
B-SIDH: supersingular isogeny Diffie-Hellman
using twisted torsion

Craig Costello

Microsoft Research, USA
craigco@microsoft.com

Abstract. This paper explores a new way of instantiating isogeny-based
cryptography in which parties can work in both the (p + 1)-torsion of
a set of supersingular curves and in the (p − 1)-torsion corresponding
to the set of their quadratic twists. Although the isomorphism between
a given supersingular curve and its quadratic twist is not defined over
Fp2 in general, restricting operations to the x-lines of both sets of twists
allows all arithmetic to be carried out over Fp2 as usual. Furthermore,
since supersingular twists always have the same Fp2 -rational j-invariant,
the SIDH protocol remains unchanged when Alice and Bob are free to
work in both sets of twists.

This framework lifts the restrictions on the shapes of the underlying
prime fields originally imposed by Jao and De Feo, and allows a range
of new options for instantiating isogeny-based public key cryptogra-
phy. These include alternatives that exploit Mersenne and Montgomery-
friendly primes, as well as the possibility of halving the size of the primes
in the Jao-De Feo construction at no known loss of asymptotic security.
For a given target security level, the resulting public keys are smaller
than the public keys of all of the key encapsulation schemes currently
under consideration in the NIST post-quantum standardisation effort.

The best known attacks against the instantiations proposed in this paper
are the classical path finding algorithm due to Delfs and Galbraith and its
quantum adapation due to Biasse, Jao and Sankar; these run in respective
time O(p1/2) and O(p1/4), and are essentially memory-free. The upshot
is that removing the big-O’s and obtaining concrete security estimates is
a matter of costing the circuits needed to implement the corresponding
isogeny. In contrast to other post-quantum proposals, this makes the
security analysis of B-SIDH rather straightforward.

Searches for friendly parameters are used to find several primes that
range from 237 to 256 bits, which all offer a conjectured security com-
parable to the 434-bit prime used to target NIST level 1 security in the
SIKE proposal. One noteworthy example is a 247-bit prime for which
Alice’s secret isogeny is 7901-smooth and Bob’s secret isogeny is 7621-
smooth.

Keywords: Post-quantum cryptography, supersingular isogenies, SIDH,
SIKE, quadratic twists.

1 Introduction

The best known attacks against Jao and De Feo’s SIDH protocol [23] try to re-
cover either Alice’s secret 2m-isogeny φA : E0 → EA, or Bob’s secret 3n-isogeny
φB : E0 → EB , and both of these problems are instances of the supersingular
isogeny problem: given a finite field K and two supersingular elliptic curves E,E′

defined over K such that #E = #E′, compute an isogeny φ : E → E′. For the
cases of interest where K = Fp2 and p is a large prime, the best known classical
algorithm for solving the supersingular isogeny problem is the Delfs-Galbraith
algorithm [14], which requires O(p1/2) isogeny operations to find a collision (of
walks from E and E′) in the graph of size O(p). However, the special isoge-
nies computed in SIDH above give rise to appreciably easier instances of the
supersingular isogeny problem; they are of a fixed, known degree close to p1/2,
and this allows for a classical meet-in-the-middle attack that, asymptotically, re-
quires only O(p1/4) isogeny operations [23, §5]. Roughly speaking, the difference
between the difficulty of the isogeny problems that arise in SIDH and that of
the general supersingular isogeny problem is due to the fact that Alice and Bob
only take about half as many steps as the diameters of each of their graphs. In
other words, the number of possible destination nodes for the secret walks of
Alice and Bob is close to the square root of the total number of nodes in the
graph.

Jao and De Feo chose primes of the form p = 2m3n−1 and half-length walks
so that Alice and Bob can both compute their isogenies using arithmetic in Fp2 ;
they represent each isomorphism class by a supersingular elliptic curve E/Fp2
with group order #E(Fp2) = (p + 1)2 = (2m3n)2, which facilitates a full Fp2 -
rational 2m-torsion and full Fp2 -rational 3n-torsion. When all of the subgroups of
order 2m and 3n are Fp2-rational, so are the corresponding isogeny computations.

A first observation that sets the scene for this work is that in general there
are two choices of Fp2 -rational elliptic curve groups corresponding to every node
in the supersingular isogeny graph: those whose group orders are (p + 1)2, and
those whose group orders are (p− 1)2. Although curves from these two sets are
not isomorphic (or even isogenous!) to one another over Fp2 , they do become
isomorphic over Fp4 , and therefore share the same j-invariant in Fp2 [38, Propo-
sition III.1.4]. Indeed, for any curve whose group order is (p+ 1)2, its quadratic
twist over Fp2 has group order (p− 1)2.

The main point of this paper is to exploit the fact that the SIDH protocol
does not have to restrict to working in one of the two sets of quadratic twists: it
can stay in Fp2 while working in both the (p+ 1)-torsion and the (p− 1)-torsion.
Moreover, Alice and Bob can work in the torsion corresponding to opposite
sets of quadratic twists with no change to the protocol. Optimised Montgomery
arithmetic [30] in the SIDH setting only needs the x-coordinates of points [23]
and the A coefficient of the curve [11], and as such is entirely twist-agnostic; in
other words, the twisting morphism (which only alters y-coordinates and the B
coefficient) leaves x-coordinates and A coefficients unchanged, so the lifting to
Fp4 described above becomes a mere theoretical technicality that is not visible
in cryptographic implementations – see Section 3.

2

The price to pay for working with both twists is that at least one of Alice or
Bob must now perform walks comprised of steps in multiple `-isogeny graphs,
i.e. switching between multiple values of `. This changes the underlying hardness
assumption for one or both parties, but (as is discussed in Section 4) there is no
known reason to believe that switching between many `’s makes the resulting
SIDH problems any easier, so long as the number of destination nodes remain
roughly the same size as in the Jao-De Feo instantiation.

Allowing torsion from both sets of twists unlocks a number of new options and
trade-offs for isogeny-based public key cryptography; many examples are given
in Section 5 to illustrate these possibilities. At a high level, these options fall
into two categories: the first is where Alice gets to computes significantly faster
2m-isogenies (than in existing SIDH/SIKE implementations) at the expense of
a heavy slowdown on Bob’s side; the second, and perhaps the more interesting,
is the possibility of halving the sizes of the underlying fields at no known loss
of asymptotic security. Furthermore, this possibility gives rise to the number of
secret walks (i.e. possible destination nodes) for both Alice and Bob being very
close to the total number of nodes in the graph.

Concrete instantiations of smaller primes are put forward in Section 5. For
example, B-SIDHp247 uses a 247-bit prime to achieve roughly the same con-
jectured security as the 434-bit SIKE prime to target NIST’s security category
1 [22]. The public keys for B-SIDHp247 are 186 bytes, which are a little over
half the size of the 330-byte uncompressed public keys of SIKEp434, and are still
smaller than the 196-byte keys that are obtained in SIKEp434 when compression
is enabled.

1.1 Naming

The instantiation proposed in this paper is dubbed B-SIDH1 in order to distin-
guish it from the original Jao-De Feo SIDH instantiation, and to avoid muddying
the waters in the case that future cryptanalysis weakens any variants described
herein. Although switching between multiple `-isogeny graphs during a secret
isogeny computation does not decrease security in any known way, it may turn
out that using torsion with many prime factors is a bad idea, or that decreasing
p relative to the degrees of the secret isogenies is a bad idea. Of course, it may
also turn out that the one (or both) of the converse statements is true, but in
any case it should be emphasised that the instantiations proposed in this paper
rely on different security assumptions than SIDH and SIKE – see Section 4.

1.2 Performance vs. SIDH

There are no performance claims made in this paper, except in the scenarios
where Alice’s performance will clearly be improved (over her performance in the

1Pronounced “B-side”, in reference to the analogy between the set of supersingular
curves of cardinality (p− 1)2 and the less popular, sometimes forgotten ‘flip-side’ of a
record.

3

SIDH/SIKE setting at a comparable security level) thanks to a faster underlying
prime, but where it should be reiterated that Bob will almost always suffer a
collossal slowdown. The main takeaway of this paper is that the primes and the
public keys in the optimal scenarios of Section 5 are significantly smaller than the
SIDH/SIKE counterparts. Moreover, these public keys will remain smaller even
when compression techniques [2,10,45,31] are applied to the SIDH and SIKE
public keys. If the ECC+SIDH/SIKE hybrid is used as in [11], these gaps will
widen further.

