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Abstract. The Naor-Yung paradigm is a well-known technique that con-
structs IND-CCA2-secure encryption schemes by means of non-interactive
zero-knowledge proofs satisfying a notion of simulation-soundness. Un-
til recently, it was an open problem to instantiate it under the sole
Learning-With-Errors (LWE) assumption without relying on random
oracles. While the recent results of Canetti et al. (STOC’19) and Peikert-
Shiehian (Crypto’19) provide a solution to this problem by applying
the Fiat-Shamir transform in the standard model, the resulting con-
structions are extremely inefficient as they proceed via a reduction to
an NP-complete problem. In this paper, we give a direct, non-generic
method for instantiating Naor-Yung under the LWE assumption outside
the random oracle model. Specifically, we give a direct construction of an
unbounded simulation-sound NIZK argument system which, for carefully
chosen parameters, makes it possible to express the equality of plaintexts
encrypted under different keys in Regev’s cryptosystem. We also give a
variant of our argument that provides tight security. As an application,
we obtain an LWE-based public-key encryption scheme for which we can
prove (tight) key-dependent message security under chosen-ciphertext
attacks in the standard model.

Keywords. LWE, standard model, Naor-Yung, NIZK arguments, simulation-
soundness, KDM-CCAZ2 security, tight security.

1 Introduction

The Fiat-Shamir transformation [43] is a well-known technique that turns any
3-move honest-verifier zero-knowledge proof system (a.k.a. X-protocol [36]) into a
non-interactive zero-knowledge proof (NIZK) by replacing the verifier’s challenge
by a hash value of the transcript so far. Bellare and Rogaway [11] showed that
this approach is secure if the underlying hash function is modeled as a random
oracle. Since then, the Fiat-Shamir heuristic has been used in the design of
countless cryptographic schemes, including digital signatures [78] and chosen-
ciphertext-secure public-key encryption schemes [44]. In the standard model,
however, counter-examples [49] showed that it may fail to guarantee soundness.



Until recently, it was not known to be securely instantiable without random
oracles under any standard assumption. This situation drastically changed with
the works of Canetti et al. [26] and Peikert and Shiehian [76], which imply the
existence of Fiat-Shamir-based NIZK proofs for all NP languages under the
sole Learning-With-Errors (LWE) assumption [79]. Their results followed a line
of research [82,27,25] showing that Fiat-Shamir can provide soundness in the
standard model if the underlying hash function is correlation intractable (CI).
In short, correlation intractability for a relation R captures the infeasibility of
finding an x such that (z, Hi(z)) € R given a random hashing key k. Intuitively,
the reason why this property provides soundness is that a cheating prover’s
first message cannot be hashed into a verifier message admitting an accepting
transcript, except with negligible probability.

While [26,76] resolve the challenging problem of realizing NIZK proofs for all
NP under standard lattice assumptions, they leave open the question of building
more efficient instantiations of Fiat-Shamir for specific languages, such as those
arising in the context of chosen-ciphertext security [75,80,44].

In order to instantiate the Naor-Yung paradigm of CCA2-secure encryp-
tion [75] in the lattice setting, the only known solution is to proceed via a general
NP reduction to graph Hamiltonicity and apply the X-protocol of Feige, Lapidot
and Shamir [42] with the modifications suggested by Canetti et al. [26,30]. In
addition, a direct application of [26,30,76] to CCA2 security requires to apply
the generic compiler of [39] that turns any NIZK proof system into simulation-
sound [80] proofs. Here, we consider the problem of more efficiently instantiating
Naor-Yung in the standard model under lattice assumptions. Using correlation
intractable hash functions, our goal is to directly construct simulation-sound
arguments of plaintext equality without using generic techniques.

1.1 Owur Contributions

We describe the most efficient post-quantum realization of the Naor-Yung
paradigm so far and its first non-trivial instantiation under lattice assumptions.
As an application, we obtain the most efficient public-key encryption scheme
providing key-dependent message security under chosen-ciphertext attacks (or
KDM-CCA2 security for short) under the standard Learning-With-Errors (LWE)
assumption [79]. Our scheme is not the result of merely combining generic NIZK
techniques [80,39] with the results [26,30,76] on NIZK proofs based on correlation
intractable hash functions. In particular, we bypass the use of a Karp reduction
to the graph Hamiltonicity language [42,26,30]. Instead, as a key building block,
we directly build a simulation-sound NIZK proof system showing that two dual
Regev ciphertexts [46] are encryptions of the same plaintext.

As a result of independent interest, we also obtain a multi-theorem NIZK argu-
ment system without using the Feige-Lapidot-Shamir (FLS) transformation [42].
Recall that the FLS compiler constructs a multi-theorem NIZK proof system for
an NP language from a single-theorem NIZK proof system by using the latter to
prove OR statements of the form “either element x is in the language OR some
CRS component is in the range of a pseudorandom generator”. Unlike FLS, our



multi-theorem NIZK argument avoids the non-black-box use of a PRG. Another
advantage is that it provides multi-theorem statistical NIZK in the common
random string model while proving soundness under the LWE assumption. In
contrast, achieving statistical multi-theorem NIZK by applying FLS to [76,30]
requires a common reference string sampled from a non-uniform distribution.

We further show that our argument system provides unbounded (as opposed
to one-time [80]) simulation-soundness (USS) [39], meaning that the adversary
remains unable to prove a false statement, even after having seen simulated
arguments for polynomially many (possibly false) statements. This makes our
argument system suitable to prove KDM-CCA2 security by applying the Naor-
Yung technique to the KDM-CPA system of Applebaum, Cash, Peikert, and
Sahai (ACPS) [6], which is known to provide key-dependent message security
for affine functions. In addition, we provide a variant of our USS argument
that can be proved tightly secure, meaning that the reduction’s advantage is
not affected by the number of simulated proofs obtained by the adversary. The
simulation-soundness property is indeed tightly related to the security of the
underlying pseudorandom function. By exploiting a result of Lai et al. [64], it
can be combined with a tightly secure lattice-based PRF so as to instantiate our
scheme with a polynomial modulus.

Our first simulation-sound NIZK argument implies a public-key encryption
(PKE) scheme providing KDM-CCA2 security under the LWE assumption with
polynomial approximation factors. Our second NIZK argument yields an in-
stantiation that enjoys tight KDM-CCA2 security. Until recently, this was only
possible under an LWE assumption with large approximation factors for lack of a
tightly secure low-depth lattice-based PRF based on an LWE assumption with
polynomial inverse-error rate. Lai et al. [64] recently showed that many tightly
secure LWE-based schemes (e.g., [17,67,18]) can actually be obtained using a PRF
outside NC1 without going through Barrington’s theorem [9]. Their technique
[64] applies to our setting and ensure that any (possibly sequential) PRF with a
tight security reduction from LWE with polynomial modulus and inverse-error
rate allows instantiating the scheme under a similarly standard assumption.

Recall that KDM security is formalized by an experiment where the adversary
obtains N public keys. On polynomially many occasions, it sends encryption
queries (4, f), for functions f € F belonging to some family, and expects to receive
an encryption of f(SKj,...,SKy) under PK;. Security requires the adversary
to be unable to distinguish the real encryption oracle from an oracle that always
returns an encryption of 0. Our KDM-CCAZ2 construction supports the same
function family (namely, affine functions) as the KDM-CPA system it builds on.
However, like previous LWE-based realizations [6,4], it can be bootstrapped using
Applebaum’s technique [5] so as to retain KDM security for arbitrary functions
that are computable in a priori bounded polynomial time.

We believe our LWE-based instantiation of Naor-Yung to be of interest beyond
KDM security. For example, it makes possible to publicly recognize ciphertexts
that correctly decrypt, which is a rare feature among LWE-based schemes and
comes in handy in the threshold decryption setting (see, e.g., [44]). It can also



be used to obtain chosen-ciphertext security in settings — such as inner product
functional encryption [1,3] or receiver selective-opening security [54] — for which
we do not know how to apply the Canetti-Halevi-Katz technique [29].

1.2 Technical Overview

Our starting point is a trapdoor X-protocol [26,30] allowing to prove the
well-formed of ciphertexts in the KDM-CPA system of Applebaum et al. [6].
Namely, it allows proving that a given vector ¢ = (u,u) € ZZH is of the form
(u,u’s + p|q/p| + noise), where u € Z, is the message, s € Z" is the secret key
and the public key is (A, b = ATs+noise) € Z2*™ x Z7" for some m = £2(n-log q).
Recall that a standard X-protocol [36,35] is a 3-move protocol with transcripts
of the form (a, Chall,z) where Chall is the verifier’s challenge and messages a
and z are sent by the prover. In the common reference string model, a trapdoor
X-protocol [26,30] has the property that, for any statement x outside the language
L and any first message a sent by the prover, a trapdoor makes it possible to
determine the unique challenge Chall for which a valid response z exists. There is
an efficiently computable function BadChallenge that takes as input a trapdoor 7,
a false statement x ¢ £, and a first prover message a, and computes the unique
Chall such that there exists an accepting transcript (a, Chall,z) (that is, there is
no accepting transcript of the form (a, Chall’, z) for any Chall’ # Chall).

