or rejects the proof by computing the empirical average of the score
across all repetitions of the proof, and thresholding it appropriately.

We remark that our scoring scheme and its analysis are more direct, and perhaps
simpler, compared to the one in [17]. An additional subtlety that arises in our case is
that there can be a few positions where the inner layers do not constitute the BSC that
we try to enforce. Nevertheless, the above approach remains robust to such deviations,
by ensuring that the scores come from a suitably bounded range.

5.2 Properties of Non-trivial Channels

The following lemma shows that if C is non-trivial and without redundant inputs, there
is a pair of input symbols α0, α1 with properties that we can use to enforce binary-input
channel layer in Lemma 8 and to realize erasure channel layer in Lemma 9. Proofs of
these lemmas are provided in the full version [1].

α0 α1

A.2 Proof of Lemma 7

Let R ⇢ RY be the convex hull of the set of points {µ↵}↵2X . Since all symbols in Care are non-redundant,
for all ↵ 2 X , µ↵ is a vertex of R. We first prove the lemma assuming the following claim.

Claim 5. There exist distinct symbols ↵0, ↵1 2 X such that (a). 9� 2 Y such that µ↵0(�), µ↵1(�) > 0,
and (b). the line between µ↵0 and µ↵1 forms an edge of R.

The statement (a) is identical to (i) given in the lemma. We are done if we show that (b) implies the
existence of v and ✏ that satisfy condition (ii). For all ↵ /2 {↵0, ↵1}, µ↵ is a vertex of R; hence, not on the
edge between µ↵0 and µ↵1 . Consequently, there is a hyperplane that seperates {µ↵}↵2X\{↵0,↵1} from µ↵0

and µ↵1 . This implies the existence v 2 [�1, 1]Y and ✏ > 0 that satisfy (ii). Formally, we can set v as the
maximizer and ✏ (this can be easily verified to be strictly non-zero) as the solution of the following linear
program:

max
u2RY

✏ subject to: hu, µaii = 0, i = 1, 2, hu, µxi � ✏, 8x /2 S, and u(�) 2 [�1, 1], 8� 2 Y.

It remains to prove the claim. Since C is non-trivial and non-redundant, there exists ↵0, ↵1 2 X and
� 2 Y such that µ↵0(�), µ↵1(�) > 0 and µ↵0 , µ↵1 are vertices of R. If µ↵0 and µ↵1 satisfy the condition
(b), then we are done.

Suppose µ↵0 and µ↵1 do not satisfy (b). Let v1, . . . , vk 2 X be such that {µv1 , . . . , µvk
} form the set

of all neighboring vertices of µ↵0 in R. By our assumption, µ↵1 is not in this set. We will demonstrate
� 2 {0, 1} and distribution D over v1, . . . , vk such that, �µ↵0 + (1� �)µ↵1 = Ev Dµv. Since there exists
� 2 Y such that µ↵0(�), µ↵1(�) > 0, we also have (�µ↵0 + (1� �)µ↵1) (�) > 0, which further implies
that Ev Dµa(�) > 0, hence there exists vi for some 1  i  k such that µvi(�) > 0. But then, ↵0 and vi

satisfy the conditions (a) and (b), and we are done.
We now show the existence of � and D such that, �µ↵0 + (1 � �)µ↵1 = Ev Dµv. Since the line

segment joining µ↵0 and µ↵1 is not an edge, the ray passing through (µ↵1 � µ↵0) is contained in the cone
defined by {µ↵ � µ↵0}↵2X\{↵0,↵1}. This cone is identical to the cone defined by {µvi � µ↵0}1ik. Hence,
there exists ⌘1, . . . , ⌘k � 0 such that (µ↵1 � µ↵0) =

P
i2[k] ⌘i (µvi � µ↵0). Since µ↵1 is a vertex of R,

P
i2[k] ⌘i > 1, for else µ↵1 =

P
i2[k] ⌘i (µvi)+

⇣
1�Pi2[k] ⌘i

⌘
µ↵0 , a contradiction. When

P
i2k ↵k > 1,

let � = 1P
i2k ↵k

, then �µ↵1 =
P

i2[k]
⌘iµviP
i2[k] ⌘i

+ (1� �)µ↵0 . This proves the claim.

A.3 Proof of Lemma 8

For the channel C, consider a0, a1 2 X , v 2 [�1, 1]Y and ✏ > 0 that satisfy the conditions (i) and (ii)
in Lemma 7. For each x 2 X , define the random variable �(x) that takes the value v(y) with probability
P (y|x) for all � 2 Y . It can be easily verified that

E�(x) =
X

y2Y
P (y|x)v(y) = hµx, vi and hhisty, vi =

1

m

X

i2[m]

�(x(i)).