In order to make the performance of the proposed approach competitive with
that of SIDH/SIKE, the main research obstacles that arise are (i) finding faster
methods of computing `-isogenies for the sizes of ` that arise in Section 5, and
(ii) finding primes p for which both p + 1 and p − 1 have large enough factors
that are as smooth as possible.

The first preprint of this paper left both (i) and (ii) as open avenues for
future work, but in the time that has passed since that version went online,
progress has been made in both directions. In regards to (i), a leap forward
was recently made by Bernstein, De Feo, Leroux and Smith [4]: for P a point
of prime order ` in E(Fq), they give an algorithm for evaluating the quotient

isogeny φ with ker(φ) = 〈P 〉 at a point Q ∈ E(Fq) using only Õ(
√
`) operations

in Fq. This is a huge improvement over the conventional algorithms for isogeny

computations that all computed Vélu’s formulas [43] using Õ(`) operations in Fq.
The authors of [4] note that their algorithm implies an asymptotic speedup for
B-SIDH as the security level increases, and give several software implementations
that illustrate the (rather large) performance improvements that can be expected
for the sizes of isogenies needed in this paper. They note, however, that their
implementations are not constant-time, and that “it is too early to guess what
the final performance of constant-time B-SIDH will be on top of our `-isogeny
algorithm” [4, §A.4].

Regarding (ii), this version of the paper puts forward much better parameters
than those in the prior version(s); this is a result of improved search techniques
and more compute time – see Section 5.

1.3 Related work

A few days after a preprint of this paper went online, Matsuo sent us his non-
peer-reviewed Japanese article [28] from March 2019 that had previously pro-
posed the idea of working in both quadratic twists simultaneously. However, his
execution of the idea is very different from that in this paper. In particular,
Matsuo did not lift the restriction of Alice and Bob computing their respec-
tive 2m and 3n isogenies, and his search for primes p such that 2m | p + 1 and
3n | p− 1 (or vice versa) forces huge cofactors which produces primes that are,
for the most part, either the same size or are larger than their original SIDH
counterparts. A crucial difference in this work is allowing at least one of the two
parties to compute secret isogenies whose composite degrees have many prime
factors, which gives way to a range of new possibilities.

4

Comments on an earlier version of this paper revealed that De Feo should
be credited as the first to mention the idea of exploiting quadratic twists in the
realm of SIDH/SIKE. In his habilitation thesis (dated December 2018), De Feo
writes [15, p. 50]: “One particular trick in CSIDH that is completely absent in
SIDH is using the quadratic twist to perform part of the computations. I have
thought of this for a while, and I see no fundamental reason why it should not
work for SIDH, if it was not for the fact that finding suitable parameters seems
computationally unfeasible. My favorite example is p = 17, so p2 − 1 = 2532; if
it were possible to find large primes with similar properties, the gain would be
spectacular”.

Section 3 not only confirms De Feo’s intuition that there is no obstruction
to the use of quadratic twists, it shows that quadratic twists can be used out-
of-the-box inside the twist-agnostic SIDH framework. The purpose of Section 5
is to start paving the way towards the types of large primes De Feo envisioned,
and while it remains to be seen whether the practical gains can be spectacular,
the work he recently coauthored [4] will almost certainly play a part of any gains
that are afforded by the instantiations explored herein.

2 Twist-agnostic SIDH

The parameter that governs the security of Jao and De Feo’s supersingular
isogeny Diffie-Hellman (SIDH) protocol is the large prime p. As soon as p is
chosen, a set of roughly bp/12c elements is defined: these are the entire set of
supersingular j-invariants over Fp, and they are the nodes on the graphs that
Alice and Bob walk on during the protocol. Alice and Bob share this set of nodes,
but their graphs have different edges that depend on the degrees of their secret
isogenies. Following [23], for any prime ` - p, there are `+ 1 isogenies (counting
multiplicities, and up to isomorphism) of degree ` that eminate from a given su-
persingular isomorphism class. Moreover, Pizer [33,34] showed that this gives rise
to a connected (`+ 1)-regular multigraph that satisfies the Ramanujan property
and thus has optimal expansion properties.

2.1 Rational (p + 1)-torsion

The prime p also governs the efficiency of SIDH, where Alice and Bob both
compute isogenies whose degrees are of the form `e. In theory, Alice and Bob
could choose any value of ` they like (so long as their individual choices of ` are
coprime), but it is more efficient if the `e-torsion is defined over Fp2 . Observing
that the smallest primes ` give rise to the most efficient `e-isogenies, Jao and
De Feo construct the prime p to guarantee this rationality condition by setting
p = f · 2m3n− 1 (allowing for a small cofactor f), and representing nodes in the
graph by elliptic curves E/Fp2 with

E(Fp2) ∼= Zp+1 × Zp+1. (1)

5

For any r ∈ Z with r | p + 1, the entire r-torsion E[r] ∼= Zr × Zr is then
contained in E(Fp2). With p chosen as above, it follows that the full 2m-torsion
E[2m] ∼= Z2m × Z2m , and the full 3n-torsion E[3n] ∼= Z3n × Z3n , are both Fp2-
rational. Since every (separable) isogeny φ : E → E′ of degree d is in one-to-one
correspondence with a kernel subgroup of order d [38, Proposition III.4.12], and
each such isogeny is computed using rational functions of the input curve and the
given kernel subgroup [43], it follows that if both of these inputs are Fp2-rational,
then so is the isogeny computation.

2.2 SIDH

With p = f · 2m3n − 1 as above, the SIDH protocol specifies the following
public parameters: a starting supersingular curve E0/Fp2 , a basis {PA, QA} for
E[2m] ∼= Z2m × Z2m , and a basis {PB , QB} for E[3n] ∼= Z3n × Z3n . To generate
her public key, Alice chooses two secret integers (αA, βA) ∈ Z2m×Z2m such that
her secret point SA = [αA]PA + [βA]QA is of order 2m. She then composes m
2-isogenies to give her secret 2m-isogeny φA : E0 → EA, where EA = E0/〈SA〉.
Along the way, she moves the basis points PB and QB through the isogeny
computation, eventually obtaining their images under φA. Her public key is
then PKA = (EA , φA(PB) , φA(QB)) . On Bob’s side, he chooses (αB , βB) ∈
Z3n × Z3n , computes his secret point SB = [αB]PB + [βB]QB , and then uses it
to compute his secret 3n-isogeny φB : E0 → EB (via n consecutive 3-isogenies),
such that EB = E0/〈SB〉. His public key is PKB = (EB , φB(PA) , φB(QA)) .

Upon receiving PKB , Alice uses her secret integers to compute a new secret
point S′A = [αA]φB(PA) + [βA]φB(QA) of order 2m on EB , and then uses it to
compute the 2m-isogeny φ′A : EB → EB/〈S′A〉. Bob uses his secret integers and
PKA to compute the point S′B = [αB]φA(PB) + [βA]φA(QB) of order 3n on EA,
and then uses it to compute the 3n-isogeny φ′B : EA → EA/〈S′B〉. Both parties
then compute the same shared secret as the j-invariant of their respective image
curves EB/〈S′A〉 and EA/〈S′B〉, since EB/〈S′A〉 ∼= EA/〈S′B〉 [23].

2.3 Twist-agnostic isogenies

Jao and De Feo exploited the fact that all of the arithmetic in the above com-
putations can be performed on the Kummer line of the associated curves, i.e.
in E/{±1} rather than E, and furthermore that this arithmetic is particularly
efficient if the curves are in Montgomery form [30]

E(A,B) : By2 = x3 +Ax2 + x.

Henceforth, E(A,B) or E will be used instead of E(A,B)/{±1} or E/{±1} for
simplicity, and unless explicitly stated, y-coordinates will be ignored (using ‘—’).
Furthermore, the B coefficients of Montgomery curves can also be ignored in the
SIDH framework [11]; they are merely used to specify which quadratic twist we
are working on and are not needed in optimised explicit formulas. In other words,

6

optimised explicit formulas for Montgomery arithmetic ignore B and y and work
irrespective of quadratic twist.

