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Abstract. Pattern matching is one of the most fundamental and impor-
tant paradigms in several application domains such as digital forensics,
cyber threat intelligence, or genomic and medical data analysis. While
it is a straightforward operation when performed on plaintext data, it
becomes a challenging task when the privacy of both the analyzed data
and the analysis patterns must be preserved. In this paper, we propose
new provably correct, secure, and relatively efficient (compared to similar
existing schemes) public and private key based constructions that allow
arbitrary pattern matching over encrypted data while protecting both
the data to be analyzed and the patterns to be matched. That is, except
the pattern provider (resp. the data owner), all other involved parties
in the proposed constructions will learn nothing about the patterns to
be searched (resp. the data to be inspected). Compared to existing solu-
tions, the constructions we propose has some interesting properties: (1)
the size of the ciphertext is linear to the size of plaintext and indepen-
dent of the sizes and the number of the analysis patterns; (2) the sizes
of the issued trapdoors are constant on the size of the data to be ana-
lyzed; and (3) the search complexity is linear on the size of the data to
be inspected and is constant on the sizes of the analysis patterns. The
conducted evaluations show that our constructions drastically improve
the performance of the most efficient state of the art solution.
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1 Introduction

In several application domains such as deep-packet inspection and genomic data
analysis, learning the presence of specific patterns as well as their positions in
the data are essential. In the previous two use cases, pattern searches are often
performed by entities that are not fully trusted by data owners. For instance, in
the case of deep-packet inspection (DPI), a company that aims to outsource its
network traces to a third party forensic scientist to find indictors of compromise
might not be comfortable revealing the full contents of its traces to the forensic
scientist. Similarly, in the case of genomic data analysis, a patient that wants
to check whether its genome contains particular patterns representing a genetic



predisposition to specific diseases might not be comfortable revealing the full
contents of its genome to the laboratory that performs the analysis.

Existing solutions that may be used to overcome the previous problem rely
mainly on searchable encryption based techniques [1–6]. Unfortunately, these
techniques suffer from at least one of the following limitations. First, the lack
of support for pattern-matching with evolving patterns, such as virus signatures
which are updated frequently (case of symmetric searchable encryption [2–4]);
second, the lack of support for variable pattern lengths (e.g., tokenization-based
techniques such as BlindBox [5]); third, the incompleteness of pattern detection
methods which yield false negatives (case of BlindIDS [6]); and fourth, the disclo-
sure of detection patterns (case of searchable encryption with shiftable trapdoors
[1]). We provide a full comparison with related literature in Section 2.

In this paper, we propose two technically sound constructions: S4E sup-
porting pattern matching of adaptively chosen and variable (upper bounded)
lengths patterns on secret key encrypted streams, and AS3E supporting pattern
matching of adaptively chosen and variable (upper bounded) lengths patterns
on public key encrypted streams. Both S4E and AS3E ensure that (1) both the
data owner and the third-party entity performing pattern matching operations
will learn nothing about the searched patterns except their lengths, (2) both
the pattern provider and the third-party entity that is going to perform pattern
matching will learn nothing about the data to be analyzed except the presence
or the absence of the set of unknown patterns (i.e., the third-party entity will
not have access to patterns plaintexts), (3) the third-party entity will be able to
perform pattern matching correctly over the data to be analyzed. From a prac-
tical point of view, our construction has some interesting properties. First, the
size of the ciphertext depends only on the size of the plaintext (it is independent
of the sizes and the number of analysis patterns). Second, the size of the issued
trapdoors is independent of the size of the data to be analyzed. Third, the search
complexity depends only on the size of the data to be analyzed and is constant
on the size of the analysis patterns. The two constructions we propose in this
paper are – to our knowledge – the first constructions to provide all previously
mentioned properties without using costly and complex cryptographic scheme
such as fully homomorphic encryption. The conducted evaluations show that
the two proposed constructions improve by up to four orders of magnitude the
performance of the most efficient state of the art solution SEST [1].

The paper is organized as follows. Section 2 reviews related work and details
the main contributions of our work. Section 3 presents the assumptions under
which our schemes achieve provable security. The intuition behind the proposed
constructions is presented in Section 4. Section 5 and 6 formalize our S4E and
AS3E primitives and provide their security results. In Sections 7 and 8, we discuss
the complexity of our constructions and provide experimental results. Finally,
section 9 concludes.
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2 Related Work

One possible solution for pattern matching over encrypted traffic is to use
techniques that allow evaluation of functions over encrypted data. Generic ap-
proaches such as fully homomorphic encryption (FHE) [7, 9] and functional en-
cryption (FE) [8] are currently impractical due to their very high complexities.

Several searchable encryption (SE) techniques have been proposed for key-
word searching over encrypted data [2–4]. The main idea is to associate a trap-
door with each keyword to allow searching for these keywords within a given
encrypted data. Ideally, an entity which does not have access to the plaintext
and encryption key should learn nothing about the plaintext except the pres-
ence or the absence of the keyword. For most existing SE techniques, searches
are performed on keywords that have been pre-chosen by the entity encrypting
the data. Such approaches are more suitable for specific types of searches, such
as database searches in which records are already indexed by keywords, or in the
case of emails filtering in which flags such as ”urgent” are used. Unfortunately,
SE techniques become useless when the set of keywords cannot be known be-
fore encryption. This is usually the case for messaging application and Internet
browsing traffic where keywords can include expressions that are not sequences
of words per se (e.g., /chamjavanv.inf?aapf/login.jsp?=). The two constructions
we propose in this paper offer better search flexibility as, even after the plaintext
has been encrypted, they can allow arbitrarily chosen keywords to be searched
without re-encryption.

To overcome the previous limitations, tokenization-based approaches have
been proposed. In [5], the authors propose BlindBox, an approach that splits
the data to be encrypted into fragments of the same size l and encrypts each of
those fragments using a searchable encryption scheme where each fragment will
represent a keyword. Nevertheless, this solution suffers from two limitations: (1)
it is useful only if all the searchable keywords have the same length l. Obviously
the previous condition is seldom satisfied in real-world applications that requires
pattern matching (e.g., DPI). If we want to use this approach with keyword of
different lengths L, we should for each li ∈ L, split the data to be encrypted into
fragments of size li and encrypt them, which quickly becomes bulky. (2) The
proposed approach may easily cause false negatives since, even if the keyword
is of size l (the size of each fragment), it cannot be detected if it straddles
two fragments. Recently, in [6], Canard et al. proposed BlindIDS – a public
key variant of the BlindBox approach [5] that additionally ensures keywords
indistinguishability. That is, the entity that is going to search over the encrypted
data will lean nothing about the keywords. Unfortunately, BlindIDS suffers from
the same limitations as BlindBox. The two constructions we propose in this paper
address the main drawbacks of these tokenization-based techniques since they
allow for arbitrary trapdoors to be matched against the encrypted data, without
false negatives or false positives.

Several approaches [10–12] proposed solutions for substring search over en-
crypted data based on secure multi-party computation. Unfortunately, to offer
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pattern matching operation, these solutions require often several interactions
between the searcher and the data encrypter.

As pointed out in [1], anonymous predicate encryption (e.g., [13]) or hidden
vector encryption [14] may provide a convenient solution for pattern matching
over encrypted data. However, in order to search a pattern p of length l on a
data of length n, the searcher should obtain n − l keys to be able to check the
presence of p on every possible offset of the data, which is clearly a problem
when dealing with large datasets.

One of the most interesting techniques for pattern matching over encrypted
traffic is the searchable encryption with shiftable trapdoor (SEST) [1]. The pro-
posed construction relies on public-key encryption and bilinear pairings to over-
come most of the limitations of previously mentioned techniques. It allows for
patterns of arbitrary lengths to be matched against the encrypted data, with-
out false negatives or false positives. This improvement comes at the cost of the
practicability of the technique. In fact, the proposed schema requires a public
key of size linear to the size of the data to be encrypted (a public key of ' 8000
GB is required for encrypting 1GB of data). Moreover, the trapdoor generation
technique used by the SEST leaks many information (such as, the number of
different characters, the maximum number of occurrences of a character) about
the patterns to be searched. Furthermore, the number of pairings needed for
testing the presence of a keyword in an offset of the data depends on the max-
imum number of occurrences of the characters contained in the keyword. This
makes the proposed technique quite inefficient when used for bit level matching.
By contrast, for testing the presence of a pattern in encrypted data, our con-
structions require a constant number of pairings in the size of the pattern (see
Section 7 for more details). This makes our constructions more efficient when
matching long keywords at bit level.

As we have seen, many different approaches can be used to address pattern
matching over encrypted data. To give better understanding of the benefits of the
two approaches we propose in this paper compared to existing ones, we provide
in Table 1 a comparative overview of their asymptotic complexities, and their
ability to ensure the security properties we are aiming to provide. Note that
we only consider BlindBox (a symmetric searchable encryption-based solution),
BlindIDS (an asymmetric searchable encryption-based solution), Predicate En-
cryption/Hidden Vector Encryption and the SEST approach. Other approaches,
as explained before, require data re-encryption each time a new keyword is con-
sidered [2–4], induce higher complexity [7–9], require interactivity [10–12] or
ensure weaker privacy level [4].