Our first observation is that, in order to preserve the soundness of Fiat-Shamir,
it suffices for a trapdoor X-protocol to have a BadChallenge function that outputs
“if there is a bad challenge at all for a, it can only be Chall”. Indeed, false positives
do not hurt soundness as we only need the CI hash function to sidestep the bad
challenge whenever it exists. Based on this observation, we can build a trap-
door X-protocol showing that a Regev ciphertext ¢ € Z;‘“ encrypts 0. Letting
A=[AT|b]T ¢ Zé”+1)xm7 this can be done using by showing knowledge of a
short r € Z™ such that ¢ = A - r. In X-protocols like [70,71], the verifier accepts
transcripts (a, Chall, z) such that a + Chall-c = A - z if z € Z™ is short enough.
Since the right-hand side member of the verification equation is an encryption of
0, the BadChallenge function can use the decryption key s to infer that no valid
response exists for the challenge Chall = b when a + b - ¢ does not decrypt to 0.

The next step is to argue that c encrypts an arbitrary u € Z,,. To this end, we
exploit the fact the KDM-CPA scheme of [6] uses a square modulus ¢ = p? when
we compute part of the response z, = r,, + Chall - x mod p over Z,, while using a
uniform mask 7, € Z, to hide u € Z, as in standard Schnorr-like protocols [81].
Now, the BadChallenge function can output Chall = 1 —b if it detects that a+b-c
is not of the form (u,u’s+ 2y, - p~+noise), for some z,, € Zy,. Indeed, this rules out
the existence of a short enough z € Z™ such that a+b-c=A -z +2z,-[0"" |p]"
with z, € Z,. The above technique extends into a trapdoor X-protocol for
proving plaintext equalities in the ACPS cryptosystem [6]. Our instantiation of
Naor-Yung thus requires to work with LWE over a composite modulus ¢ and we
leave it as an open problem to extend it to prime moduli.

The main difficulty, however, is to turn the aforementioned trapdoor X-
protocol into a non-interactive proof system with unbounded simulation-soundness.



This problem is non-trivial since the Canetti et al. protocol [26,30] is not known to
satisfy this security notion.® The NIZK simulator of [26,30] generates simulated
proofs by “programming” the CI hash function from which the verifier’s challenge
is derived. In the context of unbounded simulation-soundness [80,39], we cannot
proceed in the same way since the simulator would have to program the hash
function for each simulated proof (and thus for each challenge ciphertext in the
proof of KDM-CCA2 security). Since the number of simulated proofs is not a
priori bounded, it is not clear how to do that using a hashing key of length
independent of the number of adversarial queries.

Our solution to this problem is inspired by the modification introduced by
Canetti et al. [30,26] in the Feige-Lapidot-Shamir protocol [42]. In [30, Section
5.2], the first prover message a is computed using a lossy encryption scheme [10]
instead of an ordinary commitment. Recall that, depending on the distribution of
the public key PK, a lossy encryption scheme behaves either as an extractable non-
interactive commitment or a statistically-hiding commitment. The extractable
mode is used to prove the soundness property (by using the secret key SK corre-
sponding to PK to compute the BadChallenge function) while the statistically
hiding mode allows proving zero-knowledge. Our unbounded simulation-sound
proof system exploits the observation made by Bellare et al. [10] that specific lossy
encryption schemes admit an efficient opening algorithm. Namely, ciphertexts
encrypted under a lossy public key can be equivocated in the same way as a
trapdoor commitment using the lossy secret key SK. This suggests that, if the
protocol of Canetti et al. [30,26] is instantiated using a lossy encryption scheme
with efficient opening, we can use a strategy introduced by Damgard [38] to
simulate NIZK proofs without programming the CI hash function. Namely, the
simulator can generate the first prover message as a lossy encryption of 0. When
receiving the verifier’s challenge Chall, it can run the HVZK simulator to obtain
(a,z) before using the lossy secret key SK to explain the lossy ciphertext as an
encryption of the simulated a. By doing this, we also obtain a multi-theorem
NIZK argument without using the FLS transformation [42] and without using
any primitive in a non-black-box way. The language of the underlying trapdoor
JX-protocol is exactly the same as that of the multi-theorem NIZK argument, so
that, if the former is efficient, so is the latter.

However, standard lossy encryption schemes with efficient opening do not
suffice to prove unbounded simulation-soundness: We do not only need to equiv-
ocate lossy ciphertexts in all simulated proofs, but we should also make sure
that the adversary’s fake proof is generated for a statistically binding (and even
extractable) commitment. For this reason, we rely on a lossy encryption flavor,
called R-lossy encryption by Boyle et al. [19], where a tag determines whether a
ciphertext is lossy or injective. The public key is generated for a computationally
hidden initialization value K € K and ciphertexts are encrypted under a tag
teT.If R CKxT is a binary relation, the syntax of R-lossy encryption [19] is

5 It can be generically achieved using NIZK for general NP relations [39] but our goal
is to obtain a more efficient solution than generic NIZK techniques. In fact, even
one-time simulation-soundness is not proven in [26,30]



that a ciphertext encrypted for a tag t € T is injective if R(K,t) = 1 and lossy
otherwise. For our purposes, we need to enrich the syntax of R-lossy encryption
in two aspects. First, we require lossy ciphertexts to be efficiently equivocable
(i.e., the secret key SK should make it possible to find random coins that explain
a lossy ciphertext as an encryption of any target plaintext). Second, in order to
simplify the description of our NIZK simulator, we need the syntax to support
lossy /injective tags and lossy/injective keys. When the public key PK is lossy,
all ciphertexts are lossy, no matter which tag is used to encrypt. In contrast,
injective public keys lead to injective ciphertexts whenever R(K,t) = 1. Our
NIZK simulator actually uses lossy public keys while injective keys only show up
in the proof of simulation-soundness.

We then construct an R-lossy encryption scheme for the bit-matching relation
(i.e., Rem(K,t) = 1 if and only if K and ¢ agree in all positions where K does
not contain a “don’t care entry”) under the LWE assumption. The scheme can
be viewed as a combination of the primal Regev cryptosystem [79] — which is
known [77] to be a lossy PKE scheme and is easily seen to support efficient open-
ings as defined in [10] — with the lattice trapdoors of Micciancio and Peikert [74].
An injective public key consists of a matrix A € Zy*™ with short vectors in its
row space. In order to encrypt g € {0,1}™ under a tag ¢, we sample a short Gaus-
sian r € Z?™ and compute ¢ = [A | ARy +(1-R(K,t))-G]-v+[0| - [g/2]]T,
for some small-norm R; € Z™*™, where G € Z;*™ is the gadget matrix of [74].
In each lossy tag, we have R(K,¢) = 0, in which case the matrix R; can be used
as a trapdoor (using the techniques of [2,74]) to sample a Gaussian r € Z?™
that explains ¢ as an encryption of any arbitrary g € {0,1}". In injective
tags, we have R(K,t) = 1, so that the gadget matrix vanishes from the matrix
A, =[A]A-R;+ (1 -R(K,t))-G]. Since A has short vectors in its row space,
so does A; and we can thus use these short vectors to recover p from c exactly as
in the primal Regev cryptosystem. When the public key PK is lossy, the matrix
A is replaced by a statistically uniform matrix over Zy*™. We can then use a
trapdoor for A+ (A) to equivocate lossy ciphertexts for any arbitrary tag.

Our USS argument system uses our R-lossy encryption scheme — with the
standard trick of using the verification key of a one-time signature as a tag —
to compute the first prover message a by encrypting the first message a’ of a
basic trapdoor X-protocol. In the security proof, we have a noticeable probability
that: (i) For all adversarially-chosen statements, proofs can be simulated by
equivocating lossy ciphertexts; (ii) When the adversary comes up with a proof of
its own, the underlying commitment is an injective ciphertext. If these conditions
are fulfilled, we can annihilate the adversary’s chance of proving a false statement
by using a hash function which is statistically CI for the relation that evaluates
the BadChallenge function on input of the decryption of an R-lossy ciphertext.

At a high-level, our simulation-sound proof system bears similarities with
interactive proof systems described by MacKenzie and Yang [72]. Our exten-
sion of R-lossy encryption resembles their notion of simulation-sound trapdoor
commitments. The difference is that, while [72] only requires commitments to
be computationally binding for tags that have never been equivocated, we need



adversarially-chosen tags to be extractable.

Our first USS argument system does not provide tight security because it relies
on admissible hash functions [14] to partition the tag space of the R-lossy PKE
scheme into two disjoint subspaces (which contain equivocable and extractable
tags, respectively). In order to obtain tight simulation-soundness, our second USS
argument partitions the tag space of an R-lossy PKE scheme using a pseudoran-
dom function instead of an admissible hash function. For this purpose, we build an
R-lossy PKE scheme for a relation Rpgrg induced by a PRF family. Analogously to
[55], we consider tags ¢ = (., ,) consisting of an auxiliary component ¢, (which
can be an arbitrary string) and core component t.. The PRF-induced relation
Rere is then defined as Rprp(K, (te, ta)) = 1 if and only if ¢, # PRF g (t,), where
K is the PRF secret key. Our Rpgre-lossy PKE then proceeds as in [67] and uses a
public key containing Gentry-Sahai-Waters encryptions [47] A; = A-R;+k;- G of
the bits of K. To encrypt g € {0,1}™ under a tag t = (., ts), the encryptor first
homomorphically computes Ap; = A-R; + (1 — Rpre(XK, t)) - G before sampling
a short Gaussian r € Z?™ and computing ¢ = [A | Ap] v+ [0 | - [g/2]]T.
In the proof of simulation-soundness, the reduction simulates all arguments by
“adaptively programming” all tags t = (PRF (¢,),ts) to ensure equivocability.
At the same time, the adversary can only output an argument on an extractable
tag t* = (t,tr), where Rprr(K,t*) = 1, unless it can predict t; = PRFg(¢}).