Isogenies of composite degree L =
∏k
i=1 `

ei
i can be computed as the compo-

sition of e1 isogenies of degree `1, followed by e2 isogenies of degree `2, and so
on. Conventional isogeny algorithms evaluate prime degree `-isogenies in Õ(`)
field operations [43,9], whereas the recent Bernstein-De Feo-Leroux-Smith [4]
algorithm computes the same result using only Õ(

√
`) field operations; both of

these algorithms are already optimised within the twist-agnostic Montgomery
framework above. Generally speaking, it follows that for a given target security
level (i.e. for a given size of L – see Section 4), the most efficient L-isogenies will
correspond to the smoothest values of L.

3 Using torsion from the quadratic twists

Let E/Fpn be an elliptic curve, let tn be the trace of the pn-power Frobenius
endomorphism, and recall that (i) E is supersingular if and only if tn is a multiple
of p [38, Exercise V.5.10(a)], and that (ii) #E(Fpn) = pn + 1 − tn with |tn| ≤
2
√
pn [38, Theorem V.1.1]. When n = 1, there is only one possible value of t1

that is a multiple of p such that |t1| ≤ 2
√
p, i.e. t1 = 0, and thus it follows that

E/Fp is supersingular if and only if #E(Fp) = p + 1. In other words, there is
only one possible group order for supersingular elliptic curves over Fp.

The first observation that sets the scene for this work is that there are mul-
tiple possibilities for t2 that correspond to E/Fp2 being supersingular: taking
t2 ∈ {−2p,−p, 0, p, 2p} satisfies (i) and (ii). Of particular interest in the present
context are the two possibilities t2 = −2p and t2 = 2p. All known instantiations
of SIDH and SIKE fall into the former case by default. They define a starting
supersingular curve E0/Fp and lift to work in E0(Fp2); since E0(Fp) | E0(Fp2)
and #E0(Fp) = p + 1, it must be that #E0(Fp2) = p2 + 1 + 2p = (p + 1)2 and
hence that t2 = −2p.

Upon starting on a curve with t2 = −2p, a choice has seemingly been made
among the possibilities for t2; two elliptic curves are Fp2-isogenous if and only if
they have the same group order over Fp2 [41, Theorem 1(c)], so computing Fp2 -
rational isogeny walks means walking on curves with the same number of points
as E0/Fp2 . However, any curve with t2 = −2p corresponds to the quadratic twist
of a curve with t2 = 2p, meaning that they not only become isogenous over Fp4 ,
they become isomorphic over Fp4 . Moreover, as we saw in §2.3, optimised isogeny
arithmetic works correctly independently of the quadratic twist, so the explicit
formulas that are used on the curves with t2 = −2p can also be used to work on
the curves with t2 = 2p.

It is crucial to note that even though two quadratic twists are not isomorphic
over Fp2 , they will still have the same j-invariant in Fp2 [38, Proposition 1.4(b)].
Put another way, every node in the supersingular isogeny graph can actually be
represented by two different Fp2-isomorphism classes: those with t2 = −2p and
the same group structure as E/Fp2 in (1), or those with t2 = 2p and with group

7

structure
Et(Fp2) ∼= Zp−1 × Zp−1.

Every such supersingular curve with group structure Zp−1×Zp−1 is the quadratic
twist of a supersingular curve with group structure Zp+1×Zp+1, and vice versa.
Moreover, in the same way that any factor r of p+ 1 gave rise to a full rational
r-torsion in E(Fp2), any factor s of p− 1 gives rise to a full rational s-torsion in
Et(Fp2).

For Alice and Bob to freely work with points coming from the (p+1)-torsion
and the (p − 1)-torsion, it appears that the entire protocol must be lifted to
Fp4 . While this is technically true, the lifting will ultimately not be visible in an
optimised implementation2.

The point and isogeny formulas ignore the y-coordinates of points and the B
coefficients of Montgomery curves, and this is where all the twisting arithmetic
happens. The upshot is that while the protocol will be lifted to Fp4 , where
E(Fp4) ∼= Et(Fp4) ∼= Zp2−1 × Zp2−1, Alice and Bob are still in a position to
work entirely in Fp2 as usual. They can then choose a secret kernel point whose
order divides p+1, or whose order divides p−1, or (more generally) whose order
divides the product p2 − 1.

To make this concrete, let B be a square in Fp2 , let γ be a non-square in Fp2 ,
take Fp4 = Fp2(δ) with δ2 = γ, and write

EA,B : By2 = x3 +Ax2 + x and EtA,γB : γBy2 = x3 +Ax2 + x

as models 3 for E/Fp2 and Et/Fp2 . The map

σ : EA,γB(Fp4)→ EA,B(Fp4), (x, y) 7→ (x, δy) (2)

is a group isomorphism that leaves x-coordinates unchanged.
Write f(x) = x3+Ax2+x. For any u ∈ Fp2 , either (i) f(u) is a square in F∗p2 ,

in which case (u,
√
f(u)/B) is a point in EA,B(Fp2), (ii) f(u) is a non-square

in F∗p2 , in which case f(u)/(γB) is a square, and (u,
√
f(u)/(γB)) is a point in

EA,γB(Fp2), or (iii) f(u) = 0, in which case (u, 0) is one of the three 2-torsion
points (on both EA,B and EA,uB).

Let P1 = (u1,—) be a point corresponding to case (i), let P2 = (u2,—)
be a point corresponding to case (ii), and suppose φ1 : EA,B → EA,B/〈P1〉 and
φ2 : EA,γB → EA,γB/〈P2〉. It does not make sense to evaluate φ1 at P2 or φ2
at P1 (these points do not even lie on Fp2-isogenous curves, let alone the same
curve), but this is fixed by lifting to Fp4 and precomposing with the twisting
morphisms. Setting φ′1 = (φ1 ◦ σ) and φ′2 = (φ2 ◦ σ−1) gives the isogenies φ′1 :
EA,γB → EA,γB/〈σ(P2)〉 and φ′2 : EA,B → EA,B/〈σ−1(P1)〉, which are well-
defined over Fp4 .

2This is reminiscent of Bernstein’s twist-agnostic Curve25519 construction. He also
uses a quadratic extension field in the specification of the Curve25519 function [3,
Theorem 2.1], but this extension is a technicality that is not seen in the implementation.

3The idea works analogously for more general (i.e. short Weierstrass) elliptic curves,
but all of the instantiations discussed in this paper allow for Montgomery form.

8

The key observation from (2) is that σ : (x,—) 7→ (x,—) and σ−1 : (x,—) 7→
(x,—) induce the identity map when working on the corresponding Kummer
lines, so the twisting morphisms can simply be ignored in the implementation.
Thus, Alice can take her secret points from the (p + 1)-torsion of EA,B(Fp2)
and Bob can take his secret points from the (p − 1)-torsion of EA,γB , and the
implementation of the SIDH protocol can otherwise remain unchanged.

3.1 B-SIDH in a nutshell

Henceforth, for a given prime p, M and N will be used to denote the two coprime
degrees of Alice and Bob’s secret isogenies (e.g. in the traditional setup with
p = 2m3n − 1 described above, we have M = 2m and N = 3n). Alice’s degree
M will always be defined such that M | p + 1, and Bob’s will be N such that
N | p− 1.

SinceM andN must be coprime, the even one will always be chosen according
to whichever of p + 1 and p − 1 is the multiple of 4; otherwise, the remaining
factors of p+1 and p−1 are necessarily coprime. The efficacy of the construction
in this paper is closely tied to the smoothness of M and N (see §2.3), so obtaining
B-SIDH-friendly parameters boils down to searching for primes p such that p+1
and p − 1 both contain factors that are large enough to reach a target security
level, but smooth enough to be efficiently computable.

3.2 Handling large `-degree isogenies

The sizes of ` that are encountered in this paper are significantly larger than
those in previous works, so it is important to look for ways that such isogenies
can be sped up in practice. As mentioned in Section 1, Bernstein, De Feo, Ler-
oux and Smith [4] recently gave a drastic improvement for the computation of
large prime-degree isogenies: `-isogenies now require only Õ(

√
`) field operations,

rather than Õ(`) field operations. The two possibilities below were written in an
earlier version of this paper that predates [4], but nevertheless are still worth
mentioning, since it is currently unclear how a constant-time variant of [4] per-
forms in practice, i.e., exactly how large ` would need to be for such a variant to
reign supreme over prior methods or over the more obvious optimisations below.
Moreover, either or both of these techniques could be used in conjunction with
the algorithm in [4] to give even faster B-SIDH isogenies in practice.