According to the Table 1, the two constructions we propose in this paper
(S4E and AS3E) are the only primitives that simultaneously enable arbitrary
trapdoors (with upper bounded keyword size), provides a correct keyword de-
tection, and ensures the privacy of the used trapdoors.

In Table 1, (3) is used to denote that a property is provided under specific
conditions. AS3E ensures trapdoor’s privacy for patterns of high-min entropy
(see Section 6 for more details). In addition, both S4E and AS3E support pattern
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Primitives

BlindBox BlindIDS PE/HVE SEST S4E AS3E

Number of Trapdoors O(s · q) O(q) O(n · q) O(q) O(q) O(q)

Public Parameters size O(1) O(1) O(1) O(1) O(li) O(1)

Encryption keys size O(1) O(1) O(n) O(n) O(li) O(li)

Ciphertext size O(n · L) O(n · L) O(n) O(n) O(n) O(n)

Number of trapdoors O(q) O(q) O(n · q) O(q) O(q) O(q)

Search complexity
q · log(q) q q · n 2×

∏q
1 li · n 2 · q · n 2 · q · n

comparisons pairings pairings pairings pairings pairings

Arbitrary trapdoors 7 7 3 3 (3) (3)

Trapdoor’s privacy 7 (3) 7 7 3 (3)

Correctness
7 7 3 3 3 3

(no false positives)

Table 1: Complexity and ensured security properties comparison between related
work and our primitive. The scalars n, q, li, L, s denotes respectively the length
of the traffic to encrypt, the number of pattern to be searched, the length of each
pattern, the number of different lengths among the q patterns to be searched
and the number of data encrypters. We used (3) to denote that the property is
provided under specific conditions.

matching of arbitrary but upper bounded lengths patterns. As we show in Section
7, we stress that in both S4E and AS3E, increasing the upper bound size of
patterns affects only the size of the trapdoor generated for each pattern. The
size of later increases linearly with the increase of the size of the former.

The two constructions we propose do not require very large public parame-
ters, secret key or very large public keys as SEST and PE/HVE. Moreover, their
search complexities is lower than SEST by a factor of li (the length of the pat-
tern wi to be searched), since they are constant in the size of the pattern to be
searched. Therefore, the proposed constructions are an interesting middle way
which provides the best of PE/HVE and SEST while ensuring patterns’ privacy.
Their only limitation compared to PE/HVE and SEST is the upper bounded
size of patterns to be searched that should be fixed before the data encryption,
which we believe to be a reasonable price to pay to achieve all the other features.

3 Security Assumption

In this section, we describe the security assumptions under which our two con-
structions S4E and AS3E achieve provable security.

Definition 1 (Bilinear Maps). Let G1,G2,GT be three finite cyclic groups
of large prime order p. We assume that there is an asymmetric bilinear map
e : G1 ×G2 → GT such that, for all a, b ∈ Zp the following conditions hold:

5



– For all g ∈ G1, g̃ ∈ G2, e(ga, g̃b) = e(g, g̃)a·b

– For all g ∈ G1, g̃ ∈ G2, e(ga, g̃b) = 1 iff a = 0 or b = 0
– e(·, ·) is efficiently computable

As in [1], the security of the proposed constructions hold as long as G1 6=
G2 and no efficiently computable homomorphism exists between G1 and G2 in
either directions. In the sequel, the tuple (G1,G2,GT , p, e(·, ·)) is refereed to as
a bilinear environment.

Some of the security proofs of the proposed constructions, given in the full
version of this paper [22], rely partially on showing that given a number of pat-
tern trapdoors, the adversary will be unable to distinguish a new valid trapdoor
from a random element. Thus, the leakage can be bounded only by considering
the adversary’s query to the issuing oracle. Hence, either we considerably reduce
the maximum length of the patterns to be searched (≤ 30), which allow to define
a GDH instance providing all public parameters, the trapdoors for all possible
patterns, and the challenge elements. Or we use an interactive variant of the
GDH assumption to offer flexibility to the simulator by allowing the elements

gR
(i)(x1,··· ,xc), g̃S

(i)(x1,··· ,xc), and e(g, g̃)T
(i)(x1,··· ,xc) of the GDH assumption [19]

to be queried to specific oracles.
So, we prove the security of the proposed constructions under an interactive

assumption. That is, we use a slightly modified General Diffie-Hellman (GDH)
problem assumption [19] to allow the adversary to request the set of values on
which the reduction will break the GDH assumption. This interactive aspect of
the GDH instance we are considering reduces slightly the security of the con-
struction we are proposing. However, this interactive assumption makes possible
the definition of quite efficient constructions with interesting properties. First,
the size of the ciphertext depends only on the size of the plaintext (it is in-
dependent of the sizes and the number of the analysis patterns). Second, the
size of the issued trapdoors is independent of the size of the data to be searched.
Third, the search complexity depends only on the size of the data and is constant
on the sizes of the patterns to be matched. Attaining all previously mentioned
properties while protecting both the data to be analyzed and the patterns to
be matched and being able to handle arbitrary analysis pattern query is not
obvious and may justify the use of such an interactive assumption.

Definition 2 (independence [19]). Let p be some large prime, r, s, t, c, and
k be five positive integers and R ∈ Fp[X1, · · · , Xc]

r, S ∈ Fp[X1, · · · , Xc]
s, and

T ∈ Fp[X1, · · · , Xc]
t be three tuples of multivariate polynomials over Fp. Let

R(i) , S(i) and T (i) denote respectively the i-th polynomial contained in R, S,
and T . For any polynomial f ∈ Fp[X1, · · · , Xc], we say that f is dependent on

< R,S, T > if there exist constants {ϑ(a)j }sj=1, {ϑ(b)i,j }
i=r,j=s
i=1,j=1, {ϑ(c)k }tk=1 such that

f · (
∑
j

ϑ
(a)
j · S

(j)) =
∑
i,j

ϑ
(b)
i,j ·R

(i) · S(j) +
∑
k

ϑ
(c)
k T (k)

We say that f is independent of < R,S, T > if f is not dependent on < R,S, T >.
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Definition 3 (i-GDH assumption). Let p be some large prime, r, s, t, c,
and k be five positive integers and R ∈ Fp[X1, · · · , Xc]

r, S ∈ Fp[X1, · · · , Xc]
s,

and T ∈ Fp[X1, · · · , Xc]
t be three tuples of multivariate polynomials over Fp.

Let Or, (resp. Os and Ot) be oracle that, on input {{a(k)i1,··· ,ic}
dk
ij=0}k, adds the

polynomials {
∑
i1,·,ic a

(k)
i1,·,ic

∏
j X

ij
j }k to R (resp. S and T ).

Let (x1, · · · , xc) be secret vector and qr (resp. qs) (resp. qt) be the number of
queries to Or (resp. Os) (resp. Ot). The i-GDH assumption states that, given

{gR(i)(x1,··· ,xc)}r+k·qri=1 , {g̃S(i)(x1,··· ,xc)}s+k·qsi=1 , and {e(g, g̃)T
(i)(x1,··· ,xc)}t+k·qti=1 , it is

hard to decide whether (i) U = gf(x1,··· ,xc) or U is random and (ii) U ′ =
g̃f(x1,··· ,xc) or U ′ is random if f is independent of < R,S, T >.

As argued in [1], the hardness of the i-GDH problem depends on the same
argument as the GDH problem which has already been proven in the generic
group model [19]. That is, as long as the challenge polynomial that we denote f
is independent of < R,S, T >, an adversary cannot distinguish gf(x1,··· ,xc) (resp.
g̃f(x1,··· ,xc)) from a random element of G1 (resp. G2). The definition method of
the content of the sets R,S, and T (by assumption or by the queries to oracles)
does not fundamentally change the proof.

4 The Intuition

The intuition behind the proposed constructions relies on two observations. First,
the number of analysis patterns is often very small compared to the quantity of
data that are going to be analyzed, e.g., in a deep packet inspection scenario, the
number of patterns provided by the SNORT intrusion detection system is 3734
[20]. Second, the sizes of the detection patterns are also very small compared
to the size of the traces to be analyzed (e.g., the largest pattern size used by
SNORT is 364 Bytes).

For a data with alphabet Σ, the proposed constructions associate each el-
ement σ of Σ with a secret encoding (α′σ, ασ). They fragment the sequence of
symbols that represents the data B as described in the Figure 1 in which Φ repre-
sents the number of symbols (i.e., the size) of each fragment and pmax represents
the largest number of symbols in a pattern. To allow the matching of patterns
at any possible offset of the data to be searched, in the proposed constructions,
we require that Φ ≥ 2 ·(pmax−1). In the rest of the paper, we will use {xi}i=bi=a to
denote the set of elements xi, i ∈ [a, b] and |B| to denote the number of symbol
(i.e., the size) that compose |B|.

As illustrated by the Figure 1, the sequence of symbols B is fragmented into
2× η− 1 fragments {Fi, F j}i=η−1,j=η−2i=0,j=0 where η = |B|/Φ (for simplicity we will
suppose that |B| is a multiple of Φ). Each Fi, i ∈ [0, η− 1], contains the symbols
at indexes [i · Φ, (i+ 1) · Φ− 1], while F i, i ∈ [0, η − 2], contains the symbols at
indexes [(i+ 1) · Φ− pmax − 1, (i+ 1) · Φ+ pmax − 1] of B.