crra

1.3 Related Work

FIAT-SHAMIR IN THE STANDARD MODEL. The Fiat-Shamir methodology was
shown [49] not to be sound in the standard model in general. Known negative
results (see [49,12] and references therein) nevertheless left open the existence of
secure instantiations of the paradigm when specific protocols are transformed
using concrete hash functions. Of particular interest is the notion of correlation
intractable hash function [28], which rules out specific relations between an input
and its hash value. It was actually shown [52] that correlation intractability
for all sparse relations” suffices to ensure soundness as long as the underlying
protocol is statistically sound. A recent line of work [82,27,58,25] focused on the
design of correlation intractable hash functions leading to sound instantiation
of Fiat—Shamir in the standard model. Canetti et al. [26] showed that it is
actually sufficient to obtain correlation intractable hash families for efficiently
searchable relations (i.e., where each x has at most one corresponding y, which is
computable within some polynomial time bound). This opened the way to CI
hash candidates based on more established assumptions like the circular security
of fully homomorphic encryption (FHE) schemes [30]. Peikert and Shiehian [76)
recently gave an elegant FHE-based solution relying on the hardness of the
LWE problem [79] with polynomial approximation factors. While specific to
the Gentry-Sahai-Waters (GSW) FHE [47], their construction does not require
any non-standard circular security assumption. Together with the techniques of

7 A relation R C X x Y is sparse if, for a given & € X, the fraction of y € ) for which
(z,y) € R is negligible.



[30,26], it implies NIZK for all NP languages.

In [30,26], Canetti et al. showed that, besides the language of Hamiltonian
graphs considered in [42], trapdoor X-protocols also exist for other languages like
that of quadratic residues modulo a composite integer [48]. Using the CI hash
function of [76], they thus obtained a NIZK proof for the Quadratic Residuosity
language under the LWE assumption. Choudhuri et al. [32] showed that the hash
families of [26] make the transformation sound for the sumcheck protocol.

Murti-THEOREM NIZK. Several multi-theorem NIZK constructions are available
in the literature (see, e.g., [42,40,31,50]). Under the LWE assumption, all solutions
so far either rely on the FLS transformation [34,76] — thus incurring proofs of
OR statements via non-black-box techniques — or restrict themselves to the
designated verifier setting [34,68]. While the meta-proof approach of De Santis
and Yung [40] provides an alternative to FLS, it makes non-black-box use of a
single-theorem proof system for an NP-complete language. Our construction uses
a single-theorem argument for the same language as the one for which we need a
multi-theorem argument. Hence, if the former is efficient, so is the latter.

KDM SecurITY. This security notion was first formalized by Black, Rogaway
and Shrimpton [13] and motivated by applications in anonymous credentials [23]
or in disk encryption (e.g., in the BitLocker encryption utility [16]), where the key
may be stored on the disk being encrypted. The first examples of KDM-secure
secret-key encryption were given by Black et al. [13] in the random oracle model.

In the standard model, Boneh et al. [16] designed the first public-key scheme
with provable KDM-CPA security w.r.t. all affine functions under the decisional
Diffie-Hellman (DDH) assumption. Applebaum et al. [6] showed that a variant
of Regev’s system [79] is KDM-secure for all affine functions under the LWE
assumption. They also gave a secret-key construction based on the hardness of the
Learning Parity with Noise (LPN) problem for which Déttling gave a public-key
variant [41]. Under the Quadratic Residuosity (QR) and Decisional Composite
Residuosity (DCR) assumptions, Brakerski and Goldwasser [20] gave alternative
constructions that additionally provide security under key leakage. Alperin-Sheriff
and Peikert [4] showed that a variant of the identity-based encryption scheme
of Agrawal et al. [2] provides KDM security for a bounded number of challenge
ciphertexts.

Brakerski et al. [21] and Barak et al. [8] came up with different techniques to
prove KDM security for richer function families. Malkin et al. [73] suggested a
much more efficient scheme with ciphertexts of O(d) group elements for function
families containing degree d polynomials. Applebaum [5] put forth a generic
technique that turns any PKE scheme with KDM security for projection functions
—where each output bit only depends on a single input bit — into a scheme providing
KDM security for any circuit of a priori bounded polynomial size.

KDM-CCA SecurITY. The first PKE scheme with KDM-CCA2 security in
the standard model appeared in the work of Camenisch, Chandran, and Shoup
[24]. They gave a generic construction based on the Naor-Yung paradigm that
combines a KDM-CPA system, a standard CPA-secure encryption scheme, and
a simulation-sound NIZK proof system. For their purposes, they crucially need



unbounded simulation-soundness since the KDM setting inherently involves many
challenge ciphertexts and single-challenge security is not known to imply multi-
challenge security. They instantiated their construction using the DDH-based
KDM-CPA system of Boneh et al [16] and Groth-Sahai proofs [51]. Our scheme
is an instantiation of the generic construction of [24] in the lattice setting,
where we cannot simply use Groth-Sahai proofs. Hofheinz [56] subsequently
obtained chosen-ciphertext circular security (i.e., for selection functions where
f(SK1,...,SKy) = SK; for some ¢ € [N]) with shorter ciphertexts.

A first attempt of KDM-CCA security without pairings was made by Lu et
al. [69]. Han et al. [53] identified a bug in [69] and gave a patch using the same
methodology. They obtained KDM-CCA security for bounded-degree polynomial
functions under the DDH and DCR assumptions. Kitigawa and Tanaka [63]
described a framework for the design of KDM-CCA systems under a single number
theoretic assumption (i.e., DDH, QR, or DCR). Their results were extended by
Kitigawa et al. [62] so as to prove tight KDM-CCA2 security under the DCR
assumption. Since the framework of [63] relies on hash proof systems [37], it is
not known to provide LWE-based realizations (indeed, hash proof systems do
not readily enable chosen-ciphertext security from LWE), let alone with tight
security. To our knowledge, our scheme is thus the first explicit solution with tight
KDM-CCAZ2 security under the LWE assumption. Before [62], the only pathway
to tight KDM-CCA security was to instantiate the construction of Camenisch
et al. [24] using a tightly secure USS proof/argument (e.g., [57]), which tends
to incur very large ciphertexts. Our system also follows this approach with the
difference that ciphertexts are not much longer than in its non-tight variant.

Kitigawa and Matsuda [61] generically obtained KDM-CCA security for
bounded-size circuits from any system providing KDM-CPA security for projection
functions. While their result shows the equivalence between KDM-CPA and KDM-
CCA security, our scheme is conceptually simpler and significantly more efficient
than an LWE-based instantiation of the construction in [61]. In particular, such
an instantiation requires both garbling schemes and {2(\) designated-verifier
proofs of plaintext equalities with negligible soundness error. While these proofs
seem realizable by applying the techniques of [68] to specific X-protocols, each of
them would cost §2(A?) public-key encryptions. Our scheme is much simpler and
only requires one argument of plaintext equality, thus compressing ciphertexts
by a factor at least £2()\).

1.4 Organization

Section 2 first recalls the the building blocks of our constructions. Our first
simulation-sound argument is presented in Section 3 together with the underlying
R-lossy PKE scheme. Its tightly secure variant is described in Section 4. In Section
5, we give a trapdoor X-protocol allowing to apply the Naor-Yung transformation
to the ACPS cryptosystem. The resulting (tightly secure) KDM-CCA2 system
is then detailed in the full version of the paper [65]. As written, our security
proof only shows tightness in the number of challenge ciphertexts, but not in the



number of users. In the full version of the paper, we also explain how to also
obtain tightness w.r.t. the number of users.

2 Background

We recall the main tools involved in our constructions. Additional standard tools,
such as NIZK proofs, are defined in the full version of the paper.

2.1 Lattices

For any ¢ > 2, Z, denotes the ring of integers with addition and multiplication

modulo ¢. If x € R™ is a vector, [|x|| = /Y., #7 denotes its Euclidean norm
and ||x]|ec = max; |x;| its infinity norm. If M is a matrix over R, then |[|[M]|| :=

Mx Mx|| 0o . .
SUDy 20 HIIXHH and Mo = supy HHxHLlo denote its induced norms. For a

finite set S, U(S) stands for the uniform distribution over S. If X and Y are
distributions over the same domain, A(X,Y") denotes their statistical distance.

Let ¥ € R™ ™ be a symmetric positive-definite matrix, and ¢ € R™. We
define the Gaussian function on R” by ps (x) = exp(—7(x —¢) "2 71(x — ¢))
and if ¥ = ¢2 -1, and ¢ = 0 we denote it by po- For an n dimensional lattice

A C R™ and for any lattice vector x € A the discrete Gaussian is defined by
P=.c

pA,Z,c(X) = xo(A)

For an n-dimensional lattice A, we define n.(A) as the smallest » > 0 such
that py (//1\\ 0) < e with A denoting the dual of A, for any € 0,1).

For a matrix A € Z*™, we define A+(A) = {x € Z™ : A-x = 0 mod ¢}
and A(A) = AT - Z" + qZ™. For an arbitrary vector u € Z7!, we also define the
shifted lattice A"(A) ={x €Z™ : A -x =umod g}.