Parallelisation. Let P be a point of order ` = 2d + 1. The algorithm in [9]
requires the first d multiples {[i]P}1≤i≤d of the input point, which is what makes
`-isogeny computations become rather expensive for large `. However, this pro-
cess parallelises almost perfectly: for t processors, dt/2e steps of the Montgomery
ladder are used to compute [i]P for 1 ≤ i ≤ t. The i-th processor can then com-
pute [i+jt]P as the differential sum of [i+(j−1)t]P , [t]P , and [i+(j−2)t]P for
1 ≤ j ≤ dd/te. After the initial phase that assigns the three values to each proces-
sor, no communication is required between the processors until the end, where

9

the subproducts (which were independently accumulated in the same manner
as [9, §5]) can all be collected and multiplied together. In the case of computing
image points, then one final squaring and one final multiplication are used to
finish the routine [9, Theorem 1]; in the case of computing image curves, then
log(`) final multiplications and squarings are required [29]. Note that this par-
allelisation can be exploited across any of the prime degree isogenies that are
large enough to make it worthwhile.

Precomputation. Assume Bob is tasked with large prime degree isogenies and
he is the one generating ephemeral public keys. The runtime of his public key
generation procedure can be improved if storage permits a significant offline
precomputation. For example, if his largest prime-degree isogeny is an `-isogeny,
he could precompute all of the `+1 possible image curve/point triples (see §2.2),
and at runtime he could simply select the triple corresponding to his secret key.

4 Security analysis

There are two main changes to the usual computational isogeny problems under-
lying SIDH and SIKE [16, Problems 5.1–5.4] that are implicit in this paper. The
first is that the isogeny walks now use multiple values of `; the vertex set of a
given graph stays fixed, but the edges now change between successive steps. The
second is that the walks are no longer half-length (i.e. around half the bitlength
of p); lowering the size of the primes relative to the length of the walks means
that other avenues of attack become relevant with respect to the usual meet-in-
the-middle attacks4. This section studies the implications of these changes with
respect to known attacks from the literature.

4.1 Multiple edge sets.

Based on current knowledge, there is no reason to believe that a walk consisting
of many different prime degree isogenies makes the underlying problem apprecia-
bly easier than that of a walk in a fixed `-isogeny graph, provided the number of
possible destination nodes is around the same size. When computing L-isogenies
with L =

∏
`eii , the number of cyclic subgroups of order L inside any given

group E(Fp2) is
∏

(`i + 1)`ei−1i , and so long as this is around the same size as

4Comments on an earlier version of this paper illustrated some confusion over
whether or not torsion point attacks [32] become relevant in this setting. Note that
these attacks only become relevant when either (i) Alice and Bob’s isogeny degrees are
extremely unbalanced, e.g. when one is greater than the square of the other, or (ii) when
a secret isogeny degree is much larger than the size of the prime p. It is important to
stress that neither (i) or (ii) is proposed in this paper, and moreover, that it is unclear
how one could possibly achieve (i) or (ii) while working in the proposed framework.
The secret isogeny degrees M and N must both be coprime and their product must
divide p2 − 1, so their being balanced (i.e. M ≈ N) immediately rules out one of them
being much larger than p.

10

(`+1)`e−1, the difficulty of recovering an L-isogeny appears to be no easier than
that of recovering an `e-isogeny. The generalisation of the problems underlying
SIDH to isogenies of multiple degrees has already been considered in prior works
(e.g. [32], [19, §2.3], and [7]), where the same conclusion was drawn (or the same
assumption was made).

4.2 Security of non-commutative vs. commutative schemes

There are currently two main umbrellas of isogeny-based public-key cryptogra-
phy under public scrutiny: those like SIDH [23] and SIKE [22] where the curves
involved have non-commutative endomorphism rings, and those like CRS [13,36]
and CSIDH [6] where the associated endomorphism rings are commutative. It
is important to note that, while there are similarities between the instantiations
herein and CSIDH (like the use of many different prime isogeny degrees in the
same secret computation), this paper falls entirely under the non-commutative
umbrella. This means B-SIDH inherits two security virtues from SIDH: the first
is that it is seemingly immune to Kuperberg’s algorithm [25], meaning that the
best known quantum algorithms are exponential (see §4.4); the second is that it
lends itself to regular algorithms and therefore more simple constant-time imple-
mentations. On the other hand, it inherits the same drawback as SIDH of being
susceptible to active attacks [18], so requires the same transformations that were
used in the SIKE proposal – see [22].

4.3 Classical cryptanalysis.

When L =
∏
`eii ≈ p1/2, as in the original SIDH proposal, the meet-in-the-

middle or claw-finding algorithms [16, §5.3] stand alone as the best known
attacks against SIDH and SIKE. However, the most interesting instantiations
proposed in this paper have L � p1/2, and as L tends towards p, algorithms
other than the meet-in-the-middle attacks become relevant. In what follows it
will be assumed that L ≈ p, since this is the extreme case where the alternative
attack avenues are most relevant. The underlying problem is to find the isogeny
φ : E1 → E2 of degree L, where E1/Fp2 and E2/Fp2 are supersingular.

Claw-finding algorithms. Let L1 ≈ L2 ≈ p1/2 with L1L2 = L. The claw-
finding algorithm cited by Jao and De Feo [23, §5.2] uses O(L1) time to compute
a table of all of the curves L1-isogenous to E1, and stores them using O(L1)
memory. It then proceeds by trying one L2-isogeny at a time, this time emanating
from E2, until a match is found in the table and the problem is solved; this stage
requires O(L2) time and essentially no memory. It follows that the claw-finding
algorithm runs in O(p1/2) time and requires O(p1/2) memory.

Adj, Cervantes-Vázquez, Chi-Domı́nguez, Menezes and Rodŕıguez-Henŕıquez [1]
argued that the van Oorschot-Wiener (vOW) parallel collision finding algo-
rithm [42] has a lower overall cost for finding φ, and thus should be used to
assess the security of SIDH and SIKE. Their implementation confirmed that the

11

original vOW runtime analysis [42] is sharp in the context of finding the isogeny
φ. If w is the number of entries that can be stored in the table above, m is
the number of processors running in parallel, and t is the time taken to com-
pute L1 and L2 isogenies, then the vOW algorithm finds φ in expected runtime

T = 2.5
m ·

(
p3/4

w1/2

)
· t. Adj et al. conclude that w > 280 is infeasible, so conduct

their analysis by setting w = 280. With this choice of w, it helps to point out
that for p = 2160, the runtime of vOW (on one processor) is T = 2.5 · t · p1/2;
thus, when p� 2160, the vOW runtime is T � p1/2.

Random walk algorithms for any path. There are two styles of applicable
random walk algorithms that can be used to solve the general supersingular
isogeny problem: both Pollard rho [35] and Delfs-Galbraith [14] find some path
between E1 and E2. The former finds an isogeny between E1 and E2 by taking
two pseudo-random walks in the graph of size O(p); the number of steps required
until these two walks collide is O(p1/2) by the birthday paradox. The latter
algorithm, which is preferred in practice (see [14, §4] or [5]), uses two self-avoiding
random walks to find paths from each curve to two subfield curves, Ẽ1/Fp and

Ẽ2/Fp, and then connects these two subfield curves. Since there are O(p1/2)
subfield curves in the graph of size O(p), the first step requires O(p1/2) steps,
and since connecting the two subfield curves requires O(p1/4) steps [14], the
entire algorithm takes O(p1/2) steps to find an isogeny connecting E1 and E2.
Like vOW, the Delfs-Galbraith algorithm parallelises perfectly, but unlike vOW,
it does not have large storage requirements.

Both of these algorithms are likely to terminate with a path that is not the
secret path corresponding to φ. However, since E1 is typically a special curve
with a known endomorphism ring End(E1), it is prudent to assume that this can
be used to modify the path into the correct one via the techniques discussed at
length in [18, §4].