Given an i ∈ [0, |B| − 1], in the rest of this paper, we will denote by iF the
index of i inside the fragment F where F ∈ {F0, · · · , Fη−1, F 0, · · · , F η−2}. If
i /∈ F , iF is not defined. Formally, assuming that F = [a, b]:
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Φ − 1 2Φ-10

Φ-pmax-2 Φ+pmax-1 2Φ-pmax-2 2Φ+pmax-1

(η-1)Φ -1 η · Φ-1

(η-1)Φ + pmax − 1

F0

F 0

F1

F 1

Fη−1

F η−2

Fig. 1: Fragmentation approach

iF =

{
i mod a if i ∈ F
not defined otherwise

A trapdoor for a pattern w = σw,0 · · ·σw,l−1 will be associated with a set of

polynomials {Vi = vi
∑l−1
k=0 α

′
σw,k
· αk+iσw,k

· zk}i=Φ−li=0 where vi is a random secret
scalar used to prevent new trapdoor forgeries and z a random scalar belonging
to the secret key Ks. The trapdoor generated for w consists then in the elements
{g̃Vi , g̃vi}i=Φ−li=0 . Each of the previous elements will be used to check the presence
of w at a specific index of the previously constructed fragments.

Meanwhile, the encryption of each symbol σi is the tuple Ci = {Ci, C ′i, Ci, C ′i}
that depends on the fragment in which the index i of σi in B belongs. If it be-
longs to Fε (resp. F ε) then Ci and C ′i (resp. Ci and C ′i) contain the encryption
of σi regarding the index iFε of i in Fε (resp. the index iF ε of i in F ε).

Then, if we want to test the presence of w at the index i, if i belongs to Fε
(resp. F ε), then we compare the bilinear mapping results of the elements CiFε ,

g̃viFε (resp. CiFε , g̃
vi
Fε ) and C ′iFε , g̃

ViFε (resp. C ′iFε , g̃
Vi
Fε ). If w is not present,

then the bilinear mapping results will be random-looking elements of GT which
will be useless to the adversary for learning any information about the plaintext
and/or the content of the tested pattern.

5 S4E Construction

In this section, we propose S4E, a construction that supports pattern matching
of adaptively chosen and variable (upper bounded) lengths patterns on secret
key encrypted streams. Before formalizing S4E, we present a use-case scenario
on which S4E can be useful.

5.1 Usage Scenario

To cope with new and sophisticated cybercrime threats, new threat intelligence
platforms such as [18] are relying on the collaboration between different involved
entities that include, on one side, companies, organizations, and individuals that
are targeted by cyber attacks, and on the other, security editors that are in
charge of defining and providing strategies for effectively detect and prevent
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cyber attacks. To be useful, such platforms should, on one hand, be fueled by
data owners, i.e., companies, organizations, and individuals that agree to share
the traces (e.g., network and operating system traces) of the cyber attacks that
they have suffered. On the other hand, the platform should allow the security
editors to analyze (e.g., search specific patterns) and correlate the traces that are
shared by the data owners. The considered threat intelligence platform is often
managed by non-fully trusted third-party service provider (SP) which provides
the required storage space and computation power with affordable cost.

Unfortunately, both data owners (i.e., attack traces owners) and security edi-
tors are still very reluctant for adopting such kind of threat intelligence platforms
because of two main reasons. First, the traces to be shared contain often highly
sensitive information that may raise serious security and/or business threats
when disclosed to non-fully trusted third parties (e.g, SP). Second, the shared
traces analysis rely mainly on techniques that use pattern matching for inspect-
ing and detecting malicious behaviors. Those analysis patterns are the result of
extensive threat intelligence conducted by security editors. They are often put
forward as a key competitive differentiator arguing that they can cover a wider
set of malicious behaviors. Thus, security editors are typically reluctant to share
their analysis patterns with non-fully trusted third-parties.

The S4E construction can be used to overcome the previous two limitations
by building a platform that is (1) market compliant meaning that both the data
owner and the third-party entity performing the pattern matching operations
will learn nothing about the patterns to be used by security editors for analyzing
the shared traces (as proved by Theorem 4), and (2) privacy-friendly, signifying
that (2.1) the third-party entity performing pattern matching will learn nothing
about the shared data except the presence or the absence of a set of unknown
analysis patterns, and (2.2) the pattern provider will learn no more than the
indexes on which the searched pattern exists (as proved by Theorem 2).

5.2 Architecture

The architecture considered for the S4E construction involves three parties: the
data owner (DO) representing the entity that holds the data to be analyzed (e.g.,
the network traces in the case of DPI), the pattern provider (PP) representing the
entity that supplies the patterns that will be matched, and the service provider
(SP) are stakeholders that offer computation infrastructures that will be used
to perform the pattern matching operations on the data to be analyzed. To test
the presence of a pattern on DO’s data, PP starts by generating collaboratively
with DO a trapdoor for the pattern to be matched. Then, PP sends the gener-
ated trapdoor to SP who performs the matching operation and notifies the PP
with the results (i.e., the presence of the patterns as well as their corresponding
positions in the DO’s data).
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5.3 Security Requirements and Hypothesis

PP, DO, and SP are considered in S4E as Honest-but-curious entities. First,
we expect PP to provide valid patterns allowing an effective analysis of DO’s
shared data. This a fairly reasonable assumption since a pattern provider (e.g.,
a security editor in the case of DPI or a laboratory in the case of genomic
data analysis) will not defile its reputation by issuing incorrect or misleading
analysis patterns. Otherwise, this will result in many false positives, which may
considerably degrade the quality of the analyses that will be provided to the DO.
Nevertheless, we expect the PP to be curious: it may try to derive information
about the analyzed data by accessing the data analyzed by the SP and/or the
pattern matching results returned by the SP.

Second, we suppose that SP will perform the pattern matching operations
honestly over the DO’s data using the analysis patterns provided by PP. How-
ever, we suppose that SP may try to learn additional information about either
or both the DO’s outsourced data and the analysis patterns provided by PP.
In addition, we assume that the SP that may try to create values by analyzing
other third-parties data using the set of patterns provided by PP for the analysis
of DO’s outsourced data.

Third, we suppose DO to follow honestly the S4E protocol. However, we
expect that he/she may try to learn additional information about the patterns
provided by PP for analyze his/her data.

In addition, we suppose that (i) SP and PP will not collude to learn more
information about the traffic, and (ii) SP and DO will not collude to learn more
information about the patterns to be searched. We believe that these two last
assumptions are fairly reasonable since, in a free market environment, an open
dishonest behavior will result in considerable damages for involved entities.

Finally, we require S4E to provide correct results. That is, (1) any part of
DO’s data that matches one of PP’s patterns when not encrypted must be
matched by S4E (no false negatives), and (2) we require that for any traffic
that does not match any of the PP’s analysis patterns when not encrypted, the
probability that S4E returns a false positive is negligible.

5.4 Definition of S4E

S4E is defined using five algorithms that we denote Setup, Keygen, Encrypt,
Issue, and Test. The first three algorithms are performed by DO, the Issue
algorithm is performed collaboratively by DO and PP, and the Test algorithm
is performed by SP.

– Setup(1λ, Φ, pmax) is a probabilistic algorithm that takes an input a security
parameter λ, the fragmentation size to be used Φ, and the maximum size of
a pattern pmax. It returns the public parameters params.

– Keygen(params,Σ) is a probabilistic key generation algorithm that takes
as input the public parameters params and a finite set Σ representing the
alphabet to be used for representing the data to be searched and the pattern

10



to be matched. It outputs a secret key Ks and a trapdoor generation key Kt.
The latter will be sent to PP using a secure channel.

– Encrypt(params,Ks,B) is a probabilistic algorithm that takes as input the
public parameters params, the secret key Ks, and a finite sequence (string)
of elements B of Σ of size n. It returns a ciphertext C.

– Issue(params,Ks,Kt, w) is a probabilistic algorithm executed interactively
between PP and DO. It takes as input the public parameters params, the
secret keyKs, the trapdoor generation keyKt, and w – a sequence of elements
of Σ of length smaller or equal to pmax, and returns a trapdoor tdw.

– Test(params, C, tdw) is a deterministic algorithm that takes as input the
public parameters params, a ciphertext C encrypting a sequence of m ele-
ments B = σ0 · · ·σm−1 of Σ, and the trapdoor tdw for the sequence of Σ’s
elements of length l, w = σw,0 · · ·σw,l−1. This algorithm is executed inter-
actively between PP and SP. The former provides the trapdoor tdw and the
latter executes the algorithm and returns the set of indexes I ⊂ {0,m−l−1}
where for each i ∈ I, σi · · ·σi+l−1 = σw,0 · · ·σw,l−1 to PP.

We note that the sizes of the elements defined in the previous algorithms,
i.e., the size of the data to be analyzed B, the size of the pattern to be searched
w, and the largest analysis pattern size pmax refer to the number of symbols of
Σ that compose each element. In addition, we note that S4E does not consider a
decryption algorithm since there is no need for decrypting the outsourced data.
However, we stress that a decryption feature can be straightforwardly performed
by issuing a trapdoor for all characters σ ∈ Σ and running the Test algorithm
on the encrypted data for each of them.