Hence, by Lemma 7, E�(ai) = 0 for i = 0, 1 and E�(x) � ✏ for all x /2 {a0, a1}. Consequently, if t = 0,

hhisty, vi =
1

m

X

i2[m]

(�(x(i))� E�(x(i))) and 8t � 0, hhisty, vi � ✏ · t

m
+

1

m

X

i2[m]

(�(x(i))� E�(x(i))) .
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We now show the existence of � and D such that, �µ↵0 + (1 � �)µ↵1 = Ev Dµv. Since the line
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there exists ⌘1, . . . , ⌘k � 0 such that (µ↵1 � µ↵0) =

P
i2[k] ⌘i (µvi � µ↵0). Since µ↵1 is a vertex of R,

P
i2[k] ⌘i > 1, for else µ↵1 =

P
i2[k] ⌘i (µvi)+

⇣
1�Pi2[k] ⌘i

⌘
µ↵0 , a contradiction. When

P
i2k ↵k > 1,

let � = 1P
i2k ↵k

, then �µ↵1 =
P

i2[k]
⌘iµviP
i2[k] ⌘i

+ (1� �)µ↵0 . This proves the claim.

A.3 Proof of Lemma 8

For the channel C, consider a0, a1 2 X , v 2 [�1, 1]Y and ✏ > 0 that satisfy the conditions (i) and (ii)
in Lemma 7. For each x 2 X , define the random variable �(x) that takes the value v(y) with probability
P (y|x) for all � 2 Y . It can be easily verified that

E�(x) =
X

y2Y
P (y|x)v(y) = hµx, vi and hhisty, vi =

1

m

X

i2[m]

�(x(i)).

Hence, by Lemma 7, E�(ai) = 0 for i = 0, 1 and E�(x) � ✏ for all x /2 {a0, a1}. Consequently, if t = 0,

hhisty, vi =
1

m

X

i2[m]

(�(x(i))� E�(x(i))) and 8t � 0, hhisty, vi � ✏ · t

m
+

1

m

X

i2[m]

(�(x(i))� E�(x(i))) .
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Fig. 5: Illustration of condition (ii) in Lemma 7.
The polytope RC is illustrated here. Since C has
no redundant symbols, there is a bijection be-
tween vertices of RC and the input symbols of the
channel. The edge between µα0 and µα1 is high-
lighted. The solid part is the convex hull of the
vertices other than µα0

and µα1
. By the separat-

ing hyperplane theorem [7], there exists a vector
v ∈ [−1, 1]Y and ε > 0 as illustrated.
In Lemma 8, the existence of v, ε is used to devise
the statistical test that enforces the binary input
channel layer. That µα0

and µα1
have intersect-

ing support is used in realizing the erasure layer.
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〈Enc,Dec〉(a)

For channel C : X → Y , choose α0, α1 ∈ X that satisfy the conditions in Lemma 7. When
a ∈ {0, 1},

1. Enc(a) = (x0, x1) where x0 = αa and x1 = α1−a.
2. (y0, y1) = C(x0, x1).

3. Dec(y0, y1) =

{
b if Pr [C(αb, α1−b) = (y0, y1)] > Pr [C(α1−b, αb) = (y0, y1)] ,

0 (resp. 1) w. p. 1
2

if Pr [C(α0, α1) = (y0, y1)] = Pr [C(α1, α0) = (y0, y1)] .

Fig. 6: Realizing BSC using a channel C : X → Y . Here, a is the input bit to BSC
channel and b is its output. The messages are encoded using symbols α0, α1 ∈ X that
satisfy the conditions in Lemma 7.

Lemma 7. If C : X → Y without redundant inputs is non-trivial, then there exist
distinct symbols α0, α1 ∈ X , v ∈ [−1, 1]Y and ε > 0 with the following properties:

(i) ∃y ∈ Y such that µα0
(y),µα1

(y) > 0.
(ii) 〈µα0 ,v〉 = 〈µα1 ,v〉, and for all α ∈ X \ {α0, α1}, 〈µα,v〉 − 〈µα0 ,v〉 ≥ ε.

In the next lemma, we show that, over several uses of C, a sender who uses only
α0, α1 described in the previous lemma, can be distinguished from one that uses other
symbols (different than α0, α1) significantly often, using the empirical distribution of
the output symbols. Let histogram of a vector y ∈ Ym be defined as histy(β) = 1

m |{i ∈
[m] : yi = β}| for all β ∈ Y . The following function is a statistical test that achieves
this: fm(y) = 〈histy,v〉 − 〈µα0

,v〉.
Lemma 8. If a channel C without redundant inputs is non-trivial, then there exist
α0, α1 ∈ X , ε > 0 and functions fm : Ym → R, for m ∈ N, such that, for all
λ > 0, when x ∈ Xm, t = |{i ∈ [m] : xi /∈ {α0, α1}}| and y = C(x),

Pr

(
fm(y) ≥

√
λ

m
· ε
∣∣∣∣∣t = 0

)
≤ 2e−

λ·ε2
2 and

Pr

(
fm(y) ≤

√
λ

m
· ε
∣∣∣∣∣t ≥ 2

√
m · λ

)
≤ 2e−

λ·ε2
2 .

The following lemma analyzes the coding scheme in Figure 6 that realizes erasure
layer using α0, α1 described in Lemma 7. The fidelity of the scheme is a consequence
of µα0 and µα1 being distinct. As we already observed, receiving (β, β) in this scheme
is effectively the same as receiving an erasure. The lemma shows that since µα0 ,µα1

having intersecting supports, erasure happens with non-zero probability. The lemma
also formalizes the observation that sending invalid encodings (αi, αi) for i ∈ {0, 1} is
effectively the same as sending the valid encoding of a random bit.

Lemma 9. The scheme 〈Enc,Dec〉 in Figure 6 satisfies the following properties:
(i). Pr [Dec (Enc(a)) = a] = p > 1

2 for a ∈ {0, 1};
(ii). Pr [Dec (C(αi, αi)) = 0] = 1

2 for i = 0, 1;
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(iii). Let⊥ be the event that the receiver gets (β, β) as output, where β is in the support
of µα0

and µα1
. Then Pr(⊥|Enc(a)) = ρ > 0, for all a ∈ {0, 1}.

The Binary Symmetric Channel (BSC), with parameter p, is defined as BSCp :
{0, 1} → {0, 1} such that for b ∈ {0, 1}, Pr(BSCp(b) = b) = p. Consider the scenario
where a configuration x ∈ {0, 1}k is sent through BSCp amongst which S ⊂ {0, 1}k is
the set of acceptable configurations. The following lemma assigns scores {γSy }y∈{0,1}k
to the received configurations in such a way that the expected score is 0 when an accept-
able configuration x ∈ S is sent and the expected score is a strictly positive constant
φS when an unacceptable configuration x /∈ S in sent.

Lemma 10. For k ∈ N, let U = {0, 1}k and S ⊆ U . For x,y ∈ U , define pxy =
Pr(BSCp(x) = y). There exists φS > 0 and {γSy }y∈U ∈ [−1, 1] such that

∑

y∈U
pxyγ

S
y = 0,∀x ∈ S and

∑

y∈U
pxyγ

S
y = φS ,∀x /∈ S.

Proof: Consider the matrix M ∈ RU×U such that Mxy = pxy . By the definition
of BSCp, when |x − y| denotes the Hamming distance between x,y ∈ U , pxy =
(1− p)|x−y| · pk−|x−y|. It can be verified that, when ⊗ denotes the tensor operation,

M = H⊗k, where H =

[
p 1− p

1− p p

]
.

Since H is invertible and tensor operation preserves non-singularity, M is an invertible
matrix. The existence of φS > 0 and {γSy }y∈U ∈ [−1, 1] follows directly from the
invertibility of M . �

5.3 Construction and Analysis

The scheme 〈PZK ,VZK〉 is given in Figure 7. We now formally prove that this is a
zero-knowledge proof of knowledge with negligible completeness and soundness error.

We first comment on the strategy of a malicious prover who encodes bits as (αi, αi)
for i = 0, 1. Notice that the statistical test of thresholding f2n·`(y) is insensitive to
such a malicious strategy. But, by statement (ii) in Lemma 9, a bit that is encoded as
(αi, αi) is decoded as 0 (resp. 1) with probability 1

2 . Hence, with respect to decoding,
such a malicious strategy is effectively the same as encoding a random bit honestly
using Enc. Consequently, every malicious prover strategy (including ones that encode
bits incorrectly using (αi, αi)) can be thought of as a randomized strategy over a sub-
class of strategies in which each bit is encoded as (α, α′), where α 6= α′. Hence, in the
sequel, we analyze soundness only with respect to this class of strategies.

The proof proceeds by bounding the number of bad proofs a malicious sender can
send without getting rejected by the tests performed by the verifier. We define Bencoding
as the set of bad proofs in which at least one bit is encoded using symbols outside the
set {α0, α1}. Also, define Bincorrect as the set of proofs in which each bit is correctly
encoded using Enc, but the proof itself is invalid. This is formalized as the proofs from
which the extractor E for 〈PoZK ,VoZK〉 cannot extract a valid witness. We would
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〈PZK ,VZK〉

Common input to prover and verifier x ∈ L.
Auxiliary input to prover w such that RL(x,w) = 1.
For a non-trivial channel C, without redundant symbols, consider symbols α0, α1 ∈ X ,
functions fm, for m ∈ N, and ε > 0 as described in Lemma 8. Let 〈Enc,Dec〉 be the
encoding scheme described in Figure 6 w.r.t. α0, α1. Let p and ρ be as described in
Lemma 9 for this encoding scheme. For S ⊂ {0, 1}3, consider γSy , for each y ∈ {0, 1}3,
and φS , from Lemma 10 with respect to BSCp. Define φ = minS⊂{0,1}3 φ

S . For security
parameter λ, let (PoZK ,VoZK) be a (3, 1− ρ)-ZK-PCP with knowledge soundness κ.
Finally, when ` = poly(λ, |x|) is the length of proof output by PoZK , let n =

(
`λ
κ

)2.