4.4 Quantum cryptanalysis.

The best known quantum algorithm for solving SIDH and SIKE instances is,
asymptotically, Tani’s algorithm [40]. Roughly speaking, as p→∞, Tani’s algo-
rithm solves the claw-finding problem for secret isogenies of degree O(p1/2) in
time O(p1/6) on a quantum computer. Translating to the setting of isogenies of
degree L ≈ p, this would give an O(p1/3) quantum claw-finding algorithm; note
that recent work of Jaques and Schanck [24] shows that (even under the assump-
tion of a large amount of quantum resources) the concrete complexity of Tani’s
algorithm is much closer to the classical claw-finding complexity. Nevertheless,
when L ≈ p, Tani’s algorithm is no longer the superior algorithm for solving
the corresponding isogeny problem. In [5], Biasse, Jao and Sankar give a quan-
tum algorithm for the general supersingular isogeny problem (in characteristic
p) that runs in time O(p1/4). Their algorithm is essentially the Delfs-Galbraith
algorithm (from above) ported to the quantum setting; they use Grover’s algo-
rithm [20] to get a quadratic speedup from O(p1/2) to O(p1/4) on the phase that

12

finds the two supersingular subfield curves Ẽ1/Fp and Ẽ2/Fp, and then develop
a subexponential algorithm (based on the Childs-Jao-Soukharev subexponential
algorithm [8] for the ordinary case) to connect the subfield path. The memory
requirements of this algorithm are small; Biasse, Jao and Sankar define a set of
N isogenies of degree 3λ, where λ ∈ O(log(p)) is chosen large enough so that
this set contains a walk that passes through a subfield curve with probability
1/2. As long as there are enough (i.e. O(log(p))) qubits to encode such a path,
then this algorithm succeeds with probability 1/4 [5, Proposition 2].

As in the classical algorithms, since End(E1) is typically known, the path
obtained by the above process can presumably be modified into the path corre-
sponding to φ at no additional asymptotic cost.

4.5 Security summary.

When φ : E1 → E2 is an isogeny between two supersingular curves E1/Fp2 and

E2/Fp2 of degree L =
∏k
i=1 `

ei
i ≈ p, the best known classical algorithm for finding

φ is the Delfs-Galbraith algorithm [14]; it runs in O(p1/2) time and (unlike claw-
finding or vOW) does not have large storage requirements. Applying Grover’s
speedup to the Delfs-Galbraith algorithm also gives the best known quantum
algorithm [5]; it requires O(log(p)) qubits, run in time O(p1/4), and does not
have large storage requirements. In the classical case, Delfs-Galbraith parallelises
perfectly, where as Grover’s algorithm is well-known to give a

√
m speedup when

parallelised across m quantum processors [44].

5 Searching for friendly instances

This section presents a variety of example primes for which the approach in this
paper becomes interesting in practice. Recall from §2.3 and §3.1 that the most
interesting primes are those where M | p+1 and N | p−1 are both large enough
to reach a requisite security level and are as smooth as possible.

At a high level, the methods of searching for these primes fall into three
categories:

– Fast, pre-existing primes. These are primes that are already popular in
the classical ECC literature, e.g. Mersenne and Ridinghood primes: here
a large power of 2 typically divides p + 1, which is an upshot of p being
cherry-picked to support fast finite field arithmetic. In the present context,
it also means that Alice can compute 2m-isogenies as usual, meaning that
she obtains a speedup over typical SIDH/SIKE isogenies due solely to the
faster underlying arithmetic. On the other hand, the scarcity of these primes
means that p−1 is unlikely to be smooth, so Bob’s isogenies tend to be a lot
worse than the 3n-isogenies he computes in SIDH/SIKE. Examples of these
primes are given in §5.1.

13

– Extended Euclidean algorithm. The first method of searching for new
primes involves taking a and b coprime, e.g. a = 2u and b = 3v, using the
extended Euclidean algorithm to find integers s and t such that st < 0 and
as + bt = 1, and then sieving over integer values of k until the (unique)
integer lying between |2a(s − kb)| and |2b(s + ka)| is prime. Alice and Bob
can then take M = a · |s − kb| and N = b · |s + ka| and have a large part
(i.e., around half in the balanced case) of their isogeny product being a small
prime power. Examples found with this technique are in §5.2.

– Primes of the form p = 2xn − 1. The second method of searching for
friendly instances involves fixing n as a very small integer (e.g. n = 6), and
searching over x ∈ Z until p = 2xn−1 is prime. Restricting x to be B-smooth
guarantees that p+1 is B-smooth, and the factorisation of p−1 = 2(xn−1)
for certain values of n increases the likelihood that p−1 is also smooth. This
method is arguably the most successful in terms of giving both Alice and
Bob fast isogenies, and it is detailed in §5.3.

The most interesting examples from §5.2 and §5.3 are collected and compared
in §5.4.

5.1 Fast primes: accelerating Alice, burdening Bob

Many fast primes are of the form

p = 2m · c− 1, (3)

which allow Alice to compute 2m-isogenies just like she would in SIDH. However,
unlike the primes in SIDH where c = 3n ≈ 2m, the values of c that are of inter-
est here are when c is either chosen to facilitate faster field arithmetic in Fp2 , is
much smaller than 2m so that p is smaller than usual, or both. Here Alice’s com-
putations will benefit from the faster field arithmetic, but Bob’s computations
become significantly slower due to his isogenies no longer being 3n-isogenies, but
rather (

∏
`eii)-isogenies. Depending on the efficacy of the methods in §3.2, in

almost all such cases the factor slowdown incurred on Bob’s side will be much
worse than the factor speedup enjoyed by Alice, meaning that the runtime of
one protocol instance will be significantly slower in general. However, there are
real-world scenarios where such a trade-off would be welcomed. One such sce-
nario is in TLS, where servers are oftentimes performing orders of magnitude
more runs of the protocol than an individual client is; here slowdowns on the
client side could be tolerated (or even unnoticed) to afford a speedup to the
server. An example of the opposite scenario, i.e. when the priority becomes the
client’s performance, is in the arena of lightweight cryptography (e.g. IoT); here
it is often the case that resource-constrained devices are communicating with a
relatively unconstrained sever.

Mersenne primes. Putting c = 1 into (3) yields Mersenne primes, for which
only m ∈ {127, 521} are of interest in this paper. With m = 521, write the

14

factorisation p−1 = 2521−2 = 2 ·3 ·52 ·11 · . . . q1 ·q2 ·q3 · . . . , where q1 = 7623851
(23 bits), q2 = 34110701 (26 bits) and q3 = 2400573761 (32 bits). Alice can use
2e-isogenies for any e ≤ m, and can subsequently scale her security up and down
over the same field (e.g. to match the security of any of the SIKE instances). On
Bob’s side, he can compute L-isogenies for any L | p−1, e.g. with L =

∏
`i≤qn `

ei
i ,

he can take n = 1 to match SIKEp434, n = 2 to match SIKEp503, and n = 3 to
match SIKEp610. Taking m = 127 is too small to offer any reasonable security
in the elliptic curve setting, however combining the security analyses in [17, §4.1]
and [12] reveals that B-SIDH construction in the genus-2 setting could achieve
good post-quantum security over this smaller Mersenne prime. The factorisation
p−1 = 2127−2 = 2 ·33 ·72 ·19 ·43 ·73 ·127 ·337 ·5419 ·92737 ·649657 ·77158673929
shows that the product of all odd primes up to 649657 (20 bits) could build a
genus-2 isogeny that is large enough to obtain 128 bits of classical security and
64 bits of quantum security.

The Ridinghoods. Putting c = 2m − 1 into (3) yields Ridinghood primes,
which offer fast Karatsuba-style arithmetic in Fp; the most famous of these
has c = 2224 and underlies Hamburg’s Goldilocks curve [21]. Here Alice can
meet the security offered by SIKEp434 by computing 2224-isogenies. If Bob is to
compute L-isogenies with L | p− 1, he would need to compute a prime isogeny
whose degree is 78 bits in length. However, allowing Bob to work on both sides
(by including factors of c) shows that he can meet the same requisite security
when L’s largest prime factor is only 24 bits. Of the other Ridinghoods with
m ∈ {161, 208, 224, 225, 240, 354}, the most striking example is with m = 225;
here the largest prime-degree isogeny needed for Bob to match the security of
SIKEp434 is ` = 216 + 1. Note that both of these examples are subject to the
caveat in discussed in the paragraph below.