5.5 S4E’s Security Requirements

As said in Section 5.3, there are mainly 4 security requirements that should
be satisfied by our construction: Trace indistinguishability for both PP and SP,
pattern indistinguishability for both DO and SP, trapdoor usefulness (i.e., the
trapdoors are useful only to search DO’s data), and the correctness property.

In the following, we use the game-based security definition proposed in [1] for
trace indistinguishability by adapting the standard notion of IND-CPA which
requires that no adversary A (e.g., PP or SP), even with an access to an oracle
Os that issues a trapdoor tdpi for any adaptively chosen pattern pi, can decide
whether an encrypted trace contains T0 or T1 as long as the trapdoors {tdpi}
issued by Os do not allow trivial distinction of the traces T0 and T1. We note
that we consider the quite standard selective security notion [16]. This notion
requires the adversary to choose and commit T0 and T1 at the beginning of the
experiment, before seeing params.

Definition 4 (Data indistinguishability). Let λ be the security parameter,
Σ be the alphabet to be used, A be the adversary and C be the challenger. We
consider the following game that we denote ExpS

4E D IND CPA
A,β :
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(1) Setup: C executes Setup(1λ, Φ, pmax) to generate params and the algorithm
Keygen(params,Σ) to generate the keys Ks and Kt. Then it sends params
to the adversary.

(2) Query: A can adaptively ask Os for the trapdoor tdwi for any pattern wi =
σi,0 · · ·σi,li−1 where σi,j ∈ Σ. We denote W the set of patterns submitted by
A to Os in this phase.

(3) Challenge: Once A decides that Phase (2) is over, it chooses two data
streams T0 = σ∗0,0 · · ·σ∗0,m−1 and T1 = σ∗1,0 · · ·σ∗1,m−1 and sends them to
C.
(a) If ∃w = σ0 · · ·σli ∈ W, k ∈ {0, 1}, and j such that:

σ∗k,j · · ·σ∗k,j+li = σ0 · · ·σli 6= σ∗1−k,j · · ·σ∗1−k,j+li then return 0.

(b) C chooses a random β ∈ {0, 1}, creates C = Encrypt(param,Ks, Tβ),
and sends it to A.

(4) Guess. A outputs the guess β′.
(5) Return (β = β′).

We define A’s advantage by AdvExp
S4E D IND CPA
A,β (λ) = |Pr[β = β′]− 1/2|. S4E

is said to be data indistinguishable if AdvExp
S4E D IND CPA
A,β (λ) is negligible.

We note that in the previous definition, the restriction used in phase (3)(a)
ensures that if one of the data streams Tk contains a pattern wi ∈ W in the
position j, then this is also the case for T1−k. If such a restriction is not used,
A will trivially win the game by running Test(params, C, tdwi).

We want to be able to evaluate the advantage of the SP for using the issued
trapdoors to analyze other third-parties’ data (i.e., data that are not provided
and encrypted by DO). Since encrypted data and trapdoors should be created
using the same secret key Ks (the trapdoor generation key Kt is created using
Ks), such an advantage is equivalent to the ability of the SP to forge valid DO’s
encrypted data.

Definition 5 (Encrypted Data Forgery). Let λ be a security parameter,
Σ be the alphabet to be used, A be the adversary, C be the challenger, Os be
an oracle that issues a trapdoor for any adaptively chosen pattern, and Or be
an oracle that encrypts any adaptively chosen data. We consider the following
ExpS

4E EDF
A game:

(1) Setup: C executes Setup(1λ, Φ, pmax) to generate params and the algorithm
Keygen(params,Σ) to generate the keys Ks and Kt. Then it sends params
to the adversary.

(2) Query:
– A can ask Os for issuing the trapdoor tdwi for any adaptively chosen pat-

tern wi = σi,1 · · ·σi,li where σi,j ∈ Σ. We denote W the set of patterns
submitted by A to Os in this phase.

– A can adaptively ask Or to create CT = Encrypt(params,Ks, T ). We
denote T the set of datasets encrypted by the Or.

12



(3) Forgery: The adversary chooses the dataset T ∗ /∈ T such that T ∗ contains
w (w ∈ W) at index i and forges the encrypted dataset CT

∗
of T ∗ .

We define A’s advantage of winning the game ExpS
4E EDF
A by AdvExp

S4E EDF
A (λ) =

Pr[i ∈ Test(params,CT∗ , tdw)]. S4E is said to be encrypted data forgery secure

if AdvExp
S4E EDF
A (λ) is negligible.

The following definition formalizes the patterns indistinguishability property
for SP. That is, we evaluate the advantage of the SP to decide whether a trapdoor
encrypts the pattern w∗0 or w∗1 even with an access to an oracle Os that issues a
trapdoor for any adaptively chosen pattern.

Definition 6 (Pattern Indistinguishability to SP). Let λ be the security
parameter, Σ be the alphabet to be used, A be the adversary and C the challenger.
We consider the following game that we denote ExpS

4E P IND CPA
ASP ,β :

(1) Setup: C executes Setup(1λ, Φ, pmax) to generate params and the algorithm
Keygen(params,Σ) to generate the keys Ks and Kt. Then it sends params
to the adversary.

(2) Observation: A may observe the ciphertext CTi of a set of (unknown) traces
Ti ∈ T .

(3) Query: A can adaptively ask Os for the trapdoor tdwi for any pattern wi =
σi,1 · · ·σi,li where σi,j ∈ Σ. We denote by W the set of patterns submitted
by A to Os in this phase.

(4) Challenge: Once A decides that Phase (2) is over, it chooses two patterns
w∗0 = σ∗0,0 · · ·σ∗0,l and w∗1 = σ∗1,0 · · ·σ∗1,l such that w∗0 , w

∗
1 /∈ W and sends

them to C. If ∃T ∈ T such that w∗0 ∈ T or w∗1 ∈ T then return 0. Otherwise,
C chooses a random β ∈ {0, 1}, creates tdw∗β , and sends it to A.

(5) Guess:
– A may try to forge the ciphertext of chosen date and uses the Test algo-

rithm to try to find out the chosen value of β.
– A outputs the guess β′.

(6) Return (β = β′).

We define the advantage of the adversary A for winning ExpS
4E P IND CPA
ASP ,β

by AdvExp
S4E P IND CPA
ASP ,β (λ) = |Pr[β′ = β] − 1/2|. S4E is said to be pattern

indistinguishable to SP if AdvExp
S4E P IND CPA
ASP ,β (λ) is negligible.

In addition, we aim to evaluate the advantage of DO for deciding whether
a trapdoor encrypts the patterns w∗0 or w∗1 even with an access to an oracle
Os that plays the role of PP and perform the issue algorithm for any adaptively
chosen pattern. The following definition formalizes the pattern indistinguishably
property for DO.

Definition 7 (Pattern Indistinguishability to DO). Let λ be the security
parameter, Σ be the alphabet to be used, A be the adversary and C the challenger.
We consider the following game that we denote ExpS

4E P IND CPA
ADO,β :

13



(1) Setup: C executes Setup(1λ, Φ, pmax) to generate params and the algorithm
Keygen(params,Σ) to generate the keys Ks and Kt. Then it sends params
to the adversary.

(2) Query: A can ask Os to play the role of PP in the issue algorithm for any
adaptively chosen pattern wi = σi,1 · · ·σi,li where σi,j ∈ Σ. We denote by
W the set of patterns chosen by A in this phase.

(3) Challenge: Once A decides that Phase (2) is over, it chooses two patterns
w∗0 = σ∗0,0 · · ·σ∗0,l and w∗1 = σ∗1,0 · · ·σ∗1,l such that w∗0 , w

∗
1 /∈ W and sends

them to C. The latter chooses a random β ∈ {0, 1}, and plays the role of PP
in the issue algorithm to generate a trapdoor for w∗β.

(4) Guess: A outputs the guess β′.
(5) Return (β = β′).

We define the advantage of the adversary A for winning ExpS
4E P IND CPA
ADO,β

by AdvExp
S4E P IND CPA
ADO,β (λ) = |Pr[β′ = β] − 1/2|. S4E is said to be pattern

indistinguishable to DO if AdvExp
S4E P IND CPA
ADO,β (λ) is negligible.

We say that S4E provides pattern indistinguishability if it is pattern indis-
tinguishable to both DO and SP.

Definition 8 (S4E Correctness). Let B = σ0, · · ·σm−1 and w = σw,0, · · ·σw,l−1
be respectively the data to be analyzed and the pattern to be matched. S4E is cor-
rect iff the following conditions hold:

(i) Pr[i ∈ Test(params,Encrypt(params,B,Ks), Issue(params,Ks,Kt, w))] =
1 if B contains p at index i.

(ii) Pr[i ∈ Test(params,Encrypt(params,B,Ks), Issue(params,Ks,Kt, w))]
is negligible if B does not contain w at index i.

Condition (i) of the previous definition ensures that the Test algorithm used
by S4E produces no false negatives. Condition (ii) ensures that false positives
(i.e., the case in which Test algorithm returns i notwithstanding the fact that
σi · · ·σi+l−1 6= σw,0 · · ·σw,l−1) only occur with negligible probability.