Definition 2.1 (LWE). Let m >n > 1, ¢ > 2 and « € (0,1) be functions of a
security parameter . The LWE problem consists in distinguishing between the
distributions (A, As +e) and U(Zg"*" x Zj"), where A ~ U(Zy**"™), s ~ U(Zy)
and e ~ Dgm oq4. For an algorithm A : Zy**" x Zg* — {0,1}, we define:

AdvYE () = [Pr[A(A,As +e) = 1] — PrlA(A,u) = 1| ,

q,m,n,x

where the probabilities are over A ~ U(Zy*"), s ~ U(Zy), u ~ U(Zy') and
e ~ Dym o4 and the internal randomness of A. We say that L\WE 1 n.« is hard
if, for any PPT algorithm A, the advantage Adv™"E (A) is negligible.

q,m,n,x

Micciancio and Peikert [74] described a trapdoor mechanism for LWE. Their
technique uses a “gadget” matrix G € Zy*", with w = nlog g, for which anyone
can publicly sample short vectors x € Z" such that G -x = 0.

Lemma 2.2 ([74, Section 5]). Assume that m > nlogqg + O(\) and m =
m + n[logq]. There exists a probabilistic polynomial time (PPT) algorithm
GenTrap that takes as inputs matrices A € Zf;xm, H € Zy*" and outputs
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matrices R € {—1,1}7*mMosdl gnd A = [A|AR+H G| € Zy*™ such that
if H € Zy*™ is invertible, then R is a G-trapdoor for A with tag H; and if
H =0, then R is a punctured trapdoor.

Further, in case of a G-trapdoor, one can efficiently compute from A, R
and H a basis (t;)i<m of AX(A) such that max; [[t;]] < O(m>/?).

Lemma 2.3 ([46, Theorem 4.1]). There is a PPT algorithm that, given a
basis B of an n-dimensional A = A(B), a parameter s > ||B|| - w(v/logn), and a
center ¢ € R", outputs a sample from a distribution statistically close to Dy s c.

2.2 Correlation Intractable Hash Functions

We consider unique-output searchable binary relations [26]. These are binary
relations such that, for every z, there is at most one y such that R(x,y) = 1 and
y is efficiently computable from z.

Definition 2.4. A relation R C X x ) is searchable in time T if there exists
a function f : X — Y which is computable in time T and such that, if there exists
y such that (z,y) € R, then f(x) =y.

Letting A € N denote a security parameter, a hash family with input
length n()\) and output length m()\) is a collection H = {hy : {0,1}*®*) x
{0,137 — {0,1}™M} of keyed hash functions implemented by efficient algo-
rithms (Gen, Hash), where Gen(1*) outputs a key k € {0,1}**) and Hash(k, )
computes a hash value hy(k,z) € {0,1}™),

Definition 2.5. For a relation ensemble {Ry C {0,1}*™) x {0,1}"MN} q hash
function family H = {hy : {0,1}°N x {0,1}"N — {0,1}NV} is R-correlation
intractable if, for any probabilistic polynomial time (PPT) adversary A, we
have Pr [k < Gen(1%)), @ < A(k) : (z, ha(k,z)) € R] = negl(\).

Peikert and Shiehian [76] described a correlation-intractable hash family for
any searchable relation (in the sense of Definition 2.4) defined by functions f of
bounded depth. Their construction relies on the standard Short Integer Solution
assumption (which is implied by LWE) with polynomial approximation factors.

2.3 Admissible Hash Functions

Admissible hash functions were introduced in [14] as a combinatorial tool for
partitioning-based security proofs. A simplified definition was given in [45].

Definition 2.6 ([14,45]). Let ¢(\),L(A) € N be functions of A € N. Let an
efficiently computable function AHF : {0,1}* — {0,1}£. For each K € {0,1, L},
let the partitioning function Fapu(K,-) : {0,1}* — {0,1} such that

1 otherwise

Fapn (K, X) ;:{

11



We say that AHF is an admissible hash function if there exists an effi-
cient algorithm AdmSmp(1*, Q,d) that takes as input Q € poly(\) and a non-
negligible 5(\) € (0,1] and outputs a key K € {0,1, L}X such that, for all
XMW X@ X* € {0,1} such that X* ¢ {XW) ..., X @} we have

Pr [FADH(K,XU)) — o= Fpaon(K, X@) =1 A Faou(K, X*) = o} > 3(Q(N) .

It is known that admissible hash functions exist for £, L = O()\).

Theorem 2.7 ([59, Theorem 1]). Let (Cy),cy be a family of codes Cy :
{0,1}* — {0,1}* with minimal distance c- L for some constant ¢ € (0,1/2). Then,
(Ce)yey is a family of admissible hash functions. Furthermore, AdmSmp(1*, Q, 6)
outputs a key K € {0,1, L}* for which n = O(log \) components are not 1 and
0(Q(N)) is a non-negligible function of .

Jager proved [59] Theorem 2.7 for balanced admissible hash functions, which
provide both a lower bound and a close upper bound for the probability in
Definition 2.6. Here, we only need the standard definition of admissible hash
functions since we use them in a game where the adversary aims at outputting
a hard-to-compute result (instead of breaking an indistinguishability property).
However, the result of Theorem 2.7 applies to standard admissible hash functions.

2.4 Trapdoor X-protocols

Canetti et al. [30] considered a definition of X-protocols that slightly differs from
the usual formulation [36,35].

Definition 2.8 (Adapted from [30,7]). Let a language £ = (L, Lsound) aS-
sociated with two NP relations Ry, Rsound- A 3-move interactive proof system
M = (Genpar, Geng, P, V) in the common reference string model is a Gap X-protocol
for L if it satisfies the following conditions:

— 3-Move Form: The prover and the verifier both take as input crs = (par,crsz),
with par < Genpar (11) and crsp < Geng(par, £), and a statement x and pro-
ceed as follows: (i) P takes in w € Ry (x), computes (a, st) < P(crs, z,w) and
sends a to the verifier; (ii) V sends back a random challenge Chall from the
challenge space C; (iii) P finally sends a response z = P(crs, x, w, a, Chall, st)
to V; (iv) On input of (a,Chall,z), V outputs 1 or 0.

— Completeness: If (z,w) € R, and P honestly computes (a,z) for a chal-
lenge Chall, V(crs, z, (a, Chall, z)) outputs 1 with probability 1 — negl(X).

— Special zero-knowledge: There is a PPT simulator ZKSim that, on input
of crs, x € L,k and a challenge Chall € C, outputs (a,z) < ZKSim(crs, z, Chall)
such that (a,Chall,z) is computationally indistinguishable from a real tran-
script with challenge Chall (for w € R, (x)).

— Special soundness: For any CRS crs = (par,crsg) obtained as par <+
Genpar (1), crsg < Geng(par, L), any © & Lsound, and any first message a
sent by P, there is at most one challenge Chall = f(crs,x,a) for which an
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accepting transcript (crs, z,a, Chall, z) exists for some third message z. The
function f is called the “bad challenge function” of 1. That is, if * & Lsound
and the challenge differs from the bad challenge, the verifier never accepts.

Definition 2.8 is taken from [30,7] and relaxes the standard special soundness
property in that extractability is not required. Instead, it considers a bad challenge
function f, which may not be efficiently computable. Canetti et al. [30] define
trapdoor X-protocols as X-protocols where the bad challenge function is efficiently
computable using a trapdoor. They also define instance-dependent trapdoor X-
protocol where the trapdoor 75 should be generated as a function of some
instance x € Lsound- Here, we use a definition where z need not be known in
advance (which is not possible in applications to chosen-ciphertext security, where
x is determined by a decryption query) and the trapdoor does not depend on a
specific . However, the common reference string and the trapdoor may depend
on the language (which is determined by the public key in our application).

The common reference string crs = (par, crs.) consists of a fixed part par and
a language-dependent part crs; which is generated as a function of par and a
language parameter £ = (L, Lsound)-

Definition 2.9 (Adapted from [30]). A X-protocol 1N = (Genyar, Geng, P, V)
with bad challenge function f for a trapdoor language L = (L, Lsound) S @
trapdoor Y-protocol if it satisfies the properties of Definition 2.8 and there
exist PPT algorithms (TrapGen, BadChallenge) with the following properties.

o Genpyr inputs A € N and outputs public parameters par «— Genpar(l’\).

e Geny is a randomized algorithm that, on input of public parameters par,
outputs the language-dependent part crsp < Geng(par, £) of crs = (par,crsz).

e TrapGen(par, L, 7.) takes as input public parameters par and a membership-
testing trapdoor 1o for the language Lsound- It outputs a common reference
string crsp and a trapdoor s € {0,1}, for some £, ().

e BadChallenge(7y,crs, z,a) takes in a trapdoor s, a CRS crs = (par,crsz),
an instance x, and a first prover message a. It outputs a challenge Chall.

In addition, the following properties are required.

e CRS indistinguishability: For any par < Genya (1), and any trapdoor
7r for the language L, an honestly generated crsp is computationally indis-
tinguishable from a CRS produced by TrapGen(par, L, 7z). Namely, for any
aux and any PPT distinguisher A, we have

AdvRU () := | Prlers, < Geng(par, £) : A(par, crsg) = 1]
— Pr(crsg, 7x) < TrapGen(par, £, 7¢) : A(par,crsz) = 1]| < negl(A).

e Correctness: There exists a language-specific trapdoor To such that, for any
instance & Lsound and all pairs (crsg, Tx) < TrapGen(par, £, 72), we have
BadChallenge(7s, crs, z,a) = f(crs,z,a) .