Bob on both sides. In the Ridinghood scenarios above, Bob is better off comput-
ing isogenies of order N = N1N2, where N - p− 1 but where N1 | p+ 1 and N2 |
p− 1. In this case, general points in EA,B [N] no longer have their x-coordinate
in Fp2 , but rather in Fp4 , and performing arithmetic in Fp4 would hamper the
efficiency of the isogeny algorithms significantly. One way to approach this sce-
nario is to instead have Bob use two bases 〈P1, Q1〉 = EA,B [N1] and 〈P2, Q2〉 =
EA,γB [N2], which can both be defined such that all four x-coordinates are in
Fp2 . His secret keys are then of the form (s1, s2) ∈ [0, N1) × [0, N2), which
generate the secret kernels S1 = P1 + [s1]Q1 and S2 = P2 + [s2]Q2. Bob
can compute φ1 : E0 → E0/〈S1〉 and then φ2 : E0/〈S1〉 → (E0/〈S1〉)/〈φ1(S2)〉,
which corresponds to the secret isogeny φB = (φ2 ◦ φ1); his public key is then
(EB , P

′
A, Q

′
A) = (φB(E0), φB(PA), φB(QA)), which is the same size as usual. On

the other side, Alice’s public keys must include the images of all four of Bob’s
basis points under her secret isogeny, so they become between 1.6x and 1.7x
larger (if a static-ephemeral version of Diffie-Hellman à la SIKE [22] is used,
then the setup would likely be arranged to make the static key the larger key).
Computing these extra image points also incurs some additional overhead, but

15

this would still be faster than working with two basis points that are defined
over Fp4 .

5.2 Searching with the extended Euclidean algorithm

This subsection describes the first of two methods used to search for primes that
offer interesting B-SIDH instantiations. Both methods can be used to find primes
that target any security level, but for concreteness (and based on the security
analysis in Section 4) the remainder of this paper will focus on finding primes
with p > 2230 in order to make the classical complexity of Delfs-Galbraith [14]
and the quantum complexity of Biasse-Jao-Sankar [5] large enough to reach
NIST’s security category 1. Moreover, the respective degrees M and N of Alice
and Bob’s secret isogenies must both be larger than 2210 in order to ensure
that the classical and quantum claw-finding complexities roughly match those
of SIKEp434 [22].

Let B > 2 be a given smoothness bound. The idea in this subsection is to
search over coprime a and b so that the extended Euclidean algorithm outputs
s ∈ Z and t ∈ Z such that

a · s+ b · t = 1, (4)

with |s| < |b/2| and |t| < |a/2| [37, Theorem 4.3]. It follows that |a · s| and
|b · t| differ by 1 and hence are necessarily coprime. Thus, if the unique integer
lying between 2|a · s| and 2|b · t| is a prime p, and if the inputs a and b are both
B-smooth, it follows that p2 − 1 is B-smooth if and only if s · t is B-smooth.

For a fixed (a, b), there are actually an infinite number of pairs satisfying (4),
obtained by writing (sk, tk) = (s+ kb, t− ka) for any k ∈ Z. It follows that the
bounds on the general solutions are

|sk| < |k + 1/2| · |b| and |tk| < |k − 1/2| · |a|.

For a given input pair (a, b), this gives a precise number of k values that can be
tried to produce a prime p below a certain bound w, namely

|k| ≤ bw/(a · b)c. (5)

The following examples illustrate how B-SIDH instances that offer interesting
trade-offs can be found in this way.

Example 1. Rather than using the 434-bit prime p = 22163137−1 as in SIKEp434,
suppose the size of the desired prime is instead bounded above by w = 2384. On
input of a = 2186 and b = 3115 (note that 2182 < b < 2183), the extended
Euclidean algorithm produces (s0, t0) with 2179 < |t0| < |s0| < 2180. (5) reveals
that |k| ≤ 54324. Of the 2 · 54324 + 1 possible values of k, 1149 of them gave
rise to a prime (as the unique integer) lying between 2|a · sk| and 2|b · tk|, and
k = −4189 gave rise to the 382-bit prime

p :=0x277AF122D68C175343851A90621232112FB72C2AAB291357

9001.

16

with

M = 3115 · 7 · 13 · 312 · 157 · 241 and

N = 2188 · 11 · 17 · 29 · 73 · 193,

which are such that 2213 < M < 2214 < N < 2215. With these sizes, the security
of the resulting instantiation is comparable to SIKEp434, but with a prime that
fits into six 64-bit words, rather than seven. Alice and Bob pay the price of
having to do a handful of slightly larger isogenies, but on the other hand all of
their arithmetic now takes place over a smaller field.

Example 2. Restricting a and b to be powers of primes restricts the number of
inputs to the process. The following example was found by instead letting a and
b vary over 25-smooth numbers. The coprime numbers a = 24 · 3 · 716 · 179 · 318

and b = 1118 · 19 · 2313 yield the 253-bit prime

p =0x1935BECE108DC6C0AAD0712181BB1A414E6A8AAA6B510FC29826190FE7EDA80F

with

M = 24 · 3 · 716 · 179 · 318 · 311 · 571 · 1321 · 5119 · 6011 · 14207 · 28477 · 76667 and

N = 1118 · 19 · 2313 · 47 · 79 · 83 · 89 · 151 · 3347 · 17449 · 33461 · 51193,

which are such that M > 2224 and N > 2213.

Example 3. Increasing the smoothness bound on a and b to 27 found the 255-bit
prime

p =0x76042798BBFB78AEBD02490BD2635DEC131ABFFFFFFFFFFFFFFFFFFFFFFFFFFF

with

M = 2110 · 5 · 72 · 67 · 223 · 4229 · 9787 · 13399 · 21521 · 32257 · 47353 and

N = 334 · 11 · 17 · 192 · 29 · 37 · 532 · 97 · 107 · 109 · 131 · 137 · 197 · 199

· 227 · 251 · 5519 · 9091 · 33997 · 38201,

which are such that M > 2215 and N > 2212.

Example 4. Unbalancing the inputs a and b to the extended Euclidean algorithm
can produce the sorts of unbalanced B-SIDH instantiations that are geared to-
wards the scenarios mentioned at the beginning of §5.1. On input of a = 2216

and b = 32 · 5 · 7 · 112 · 17 · 29, the process finds the 255-bit Montgomery-friendly
prime

p :=0x6E052A4E15FF

Here Alice can take M = 2217 and Bob can take

N = 32 · 5 · 7 · 112 · 17 · 29 · 67 · 431 · 467 · 607 · 1579 · 24169 · 68947

· 345229 · 12676847 · 38334727 · 41110859 · 51040879,

17

which is greater than 2216. In this case Alice can expect a large speedup over
her analogous isogeny computations in SIDH/SIKE: she can still compute her
2216 isogenies exactly as before, but now she is performing arithmetic over a 255-
bit prime (instead of the 434-bit prime). Moreover, her public keys are already
smaller than the comparable compressed public keys in SIKEp434, i.e., she need
not incur the additional compression overhead, which is significant in SIKE [22].
If the above prime was used in the SIKE scenario with the long-term static
secret being an N -isogeny, the estimated speedup on the encapsulator side lies
somewhere between a factor 2.5 and a factor 3.5.

5.3 Primes of the form p = 2xn − 1

This subsection focusses on the second method to find primes that are particu-
larly suited to the B-SIDH construction. In terms of a balanced smoothness for
both Alice and Bob, it has found the most promising examples to date.

An earlier version of this paper aimed to find primes p such that p − 1 and
p+ 1 are minimally smooth by way of Störmer’s theorem [39] (see also [26]). For
a given smoothness bound B, Störmer’s theorem says that are a finite number
of integers, x, such that x− 1 and x+ 1 are B-smooth; moreover, it gives a way
to find this set in its entirety. If there are t primes up to B, then finding this
set of integers amounts to solving all Pell equations of the form x2 −Dy2 = 1,
where D is both squarefree and B-smooth; there are clearly 2t such D, and
therefore 2t Pell equations to be solved [26]. Unfortunately, the sizes of B for
which this task is feasible did not produce any values of x that offer meaningful
security (at least, not in the case where the primes are chosen to underly elliptic
curves). For example, with B = 47, the largest x such that x− 1 and x+ 1 are
B-smooth is (the 42-bit integer) x = 2218993446251. With B = 113, the largest
such x is x = 38632316754147847668001 (76 bits), and the largest prime such
x is x = 151908300112120373249 (68 bits); this required solving 2t = 230 Pell
equations, and was the largest B exhaustively searched in this work.