5.6 A trivial Protocol

A trivial attempt for defining a construction that ensures all of the security re-
quirements we defined in Section 5.3 would consist of modifying the most efficient
state of the art solution SEST [1] towards a secret key based-construction as de-
scribed in the following algorithms. The Setup, Keygen, and Encrypt algorithms
are to be performed by the DO. The Issue algorithm will be performed collabo-
ratively by the DO and the PP, while the Test algorithm will be performed by
the SP.

– Setup(1λ, n): Let (G1,G2,GT , p, e(·, ·)) be a bilinear environment. This al-

gorithm selects g
$←− G1, g̃

$←− G2 and returns params← (G1,G2,GT , p, e(·, ·),
g, g̃, n).

14



– Keygen(params,Σ): On input of the alphabet Σ, this algorithm selects

z
$←− Zp and {ασ

$←− Zp}σ∈Σ , computes and adds {gzi}i=n−1i=0 to params
(required for proving the trace indistinguishability property). It returns the
secret key Ks = {z, {ασ}σ∈Σ}.

– Encrypt(params,B,Ks): To encrypt B = σ1 · · ·σn, this algorithm chooses

a
$←− Zp and returns C = {Ci, C ′i}

n−1
i=0 where Ci = ga·z

i

and C ′i = ga·ασi ·z
i

.
– Issue(params,w,Ks) issues a trapdoor tdw for a pattern w = σw,0, · · · , σw,l−1

of length l ≤ n as described in Algorithm 1. We denote by L the array that
will be used to store random scalars that will be used to encode each sym-
bol of the pattern w, and by I the array of sets representing the indices of
symbols in w that are encoded using the same random scalar. Actually, a
random scalar can be re-used as long as it has not been used to encode the
same symbol. That is, L[i] is the random scalar to use with the (imperatively
distinct) symbols at indices Ii of w.

Input: Ks, params,w = σw,0, · · ·σw,l−1
Output: tdw
tdw = ∅, V = 0, c = 0
L[i] = 0 for all i ∈ [0, l − 1]
Ind[σ] = 0 for all σ ∈ Σ
foreach i ∈ [0, l − 1] do

if L[Ind[σw,i]] = 0 then

L[c]
$←− Zp, Ic = {i}, c = c+ 1

else
IInd[σw,i] = IInd[σw,i] ∪ {i}

end
V = V + zi · ασw,i · L[Ind[σw,i]]
Ind[σw,i] = Ind[σw,i] + 1

end

tdw = {c, {Ij}j=c−1j=0 , {g̃L[j]}j=c−1j=0 , g̃V }
Algorithm 1: Issue

– Test(params, C, tdw) checks whether the encrypted data C contains w by
parsing tdw as {c, {Ij}j=c−1j=0 , {g̃L[j]}j=c−1j=0 , g̃V } and C as {Ci, C ′i}

n−1
i=0 , and

checking for all j ∈ [0, n− l] if the following equation holds:

c−1∏
t=0

e(
∏
i∈It

C ′j+i, g̃
L[t]) = e(Cj , g̃

V )

We can prove the correctness, the data indistinguishability, and encrypted
data unforgeability properties by following the same strategies as in [22] (Sections
A.1, A.2, and A.3). Unfortunately, this construction inherits the three main
limitations of the SEST construction. First, the size of the public parameters
params is linear to the size of the data to be analyzed (which may be very large).
Second, the pattern indistinguishability requirement cannot be satisfied since the
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Issue algorithm (Algorithm 1) leaks many information (such as, the number of
different symbols and the maximum number of occurrences of a symbol) about
the pattern to be matched. Third, searching the presence of a pattern w is linear
to the maximum number of occurrences of each symbol in w, which makes this
construction impractical for matching small alphabet based patterns (e.g., bit,
or hexadecimal patterns).

5.7 The S4E’s Protocol

– Setup(1λ, Φ, pmax): Let (G1,G2,GT , p, e(·, ·)) be a bilinear environment.

This algorithm selects g
$←− G1, g̃

$←− G2, chooses Φ such that Φ ≥ 2·(pmax−1),
and returns params← (G1,G2,GT , p, e(·, ·), g, g̃, pmax, Φ).

– Keygen(params,Σ): On input of the alphabet Σ, this algorithm selects

z
$←− Zp, {α′σ

$←− Zp, ασ
$←− Zp}σ∈Σ , r

$←− Zp, and computes and adds

{gzi}i=Φ−1i=0 to params. It returns the secret key Ks = {r, z, {α′σ, ασ}σ∈Σ}
and the trapdoor generation key Kt = {g̃r·α′σ·αiσ·zj}i=Φ−1,j=pmax−1i=0,j=0,σ∈Σ which
will be sent to PP using a secure channel.

– Encrypt(params,B,Ks): it starts by fragmenting B = σ0, · · ·σm−1 into
{Fi, F j}i=η−1,j=η−2i=0,j=0 where Fi = [i ·Φ, (i+ 1) ·Φ− 1] and F j = [(j + 1) ·Φ−
pmax − 2, (j + 1) · Φ + pmax − 1]. It chooses ak

$←− Zp for each k ∈ [0, η − 1]

and ak
$←− Zp for each k ∈ [0, η − 2] and returns C = {Ci, Ci, C ′i, C ′i}

m−1
i=0 as

described in the following algorithm.

Input: params,B = σ0, · · ·σm−1, Ks,
{Fi, ai, F j , aj}i=η−1,j=η−2i=0,j=0

Output: C = {Ci, Ci, C ′i, C ′i}
m−1
i=0

C ← ∅
foreach i ∈ [0,m− 1] do

ε← i/Φ #find the fragment Fε to which i belongs

Ci ← gaε·α
′
σi
·(ασi ·z)

iFε
, C ′i ← gaε·z

iFε

if ε > 0 and i ∈ F ε−1 then

Ci ← gaε−1·α′σi ·(ασi ·z)
i
Fε−1

, C ′i ← gaε−1·z
i
Fε−1

else if ε < η − 1 and i ∈ F ε then

Ci ← gaε·α
′
σi
·(ασi ·z)

i
Fε

, C ′i ← gaε·z
i
Fε

else
Ci ← Null, C ′i ← Null

end

C ← C ∪ {Ci, C ′i, Ci, C ′i}
end

Algorithm 2: Encrypt

– Issue(params,Ks,Kt, w) issues a trapdoor tdw for the sequence of symbols
w = σw,0, · · · , σw,l−1 of length l < pmax as described in the following:
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• PP generates {vi
$←− Zp}i=Φ−l−1i=0 , uses Kt to compute

l−1∏
j=0

g̃
r·α′σw,j ·α

i+j
σw,j
·zj

vi
Φ−l−1

i=0

=

g̃vi·r
l−1∑
j=0

α′σw,j
·αi+jσw,j

·zj

Φ−l−1

i=0

and sends it to DO.
• DO computes

g̃vi·r l−1∑
j=0

α′σw,j
·αi+jσw,j

·zj
−r


Φ−l−1

i=0

=

g̃vi
l−1∑
j=0

α′σw,j
·αi+jσw,j

·zj

Φ−l−1

i=0

and sends it to PP.

• PP computes tdw = {g̃Vi , g̃vi}Φ−l−1i=0 with Vi = vi
l−1∑
j=0

α′σw,j · α
i+j
σw,j · z

j

– Test(params,C, tdw) tests whether the encrypted data C contains w using
the following algorithm. It returns the set I of indexes i in which w exists
in C.

Input: C = {Ci, Ci, C ′i, C ′i}
m−1
i=0 , tdw = {Vi, vi}i=Φ−l−1i=0

Output: I
I ← ∅
foreach i ∈ [0,m− 1] do

ε← i/Φ #find the fragment Fε to which i belongs
if i ∈ Fε ∩ F ε then

if e(
∏l−1
j=0 Ci+j , g̃

vi
Fε ) = e(C ′i, g̃

Vi
Fε ) then

I ← I ∪ i
end

else

if e(
∏l−1
j=0 Ci+j , g̃

viFε ) = e(C ′i, g̃
ViFε ) then

I ← I ∪ i
end

end

end

Algorithm 3: Test

We note here that the size of the ciphertext produced by the Encrypt al-
gorithm does not depend on the set of patterns to be used but depends only
on the size of data to be encrypted. In addition, our Issue and Test algorithms
allow to search an arbitrary (upper bounded size) and unforgeable (without the
knowledge of the secret key Ks) patterns. The sizes of those trapdoors do not
depend on the size of the data to be encrypted but only on the size of the data
fragment (around the double of the maximum size of a pattern). Finally, we
underline that the elements {g̃vi}Φ−l−1i=0 of a trapdoor tdw will not be accessible
to the DO, since the trapdoor is to be used only between PP and SP in the Test
algorithm to match the pattern w on the encrypted data.
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5.8 S4E’s Security Results

In this section, we prove that the S4E construction described in Section 5.7
provides the security requirements we described in Section 5.3. The proofs of
the following theorems are provided in the full version [22].

Theorem 1. S4E is correct.

Theorem 2. S4E is trace indistinguishable under the i-GDH assumption.

Theorem 3. S4E is encrypted data forgery secure under the i-GDH assumption.

Theorem 4. S4E is pattern indistinguishable under the i-GDH assumption.

6 AS3E Construction

The S4E construction, introduced in Section 5, allows for pattern matching on
symmetrically encrypted data. In this section we show that the data fragmen-
tation approach we propose in Section 4 can also be used to build AS3E: a pat-
tern matching of upper bounded length keywords on asymmetrically encrypted
stream. In particular, we show in Section 7 that considering the same system
and threat model as the most efficient state of the art solution SEST [1], AS3E
is far more practical than SEST as it reduces (1) considerably the size of public
keys and (2) slightly the search complexity while increasing the size of ciphertext
only by a factor of 2.

6.1 Architecture

AS3E involves four roles: Pattern Provider (PP), Service Provider (SP), a sender,
and a receiver. PP and SP are the same two entities we used in the S4E construc-
tion. That is, PP is the entity that supplies the patterns that will be searched,
and the Service Provider SP are stakeholders that offer computation infrastruc-
tures that will be used to perform pattern matching operations on the data to
be analyzed. The role sender is used to represent the entities that are going to
generate the data that is going to be analyzed (e.g., a website that provides web
contents). The role receiver represents the entities that will receive and process
the traffic sent by the sender. The receiver and the sender roles are interchange-
able. That is, within the same secure network connection session, each end-point
may play both the sender and the receiver roles. In this context, we suppose
that the receiver want to analyze the data (e.g., to detect malicious contents)
to be sent by the sender before using it. In AS3E, we require that the sender
and the receiver will not collaborate together, otherwise, they could use a secure
channel that is out of reach for the SP. This scenario should not be considered as
a limitation of AS3E since, in such scenario pattern matching cannot be provided
by SP even in the context of a plaintext traffic.
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6.2 Security Requirements and Hypothesis

We consider the same hypothesis for the two entities PP and SP as in our
S4E construction. That is, PP and SP are considered to be honest-but-curious
entities. Specifically, PP is supposed to provide valid patterns that allow SP to
effectively analyze the data generated by the sender while SP is supposed to
perform correctly the matching between the patterns provided by PP and the
sender ’s data. Nevertheless, we expect PP and SP to be curious as the former
may try to learn information about the sender’s data and the latter may try
to get additional information about both the patterns provided by PP and the
sender’s data.

Moreover, we expect the receiver to be honest-but-curious. That is, he/she
will correctly follow AS3E’s protocol. However, he/she may try to learn more
information about the patterns that are provided by PP.

In addition, we suppose that the receiver and SP will not collude to learn
more information about the patterns provided by PP. Otherwise, they could
easily mount a dictionary attack. Again, we believe that this last assumption
is fairly reasonable since an open dishonest behavior will result in considerable
damages for both entities.

Finally, as in S4E, the pattern matching functionality provided by AS3E
should be correct in a way that (1) any traffic that matches a least one of the
analysis patterns provided by PP when not encrypted must be detected as ma-
licious traffic by our construction, and (2) the probability that our construction
returns a false positive for any traffic that does not match any of the PP’s anal-
ysis patterns when not encrypted is negligible.

6.3 Definition of AS3E

Similarly to the S4E construction, we used five algorithms to define our construc-
tion: Setup, Keygen, Encrypt, Issue, and Test. The algorithms Setup and
Keygen are performed by the entity playing receiver role. The Issue algorithm
is performed collaboratively by the receiver and the PP. The Encrypt algorithm
is performed by the sender while the Test algorithm is performed by SP.

– Setup(1λ, Φ, pmax) is a probabilistic algorithm that takes as input a security
parameter λ, the fragmentation size to be used Φ, and the maximum size of
a pattern pmax. It returns the public parameters params which will be an
implicit input to all other algorithms.

– Keygen(Σ) is a probabilistic algorithm that takes as input a finite set of
symbols Σ representing the alphabet (e.g., bit symbols, byte symbols) used
to represent the data to be analyzed. It returns the keys Ks, Kp, and Kt,
where Ks is private and known only to the receiver, Kt is know only to PP,
and Kp is public.

– Encrypt(B,Kp) is a probabilistic algorithm that takes as input the data to
be encrypted B along with the public key Kp and returns a ciphertext C.
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– Issue(Ks,Kt, w) is a probabilistic algorithm performed collaboratively by
the receiver and the PP. It takes as input the receiver ’s private key Ks, the
trapdoor generation key Kt, and a pattern w of length l (l ≤ pmax) and
returns a trapdoor tdw.

– Test(C, tdw) is a deterministic algorithm that takes as input a ciphertext C
encrypting a data stream B along with a trapdoor tdw for a pattern w and
returns the set of indexes at which the pattern w occurs in B.

Similarly to the S4E construction, we omit the decryption algorithm in the
previous description since we focus mainly on providing arbitrary universal 3

pattern matching over encrypted traffic. The decryption functionality can be
easily added by encrypting the data stream B under a conventional encryption
scheme.

6.4 Security Model

For the AS3E construction, there are mainly three security requirements that
should be satisfied: the traffic indistinguishability to SP and PP, the pattern
indistinguishability to SP and the receiver, and the correct detection require-
ments. We note that, similarly to our S4E construction, we consider the selective
security notion [16]. In the following, we denote by Os a trapdoor-issuing oracle
that can be queried to create a trapdoor for any pattern.

The following definition states that it is not feasible for the SP or PP to learn
any information about the content of the traffic more than the presence or the
absence of the patterns to be matched.

Definition 9 (Trace indistinguishability). Let λ be the security parameter,
Σ be the alphabet to be used, A be the adversary and C be the challenger. We
consider the following game that we denote ExpAS

3E T IND CPA
A,β :

(1) Setup: C executes Setup(1λ, Φ, pmax) to generate params and Keygen(Σ)
to generate Ks, Kt, and Kp. Then it sends params, Kp, and Kt to A.

(2) Query: A can adaptively query Os to create a trapdoor tdwi for any adap-
tively chosen pattern wi = σi,0 · · ·σi,li−1 where σi,j ∈ Σ. We denote W the
set of patterns submitted by A to Os in this phase.

(3) Challenge: Once A decides that Phase (2) is over, it chooses two data
streams T0 = σ∗0,0 · · ·σ∗0,m−1 and T1 = σ∗1,0 · · ·σ∗1,m−1 and sends them to
C.

(a) If ∃w = σ0 · · ·σl ∈ W, k ∈ {0, 1}, and j such that:

σ∗k,j · · ·σ∗k,j+l = σ0 · · ·σl 6= σ∗1−k,j · · ·σ∗1−k,j+l then return 0.

(b) C chooses a random β ∈ {0, 1}, creates C = Encrypt(Tβ ,Kp), and sends
it to A.

3 The trapdoor generated collaboratively by the receiver and PP can be used to ana-
lyze any sender ’s data that is sent to the receiver
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(4) Guess. A outputs the guess β′.
(5) Return (β = β′).

We define A’s advantage by AdvExp
AS3E T IND CPA
A,β (λ) = |Pr[β = β′] − 1/2|.

AS3E is data indistinguishable if AdvExp
AS3E T IND CPA
A,β (λ) is negligible.

The pattern indistinguishability property informally requires that it is not
feasible for an adversary (the SP or the receiver) to learn any information about
the detection patterns. Since our construction is a public-key based scheme, we
need to take into consideration the fact that an adversary can create any traffic
of its choice using the public key Kp. In this case, an adversary can mount a brute
force attack on PP’s patterns by adaptively creating as much traffic as needed to
understand the logic behind them. However, a pattern matching-based solution
over plaintext or public-key encryption ciphertext cannot resist such an attack,
and therefore, it should not be considered in the security model of AS3E. Hence,
for AS3E, the pattern indistinguishability property requires that the adversary
A will not learn more information than what is provided as output to the Test
algorithm. Formally, we use the high-min entropy property [17] which informally
states that A cannot obtain the patterns “by chance”.

Definition 10 (min-entropy). Given a set of detection patternsW,and a ran-
dom bit β ∈ {0, 1}. A probabilistic adversary A = (Af ,Ag) has min-entropy µ
if

∀λ ∈ N,∀w ∈ W,∀β : Pr[w′ ← A(λ, β) : w = w′] ≤ 2−µ(λ)

A is said to have high-min entropy if it has min-entropy µ with µ(λ) ∈ ω(log(λ)).

In the experiment ExpAS
3E P IND

ASP=(Af ,Ag),β (Definition 11), we define the security

notion AS3E P IND for an adversary ASP = (Af ,Ag) (Af and Ag are non
colluding entities, as in e.g., [17, 6]) with high-min entropy, that can create any
traffic of its choice.

Definition 11 (Pattern indistinguishability to SP). Let λ be the secu-
rity parameter, Σ be the alphabet to be used, ASP = (Af ,Ag) be the adver-
sary and C be the challenger. We consider the following game that we denote
ExpAS

3E P IND
ASP=(Af ,Ag),β:

(1) Setup: C executes Setup(1λ, Φ, pmax) to generate params and Keygen(Σ)
to generate Ks, Kt, and Kp. Then it sends params and Kp to ASP .

(2) Query: ASP can adaptively query Os to create a trapdoor tdwi for any pat-
tern wi = σi,1 · · ·σi,li where σi,j ∈ Σ. We denote by W the set of patterns
submitted by ASP to Os in this phase.