Note that the TrapGen algorithm does not take a specific statement x as input,
but only a trapdoor 7, allowing to recognize elements of Leound-
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2.5 "R-Lossy Public-Key Encryption With Efficient Opening

We generalize the notion of R-lossy public-key encryption introduced by Boyle et
al. [19]. As defined in [19], it is a tag-based encryption scheme [60] where the tag
space T is partitioned into a set of injective tags and a set of lossy tags. When
ciphertexts are generated for an injective tag, the decryption algorithm correctly
recovers the underlying plaintext. When messages are encrypted under lossy
tags, the ciphertext is statistically independent of the plaintext. In R-lossy PKE
schemes, the tag space is partitioned according to a binary relation R C IC x 7.
The key generation algorithm takes as input an initialization value K € K and
partitions 7 in such a way that injective tags t € T are exactly those for which
(K,t) € R (i.e., all tags t for which (K,t) € R are lossy).

From a security standpoint, the definitions of [19] require the initialization
value K to be computationally hidden by the public key. For our purposes, we
need to introduce additional requirements.

First, we require the existence of a lossy key generation algorithm LKeygen
which outputs public keys with respect to which all tags ¢ are lossy (in contrast
with injective keys where the only lossy tags are those for which (K,t) € R).
Second, we also ask that the secret key makes it possible to equivocate lossy
ciphertexts (a property called efficient opening by Bellare et al. [10]) using an
algorithm called Opener. Finally, we use two distinct opening algorithms Opener
and LOpener. The former operates over (lossy and injective) public keys for lossy
tags while the latter can equivocate ciphertexts encrypted under lossy keys for
any tag.

Definition 2.10. Let R C Ky x Ty be an efficiently computable binary relation.
An R-lossy PKE scheme with efficient opening is a T-uple of PPT algorithms
(Par-Gen, Keygen, LKeygen, Encrypt, Decrypt, Opener, LOpener) such that:

Parameter generation: On input a security parameter \, Par-Gen(1*) outputs
public parameters I.

Key generation: For an initialization value K € KCy and public parameters I,
algorithm Keygen(I', K) outputs an injective public key pk € PIK, a decryption
key sk € SK and a trapdoor key tk € TK. The public key specifies a ciphertext
space CtSp and a randomness space R-PKE.

Lossy Key generation: Given an initialization value K € Ky and public pa-
rameters I, the lossy key generation algorithm LKeygen (I, K) outputs a lossy
public key pk € PK, a lossy secret key sk € SK and a trapdoor key tk € TK.

Decryption under injective tags: For any initialization value K € IC, any
tagt € T such that (K,t) € R, and any message Msg € MsgSp, we have

Pr [Elr € R'PKE . Decrypt(skﬂf, Encrypt(pk, t, Msg; r)) # Msg} <v(A),

for some negligible function v(X), where (pk, sk,tk) < Keygen(I', K') and the
probability is taken over the randomness of Keygen.

Indistinguishability: Algorithms LKeygen and Keygen satisfy the following:
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(i) For any K € Ky, the distributions Di,; = {(pk,tk) | (pk,sk,tk) «+
Keygen(I, K)} and Dioss = {(pk, tk) | (pk, sk, tk) + LKeygen(I', K)} are
computationally indistinguishable. Namely, for any PPT adversary A, we
have AdvFSHPREL(X) < negl(\), where

AdVISEPREL () = | Pr[(pk, th) <> Dinj - A(pk, tk) = 1]
- Pr[(pkvtk) > Dioss A(pk,tk) = 1]‘ .

(i) For any distinct initialization values K,K' € Ky, the two distribu-
tions {pk | (pk,sk,tk) < LKeygen(I',K)} and {pk | (pk,sk,tk) «
LKeygen(I', K')} are statistically indistinguishable. We require them to
be 272N _close in terms of statistical distance.

Lossiness: For any initialization value K € Ky and tag t € Ty such that
(K,t) ¢ R, any (pk, sk,tk) < Keygen(I', K), and any Msg,, Msg, € MsgSp,
the following distributions are statistically close:

{C'| C + Encrypt(pk,t,Msg,)} =~s; {C|C «+ Encrypt(pk,t,Msg,)}.

For any (pk, sk,tk) < LKeygen(I', K), the above holds for any tag t (and not
only those for which (K,t) ¢ R).

Efficient opening under lossy tags: Let Dy denote the distribution, defined
over the randomness space RPKE  from which the random coins used by
Encrypt are sampled. For any message Msg € MsgSp and ciphertext C, let
Dprmsg.c.t denote the probability distribution on R'PXE with support

SprMsg,ct =T € R'PKE | Encrypt(pk,t,Msg,7) = C'} |
and such that, for each T € Spr msg,c,t, We have

Dprmsg,ct(T) = Pr [r' =7 | Encrypt(pk,t,Msg,r') = C] .
r'<>Dpgr
There exists a PPT algorithm Opener such that, for any K € Ky, any keys
(pk, sk, tk) < Keygen(I', K) and (pk, sk,tk) < LKeygen(I', K), any random
coins v <= Dpg, any tag t € Ty such that (K,t) € R, and any messages
Msg,, Msg, € MsgSp, takes as inputs pk, C = Encrypt(pk, t, Msg,,r), t, and
tk. It outputs a sample T from a distribution statistically close to Dpy msg,,C\t-

Efficient opening under lossy keys: There exists a PPT sampling algorithm
LOpener such that, for any K € Ky, any keys (pk, sk, tk) < LKeygen(I', K),
any random coins r < Dpgr, any tag t € Ty, and any distinct messages
Msg,, Msg, € MsgSp, takes as input C = Encrypt(pk, t, Msg,,7), t and sk. It
outputs a sample T from a distribution statistically close to Dpx msg,,C\t-

In Definition 2.10, some of the first four properties were defined in [19,
Definition 4.1]. The last two properties are a natural extension of the definition
of efficient opening introduced by Bellare et al. [10]. We note that property of
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decryption under injective tags does not assume that random coins are honestly
sampled, but only that they belong to some pre-defined set R-PKE.

For our applications to simulation-sound proofs, it would be sufficient to have
algorithms (Opener, LOpener) that have access to the initial messages Msg, and
the random coins rg of the ciphertext to be equivocated (as was the case in the
opening algorithms of [10]). In our LWE-based construction, however, the initial
messages and random coins are not needed.

3 Direct Construction of Unbounded Simulation-Sound
NIZK Arguments

We provide a method that directly compiles any trapdoor X-protocol into an
unbounded simulation-sound NIZK argument using an R-lossy encryption scheme
for the bit-matching relation Rgm and a correlation intractable hash function.

Definition 3.1. Let K = {0,1, L} and T = {0,1}*, for some ¢,L € poly()\)
such that £ < L. Let Fapn the partitioning function defined by AHF : {0,1}* —
{0,1} in Definition 2.6. The bit-matching relation Rgm : K x T — {0,1}
for AHF is the relation where Rem(K,t) =1 if and only if K = K ... Ky, and
t=ty ...t satisfy Fapn(K,t) =0 (namely, N-_,(K; =1) V (K; = AHF(t),)).

3.1 An Rgm-Lossy PKE Scheme from LWE

We describe an Rgp-lossy PKE scheme below. Our scheme builds on a variant
of the primal Regev cryptosystem [79] suggested in [46].

Let AHF : {0,1}* — {0,1}L an admissible hash function with key space
K = {0,1,L}* and let Rgm C K x {0,1}* the corresponding bit-matching
relation. We construct an Rgm-lossy PKE scheme in the following way.

Par-Gen(1*): Given a security parameter A € N, let ng = poly(\) the length of
messages. Choose a prime modulus ¢ = poly(\); dimensions n = ng + 2(\)
and m = 2n[logq] + O()\). Define the tag space as T = {0,1}* where
¢ = O()). Define the initialization value space K = {0,1, L} and Gaussian
parameters 0 = O(m)- L and a € (0, 1) such that maq-(L+1)-0v2m < q/4.
Define public parameters as I" = (¢, L, ng,q,n,m, o, o).

Keygen(I', K): On input of public parameters I" and an initialization value
K €{0,1, L}F, generate a key pair as follows.

1. Sample random matrices B < U(Zgnino)xm), S« U(Zgnino)xno) and
a small-norm E <= x"*™ to compute

— B nxm
AWJAT] S
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2. Parse K as K; ... Ky € {0,1, L} Letting G € Zy*™ denote the gadget
matrix, for each i € [L] and b € {0, 1}, compute matrices A;p € Zy*™ as

)

A-Riy+G if (K #L)A(b=1-K,)
Aip = {A R, it (K; =L)V (b= K,). (1)

where R, <> U({—1,1}™>™) for all ¢ € [L] and b € {0,1}.
Define RYPKE = {r € Z2™ | ||r|| < 0v/2m} and output sk = (K, S) as well as

pk = (A {A b} b e[r) <o, 1}) th = (K, {Rib}(i,p)e[L]x {0,1})-

LKeygen(I', K): This algorithm proceeds identically to Keygen except that steps
1 and 2 are modified in the following way.

1. Run (A, Ta) + GenTrap(1*,17,1™,q) so as to obtain a statistically
uniform matrix A ~ U(Z?*™) with a trapdoor for the lattice A-(A).
2. Define matrices {A; € Zy™™ } (i v)e[z]x{0,1} as in (1).