Although it was infeasible to extend this method to the sizes of B required
to produce p > 2200, it did prove useful in showing factorisation patterns that
often arose for values in the larger ranges. In particular, the largest prime values
were often of the form p = 2zn − 1, with z and n both integers, and where
n > 1. Indeed, searching for primes of this form has proven to be the most
useful method to date, and the reason is best illustrated via an example. With
n = 2, we can search over B-smooth x such that p = 2x2 − 1 is prime, at
which point we are guaranteed that p + 1 is B-smooth and we are hoping that
p−1 = 2x2−2 = 2(x−1)(x+1) is also B-smooth. In other words, we are hoping
that two values in O(

√
p) are B-smooth. In contrast, a naive search (i.e. a search

with n = 1) would be hoping to find one value in O(p) that is B-smooth. Under
the heuristic assumption that x−1 and x+1 are uniformly distributed in O(

√
p),

and taking into account well-established smoothness probabilities (cf. [27]), it
becomes clear that the search with n = 2 is far superior.

This same reasoning extends to larger values of n, and it is readily seen that
(for a fixed smoothness bound B and desired size of p) the success probability

18

of the search becomes tied to the ratio d/n, where d is the degree of the largest
irreducible factor(s) of xn−1 ∈ Z[x]. Larger values of n can be chosen to minimise
this ratio, however a larger n means fewer values of x to search over (for a desired
size of p = 2xn − 1). Though some examples were found with n > 6 (see §5.3),
the sweet spot when aiming for primes between 192 and 256 bits proved to be
n = 4 and n = 6.

Searching with n = 4. Write p(x) = 2x4 − 1, and let the smoothness bound
be B as usual. A search for primes of this form such that 2230 < p < 2256 must
look for x ∈ [257.5, 263.75). With the computing resources at hand, an exhaustive
search of this domain was out of the question. However, one can do better than
searching over smooth values of x by observing that

p(x)− 1 = 2(x− 1)(x+ 1)(x2 + 1).

When inputting B-smooth values of x ≈ 264, the hope is to find x − 1, x + 1
and x2 + 1 as all being B-smooth. Again, under the heuristic assumption that
the smoothness probabilities of these values are independent of one another, this
naive search is then hoping for two 64-bit numbers (x − 1 and x + 1) and one
128-bit number (x2 + 1) to be B-smooth.

A better approach is to instead search through values of x ≈ 264 such that
x2 + 1 necessarily factors into two numbers of at most 264. This can be achieved
by choosing a subset of the primes less than B, say {q1, . . . , qt}, and solving the
equation x2i + 1 ≡ 0 mod qi for each 1 ≤ i ≤ t. These t values of xi can then be
combined using the CRT to give x such that x2 + 1 ≡ 0 mod (

∏
qi). In this case

each of the qi must be such that qi ≡ 1 mod 4, so that x2i + 1 ≡ 0 mod qi has
a solution. The trick is to keep choosing random subsets of these primes such
that the CRT will output values of x ∈ [257.5, 263.75); this way, the search is now
hoping to stumble on three 64-bit values that are B-smooth, which is far more
likely than the naive search above.

Note that each time a subset is chosen, there are 2t combinations of solutions
(corresponding to the t choices of sign) that can be checked. Furthermore, the
qi need not be distinct; solutions to x2i + 1 ≡ mod qzi are computed via Hensel
lifting [37, §12.5.2]. The following example, which is perhaps the most striking
example in this paper, was found in precisely this manner.

Example 5. With the smoothness bound B = 213, the primes

(q1, . . . , q5) = (4481, 4801, 6673, 7537, 7621)

gave one of the solutions for x2+1 ≡ 0 mod (q1 · · · · · q5) as x = 2811207061409479600
(lifted to Z). Moreover,

x = 24 · 52 · 7 · 23 · 79 · 107 · 307 · 2129 · 7901

19

is also B-smooth, and yields a (247-bit) prime p = 2x4 − 1. Alice and Bob can
take

M = 217 · 58 · 74 · 234 · 794 · 1074 · 3074 · 21294 · 79012 and

N = 3 · 11 · 17 · 241 · 349 · 421 · 613 · 983 · 1327 · 1667 · 2969 · 3769

· 4481 · 4649 · 4801 · 4877 · 5527 · 6673 · 7103 · 7537 · 7621,

which are such that 2220 < M < 2221 and 2210 < N < 2211.

Searching with n = 6. In the case of p = 2x6 − 1, it was possible to ex-
haustively search through the full set of x ranging up to 2255/6 < 243 (though
analogous methods to those described above could be applied if n = 6 was used
to target higher security levels). Interestingly, this did not produce any factorisa-
tions of p− 1 that were as smooth as Example 5, so none of the below examples
below are as good for Bob as that one. However, some very smooth values of x
(which favour Alice) did find examples where B ≈ 216 was enough to give Bob
the requisite security. Three such examples are given below.

Example 6. The 237-bit prime p = 2 · (23 · 34 · 17 · 19 · 31 · 37 · 532)6 − 1 has

p− 1 = 2 · 7 · 13 · 43 · 73 · 103 · 269 · 439 · 881 · 883 · 1321 · 5479 · 9181

· 12541 · 15803 · 20161 · 24043 · 34843 · 48437 · 62753 · 72577 · 709153.

Example 7. The 247-bit prime p = 2 · (26 · 32 · 75 · 11 · 17 · 31 · 37)6 − 1 has

p− 1 = 2 · 13 · 192 · 29 · 43 · 79 · 83 · 107 · 643 · 661 · 733 · 1447 · 2347 · 7753

· 28879 · 29527 · 38281 · 64609 · 76651 · 86311 · 228841 · 745309897.

Example 8. The 250-bit prime p = 2 · (53 · 101 · 211 · 461 · 2287)6 − 1 has

p− 1 = 24 · 32 · 7 · 13 · 37 · 79 · 107 · 109 · 199 · 349 · 433 · 487 · 1607 · 1993 · 3067

· 5701 · 6199 · 6373 · 7883 · 8821 · 11497 · 19507 · 57037 · 78301 · 486839.

Larger n. Although setting n > 6 shrinks the search space for primes p =
2xn − 1 of a certain size, interesting examples were still found in some cases.
These typically have p much larger than the degree of feasible isogenies on Bob’s
side, so fall back into the umbrella of the types of primes explored in §5.1 (here
there is typically a comfortable enough margin between p and the isogeny degrees
that claw-finding goes back to being the best classical attack). For brevity, write
` as the largest prime factor of a given N | p − 1 in each case. The 331-bit
prime p = 2 · (32 · 13)48 − 1 has N > 2213 with ` < 223. The 367-bit prime p =
2·(32·127)36−1 has N > 2216 with ` < 222. The 354-bit prime p = 2·(2·5·73)30−1
has N > 2201 with ` < 223. The 362-bit prime p = 2 · (2 · 112 · 17)30 − 1 has
N > 2208 and the 363-bit p = 2 · (23 · 232)30 − 1 with N > 2212, both with
` < 224. The 258-bit prime p = 2 · (23 · 32 · 23)24 − 1 has N > 2229 with ` < 221.
The 325-bit prime p = 2 · (2 · 3 · 5 · 13 · 29)24 − 1 has N > 2270 with ` < 226

and N > 2220 with ` < 221. The 250-bit prime p = 2 · (29 · 31 · 1901)12 − 1 has
N > 2211 with ` < 218 and the largest factor of p− 1 is 20 bits.

20

Table 1. Summary of various B-SIDH-friendly primes p. Further explanation in text.

ex.
p `max

Alice `max
Bob classical quantum PK (bytes)

(bits) (bits) (bits) DG vOW BJS B-SIDH hybrid

1 382 8 8 - 123 - 287* 335*

2 253 17 16 127 123 64 190 222

3 255 16 16 128 122 64 192 224

4 255 2 26 128 125 64 192 224

5 247 13 13 124 120 62 186 217

6 237 6 17 119 125 60 178 208

7 247 6 18 124 125 62 186 217

8 250 12 16 125 122 63 188 219

5.4 Summary

For the examples from this section, Table 1 lists the bitlengths of the maximum
prime isogeny degrees required by Alice and Bob, runtime complexities of the
relevant classical and quantum attacks (written as base-2 logarithms), and the
public key sizes of both standalone B-SIDH and a B-SIDH+ECDH hybrid. Fol-
lowing Section 4, the runtime of the Delfs-Galbraith (DG) algorithm is taken as
p1/2, the runtime of van Oorschot-Weiner (vOW) is taken as 2.5 ·L3/4/240 (with
L the degree of the respective isogeny), and the runtime of Biasse-Jao-Sankar
(BJS) is taken as p1/4; concrete runtimes in all three cases could be obtained by
multiplying these complexities with the time taken for the corresponding isogeny
computations. While the DG and BJS algorithms depend on the size of p, the
complexity of the vOW algorithm depends on the number of possible isogenies
computed by a given party (see §4.1). In the larger examples, Bob’s use of all
of the odd factors of p − 1 can be overkill, so in these instances two options
for Bob’s isogenies and the subsequent vOW runtime estimates are given. For
Example 1, the best quantum attack is not BJS (see the analysis in [22] instead),
and public keys could be compressed.