(3) Challenge: Once ASP decides that Phase (2) is over, Af chooses two patterns
w∗0 = σ∗0,0 · · ·σ∗0,l and w∗1 = σ∗1,0 · · ·σ∗1,l such that w∗0 , w

∗
1 /∈ W and sends them

to C. C chooses a random β ∈ {0, 1}, creates tdw∗β , and sends it to Ag.

(4) Guess: Ag outputs the guess β′.
(5) Return (β = β′).
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We define A’s advantage by Adv
ExpAS

3E P IND
ASP=(Af ,Ag),β (λ) = |Pr[β = β′]−1/2|. AS3E

is said to be pattern indistinguishable to SP if for any probabilistic polynomial-

time ASP = (Af ,Ag) having high-min entropy, Adv
ExpAS

3E P IND
ASP=(Af ,Ag),β (λ) is neg-

ligible.

In addition, since the Issue algorithm is performed interactively between the
receiver and PP, we aim to evaluate the advantage of the receiver to decide
whether a trapdoor encrypts w∗0 or w∗1 even with an access to an oracle Os that
plays the role of a PP and performs the Issue algorithm for any adaptively cho-
sen pattern. The following definition formalizes the pattern indistinguishability
property for the receiver.

Definition 12 (Pattern Indistinguishability to the receiver). Let λ be the
security parameter, Σ be the alphabet to be used, A be the adversary and C the
challenger. We consider the following game that we denote ExpAS

3E P IND CPA
AR,β :

(1) Setup: C executes Setup(1λ, Φ, pmax) to generate params and Keygen(Σ)
to generate Ks, Kp, and Kt. Then it sends params, Ks, Kp, and Kt to the
adversary.

(2) Query: A can use Os as a PP in the Issue algorithm to create a trapdoor for
any adaptively chosen pattern wi = σi,1 · · ·σi,li where σi,j ∈ Σ. We denote
by W the set of patterns chosen by A in this phase.

(3) Challenge: Once A decides that Phase (2) is over, it chooses two patterns
w∗0 = σ∗0,0 · · ·σ∗0,l and w∗1 = σ∗1,0 · · ·σ∗1,l such that w∗0 , w

∗
1 /∈ W and sends

them to C. C chooses a random β ∈ {0, 1}, and plays the role of PP in the
issue algorithm to generate collaboratively with A a trapdoor for w∗β.

(4) Guess: A outputs the guess β′

(5) Return (β = β′).

We define the advantage of the adversary A for winning ExpAS
3E P IND CPA

AR,β

by AdvExp
AS3E P IND CPA
AR,β (λ) = |Pr[β′ = β] − 1/2|. AS3E is said to be pattern

indistinguishable for the receiver if AdvExp
AS3E P IND CPA
ARβ (λ) is negligible.

Finally, the pattern matching correctness property is formally defined in the
following Definition.

Definition 13 (Correctness). Given a data stream T and a pattern w. AS3E
is correct iff the following conditions hold:

(i) Pr[i ∈ Test(Encrypt(T,Kp), Issue(Ks,Kt, w))] = 1 if T contains w at index
i.

(ii) Pr[i ∈ Test(Encrypt(T,Kp), Issue(Ks,Kt, w))] is negligible if T does not
contain w at index i.
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6.5 The protocol

– Setup(1λ, Φ, pmax): Let (G1,G2,GT , p, e(·, ·)) be a bilinear environment.

This algorithm selects g
$←− G1, g̃

$←− G2 and returns params← (G1,G2,GT ,
p, e(·, ·) , g, g̃, Φ, pmax).

– Keygen(Σ): On input of the alphabet Σ, this algorithm chooses Φ such

that Φ ≥ 2 · (pmax − 1), selects z
$←− Zp, {α′σ

$←− Zp, ασ
$←− Zp}σ∈Σ , and

r
$←− Zp, computes and sets the public key Kp = {gzi , gα′σ·(ασ·z)i}i=Φ−1i=0,σ∈Σ ,

the private key Ks = {r, ασ, α′σ, z}σ∈Σ , and the trapdoor generation key

Kt = {g̃r·α′σ·αiσ·zj}i=Φ−1,j=pmax−1i=0,j=0,σ∈Σ . It sends Kt to PP.

– Encrypt(B,Kp) fragments B = σ1, · · ·σm into {Fi, F j}i=η−1,j=η−2i=0,j=0 where

Fi = [i ·Φ+ 1, (i+ 1) ·Φ] and F j = [(j+ 1) ·Φ− pmax− 1, (j+ 1) ·Φ+ pmax].

It chooses ak
$←− Zp for each k ∈ [0, η−1] and ak

$←− Zp for each k ∈ [0, η−2]
and returns C = {Ci, Ci, C ′i, C ′i}mi=1 as described in the following algorithm.

Input: B = σ1, · · ·σm,Kp, {Fi, ai, F j , aj}i=η−1,j=η−2i=0,j=0

Output: C = {Ci, Ci, C ′i, C ′i}mi=1

C ← ∅
foreach i ∈ [1,m] do

ε← i/Φ #find the fragment Fε to which i belongs

Ci ← gaε·α
′
σi
·(ασi ·z)

iFε
, C ′i ← gaε·z

iFε

# gα
′
σi
·(ασi ·z)

iFε
and gz

iFε are retrived from Kp
if ε > 0 and i ∈ F ε−1 then

Ci ← gaε−1·α′σi ·(ασi ·z)
i
Fε−1

, C ′i ← gaε−1·z
i
Fε−1

else if ε < η − 1 and i ∈ F ε then

Ci ← gaε·α
′
σi
·(ασi ·z)

i
Fε

, C ′i ← gaε·z
i
Fε

else
Ci ← Null, C ′i ← Null

end

C ← C ∪ {Ci, C ′i, Ci, C ′i}
end

Algorithm 4: Encrypt

– Issue(Ks,Kt, w) issues a trapdoor tdw for the sequence of symbols w =
σw,0, · · · , σw,l−1 of length l < pmax. AS3E uses the same Issue algorithm as
S4E except that DO will be replaced by the receiver.

– Test(C, tdw) tests whether the encrypted traces C contains the sequence of
symbols w. It returns the set I of indexes i in which w exists in C. The Test
algorithm is the same as described for the S4E construction (Algorithm 3).

6.6 AS3E Security Results

This section presents the security results of AS3E. The proofs of the following
theorems are given in the full version of this paper [22].
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Theorem 5. AS3E is correct.

Theorem 6. AS3E is trace indistinguishable under the i-GDH assumption.

Theorem 7. AS3E is pattern-indistinguishable to SP for patterns of high min-
entropy under the i-GDH assumption.

Theorem 8. AS3E is pattern-indistinguishable to the receiver under the i-GDH
assumption.

7 The complexity

We evaluate the practicability of S4E and AS3E regarding several properties:
the sizes of the public parameters for S4E, public keys for AS3E, the trapdoor
generation key, the ciphertext, the trapdoor, and the encryption and search com-
plexities. Let Φ be the size of a fragment, pmax be the maximum size of a pattern,
n be the total number of symbols in the data to be analyzed. Note that S4E and
AS3E share the same sizes for the ciphertext, the trapdoor generation key, the
trapdoors, and the same complexities for trapdoor generation, encryption, and
search operations.

The size of the public parameters used in S4E: The public parameters
params used in the S4E construction contain Φ elements of G1 which represents
32× Φ bytes using Barreto-Naehrig (BN) [15].

The size of the public keys used in AS3E: The public key Kp used in the
S4E construction contains 2 × Φ elements of G1 which represents 64 × Φ bytes
using BN. We underline that the size of the required public key is independent
of the size of the data to be analyzed n and depends only on the maximum size
of a pattern pmax (n � Φ ≥ 2 × (pmax − 1)). Hence, compared to the most
efficient state of the art solution SEST, AS3E reduces considerably the size of
the required public key. To illustrate, if we suppose that 1G of data is to be
analyzed using a set of patterns, each composed of at most 10000 bytes, SEST
requires a public key of size 32× (1 + 256)× 109 bytes ' 8000 GB while AS3E
requires a public key of size 20000× 64 bytes ' 1.20 MB.

The size of the pattern generation key Kt: For both S4E and AS3E, Kt
contains Φ × pmax × |Σ| elements of G2. A key allowing to generate trapdoors
for a binary pattern of length l ≤ 1000 will have a size equals to 128 MB.

The size of the ciphertext: In the worst case (i.e., Φ = 2× (pmax − 1)), each
symbol is represented by 4 elements of G1. Thus, encrypting n symbols requires
128× n bytes, while SEST produces a ciphertext of size 64× n bytes using BN.

Trapdoor’s size: A trapdoor is composed of 2 × (Φ − pmax) elements of G2

which represents 64× (Φ− pmax) bytes using BN.

Trapdoor generation complexity. Generating a trapdoor for a pattern of
length l (l ≤ pmax), as described in the Issue algorithm, requires (Φ− l)×(2l+2)
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exponentiations and 4l(Φ− l) multiplications in G2.

The upper bound size of patterns: The upper bound size pmax of the pat-
terns that can be searched by S4E and AS3E depends Φ (p max = Φ/2 − 1).
Increasing p max will increase linearly the trapdoor’s sizes and generation com-
plexity. However, it will not affect any of the other properties of S4E and AS3E.

Encryption complexity According to the Encrypt algorithm (Algorithm 2),
in the worst case (i.e., Φ = 2 × (pmax − 1)), encrypting a sequence of n sym-
bols using S4E requires 10 × n exponentiations in G1. In case in which n is
large (i.e., n � Φ and n � |Σ|), the previous complexity can be reduced

by pre-computing {gα′σ·(ασ·z)i , gzi}i=Φ−1i=0,σ∈Σ . Then for each symbol to encrypt,

the encryptor needs only to perform four exponentiations: (gα
′
σ·(ασ×z)

iFε )aε ,

(gz
iFε )aε , (gα

′
σ·(ασ×z)

i
Fε )aε , and (gz

i
Fε )aεwhich reduces the overall complexity

to Φ × |Σ| + 4 × n exponentiations in G1. As for AS3E, encrypting a sequence
of n symbols requires 2× n exponentiations in G1.

Search complexity: According to the Test algorithm (Algorithm 3), searching
a pattern of size l on a sequence of symbols of size n requires nl− l2 multiplica-
tions on the group G1 and 2×(n− l) pairings. In fact, the Test algorithm verifies
the presence of a pattern (using its associated trapdoor) in each possible offset in
the data to be analyzed. Let us denote by s0 and s1 the two sequences of symbols
of length l to be analyzed to check the presence of a pattern in offsets 0 and 1
respectively of the fragment Fi (resp. F i). Checking the presence of the pattern

in the offset 0 requires the computation of
∏l−1
i=0 Ci (resp.

∏l−1
i=0 Ci) while check-

ing the presence of the pattern in offset 1 requires the computation of
∏l−1
i=0 Ci+1

(resp.
∏l−1
i=0 Ci+1). Obviously, for the offset 1, we can avoid the recomputation

of
∏l−1
i=1 Ci since it has already been computed for the offset 0. Following the

previous observation, searching a pattern of length l on a sequence of symbols
of length n requires only n multiplications and n divisions on the group G1, and
2 × (n − l) pairings. Considering the fact that l � n, we can upper bound the
search complexity by n multiplications, n divisions and 2n pairings. Finally, we
note that pairing operations can be implemented very efficiently [21] and that
our Test procedure is highly parallelizable.

8 Empirical Evaluation

In this section, we experimentally evaluate the performance of S4E and AS3E
4. We implement the two constructions using the RELIC cryptographic library

4 We note that the goals of this section is to (1) provide a more concrete estimations
of the different operations used by S4E and AS3E and (2) show that S4E and AS3E
are more practical than SEST. Particularly, we do not claim that S4E and AS3E are
practical enough to perform pattern matching on very large data streams.
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[21] over the 254-bits BN curve 5. For all conducted experiments, we used real
network traces as the data to be encrypted and analyzed, and we (pseudo)
randomly generated the analysis patterns to be searched. In addition, since in
both S4E and AS3E, the encryption and the trapdoor generation algorithms
are to be performed by entities (data owners in case of S4E or data sender in
case of AS3E) which may not have a large computation power, we run both the
trapdoor generation and the encryption algorithms tests on an Amazon EC2
instance (a1.2xlarge) running Linux with an Intel Xeon E5-2680 v4 Processor
with 8 vCPU and 16 GB of RAM. In contrast, as the search operations are
performed by SP which is supposed to have a large computation power, we run
search experiments on an Amazon EC2 instance (m5.24xlarge) running Linux
with an Intel Xeon E5-2680 v4 Processor with 96 vCPU and 64 GB of RAM.

In our empirical evaluation, we aim to quantify the following characteristics
of the proposed constructions:

– The time required to generate a trapdoor and its corresponding size as a
function of the size of the largest analysis pattern pmax that can be searched.

– The time taken to encrypt a data stream as a function of its size (i.e. the
size of the sequence of symbols that composed the data to be encrypted),
the fragmentation size Φ and the size of the considered alphabet.

– The time needed to perform a pattern matching query as a function of the
size of the data to be queried and the size of the patterns to be searched.
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Fig. 2: Trapdoor generation time

Trapdoor generation. Fig. 2 describes the time required for issuing a trap-
door for a pattern w as a function of its length (Fig. 2 (a)) as well as the size

5 The objective behind the usage of the 254-bits BN is to consider the same elliptic
curve as in the implementation of the SEST construction. We note that the pairings
over the 254-bits BN curve provides almost 100-bit security level.
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Φ of data a data fragment (Fig. 2 (b)). According to our experiments, issuing
a trapdoor for a pattern of 5000 symbols take 1.4 second. In addition, the sizes
of the generated trapdoors are relatively small (256 KB for a pattern of 4000
symbols and a fragmentation size of 10000 symbols).

Encryption time. According to Section 7, the duration of an encryption
operation depends mainly on the number of symbols in the data to be encrypted
n but also on the fragmentation size Φ and the size |Σ| of the considered alphabet
Σ. Table 2 reports the time needed to encrypt a data stream fragmented in
chunks, each containing 1000 bits (Φ = 1000 and Σ = {0, 1}), as a function of
the data stream length n.6.

Data Length Time

(bytes) ( seconds )

1000 0.031

3000 0.097

5000 0.158

10000 0.371

30000 1.01

100000 3.0355

Table 2: Encrypting time as a
function of n
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Fig. 3: Time required for encrypting
105 symbols as a function of Φ and Σ

As we noted in Section 4, the fragmentation size Φ and the considered alpha-
bets are important parameters in our construction. The former directly influences
the size of the largest analysis pattern that can be searched over the encrypted
data since the bigger the size of the fragments are, the bigger the size of the
supported analysis patterns could be. The latter parameter determines the type
of search that can be performed by our construction. In Fig. 3, we compute the
time required for the encryption of a data stream composed of 105 symbols as a
function of the fragmentation size Φ and the type of the considered symbols. We
consider three types of alphabets: binary, hexadecimal, and base 256 (i.e., ASCII
alphabet) where each symbol is represented respectively in 1, 4 and 8 bits. For
Φ, we consider 3 different fragment sizes: 103, 104, and 105 symbols.

As illustrated in Fig. 3, the time required for encrypting a dataset composed
of 105 symbols increases only by a factor of 0.02 (from 3,04 to 3,2 seconds) when
increasing the size of the fragments by a factor of 100 (from 103 to 105) and
increasing the size of the considered alphabet by a factor of 128 (from a base 2
alphabet where Σ = {0, 1} to a base 256 alphabet where Σ = {0, 1, · · · , 255}).
The previous results show that the increase of the size of supported patterns
and the size of the considered alphabet affects very little the encryption time

6 Encryption time would be roughly 8 times slower with a single-threaded execution.
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required by the proposed constructions.

Search time. As shown in Section 7, the complexity of the search operation
depends mainly on the number of encrypted symbols n that compose the data
to be analyzed. Fig. 4 describes the time required for searching a pattern as a
function of the number of encrypted symbols in the data to be analyzed.
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Fig. 4: Time required for searching a pattern as a function of the number of
encrypted symbols in the data to be analyzed

The conducted evaluations show that the average search throughput of our
construction is 139078 symbols per second with a multi-threaded implementation
7. Thus, if an ASCII (resp. binary) alphabet is considered, the search throughput
is 139 KB (resp. Kb) per second.
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Fig. 5: Timing comparison for testing the presence of a pattern in a string of 107

symbols as a function of the pattern size

7 search time would be roughly 96 times slower with a single-threaded execution.
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Fig. 5 (a) (resp. Fig. 5 (b)) compares the time needed for both our and the
SEST (both its asymmetric [1] and symmetric (Section 5.6) variants) construc-
tions to test the presence of a pattern of bytes (resp. of bits) in a 10 MB (resp.
Mb) dataset as a function of the length of the pattern to be searched. In both
bit and byte searches, our construction drastically reduces the search time com-
pared to SEST. This is because that our Test algorithm is constant on the size
and on the content of the searched pattern which is not the case for SEST.

9 Conclusion

In this work, we introduced two new provably correct and secure constructions
S4E and AS3E. S4E (resp. AS3E) supporting pattern matching of adaptively
chosen and variable (upper bounded) lengths patterns on secret key (resp. public
key) encrypted streams. The proposed constructions have several interesting
properties. First, they ensure data and pattern indistinguishability meaning that
the entity that is going to perform pattern matching will learn nothing about
the patterns to be searched as well as the data to be inspected, except the
presence or the absence of a set of ”unknown” patterns (since the entity charged
to perform pattern matching will not have access to the patterns plaintexts).
Second, the size of the ciphertext is linear to the size of the plaintext and is
constant on the sizes and the number of analysis patterns. Third, the size of
the issued trapdoors is constant on the size of the data to be analyzed. Finally,
the search complexity is linear to the size of the trace and is constant on the
size of the analysis patterns. The proposed constructions can be useful for other
application scenarios such as subtrees search and searching of structured data.

To prove the security of the two proposed schemes, we used a slightly modified
GDH assumption where the adversary is allowed to choose on which input to play
the GDH instance. This relatively minor modification of the GDH assumption
allow to define constructions that offer an interesting compromise between the
secure and quite costly solutions and the fast and unsecure solution where the
data has to be decrypted by the third-party entity that performs the pattern
matching.
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