1. PZK samples π1, . . . , πn
$← PoZK(x,w, λ). For all i ∈ [n], j ∈ [`], let the jth bit in

the proof πi be bi,j , then encode bi,j using Enc to obtain (xi,j0 , xi,j1 ).
2. For all i ∈ [n], j ∈ [`], let

(
yi,j0 , yi,j1

)
= C

(
xi,j0 , xi,j1

)
. Let y be the vector(

yi,jk
)
i∈[n],j∈[`],k∈{0,1}.

3. If f2n·`(y) ≥
√

λ
2n`

, then VZK aborts and rejects the proof. Otherwise, VZK decodes
π1, . . . , πn as π̂1, . . . , π̂n such that, for i ∈ [n] and j ∈ [`], the bit bi,j is decoded
as b̂i,j = Dec

(
yi,j0 , yi,j1

)
. For each k ∈ [n], choose 3 random indices a1, a2, a3 ∈

[`] of π̂k. If S is the set of accepting configurations for the indices (a1, a2, a3) w.r.t.
VoZK(x, ·), set sk = γS

b̂k
, where b̂k = (b̂k,a1 , b̂k,a2 , b̂k,a3). If 1

n

∑
k∈n sk <

κ·φ
12

, then
VZK accepts, else it rejects.

Fig. 7: Description of OWSC/C ZKPoK scheme for a non-trivial channel C without
redundant input symbols.

argue soundness by showing that if the sizes of Bencoding and Bincorrect are substantial,
then VZK rejects with all but negligible probability. Furthermore, completeness follows
from the tests accepting an honest prover with all but negligible probability. These are
established in the following claims; see the full version [1] for formal proofs. Formally,
Bencoding and Bincorrect are defined as follows.

Bencoding = {i ∈ [n] : ∃(j, k) ∈ [`]× {0, 1} s.t. xi,jk /∈ {α0, α1}},
Bincorrect = {i ∈ [n] : i /∈ Bencoding and RL(x,E(πi, x)) = 0}.

Claim 2. If Bencoding is empty, then the probability with which f2n·`(y) ≥
√

λ
2n` is

negligible in λ. If |Bencoding| ≥ nκφ
6 , then the probability with which f2n·`(y) <

√
λ

2n`

is negligible in λ.

Claim 3. If Bencoding = Bincorrect = ∅, then 1
n

∑n
k=1 sk ≥ κ·φ

12 with probability at most

2e−
1
2 (

`λ·φ
12 )

2

. If |Bencoding| ≤ nκφ and |Bincorrect| ≥ n
3 , then 1

n

∑n
k=1 sk <

κ·φ
12 with

probability at most 2e−
1
2 (

`λ·φ
12 )

2

.

Below, we argue that 〈PZK ,VZK〉 is a zero-knowledge proof using these claims.
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Completeness. The above claims directly imply that if π1, . . . , πn are valid proofs
which are correctly encoded, then VZK accepts with all but negligible probability.
Soundness. We build an extractor E′ from E (the extractor for 〈PoZK ,VoZK〉) as fol-
lows. For each i ∈ [n], extractor E′ tries to extract a proof π∗i from the encoding of the
purported proof πi. Rejecting each purported proof πi that is incorrectly encoded, i.e.,
i ∈ Bencoding. If for some i, we haveRL(x,E(π∗i , x)) = 1, outputE(π∗i , x); else, output
⊥. Clearly, E′ aborts only if Bencoding ∪Bincorrect = [n]. But the above claims imply that
VZK rejects with all but negligible probability, whenever |Bencoding ∪Bincorrect| ≥ 2n

3 .
Zero-knowledge. By Lemma 9, Enc induces an erasure (⊥ in the lemma) with proba-
bility ρ > 0. Recall that the proof uses a (3, 1 − ρ)-ZK-PCP 〈PoZK ,VoZK〉. Let S be
a simulator for this ZK-PCP. The construction of simulator S′ for 〈PZK ,VZK〉, using
the simulator S is quite straightforward: S′ runs n independent executions of S(x, λ) to
get π∗1 , . . . , π

∗
n. It is easy to see that if S produced a perfect simulation of the ZK-PCP,

then S′ would also produce a perfect simulation of the verifier’s view in the ZK proof.
Since the simulation by S incurs a negligible error, so does the simulation by S′.
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