Define R'PKE as in Keygen and output
pk = (A {A4 b} 6.b)err)x o, 1}) sk="Ta, th=({Rip}uperx{0.1})

Encrypt(pk, t, Msg): To encrypt Msg € {0, 1} for the tag t = t;...t, € {0,1},
conduct the following steps.
1. Encode the tag t as t' = t}...t, = AHF(t) € {0,1}* and compute
Ap, = Zle A,y € Zy*™. Note that Ap; = A - Rpy +d; - G for some
Ry, € Z™*™ of norm |Rp| e < L and where d; € {0,...,L} is the
number of non-_L entries of K for which K; # t,.
2. Choose r <= Dzzm , and output L if r ¢ R'PXE Otherwise, output

On—’no
c=[A|Ar] T [

—+ Msg - [2/2] LCI/QJ] €Zy - (2)

Decrypt(sk,t,c): Given sk = (K,S) and the tag t € {0,1}¢, compute ¢ =
th...th = AHF(t) € {0,1}* and return L if Rgu(K,t') = 0. Otherwise,
compute w = [-ST | I,,)] - ¢ € Z}. For each i € [ng], do the following:

1. If neither w[i] nor |w[i] — [¢/2]| is close to 0, halt and return L.
2. Otherwise, set Msg[i] € {0,1} so as to minimize |w[i] — Msg[i] - [¢/2]].

Return Msg = Msg[1]. .. Msg[no].

Opener(pk, tk,t,c,Msg,): Given tk = (K,{R;}:3) and t € {0,1}*, compute
t' =4, ...t, = AHF(t) € {0,1}1 and return L if Rgm(K,t') = 1. Otherwise,

1. Compute the small-norm matrix R, = Z 1 Riy € Z™*™ such that
Apy—= ARy +d - G and Rl < L with d; € [L].

17



2. Use Rpt € Z™*™ as a trapdoor for the matrix
AF,t = [A | AF,t} = [A | A RF,t +d; - G} c Z;LXQm

to sample a Gaussian vector ¥ € Z?™ such that

A r |: On_no :|
-r=¢6— |V/—/—/—m/mm————
o Msg, - [q/2]

Namely, defining cusg, = ¢ — [(0""™)T | Msg] - |¢/2]]", sample and
output fake random coins r <~ D 15Mss1

3)

(AFp)o

LOpener(sk,t,c,Msg,): Given sk = T and t € {0, 1}, use Ta to derive a
trapdoor Ta ¢ for the lattice Ay (Af,;) and use Ta ¢ to sample a Gaussian
vector T < DA:Msg1 (Ao satisfying (3).

The above construction requires 2L = ©(A) matrices in the public key but allows
for a relatively small modulus ¢ = @(m°/?n'/2L?). A technique suggested by
Yamada [83] can be used to reduce the number of public matrices to O(log? \)
at the expense of a larger (but still polynomial) modulus. Since our application
to Naor-Yung requires a public key containing a large correlation-intractable
hashing key anyway, we chose to minimize the modulus size.

Theorem 3.2 states that the construction has the required properties under
the LWE assumption. The proof is given in the full version of the paper [65].

Theorem 3.2. The above construction is an Rem-lossy public-key encryption
scheme with efficient opening under the LWE assumption.

3.2 A Generic Construction from Trapdoor X-Protocols and
Rem-lossy PKE

We construct unbounded simulation-sound NIZK proofs by combining trapdoor
X-protocols and R-lossy public-key encryption schemes. Our proof system is
inspired by ideas from [72] and relies on the following ingredients:

- A trapdoor X-protocol " = (Gen;ar, Gen',, P’, V') with challenge space C, for
the same language £ = (L, Lsound) and which satisfies the properties of
Definition 2.9. In addition, BadChallenge(7s, crs, z, a) should be computable
within time T' € poly()) for any input (7, crs, z,a).

- A strongly unforgeable one-time signature scheme OTS = (G,S,V) with
verification keys of length ¢ € poly()).

- An admissible hash function AHF : {0,1}* — {0, 1}, for some L € poly(\)
with L > ¢, which induces the relation Rgy : {0,1, L}* x {0,1}¢ — {0, 1}.

- An R-lossy PKE scheme R-LPKE = (Par-Gen, Keygen, LKeygen, Encrypt,
Decrypt, Opener, LOpener) for the relation Rgwm : {0, 1, L}* x {0,1}* — {0,1}
with public (resp. secret) key space PKC (resp. SK). We assume that Decrypt
is computable within time 7". We denote the message (resp. ciphertext) space
by MsgSp (resp. CtSp) and the randomness space by RPKE. Let also D'I‘%PKE
denote the distribution from which the random coins of Encrypt are sampled.
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- A correlation intractable hash family H = (Gen, Hash) for the class R of
relations that are efficiently searchable within time 7.

We also assume that these ingredients are compatible in the sense that P’ outputs
a first prover message a that fits in the message space MsgSp of R-LPKE.

Our argument system [1"%° = (Genp,r, Geng, P, V) allows P and V to input a
label Ibl consisting of public data. While this label will be the empty string in
our KDM-CCA scheme of Section, it may be useful when several non-interactive
arguments have to be bound together. The construction goes as follows.

Genp,r(1*): Run par < Geny_ (1) and output par.

Gen, (par, £): Given public parameters par and a language £ C {0,1}", let
K =1{0,1, 1} and T = {0,1}*. The CRS is generated as follows.

1. Generate a CRS crs), < Gen';(par, £) for the trapdoor X-protocol 1.

2. Generate public parameters I +~ Par-Gen(1*) for the Rgu-lossy PKE
scheme where the relation Rgm : K x T — {0,1} is defined by an admissi-
ble hash function AHF : {0, 1}* — {0,1}*. Choose a random initialization
value K + K and generate lossy keys (pk, sk, tk) < LKeygen(I, K).

3. Generate a key k «— Gen(1*) for a correlation intractable hash function
with output length k = O(\).

Output the language-dependent crs. := (crs’ﬁ, k) and the simulation trapdoor
T = sk, which is the lossy secret key of R-LPKE. The global common
reference string consists of crs = (par, crsz, pk, AHF, OTS).

P(crs, z,w, Ibl) : To prove a statement z for a label Ibl € {0,1}* using w € Ry (z),
generate a one-time signature key pair (VK, SK) «- G(1*). Then,

1. Compute (a’ = (af,...,a}),st’) « P’(crs};, z, w) via r invocations of the
prover for M. Then, for each i € [k], compute a; < Encrypt(pk, VK, al; ;)
using random coins r; <> DYPKE TLeta = (aj,...,a.) andr = (r1,...,1,).

2. Compute Chall = Hash(k, (z,a,VK)) € {0,1}".

3. Compute z’ = (z,...,2]) = P'(crs,, z,w,a’, Chall, st’) via x executions
of the prover of I'. Define z = (z’,a’,r).

4. Generate sig < S(SK, (z,a, z,Ibl)) and output = = (VK, (a, z), sig).

V(crs, z,m,Ibl) : Given a statement x, a label Ibl as well as a purported proof
m = (VK, (a,z), sig), return 0 if V(VK, (z, a, z, Ibl), sig) = 0. Otherwise,

1. Write z as z = ((z},...,2),(al,...,a}), (r1,...,1.)) and return 0 if

' 9K 'R
it does not parse properly. Return 0 if there exists ¢ € [k] such that
a; # Encrypt(pk, VK, al;r;) or r; ¢ R-PKE,

2. Let Chall = Hash (k, (z,(a,...,a,), VK)). If V/(crs, x, (a}, Challi], z})) =
1 for each i € [k], return 1. Otherwise, return 0.

Our NIZK simulator uses a technique due to Damgard [38], which uses a

trapdoor commitment scheme to achieve a straight-line simulation of 3-move
zero-knowledge proofs in the common reference string model.
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Theorem 3.3. The above argument system is multi-theorem zero-knowledge
assuming that the trapdoor X -protocol M is special zero-knowledge.

Proof (Sketch). We describe a simulator (Simg, Sim) which uses the lossy secret
key 7, = sk of R-LPKE to simulate transcripts (a,Chall,z) without using
the witnesses. Namely, on input of par + Genpar(l’\), Simg generates crs; by
proceeding identically to Gen, while Sim; is described hereunder.

Sim; (crs, 7., @, Ibl): On input a statement x € {0,1}", a label Ibl and the
simulation trapdoor 7, = sk, algorithm Sim; proceeds as follows.

1. Generate a one-time signature key pair (VK,SK) < G(1*). Let 012l the
all-zeroes string of length |a’|. Sample random coins ro «=> DY KE from
the distribution DYKE and compute a < Encrypt(pk, VK, 0|a/‘;r0).

2. Compute Chall = Hash(k, (z,a, VK)).

3. Run the special ZK simulator (a’,z’) < ZKSim(crs/,, z, Chall) of I’ to
obtain a simulated transcript (a’, Chall,z’) of I’ for the challenge Chall.

4. Using the lossy secret key sk of R-LPKE, compute random coins r +
LOpener(sk, VK, a,a’) which explain a as an encryption of (z,a’) under
the tag VK. Then, define z = (z’,a’,r)

5. Compute sig + S(SK, (z,a, z,Ibl)) and output = = (VK7 (a,z), sig).

In the full version of the paper, we show that the simulation is statistically
indistinguishable from proofs generated by the real prover. a

If we just target multi-theorem NIZK without simulation-soundness, the con-
struction can be simplified as shown in the full version of the paper, where we
explain how it can provide statistical zero-knowledge in the common random
string (instead of the common reference string) model.

Going back to simulation-soundness, our proof builds on techniques used in
[38,72]. The interactive proof systems of [72] rely on commitment schemes where
the adversary cannot break the computational binding property of the commit-
ment for some tag after having seen equivocations of commitments for different
tags. Here, in order to use a correlation-intractable hash function, we need a
commitment scheme which is equivocable on some tags but (with noticeable
probability) becomes statistically binding on an adversarially-chosen tag. For
this purpose, we exploit the observation that an R-lossy PKE scheme can be
used as a commitment scheme with these properties. Namely, it can serve as a
trapdoor commitment to equivocate lossy encryptions of the first prover message
in M" while forcing the adversary to create a fake proof on a statistically binding
(and even extractable) commitment.

At a high level, the proof also bears similarities with [66] in that they also
use a commitment scheme that is statistically hiding in adversarial queries but
becomes statistically binding in the adversary’s output. The difference is that we
need to equivocate the statistically-hiding commitment in simulated proofs here.

Theorem 3.4. The above argument system provides unbounded simulation-
soundness if: (i) OTS is a strongly unforgeable one-time signature; (ii) R-LPKE
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is an Rem-lossy PKE scheme; (iii) The hash family H is somewhere correlation-
intractable for all relations that are searchable within time T, where T denotes
the mazimal running time of algorithms BadChallenge(-, -, -, ) and Decrypt(-,-,-).
(The proof is given in the full version of the paper.)

The work of Peikert and Shiehian [76] implies a correlation intractable hash
function for the relation Rp.g defined in the proof of Theorem 3.4. Their boot-
strapping theorem actually implies the existence of such a hash family under the
LWE assumption with polynomial approximation factors.

4 Tightly Secure Simulation-Sound Arguments

To achieve tight simulation-soundness, we describe an R-lossy PKE scheme for a
relation induced by a pseudorandom function family. In Definition 4.1, we assume
that the tag space T has a special structure. Namely, each tag t = (t.,t,) € T
consists of a core component ¢, € {0,1}* and an auxiliary component ¢, € {0, 1}*.

Definition 4.1. Let a pseudorandom function PRF : K x {0,1}* — {0,1}*
with key space K = {0,1}* and input space {0,1}¢. Let T = {0,1}* x {0,1}¢,
for some ¢ € poly(\). We define the PRF relation Rpre : K x T — {0,1} as
Rere(K, (teyta)) = 1 if and only if t. # PRF(K,t,).

We rely on the idea (previously used in [17,67]) of homomorphically evaluating
the circuit of a PRF using the GSW FHE [47]. As observed in [22], when the
circuit is in NC1, it is advantageous to convert it into a branching program using
Barrington’s theorem. This enables the use of a polynomial modulus g.

Lemma 4.2 (Adapted from [47,15]). Let C : {0,1}* — {0,1} be a NAND
Boolean circuit of depth d. Let A;, = A -R; +k; -G € ngm with A € ngm,
R; € {-1,1}™*™ and k; € {0,1}, for i < L. There exist deterministic algo-
rithms EvaIEL,')b and Evalgg with running time poly(4%, L,m,n,logq) that sat-
isfy: Evali (C,(A;);) = A - Evalgy (C, ((Ri, k:))i) + C(k1,...,kz) - G, and
|Evalgi (€, (R, ko)) < 49 O(m/2).

4.1 An Rpgre-Lossy PKE Scheme

We describe an R-lossy PKE scheme for the relation Rpgrg of Definition 4.1.

Let PRF : K x {0,1}* — {0,1}* with key space K = {0,1}* and input space
{0,1}* and let Rprr C K x T the corresponding relation. We construct an
Rprr-lossy PKE scheme in the following way.

Par-Gen(1%): Given a security parameter A € N, let ng = poly(A) the length of
messages. Choose a prime modulus ¢ = poly(\); dimensions n = ng + 2(X)
and m = 2n[log q] +O(\). Define the tag space as T = {0, 1}* x {0, 1}* where
¢ = O()). Define the initialization value space K = {0,1}* and Gaussian
parameters o = 4¢- O (mQ) and « € (0, 1) such that 49m3Paq- o < q. Define
public parameters as I = (¢, L, ng, g, n, m, u, o, o).
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Keygen(I', K): On input of public parameters I' and an initialization value
K € {0,1}*, generate a key pair as follows.

1. Sample random matrices B > U(Z\"~ no)Xm) S+ U(Z ("_"O)Xno) and
a small-norm E <= y™*™0 to Compute A=[B"|B'S+E|" ¢ Zy*™.

2. Parse K as ki...kyx € {0,1}*. For each i € [L], compute matrices
A, =A R;+k G, where R; <> U({—1,1}™*™), for all i € [A].

Define RYPKE = {r € Z2™ | ||r|| < 0v/2m} and output sk = (K, S) as well as

pki= (A {Adicy ), th = (K {Rikicp).

LKeygen(I', K): This algorithm proceeds identically to Keygen except that steps
1 and 2 are modified in the following way.

1. Run (A, Ta) + GenTrap(1*,1™,1™, q) to obtain a statistically uniform
A ~ U(Z3*™) with a trapdoor for A+(A).
2. Define matrices {A; € Zj "™ }ic(x as in Keygen.

Output pk := (A7 {Ai}iG[A]>7 sk = Ta, and tk = (K, {R;}icpn)-

Encrypt(pk, t, Msg): To encrypt a message Msg € {0,1}" for the structured tag
t = (te,ta) € T = {0,1}* x {0,1}*, conduct the following steps.
1. Let Cprr : {0,1}* — {0, 1} the circuit, where t = (¢.,t,) is hard-wired,
which inputs a A-bit key K = k;...ky € {0,1}* and outputs Cpr +(K)
such that Cpgrp t(K) =1 & t. = PRFK(ta) & RPRF(K, t) = 0.
Compute Ap; Evalp“b(CpRF, (Ay)i) € Z3*™ such that

A=A R+ CPRF,t(K) -G,

where R; = Eval’é',',V(CpRF b (R, ki)i) € Z™%™ st ||Ry|| < 4% - O(m3/?).
2. Choose r <= Dzzm , and output L if r ¢ R'PXE Otherwise, output

n—’nT n
c=[A|Ap]-r+[0"™ |Msg-|g/2]]" €Ly -

Decrypt(sk,t,c): Given the secret key sk = (K, S) and the tag t = (te,tq) € T,
compute Cprr,(K) € {0,1} and return L if Cpgrr(K) = 1. Otherwise,
Compute and return Msg = Msg|[1] ... Msg[ng] exactly as in Section 3.1.

Opener(pk,tk,t,c,Msg;): Given tk = (K,{R;};) and t = (t.,t,) € T, compute
Cprrt(K) € {0 1} and return L if Cpre¢(K) = 0. Otherwise,

1. Compute the matrix R; = Evalgli;v(CpRF’t, (R, k;)i) € Z™*™ such that
Ap;=A R, +G and [[R| < 4% O(m3/?).

2. Use R, € Z™*™ as a trapdoor for Ap = [A | Ap] =[A | A-R; + G]
to sample T € Z?™ such that Ap, - T = ¢ — [0"‘”0T | Msg, - [q/2]]7.
Namely, defining cusg, = ¢ — [(0"~™)T | Msg] - |¢/2]]T, sample and

output fake random coins r < DA:Msgl (Apo)o
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LOpener(sk,t,c,Msg,): Given sk =T and t = (t.,t,) € T, use Ta to derive
a trapdoor T a ; for the lattice A;-(AFJ) and use T4 ; to sample a Gaussian

— . J_ A .
vector T < DAZMSgl (Aps)o I the same coset of Aq (Ap:) as in Opener.

The proof of Theorem 4.3 is identical to that of Theorem 3.2 and omitted.

Theorem 4.3. The above construction is an Rprg-lossy public-key encryption
scheme with efficient opening under the LWE assumption.

4.2 Unbounded Simulation-Sound Argument

We construct a tightly secure USS argument from the following ingredients:

- A pseudorandom function family PRF : K x {0,1}* — {0,1}* with key
space K = {0,1}* and input space {0,1}* , which induces the relation
Rere : K x T — {0,1} of Definition 4.1.

- An Rpre-lossy PKE scheme R-LPKE = (Par-Gen, Keygen, LKeygen, Encrypt,
Decrypt, Opener, LOpener) for the relation Rpre : K x 7 — {0, 1} with public
(resp. secret) key space PKC (resp. SK). We assume that Decrypt is computable
within time 7. We denote the message (resp. ciphertext) space by MsgSp
(resp. CtSp) and the randomness space by R'PXE. Let also DLPKE denote the
distribution of the random coins of Encrypt.

- A trapdoor X-protocol ' = (Gen;ar,Gen/ﬁ,P’,V’), a one-time signature

scheme OTS = (G,S,V) and a correlation intractable hash family H =

(Gen, Hash) that satisfy the same conditions as in Section 3.2.

Our construction M"* = (Genpar, Geng, P, V) goes as follows.

!

Genp,r(1*): Run par < Geny, (1*) and output par.

Gen,(par, £): Given public parameters par and a language £ C {0,1}¥, let
K ={0,1}* and T = {0,1}*. The CRS is generated as follows.

1. Generate a CRS crs), < Gen';(par, £) for the trapdoor X-protocol I’

2. Generate public parameters I" +- Par-Gen(1*) for the Rprr-lossy PKE
scheme where the relation Rpre : K X T — {0,1} is defined by a PRF
family PRF : K x {0,1}* — {0,1}*. Generate lossy keys (pk, sk, tk) «
LKeygen(I',0*), where the initialization value is the all-zeroes string 0*.

3. Generate a key k < Gen(1*) for a correlation intractable hash function
with output length kK = O(X).

Output the language-dependent crs,; := (crs’ﬁ, k) and the simulation trapdoor
7.k := sk. The global CRS consists of crs = (par, crsz, pk, PRF,OTS).

P(crs, z,w, Ibl) : To prove x with respect to a label Ibl using w € Ry (z), generate
a one-time signature key pair (VK,SK) < G(1%). Then, choose a random
core tag component t. < U({0,1}*) and do the following.
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1. Compute (a’ = (af,...,al), st') <« P'(crs),, z,w) via k invocations of the
prover for . For each i € [k], compute a; < Encrypt(pk, (t., VK), a}; r;)

using random coins r; <> DPKE Teta = (ay,...,a,) andr = (r,...,1,).
2. Compute Chall = Hash(k, (z,a, t., VK)) € {0,1}".
3. Compute z’ = (z,...,2],) = P'(crs,, z,w,a’, Chall, st’) via x executions

of the prover of [". Define z = (z’,a’,r).
4. Generate a one-time signature sig « S(SK, (z,t.,a,z,1bl)) and output
the proof 7 = ((t, VK), (a,z), sig).
V(crs, z,m,Ibl) : Given a statement x, a label Ibl and a candidate proof w =
((tc,VK)7 (a,z), sig), return 0 if V(VK, (z, ., a, z, bl), sig) = 0. Otherwise,
1. Write z as z = ((Z'l7 ooz (@l al), (r, e rﬁ)). Return 0 if there
exists i € [x] such that a; # Encrypt(pk, (t., VK),al;r;) or r; ¢ R-PKE,
2. Let Chall = Hash(k, (z, (a1, ..., a), te, VK)). If there exists i € [] such
that V'(crs, z, (af, Chall[i], z})) = 0, return 0. Otherwise, return 1.

In the full version of the paper, we show that the unbounded simulation-
soundness of the above argument system is tightly related to the security of
its underlying building blocks, which are all instantiable (with tight security
reductions) from LWE.

5 Trapdoor Y-Protocols for ACPS Ciphertexts

The KDM-CPA system of Applebaum et al. [6] uses a modulus ¢ = p?, for
some prime p. Its public key (A,b) € Zy*™ x Z;* contains a random matrix
A ~ U(Zy*™) and a vector b = AT .s+e, for some s ~ Dzn ng, € ~ Dzm g
Its encryption algorithm proceeds analogously to the primal Regev cryptosystem
[79] and computes ¢ = (¢,¢) = (A -r,b'r+p-p+ x) € Z7H!, where r ~ Dgm .
is a Gaussian vector and x ~ Dz, is sampled from a Gaussian with a slightly
larger standard deviation. Decryption proceeds by rounding ¢ —s' - ¢ mod ¢ to
the nearest multiple of p.

In this section, we describe a trapdoor X-protocol allowing to prove that two
ACPS ciphertexts cg = (€g, cp), ¢1 = (€1, ¢1) are both encryptions of the same
i € Zy. This protocol is obtained by extending a simpler protocol (described in
the full version of the paper), which argues that a given vector ¢ € ZZH is an
ACPS encryption of some plaintext p € Z,,.

We note that Ciampi et al. [33] recently gave a construction of trapdoor
JY-protocol from any X-protocol. The Y-protocol described hereunder is natively
trapdoor without applying the transformation of [33].

PROVING PLAINTEXT EQUALITIES IN ACPS CIPHERTEXTS. Let ¢ = p?, for
some prime p, and a matrix A which is used to set up two Regev public keys
(A,bg) € Zy*™ x Zy* and (A, by) € Zy*™ x Zg*, where by = AT sy +epand
b1 = AT -s; + e for some sg,s; ~ Dzr oq, €0,€1 ~ Dzm o4. Let also the matrix

A
T
Auy = by | 1 . GZ(QI(n+1)X2(m+1)’ (4)

b] | 1
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We give a trapdoor X-protocol for the language £ = (L}, L2} 1), where

sound
Ejg = {(CO,C1) S (Zg""l)2 | Iro,r1 €Z™, X0,X1 €Ly pEZy -
[rs|l < By, [xol < By Vbe{0,1}

_ B T

A ey =Ap-[r] [ xa]" +p-[0"" | p] modgq },

ﬁsegund = {(C(),Cl) S (Z;H_l)z ‘ 3 Cg,C1 € ZZ, Vo, V1 € [—B*7B*], e Zp
A c [ c ] Vbe{01}}
b — _ ) )
I_SJ ~cb+p~u+vbJ
where
A, = [bA : ] € Z{tHx(m+h) vb € {0,1}.
b

We note that £} C £ when Br.agy/m + By, < B* < p. Also, L3 | is

sound

equivalently defined as the language of pairs (co, c1) such that such that

-
= ST 1 P 1
] e e = [ e

for some p € Z,,, vo,v1 € [-B*, B*].

Gen,, (1) : On input of a security parameter A € N, choose moduli ¢, p with
g = p?, dimensions n, m, and error rate o > 0 and a Gaussian parameter Ocq 2>
log(2m+2)-,/ B2 + B2. Define public parameters par = {\, ¢, p, n,m, @, 0eq }-

Geng (par, £°9) : Takes in global parameters par and the description of a lan-
guage L9 = (L3}, L ) specifying real numbers B*, B,, B, > 0 such that
Bragym + By < B* < p, and a matrix A, from the distribution (4). It
defines the language-dependent crs; = {A, B*, B, B, }. The global CRS is

Crs = ({)‘a q,p,n,m,c, ch}a {Acqa B*a B,, BX}) .

TrapGen(par, £, 72) : Given par and a language description £°¢ that specifies
B*, B, B, > 0 satisfying the same constraints as in Gen., a matrix Acq
sampled from the distribution (4), as well as a membership-testing trap-
door 7z = (S0,81) ~ (Dzn,aq)? for LI . output crsp = {A,B*,BT,BX}.
The global CRS is crs = ({)\,q,p,n,m,a,aeq}, {Aeq,B*,Br,BX}) and the
trapdoor 75 = (sg,81) € Z™ x Z".

P(crs, (co,c1), (1, W)) 4> V(crs,x) : Given crs and a statement

c n n n
H = At x0T )T e [00T [p ] 0nT | )T € Z20m),

the prover P (who has w = [rg | xo | r{ | x1]" € Z2(™+V) and p € Z,,) and
the verifier V' interact as follows.
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1. The prover P samples a uniform scalar r,, <= U(Z,) and Gaussian vector
ry <= Dz2min) 5, - It computes the following which is sent to V:

a=Aqq Ty+7,- [0"T |p| o’ | p]T € Zi("ﬂ).
2. V sends a random challenge Chall € {0, 15} to P.
3. P computes z = r,, + Chall - w ¢ Z2(m+1) zy =1, + Chall - mod p. It
DZQ(m+1)’Ueq(z)
. 1),
M DZZ(erl),acq,Chan.w(z)
where M = 12/ 108(2(m+1))+1/(210g* 2(m+1)))  With probability 1 — 6, P
aborts.
4. Given (z,2,) € Z*m*V x 7Z,,, V checks if ||z|| < 0eqy/2(m + 1) and

sends (z,z,) to V with probability § = min (

a—&—Chall-m:Aeq~z—|—zu-[0”T|p|0"T|p]Tmodq. (5)
1

If these conditions do not both hold, V halts and returns L.
BadChaIIenge(par,Tg,crs7 (co, cl),a) : Given 75 = (sp,81) € Z™ X Z™, parse the

first prover message as a = (ag | a; )" € Z2" TV If there exists d € {0,1}
such that no pair (1)}, va) € [-(p—1)/2, (p—1)/2] x [-B*/2, B*/2]? satisfies

gl 1
[ S0 _Sz—l}~(a+d~c)modqu+u&-[ﬂ (6)

over Z, then return Chall = 1 — d. Otherwise, return Chall =1.

The completeness of the protocol crucially uses the fact that p divides ¢ to
ensure that the response z, = r, + Chall - 1 mod p satisfies (5).

The intuition of BadChallenge is that, for a false statement (co,c1) & Lo 4,
there exists d € {0,1} such that no pair (p;, vq) satisfies (6) for a small enough
vy € Z2. Moreover, for this challenge Chall = d, no valid response can exist, as
shown in the proof of Lemma 5.1. We note that BadChallenge may output a bit
even when there is no bad challenge at all for a given a. These “false positives”
are not a problem since, in order to soundly instantiate Fiat-Shamir, we only
need the somewhere CI hash function to avoid the bad challenge when it exists.

Lemma 5.1. The above construction is a trapdoor X -protocol for LY if we set

Oeq > log(2m +2) - /B2 + B and
B* > max(20eqV2m + 2 - (agy/m + 1), Bragy/m + By).

(The proof is given in the full version of the paper.)

PARALLEL REPETITIONS. To achieve negligible soundness error, the protocol
is repeated k = ©(A) times in parallel by first computing (ay,...,a,) before
obtaining Chall = Chall[1].. . Chall[x] and computing the response z = (z1, . .., zy),
(24,15 Zu,k). We then handle z as an integer vector in 75 (m+1) and reject it
with probability 0 = min (1, DZ2N-(m+1),O.eq (Z)/M : DZQ"'(erl),oeq,ChaII~(1"’®w) (Z)),
where M = 12/ 1og(2r-(m+1))+1/(210g*(2x-(m+1)))_ Then, we need to slightly increase

Oeq and set 0oq > log(2k(m + 1)) - /k(B? + B2).
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