Following [11], B-SIDH public keys are three elements of Fp2 , and partnering
with an ECDH hybrid adds one additional element of Fp (the x-coordinate of
the public key corresponding to a non-supersingular Montgomery curve with a
strong ECDLP). It is worth pointing out that the asymptotic runtime of Delfs-
Galbraith against B-SIDH matches the asymptotic runtime of Pollard rho [35]
against the ECDLP, making the simplicity of the hybrid approach in [11, §8]
particularly attractive.

Acknowledgement. Special thanks to Kevin Kane for setting up a cluster of
machines that were used to search for parameters.

21

References

1. G. Adj, D. Cervantes-Vázquez, J. Chi-Domı́nguez, A. Menezes, and F. Rodŕıguez-
Henŕıquez. On the cost of computing isogenies between supersingular elliptic
curves. In SAC 2018, pages 322–343. Springer, 2018.

2. R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi. Key compression
for isogeny-based cryptosystems. In AsiaPKC, pages 1–10. Springer, 2016.

3. D. J. Bernstein. Curve25519: new Diffie-Hellman speed records. In International
Workshop on Public Key Cryptography, pages 207–228. Springer, 2006.

4. D. J. Bernstein, L. De Feo, A. Leroux, and B. Smith. Faster computation of iso-
genies of large prime degree. Fourteenth Algorithmic Number Theory Symposium,
ANTS-XIV, 2020.

5. J. Biasse, D. Jao, and A. Sankar. A quantum algorithm for computing isoge-
nies between supersingular elliptic curves. In INDOCRYPT 2014, pages 428–442.
Springer, 2014.

6. W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH: an efficient
post-quantum commutative group action. In ASIACRYPT 2018, pages 395–427.
Springer, 2018.

7. D. Cervantes-Vázquez, E. Ochoa-Jiménez, and F. Rodŕıguez-Henŕıquez. eSIDH:
the revenge of the SIDH. Preprint, 2020. https://eprint.iacr.org/2020/021.

8. A. M. Childs, D. Jao, and V. Soukharev. Constructing elliptic curve isogenies in
quantum subexponential time. J. Mathematical Cryptology, 8(1):1–29, 2014.

9. C. Costello and H. Hisil. A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In ASIACRYPT 2017, pages 303–329. Springer, 2017.

10. C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and D. Urbanik. Efficient
compression of SIDH public keys. In EUROCRYPT 2017, pages 679–706. Springer,
2017.

11. C. Costello, P. Longa, and M. Naehrig. Efficient algorithms for supersingular
isogeny Diffie-Hellman. In CRYPTO 2016, pages 572–601. Springer, 2016.

12. C. Costello and B. Smith. The supersingular isogeny problem in genus 2 and
beyond. In PQCrypto 2020, pages 151–168, 2020.

13. J. M. Couveignes. Hard homogeneous spaces. Preprint, 2006. http://eprint.

iacr.org/2006/291.

14. C. Delfs and S. D. Galbraith. Computing isogenies between supersingular elliptic
curves over Fp. Designs, Codes and Cryptography, 78(2):425–440, 2016.

15. L. De Feo. Exploring isogeny graphs. Habilitation thesis, December, 2018.
Manuscript available at https://defeo.lu/hdr/.

16. L. De Feo, D. Jao, and J. Plût. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. J. Mathematical Cryptology, 8(3):209–247,
2014.

17. E. V. Flynn and Y. B. Ti. Genus two isogeny cryptography. In PQCrypto 2019,
pages 286–306. Springer, 2019.

18. S. D. Galbraith, C. Petit, B. Shani, and Y. B. Ti. On the security of supersingular
isogeny cryptosystems. In ASIACRYPT 2016, pages 63–91. Springer, 2016.

19. S. D. Galbraith, C. Petit, and J. Silva. Identification protocols and signature
schemes based on supersingular isogeny problems. In ASIACRYPT 2017, pages
3–33. Springer, 2017.

20. L. K. Grover. A fast quantum mechanical algorithm for database search. In STOC
1996, pages 212–219. ACM, 1996.

22

https://eprint.iacr.org/2020/021
http://eprint.iacr.org/2006/291
http://eprint.iacr.org/2006/291
https://defeo.lu/hdr/

21. M. Hamburg. Ed448-Goldilocks, a new elliptic curve. IACR Cryptology ePrint
Archive, 2015:625, 2015.

22. D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A. Jalali,
B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes, V. Soukharev, and
D. Urbanik. SIKE: Supersingular Isogeny Key Encapsulation. Manuscript available
at sike.org/, 2017.

23. D. Jao and L. De Feo. Towards quantum-resistant cryptosystems from supersin-
gular elliptic curve isogenies. In PQCrypto 2011, pages 19–34. Springer, 2011.

24. S. Jaques and J. M. Schanck. Quantum cryptanalysis in the RAM model: Claw-
finding attacks on SIKE. In CRYPTO 2019, pages 32–61. Springer, 2019.

25. G. Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput., 35(1):170–188, 2005.

26. D. H. Lehmer. On a problem of Störmer. Illinois Journal of Mathematics, 8(1):57–
79, 1964.

27. Arjen K. Lenstra. Smoothness probability. In Encyclopedia of Cryptography and
Security. 2005.

28. K. Matsuo. SIDH over quadratic twists. In Proc. of SCIS2019 -2019 Symposium
on Cryptography and Information Security, 3B3-1, January 2019 https://www.

iwsec.org/scis/2019/.
29. M. Meyer and S. Reith. A faster way to the CSIDH. In INDOCRYPT 2018, pages

137–152. Springer, 2018.
30. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.

Mathematics of computation, 48(177):243–264, 1987.
31. M. Naehrig and J. Renes. Dual isogenies and their application to public-key com-

pression for isogeny-based cryptography. In ASIACRYPT 2019, pages 243–272.
Springer, 2019.

32. C. Petit. Faster algorithms for isogeny problems using torsion point images. In
ASIACRYPT 2017, pages 330–353. Springer, 2017.

33. A. K. Pizer. Ramanujan graphs and Hecke operators. Bulletin of the American
Mathematical Society, 23(1):127–137, 1990.

34. A. K. Pizer. Ramanujan graphs. AMS/IP Stud. Adv. Math., 7:159–178, 1998.
35. J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics

of computation, 32(143):918–924, 1978.
36. A. Rostovtsev and A. Stolbunov. Public-key cryptosystem based on isogenies.

Preprint, 2006. https://eprint.iacr.org/2006/145.
37. V. Shoup. A computational introduction to number theory and algebra. Cambridge

university press, 2009.
38. J. H. Silverman. The Arithmetic of Elliptic Curves, 2nd Edition. Graduate Texts

in Mathematics. Springer, 2009.
39. C. Størmer. Quelques théorèmes sur l’équation de Pell x2 − dy2 = ±1 et leurs

applications. Christiania Videnskabens Selskabs Skrifter, Math. Nat. Kl, (2):48,
1897.

40. S. Tani. Claw finding algorithms using quantum walk. Theor. Comput. Sci.,
410(50):5285–5297, 2009.

41. J. Tate. Endomorphisms of abelian varieties over finite fields. Inventiones mathe-
maticae, 2(2):134–144, 1966.

42. P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic
applications. J. Cryptology, 12(1):1–28, 1999.

43. J. Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB,
273:A238–A241, 1971.

23

sike.org/
https://www.iwsec.org/scis/2019/
https://www.iwsec.org/scis/2019/
https://eprint.iacr.org/2006/145

44. C. Zalka. Grover’s quantum searching algorithm is optimal. Physical Review A,
60(4):2746, 1999.

45. G. Zanon, M. A. Simpĺıcio Jr., G. C. C. F. Pereira, J. Doliskani, and P. S. L. M.
Barreto. Faster key compression for isogeny-based cryptosystems. IEEE Trans.
Computers, 68(5):688–701, 2019.

24

	B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion

