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Abstract. Quantum variants of lattice sieve algorithms are routinely
used to assess the security of lattice based cryptographic constructions. In
this work we provide a heuristic, non-asymptotic, analysis of the cost of
several algorithms for near neighbour search on high dimensional spheres.
These algorithms are key components of lattice sieves. We design quantum
circuits for near neighbour search algorithms and provide software that
numerically optimises algorithm parameters according to various cost
metrics. Using this software we estimate the cost of classical and quantum
near neighbour search on spheres. For the most performant near neighbour
search algorithm that we analyse we find a small quantum speedup in
dimensions of cryptanalytic interest. Achieving this speedup requires
several optimistic physical and algorithmic assumptions.

1 Introduction

Sieving algorithms for the shortest vector problem (SVP) in a lattice have received
a great deal of attention recently [1, 2, 8, 17, 33, 40]. The attention mostly stems
from lattice based cryptography, as many attacks on lattice based cryptographic
constructions involve finding short lattice vectors [3, 36, 39].

Lattice based cryptography is thought to be secure against quantum adver-
saries. None of the known algorithms to solve SVP (to a small approximation
factor) do so in subexponential time, but this is not to say that there is no gain
to be had given a large quantum computer. Lattice sieve algorithms use near
neighbour search (NNS) as a subroutine; near neighbour search algorithms use
black box search as a subroutine; and Grover’s quantum search algorithm [25]
gives a square root improvement to the query complexity of black box search.
A black box search that is expected to take Θ(N) queries on classical hardware
will take Θ(

√
N) queries on quantum hardware using Grover’s algorithm.
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Previous work has analysed the effect of quantum search on the query com-
plexity of lattice sieves [34, 35]. Of course, one must implement the queries
efficiently in order to realise the improvement in practice. Recent work has given
concrete quantum resource estimates for the black box search problems involved
in key recovery attacks on AES [23, 28] and preimage attacks on SHA-2 and
SHA-3 [4]. In this work, we give explicit quantum circuits that implement the
black box search subroutines of several quantum lattice sieves. Our quantum
circuits are efficient enough to yield a cost improvement in dimensions of crypt-
analytic interest. However, for the most performant sieve that we analyse the
cost improvement is small and several barriers stand in the way of achieving it.

Outline and Contributions. We start with some preliminaries in Section 2. In
particular, we discuss the “XOR and Population Count” operation (henceforth
popcount), which is our primary optimisation target. The popcount operation
is used to identify pairs of vectors that are likely to lie at a small angle to each
other. It is typically less expensive than a full inner product computation.

In Section 3 we introduce and analyse a filtered quantum search procedure.
We present our quantum circuit for popcount in Section 4. In Section 5 we provide
a heuristic analysis of the probability that popcount successfully identifies pairs
of vectors that are close to each other. This analysis may be of independent
interest; previous work [2, 17] has relied largely on experimental data for choosing
popcount parameters.

In Section 6, we rederive the overall cost of the NNS subroutines of three
lattice sieves. Our cost analysis exposes the impact of the popcount parameters
so that we can numerically optimise these in parallel with the sieve parameters.
We have chosen to profile the Nguyen–Vidick sieve [40], the bgj1 specialisation [2]
of the Becker–Gama–Joux sieve [9], and the Becker–Ducas–Gama–Laarhoven
sieve [8]. We have chosen these three sieves as they are, respectively, the earliest
and most conceptually simple, the most performant yet implemented, and the
fastest known asymptotically.

Finally, we optimise the cost of classical and quantum search under various cost
metrics to produce Figure 2 of Section 7. We conclude by discussing barriers to
obtaining the reported quantum advantages in NNS, the relationship between SVP
and NNS, and future work. Both the data produced, and the source code used to
compute it, are available at https://github.com/jschanck/eprint-2019-1161.
We consider our software a contribution in its own right; it is documented, easily
extensible and allows for the inclusion of new nearest neighbour search strategies
and cost models.

Interpretation. Quantum computation seems to be more difficult than classical
computation. As such, there will likely be some minimal dimension, a crossover
point, below which classical sieves outperform quantum ones. Our estimates give
non-trivial crossover points for the sieves we consider. Yet, our results do not
rule out the relevance of quantum sieves to lattice cryptanalysis. The crossover
points that we estimate are well below the dimensions commonly thought to
achieve 128 bits of security against quantum adversaries. However, our initial
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logical circuit level analysis (Figure 2, q: depth-width) is optimistic. It ignores
the costs of quantum random access memory and quantum error correction.

To illustrate the potential impact of error correction, we apply a cost model
developed by Gidney and Eker̊a to our quantum circuits. The Gidney–Eker̊a
model was developed as part of a recent analysis of Shor’s algorithm [20]. In the
Gidney–Eker̊a model, the crossover point for the NNS algorithm underlying the
Becker–Ducas–Gama–Laarhoven sieve [8] is dimension 312. In this dimension,
the classical and quantum variants both perform 2119.0 operations and need
at least 278.3 bits of (quantum accessible) random access memory. A large
cost improvement is obtained asymptotically, but for cryptanalytically relevant
dimensions the improvement is tenuous. Between dimensions 352 and 824 our
estimate for the quantum cost grows from appoximately 2128 to approximately
2256. In dimension 352 this is an improvement of a factor of 21.8 over our estimate
for the classical cost. In dimension 824 the improvement is by a factor of 214.4.

We caution that a memory constraint would significantly reduce the range of
cryptanalytically relevant dimensions. For instance, an adversary with no more
than 2128 bits of quantum accessible classical memory is limited to dimension
544 and below. In these dimensions we estimate a cost improvement of no more
than a factor of 213.6 at the logical circuit level and no more than 27.1 in the
Gidney–Eker̊a metric.

A depth constraint would also reduce the range of cryptanalytically relevant
dimensions. The quantum algorithms that we consider would be more severely
affected by a depth constraint than their classical counterparts, due to the poor
parallisability of Grover’s algorithm.

Acknowledgements. We thank Léo Ducas for helpful discussions regarding
ListDecodingSearch.

2 Preliminaries

2.1 Models of computation

We describe quantum algorithms as circuits using the Clifford+T gate set, but
we augment this gate set with a table lookup operation (qRAM). We describe
classical algorithms as programs for RAM machines (random access memory
machines).

Clifford+T+qRAM quantum circuits. Quantum circuits can be described at the
logical layer, wherein an array of n qubits encodes a unit vector in (C2)

⊗n
, or at

the physical layer, wherein the state space may be much larger. Ignoring qubit
initialisation and measurement, a circuit is a sequence of unitary operations,
one per unit time. Each unitary in the sequence is constructed by parallel
composition of gates. At most one gate can be applied to each qubit per time
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step. The Clifford+T gate set

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , T =

(
1 0
0 eiπ/4

)
,

is commonly used to describe circuits at the logical layer due to its relationship
with some quantum error correcting codes. This gate set is universal for quantum
computation when combined with qubit initialisation (of |0〉 and |1〉 states) and
measurement in the computational basis.

In addition to Clifford+T gates, we allow unit cost table lookups in the form
of qRAM (quantum access to classical RAM). The difference between RAM and
qRAM is that qRAM can construct arbitrary superpositions of table entries.
Suppose that (R0, . . . , R2n−1) are registers of a classical RAM and that each
register encodes an ` bit binary string. We allow our Clifford+T circuits access
to these registers in the form of an (n+ `) qubit qRAM gate that enacts

2n−1∑
j=0

αj |j〉 |x〉
qRAM−→

2n−1∑
j=0

αj |j〉 |x⊕Rj〉 . (1)

Here
∑
j αj |j〉 is a superposition of addresses and x is an arbitrary ` bit string.

Quantum access to classical RAM is a powerful resource, and the algorithms
we describe below fail to achieve an advantage over their classical counterparts
when qRAM is not available. We discuss qRAM at greater length in Section 7.

RAM machines. We describe classical algorithms in terms of random access
memory machines. For comparability with the Clifford+T gate set, we will work
with a limited instruction set, e.g. {NOT, AND, OR, XOR, LOAD, STORE}.
For comparability with qRAM, LOAD and STORE act on ` bit registers.

Cost. The cost of a RAM program is the number of instructions that it performs.
One can similarly define the gate cost of a quantum circuit to be the number of
gates that it performs. Both metrics are reasonable in isolation, but it is not clear
how one should compare the two. Jaques and Schanck recommend that quantum
circuits be assigned a cost in the unit of RAM instructions to account for the
role that classical computers play in dispatching gates to quantum memories [29].
They also recommend that the identity gate be assigned unit cost to account for
error correction. The depth-width cost of a quantum circuit is the total number
of gate operations that it performs when one includes identity gates in the count.

2.2 Black box search

A predicate on {0, 1, . . . , N − 1} is a function f : {0, 1, . . . , N − 1} → {0, 1}. The
kernel, or set of roots, of f is Ker(f) = {x : f(x) = 0}. We write |f | for |Ker(f)|.
A black box search algorithm finds a root of a predicate without exploiting any
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structure present in the description of the predicate itself. Of course, black box
search algorithms can be applied when structure is known, and we will often use
structure such as “f has M roots” or “f is expected to have no more than M
roots” in our analyses. We will also use the fact that the set of predicates on
any given finite set can be viewed as a Boolean algebra. We write f ∪ g for the
predicate with kernel Ker(f) ∪ Ker(g) and f ∩ g for the predicate with kernel
Ker(f) ∩Ker(g).

Exhaustive search. An exhaustive search evaluates f(0), f(1), f(2), and so on
until a root of f is found. The order does not matter so long as each element of the
search space is queried at most once. If f is a uniformly random predicate with
M roots, then this process has probability 1−

(
N−M
j

)
/
(
N
j

)
≥ 1− (1−M/N)

j
of

finding a root during j evaluations of f . This is true even if M is not known.

Filtered search. If f is expensive to evaluate, we may try to decrease the cost of
exhaustive search by applying a search filter. We say that a predicate g is a filter
for f if f 6= g and |f ∩ g| ≥ 1. We say that g recognises f with a false positive
rate of

ρf (g) = 1− |f ∩ g|
|g|

,

and a false negative rate of

ηf (g) = 1− |f ∩ g|
|f |

.

A filtered search evaluates g(0), f(0), g(1), f(1), g(2), f(2), and so on until a
root of f ∩ g is found. The evaluation of f(i) can be skipped when i is not a root
of g, which may reduce the cost of filtered search below that of exhaustive search.

Quantum search. Grover’s quantum search algorithm is a black box search
algorithm that provides a quadratic advantage over exhaustive search in terms
of query complexity. Suppose that f is a predicate with M roots. Let D be
any unitary transformation that maps |0〉 to 1√

N

∑
i |i〉, let R0 = IN − 2|0〉〈0|

and let Rf be the unitary |x〉 7→ (−1)
f(x)|x〉. Measuring D|0〉 yields a root of

f with probability M/N . Grover’s quantum search algorithm amplifies this to
probability ≈ 1 by repeatedly applying the unitary G(f) = DR0D

−1Rf [25].
Suppose that j repetitions are applied. The analysis in [25] shows that measuring

the state G(f)
j
D|0〉 yields a root of f with probability sin2((2j + 1) · θ) where

sin2(θ) = M/N . Assuming M � N , the probability of success is maximised at
j ≈ π

4

√
N/M iterations. Boyer, Brassard, Høyer, and Tapp (BBHT) show that a

constant success probability can be obtained after O(
√
N/M) iterations.

The same complexity can be obtained when M is not known. One simply
runs the algorithm repeatedly with j chosen uniformly from successively larger
intervals. The following lemma contains the core observation.
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Lemma 1 (Lemma 2 of [12]). Suppose that measuring D|0〉 would yield a root
of f with probability sin2(θ). Fix a positive integer m. Let j be chosen uniformly

from {0, . . . ,m− 1}. The expected probability that measuring G(f)
j
D|0〉 yields

a root of f is 1
m

∑m−1
j=0 sin2((2j + 1) · θ) = 1

2 −
sin(4mθ)
4m sin(2θ) . If m > 1/ sin(2θ) then

this quantity is at least 1/4.

The complete strategy is made precise by [12, Theorem 3].

Amplitude amplification. Brassard, Høyer, Mosca, and Tapp observed that the D
subroutine of Grover’s algorithm can be replaced with any algorithm that finds a
root of f with positive probability [13]. This generalisation of Grover’s algorithm
is called amplitude amplification. Let A be a quantum algorithm that makes no
measurements and let p be the probability that measuring A|0〉 yields a root of
f . Let G(A, f) = AR0A

−1Rf , where R0 and Rf are as in Grover’s algorithm.
Let θ be such that sin2(θ) = p. Suppose that j iterations of G(A, f) are applied

to A|0〉. The analysis in [13] shows that measuring the state G(A, f)
j
A|0〉 yields

a root of f with probability sin2((2j + 1) · θ). The BBHT strategy for handling
an unknown number of roots generalises to an unknown p.

2.3 Lattice sieving and near neighbour search on the sphere

A Euclidean lattice of rank m and dimension d is an abelian group generated by
integer sums of m ≤ d linearly independent vectors in Rd. In this paper we only
consider full rank lattices, i.e. m = d. The shortest vector problem in a lattice Λ
is the problem of finding a non-zero v ∈ Λ of minimal Euclidean norm. Norms in
this work are Euclidean and denoted ‖ · ‖. The angular distance of u, v ∈ Rd is
denoted θ(u, v) = arccos (〈u, v〉/‖u‖‖v‖), arccos(x) ∈ [0, π].

A lattice sieve takes as input a list of lattice points, L ⊂ Λ, and searches for
integer combinations of these points that are short. If the initial list is sufficiently
large, SVP can be solved by performing this process recursively. Each point in
the initial list can be sampled at a cost polynomial in d [31]. Hence the initial

list can be sampled at a cost of |L|1+o(1).
Sieves that combine k points at a time are called k-sieves. The sieves that we

consider in this paper are 2-sieves. They take integer combinations of the form
u± v with u, v ∈ L and u 6= ±v. If ‖u± v‖ ≥ max{‖u‖, ‖v‖} then we say that
(u, v) is a reduced pair, else it is a reducible pair.

We analyse 2-sieves under the heuristic that the points in L are independent
and identically distributed (i.i.d.) uniformly in a thin spherical shell. This heuristic
was introduced by Nguyen and Vidick in [40]. As a further simplification, we
assume that the shell is very thin and normalise such that L ⊂ Sd−1, the unit
sphere in Rd. As such, (u, v) are reducible if and only if θ(u, v) < π/3. The
popcount filter, introduced in Section 2.4, acts as a first approximation to θ(· , ·).

When we model L as a subset of Sd−1, we can translate some lattice sieves
into the language of (angular) near neighbour search on the sphere. For example,
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the Nguyen–Vidick sieve [40], which checks all pairs in L for reducibility, becomes1

Algorithm 1 with θ = π/3.

Algorithm 1 AllPairSearch

Input: A list L = (v1, v2, . . . vN ) ⊂ Sd−1 of N points. Parameter θ ∈ (0, π/2).
Output: A list of pairs (u, v) ∈ L× L with θ(u, v) ≤ θ.

1: function AllPairSearch(L; θ)
2: L′ ← ∅
3: for 1 ≤ i < N do
4: Li ← (vi+1, . . . , vN )
5: Search Li for any number of u that satisfy θ(u, vi) ≤ θ.
6: For each such u found, add (u, vi) to L′.
7: If |L′| ≥ N , return L′.

8: return L′

2.4 The popcount filter

Charikar’s locality sensitive hashing (LSH) scheme [15] is a family of hash
functions H, defined on Sd−1, for which

Pr
h←H

[h(u) = h(v)] = 1− θ(u, v)

π
. (2)

The hash function family is defined by

H =
{
u 7→ sgn(〈r, u〉) : r ∈ Sd−1

}
,

where sgn(x) = 1 if x ≥ 0 and sgn(x) = 0 if x < 0. Equation 2 follows from
the fact that θ(u, v)/π is the probability that uniformly random u and v lie in
opposite hemispheres.

Charikar observed that one can estimate θ(u, v)/π by choosing a random hash
function h = (h1, . . . , hn) ∈ Hn and measuring the Hamming distance between
h(u) = (h1(u), . . . , hn(u)) and h(v) = (h1(v), . . . , hn(v)). Each bit hi(u)⊕ hi(v)
is Bernoulli distributed with parameter p = θ(u, v)/π. In the limit of large n, the
normalised Hamming weight wt(h(u)⊕h(v))/n converges to a normal distribution
with mean p and standard deviation

√
p(1− p)/n.

In the sieving literature, the process of filtering a θ(·, ·) test using a threshold
on the value of wt(h(u) ⊕ h(v)) is known as the “XOR and population count

1 This is slightly imprecise. The analogy with the Nguyen–Vidick sieve is completed
only when Algorithm 1 is wrapped in a procedure that takes each (u, v) ∈ L′ and
maps it to (u± v)/‖u± v‖, and then recurses.

7



trick” [2, 17, 18]. Functions in Hn are also used in Laarhoven’s HashSieve [33].
We write popcountk,n(u, v;h) for a search filter of this type

popcountk,n(u, v;h) =

{
0 if

∑n
i=1 hi(u)⊕ hi(v) ≤ k,

1 otherwise.

When the n hash functions are fixed we write popcountk,n(u, v). The threshold, k,
is chosen based on the desired false positive and false negative rates. Heuristically,
if one’s goal is to detect points at angle at most θ, one should take k/n ≈ θ/π.
If k/n� θ/π then the false negative rate will be large, and many neighbouring
pairs will be missed. An important consequence of missing potential reductions
is that the N required to iterate Algorithms 1, 3, 4 increases. In Section 6 this
increase is captured in the quantity `(k, n). If k/n� θ/π then the false positive
rate will be large, and the full inner product test will be applied often. We
calculate these false positive and negative rates in Section 5. These calculations
and the fact that popcount is significantly cheaper than an inner product makes
popcount a good candidate for use as a filter under the techniques of Section 2.2.
Furthermore it is the filter used in the most performant sieves to date [2, 17].

2.5 Geometric figures on the sphere

Our analysis of the popcount filter requires some basic facts about the size of
some geometric figures on the sphere. We measure the volume of subsets of
Sd−1 = {v ∈ Rd : ‖v‖ = 1} using the (d − 1) dimensional spherical probability
measure2 µd−1. The spherical cap of angle θ about u ∈ Sd−1 is Cd−1(u, θ) = {v ∈
Sd−1 : θ(u, v) ≤ θ}. The measure of a spherical cap is

Cd(u, θ) := µd−1(Cd−1(u, θ)) =
1√
π

Γ (d2 )

Γ (d−12 )

∫ θ

0

sind−2(t) dt.

We will often interpret Cd(u, θ) as the probability that v drawn uniformly from
Sd−1 satisfies θ(u, v) ≤ θ. We denote the density of the event θ(u, v) = θ by

Ad(u, θ) :=
∂

∂θ
Cd(u, θ) =

1√
π

Γ (d2 )

Γ (d−12 )
sind−2(θ).

Note that Cd(u, θ) does not depend on u, so we may write Cd(θ) and Ad(θ) without
ambiguity. The wedge formed by the intersection of two caps isWd−1(u, θu, v, θv) =
Cd−1(u, θu) ∩ Cd−1(v, θv). The measure of a wedge only depends on θ = θ(u, v),
θu, and θv, so we denote it

Wd(θ, θu, θv) = µd−1(Wd−1(u, θu, v, θv)).

We will often interpret Wd(θ, θu, θv) as the probability that w drawn uniformly
from Sd−1 satisfies θ(u,w) ≤ θu and θ(v, w) ≤ θv. Note that θ ≥ θu + θv ⇒
Wd(θ, θu, θv) = 0. An integral representation of Wd(θ, θu, θv) is given in Appendix
A of the full version.
2 By “probability measure” we mean that µd−1(Sd−1) = 1.
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3 Filtered quantum search

A filter can reduce the cost of a search because a classical computer can branch
to avoid evaluating an expensive predicate. A quantum circuit cannot branch
inside a Grover search in this way. Nevertheless, a filter can be used to reduce
the cost of a quantum search.

The idea is to apply amplitude amplification to a Grover search. The inner
Grover search prepares the uniform superposition over roots of the filter, g. The
outer amplitude amplification searches for a root of f among the roots of g. We
present pseudocode for this strategy in Algorithm 2.

If |g| and |f ∩ g| are known, then we can choose the number of iterations of
the inner Grover search and the outer amplitude amplification optimally. When
these quantities are not known, we can attempt to guess them as in the BBHT
algorithm. In our applications, we have some information about |g| and |f ∩ g|,
which we can use to fine-tune a BBHT-like strategy.

Proposition 1 gives the cost of Algorithm 2 when we know 1. a lower bound,
Q, on the size of |f ∩ g|, and 2. the value of |g| up to relative error γ. In essence,
when a filter with a low false positive rate is used to search a space with few true
positives, Algorithm 2 can be tuned such that it finds a root of f with probability
at least 1/14 and at a cost of roughly γ

2

√
N/Q iterations of G(g).

Algorithm 2 FilteredQuantumSearch

Input: A predicate f and a filter g defined on {0, . . . , N − 1}. Integer parameters m1

and m2.
Output: A root of f or ⊥.
1: function FilteredQuantumSearch(f, g;m1,m2)
2: Sample integers j and k with 0 ≤ j < m1 and 0 ≤ k < m2 uniformly at random.
3: Let Aj = G(g)jD.
4: Let Bk = G(Aj , f ∩ g)k.
5: Prepare the state |ψ〉 = BkAj |0〉.
6: Let r be the result of measuring |ψ〉 in the computational basis.
7: if f(r) = 0 then
8: return r
9: return ⊥

If we know that the the inner Grover search succeeds with probability x < 1,
we can compensate with a factor of

√
1/x more iterations of the outer amplitude

amplification. We do not know x. However, in our applications, we do know that
the value of θ for which sin2(θ) = |g| /N will be fairly small, e.g. θ < 1/10. The
following technical lemma shows that, when θ is small, we may assume that
x = 1/5 with little impact on the overall cost of the search.

Let j and Aj be as in Algorithm 2. Let pθ(j) be the probability that measuring
Aj |0〉 would yield a root of g. For any x ∈ (0, 1), there is some probability qx(m1)
that the choice of j is insufficient, i.e. that pθ(j) < x. We expect to repeat

Algorithm 2 a total of (1− qx(m1))
−1

times to avoid this type of failure.
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Lemma 2. Fix θ ∈ [0, π/2] and x ∈ [0, 1). Let pθ, qx : R → R be defined by
pθ(j) = sin2((2j + 1) · θ) and qx(m) = 1

m |{j ∈ Z : 0 ≤ j < m, pθ(j) < x}|. If
m > π

4θ , then

qx(m) <
3 arcsin(

√
x)

π − arcsin(
√
x)

+
6θ

π
.

Proof. Observe that pθ(j) < x when |(2j + 1)θ mod π| < arcsin(
√
x). Let I0 be

the interval [0, arcsin(
√
x)). For integers t ≥ 1 let It = (tπ − arcsin(

√
x), tπ +

arcsin(
√
x)). Let c = c(m) be the largest integer for which [0, (2m− 1) · θ)

intersects Ic. The quantity mqx(m) counts the number of non-negative integers
i < m for which (2i+1)·θ lies in I0∪I1∪· · ·∪Ic. This is no more than (c+1)+b(2c+
1) arcsin(

√
x)/(2θ)c. It follows that qx(m) < (c+1)/m+(2c+1) arcsin(

√
x)/2mθ.

Note that 2mθ > (2m − 1)θ > cπ − arcsin(
√
x) and (c + 1)/m < 2θ/π + 1/m.

Hence qx(m) < (2c+ 1) arcsin(
√
x)/(cπ − arcsin(

√
x)) + 2θ/π + 1/m. Moreover,

qx(m) > qx(m− 1) when (2m− 1) · θ lies in Ic, and qx(m) < qx(m− 1) otherwise.
The upper bound on qx(m) that we have derived is decreasing as a function of
c. Hence the claim holds when c ≥ 1. Finally, when m = π

4θ and c = 0 we have
qx(m) < 2 arcsin(

√
x)/π + 4θ/π and qx(m) is decreasing until c = 1. ut

There are situations in which filtering is not effective, e.g. when the false
positive rate of g is very high, when evaluting g is not much less expensive than
evaluating f , or when f has a very large number of roots. In these cases, other
algorithms will outperform Algorithm 2. We remark on these below. Proposition 1
optimises the choice of m1 and m2 in Algorithm 2 for a large class of filters that
are typical of our applications.

Proposition 1. Suppose that f and g are predicates on a domain of size N and
that g is a filter for f . Let Q ∈ R be such that 1 ≤ Q ≤ |f ∩ g|. Let P and γ
be real numbers such that P/γ ≤ |g| ≤ γP . If γP/N < 1/100 and γQ/P < 1/4,
then there are parameters m1 and m2 for Algorithm 2 such that Algorithm 2
finds a root of f with probability at least 1/14 and has a cost that is dominated
by ≈ γ

2

√
N/Q times the cost of G(g) or by ≈ 2

3

√
γP/Q times the cost of Rf∩g.

Proof. Fix x ∈ (0, 1). We will analyse Algorithm 2 with respect to the parameters

m1 =
⌈
π
4

√
γN/P

⌉
and m2 =

⌈√
γP/3xQ

⌉
. Let θg be such that sin2(θg) = |g| /N .

Let j and k be chosen as in Algorithm 2. Let p = pθg (j) and q = qx(m1) be defined
as in Lemma 2. Note that since |g| /N < γP/N < 1/100 we can use 6θg/π < 1/5
in applying Lemma 2. Let θh(j) be such that sin2 (θh(j)) = p · |f ∩ g| / |g|.
With probability at least 1− q we have p ≥ x, which implies that sin(θh(j)) >√
xQ/γP . Since γQ/P < 1/4 ⇒ sin2(θh(j)) < 1/4, then cos(θh(j)) >

√
3/4.

Thus 1/ sin(2θh(j)) <
√

γP
3xQ ≤ m2. By Lemma 1 measuring G(Aj , f ∩ g)

k
Aj |0〉

yields a root of f ∩ g with probability at least 1/4. It follows that Algorithm 2
succeeds with probability at least (1− q)/4.

The algorithm evaluates G(g) exactly k · j + 1 times and evaluates G(g)
−1

exactly k · j times. The expected value of 2kj + 1 is c1(x) · γ ·
√
N/Q where

c1(x) ≈ (π/8)/
√

3x. Likewise the algorithm evaluates Rf∩g exactly k times, which

10



is c2(x) ·
√
γP/Q in expectation where c2(x) ≈ (1/2)/

√
3x. Taking x = 1/5, and

applying the upper bound on qx(m1) from Lemma 2, we have (1− qx(m1))/4 ≥
1/14, c1(x) ≈ 1/2 and c2(x) ≈ 2/3. ut

Remark 1. When γP/N ≥ 1/100 or γQ/P ≥ 1/4 there are better algorithms. If
both inequalities hold then classical search finds a root of f quickly. If γQ/P ≥ 1/4
then finding a root of f is not much harder than finding a root of g, so one can
search on g directly. If γP/N ≥ 1/100 then the filter has little effect and one can
search on f directly.

Remark 2. It is helpful to understand when we can ignore the cost of Rf∩g in
Proposition 1. Roughly speaking, if evaluating f is c times more expensive than
evaluating g, then the cost of calls to G(g) will dominate when N > c2 |g|. In a
classical filtered search the cost of evaluating g dominates when N > c |g|.

4 Circuits for popcount

Consider a program for popcountk,n(u, v). This program loads u and v from
specified memory addresses, computes h(u) and h(v), computes the Hamming
weight of h(u) ⊕ h(v), and checks whether it is less than or equal to k. Recall
h(u) is defined by n inner products. If the popcount procedure is executed many
times for each u, then it may be reasonable to compute h(u) once and store it
in memory. Moreover, if u is fixed for many sequential calls to the procedure,
then it may be reasonable to cache h(u) between calls. The algorithms that we
consider in Section 6 use both of these optimisations.

In this section we describe RAM programs and quantum circuits that compute
popcountk,n(u, ·) for a fixed u. These circuits have the value of h(u) hard-coded.
They load h(v) from memory, compute the Hamming weight of h(u)⊕ h(v), and
check whether the Hamming weight is less than or equal to k. We ignore the
initial, one time, cost of computing h(u) and h(v).

4.1 Quantum circuit for popcount

Loading h(v) costs a single qRAM gate. Computing h(u) ⊕ h(v) can then be
done in-place using a sequence of X gates that encode h(u). The bulk of the
effort is in computing the Hamming weight. For that we use a tree of in-place
adders. The final comparison is also computed with an adder, although only one
bit of the output is needed. See Figure 1 for a full description of the circuit.

We use the Cuccaro–Draper–Kutin–Petrie adder [16], with “incoming carry”
inputs, to compute the Hamming weight. We argue in favour of this choice of
adder in Appendix C of the full version. We use the Häner–Roetteler–Svore [26]
carry bit circuit for implementing the comparison.

We will later use popcount within filtered quantum searches by defining
predicates of the form g(i) = popcountk,n(u, vi), i ∈ {1, . . . , N}. To simplify that

later discussion, we cost the entire Grover iteration G(g) = DR0D
−1Rg here.

In Appendix B of the full version we introduce the (possibly multiply controlled)

11



Toffoli gate and discuss the Toffoli count for G(g), which in turn gives the T
count for G(g).

The cost of Rg. The Rg subroutine is computed by running the popcount circuit
in Figure 1 and then uncomputing the addition tree and X gates. The circuit
uses in-place i bit adders3 for i ∈ {1, . . . , `− 1}. The width of the circuit is given
in Appendix B of the full version. The depth of the circuit is

depth = 2 + d(CARRY) +

`−1∑
i=1

2 · d(ADDi), (3)

where d(·) denotes the depth of its argument. The factor of 2 accounts for
uncomputation of the ADDi circuits. The CARRY circuit is only cost once as the
carry bit is computed directly into the |−〉 state during the CARRY circuit itself.
The summand 2 accounts for the X gates used to compute, and later uncompute,
h(u)⊕ h(v).

The cost of DR0D
−1. Recall that D can be any circuit that maps |0〉 to the

uniform distribution on the domain of the search predicate. While there is no
serious difficulty in sampling from the uniform distribution on {0, . . . , N − 1} for
any integer N , when costing the circuit we assume that N is a power of two. In
this case D is simply log2N parallel H gates. The reflection R0 is implemented
as a multiply controlled Toffoli gate that targets an ancilla initialised in the |−〉
state. We use Maslov’s multiply controlled Toffoli from [37]. The depth and width
of DR0D

−1 are both O(logN); our software calculates the exact value.

4.2 RAM program for popcount

Recall that we use a RAM instruction set that consists of simple bit operations
and table lookups. A Boolean circuit for popcount is schematically similar to
Figure 1. Let ` = dlog2 ne. Loading h(v) has cost 1. Computing h(v)⊕h(w) takes
n XOR instructions and has depth 1. Following [41, Table. II], with cFA = 5
the number of instructions in a full adder, (n− `− 1)cFA + ` lower bounds the
instruction cost of computing the Hamming weight and comparing it with a fixed
k. This has depth (`− 1)(δsum + δcarry) + 1. We assume δsum = δcarry = 1. Thus,
the overall instruction count is 6n− 4`− 5 and the overall depth is 2`.

4.3 Cost of inner products

The optimal popcount parameters will depend on the cost of a computing an
inner product in dimension d. The cost of one inner product is amortised over
many popcounts, and a small change in the popcount parameters will quickly

3 An in-place i bit quantum adder takes two i bit inputs, initialises an ancilla qubit in
the |0〉 state, and returns the addition result in an i+ 1 bit register that includes the
new ancilla and overlaps with i bits of the input.
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Fig. 1: A quantum circuit for popcount. This circuit computes h(u) ⊕ h(v) for
a fixed n bit h(u), computes the Hamming weight of h(u) ⊕ h(v), and checks
whether the Hamming weight is less than or equal to k. Here n = 2` − 1 = 31.
The input qubits are represented as lines ending with a black diamond. The
dashed lines represent incoming carry inputs, and the dotted lines represent carry
outputs. Not all of the output wires are drawn. For space efficiency, some of
the input qubits are fed into the incoming carry qubits of the adders (dashed
lines). The Xi mean that gate X is applied to input qubit i if bit i of h(u) is
1. The circuit uses a depth `− 1 binary tree of full bit adders from [16], where
ADDi denotes an i bit full adder. The output wt(h(u)⊕ h(v)) from the tree of
adders together with the binary representation of the number n− k are finally
fed into the input of the CARRY circuit from [26], which computes the carry bit
of n− k + wt(h(u)⊕ h(v)) (the carry bit will be 0 if wt(h(u)⊕ h(v)) ≤ k, and 1
otherwise). The final CNOT is for illustration only. In actuality, the carry bit is
computed directly into an ancilla that is initialised in the |−〉 = (|0〉 − |1〉)/

√
2

state, so we can obtain the needed phase kickback. The tree of adders and the
initial X gates, but not the CARRY circuit, are run in reverse to clean up scratch
space and return the inputs to their initial state. The uncomputation step is not
depicted here.
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suppress the ratio of inner products to popcounts (see Remark 2). Hence we
only need a rough estimate for the cost of an inner product. We assume 32 bits
of precision are sufficient. We then assume schoolbook multiplication is used
for scalar products, which costs approximately 322 AND instructions. We then
assume the cost of a full inner product is approximately 322 d, i.e. we ignore the
cost of the final summation, assuming it is dwarfed by the ANDs.4

5 The accuracy of popcount

Here we give an analysis of the popcount technique based on some standard
simplifying assumptions. We are particularly interested in the probability that a
popcount filter identifies a random pair of points as potential neighbours. We are
also interested in the probability that a pair of actual neighbours are not identified
as potential neighbours, i.e. the false negative rate. Our software computes all of
the quantities in this section to high precision.

Let Pk,n(u, v) be the probability that popcountk,n(u, v;h) = 0 for a uniformly
random h (recall popcountk,n(u, v;h) = 0 if u, v pass the filter). In other words,
let h = (h1, . . . , hn) be a collection of independent random variables that are
distributed uniformly on the sphere, and define

Pk,n(u, v) = 1− E
[
popcountk,n(u, v;h)

]
.

The hyperplane defined by hi separates u and v with probability θ(u, v)/π, and
popcountk,n(u, v;h) = 0 if no more than k of the hyperplanes separate u and v.
Hence,

Pk,n(u, v) =

k∑
i=0

(
n

i

)
·
(
θ(u, v)

π

)i
·
(

1− θ(u, v)

π

)n−i
.

Note that Pk,n(u, v) depends only on the angle between u and v, so it makes sense
to define Pk,n(θ). The main heuristic in our analysis of popcount is that Pk,n(u, v)
is a good approximation to the probability that popcountk,n(u, v;h) = 0 for fixed
h and varying u and v. Under this assumption, all of the quantities in question
can be determined by integrating Pk,n(u, v) over different regions of the sphere.

Let P̂k,n denote the event that popcountk,n(u, v;h) = 0 for uniformly random

u, v, and h. Let R̂θ be the event that θ(u, v) ≤ θ. Recall that Pr[R̂θ] = Cd(θ),
and observe that Pr[R̂θ] is a cumulative distribution with associated density

4 We also tested the effect of assuming 8-bit inner products are sufficient. As expected,
this reduces all costs by a factor of two to four and thus does not substantially alter
our relative results.
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Ad(θ) = ∂
∂θCd(θ). We find, letting S = Sd−1 for some implicit d,

Pr[P̂k,n] =

∫
S

∫
S
Pk,n(u, v) dµ(v) dµ(u)

=

∫
S

(∫ π

0

Pk,n(θ) ·Ad(θ) dθ

)
dµ(u)

=

∫ π

0

Pk,n(θ) ·Ad(θ) dθ. (4)

Let u, v such that θ(u, v) ≤ ϕ be neighbours. The false negative rate is 1 −
Pr[P̂k,n | R̂ϕ]. The quantity Pr[P̂k,n ∧ R̂ϕ] can be calculated by changing the
upper limit of integration in Equation 4. It follows that

1− Pr[P̂k,n | R̂ϕ] = 1− 1

Cd(ϕ)

∫ ϕ

0

Pk,n(θ) ·Ad(θ) dθ. (5)

In Section 6 we consider u and v that are uniformly distributed in a cap of
angle β < π/2, rather than the uniformly distributed on the sphere. Let B̂w,β be
the event that u and v are uniformly distributed in a cap of angle β about w.
We have

Pr[B̂w,β ] =

∫
S

∫
S

1
{
w ∈ Wd−1(u, β, v, β)

}
dµ(v) dµ(u)

=

∫ 2β

0

Wd(θ, β, β) ·Ad(θ) dθ. (6)

In the second line we have used the fact that β < π/2 and W (θ, θ1, θ2) is zero
when θ ≥ θ1 + θ2. The quantity Pr[B̂w,β ∧ R̂ϕ] can be computed by changing the
upper limit of integration in Equation 6 from 2β to min{2β, ϕ}. We note that
B̂w,β has no dependence on w and therefore may also be written B̂β . The con-
ditional probability that popcountk,n(u, v;h) = 0, given that u, v are uniformly

distributed in a cap Bβ , Pr[P̂k,n | B̂β ], can be computed using Equation 6 and

Pr[P̂k,n ∧ B̂β ] =

∫ 2β

0

Pk,n(θ) ·Wd(θ, β, β) ·Ad(θ) dθ. (7)

The quantity Pr[P̂k,n ∧ B̂β ∧ R̂ϕ] can be computed by changing the upper limit
of integration in Equation 7 from 2β to min{2β, ϕ}. The false negative rate for
popcount when restricted to a cap is 1− Pr[P̂k,n | B̂w,β ∧ R̂ϕ].

6 Tuning popcount for NNS

We now use the circuit sizes from Section 4 and the probabilities from Section 5
to optimise popcount for use in NNS algorithms. Our analysis is with respect
to points sampled independently from the uniform distribution on the sphere.
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We further restrict our attention to list-size preserving parameterisations, which
take an input list of size N and return an output list of (expected) size N .

We use the notation for events introduced in Section 5. In particular, we write
R̂θ for the event that a uniformly random pair of vectors are neighbours, i.e. that
they lie at angle less than or equal to θ of one another; P̂k,n for the event that
popcount identifies a uniformly random pair of vectors as potential neighbours;
B̂β for the event that a uniformly random pair of vectors lie in a uniformly

random cap of angle β; and B̂w,β for the same event except we highlight the cap
is centred on w. Throughout this section we use popcountk,n(u, ·), for various
fixed u, as a filter for the search predicate θ(u, ·) ≤ θ. We write η(k, n) for the
false negative rate of popcount. We assume that θ(u, v) ≤ θ is computed using an
inner product test. Throughout this section, c1 represents the instruction cost of
the inner product test from Section 4.3, c2(k, n) the instruction cost of popcount
from Section 4.2, q1 the quantum cost of the reflection Rf∩g, and q2(k, n) the
quantum cost of G(g) from Section 4.1. We note that c1, q1 have a dependence
on d that we suppress. We write q0(m) for the number of G(g) iterations that
are applied during a quantum search on a set of size m.

Our goal is to minimise the cost of list-size preserving NNS algorithms as
a function of the input list size, the popcount parameters k and n, and the
other NNS parameters. In a list of N points there are

(
N
2

)
ordered pairs. We

expect
(
N
2

)
· Pr[R̂θ] =

(
N
2

)
· Cd(θ) of these to be neighbours, and we expect a

1−η(k, n) fraction of neighbours to be detected by popcount. List-size preserving
parmaterisations that use a popcount filter must therefore take an input list of
size at least

`(k, n) =
2

1− η(k, n)
· 1

Cd(θ)
. (8)

The optimised costs reported in Figure 2 typically use popcount parameters for
which `(k, n) ∈ (2/Cd(π/3), 4/Cd(π/3)). Here we assume that list-size preserving
parameterisations take N = `(k, n). Note that η(k, n) = 1− Pr[P̂k,n | R̂θ] when
the search is over a set of points uniformly distributed on the sphere, and
η(k, n) = 1−Pr[P̂k,n | R̂θ ∧ B̂β ] when the search is over a set of points uniformly
distributed in a cap of angle β (left implicit).

In each of the quantum analyses, we apply Proposition 1 with γ = 1, P =
|g| and Q = 1 to estimate q0(m). We assume that filtered quantum search
succeeds with probability 1 instead of probability at least 1/14, as guaranteed
by Proposition 1. In practice, one will not know |g| and one will therefore take
γ > 1. Our use of γ = 1 is a systematic underestimate of the true cost of the
search. There may be searches where our lower bound of Q = 1 on |f ∩ g| is
too pessimistic. However, the probability of success in filtered quantum search
decreases quadratically with Q/ |f ∩ g| if Q > |f ∩ g|. In Sections 6.1 and 6.3
we expect |f ∩ g| ≈ 2 so the effect of taking Q = 1 is negligible. In Section 6.2,
where Q may be larger, an optimistic analysis using the expected value of Q
makes negligible savings in dimension 512 and small savings in dimension 1024.
This analysis does not decrement Q when a neighbour is found in, then removed
from, a search space and ignores the quadratic decrease in success probability.
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6.1 AllPairSearch

As a warmup, we optimise AllPairSearch. Asymptotically its complexity is
2(0.415...+o(1))d classically and 2(0.311...+o(1))d quantumly. We describe implemen-
tations of Line 5 of Algorithm 1 based on filtered search and filtered quantum
search, and optimise popcount relative to these implementations.

Filtered search. Suppose that Line 5 applies popcountk,n(vi, ·) to each of vi+1

through vN and then applies an inner product test to each vector that passes.
With an input list of size N = `(k, n), we expect this implementation to test
all
(
N
2

)
pairs before finding N neighbouring pairs. Moreover, we expect the

popcount filter to identify
(
N
2

)
·Pr[P̂k,n] potential neighbours, and to perform an

equal number of inner product tests. The optimal parameters are obtained by
minimising (

c1 · Pr[P̂k,n] + c2(k, n)
)
·
(
`(k, n)

2

)
. (9)

Filtered quantum search. Suppose that Line 5 is implemented using the
search routine Algorithm 2. Specifically, we take the predicate f to be θ(vi, ·) ≤ θ
with domain Li. We take the filter g to be popcountk,n(vi, ·). Each call to
the search routine returns at most one neighbour of vi. To find all detectable
neighbours of vi in Li we must repeat the search |f ∩ g| times. This is expected to
be |Li| · Pr[P̂k,n ∧ R̂θ]. Known neighbours of vi can be removed from Li to avoid
a coupon collector scenario. We consider an implementation in which searches
are repeated until a search fails to find a neighbour of vi.

We expect to call the search subroutine |Li| · Pr[P̂k,n ∧ R̂θ] + 1 times in

iteration i. Proposition 1 with P = |Li| · Pr[P̂k,n], Q = 1, and γ = 1 gives

q0 (|Li|) = 1
2

√
|Li| iterations of G(g). As i ranges from 1 to N − 1 the quantity

|Li| takes each value in {1, . . . , N − 1}. Our proposed implementation therefore
performs an expected

N−1∑
j=1

1

2

√
j
(
j · Pr[P̂k,n ∧ R̂θ] + 1

)
= Pr[P̂k,n ∧ R̂θ]

(
1

5
N5/2 +

1

4
N3/2

)
+

1

3
N3/2 +O(

√
N) (10)

applications of G(g); the expansion is obtained by the Euler–Maclaurin formula.
When N = `(k, n) we expect N · Pr[P̂k,n ∧ R̂θ] = 2 + O(1/N). The right hand

side of Equation 10 is then 11
15N

3/2 +O(
√
N).

Proposition 1 also provides an estimate for the rate at which reflections about
the true positives, Rf∩g are performed. With P and Q as above, we find that

Rf∩g is performed at roughly p(k, n) =
√

Pr[P̂k,n] the rate of calls to G(g). The

17



optimal popcount parameters (up to some small error due to the O(
√
N) term

in Equation 10) are obtained by minimising the total cost

11

15
(q1p(k, n) + q2(k, n)) · `(k, n)

3/2
. (11)

6.2 RandomBucketSearch

One can improve AllPairSearch by bucketing the search space such that vectors
in the same bucket are more likely to be neighbours [33]. For example, one could
pick a hemisphere H and divide the list into L1 = L ∩H and L2 = L\L1. These
lists would be approximately half the size of the original and the combined cost
of AllPairSearch within L1 and then within L2 would be half the cost of an
AllPairSearch within L. However, this strategy would fail to detect the expected
θ/π fraction of neighbours that lie in opposite hemispheres.

Becker, Gama, and Joux [9] present a very efficient generalisation of this
strategy. They propose bucketing the input list into subsets of the form {v ∈ L :
popcountk,n(0, v;h) = 0} with varying choices of h. This bucketing strategy is
applied recursively until the buckets are of a minimum size. Neighbouring pairs
are then found by an AllPairSearch.

A variant of the Becker–Gama–Joux algorithm that uses buckets of the
form L ∩ Cd−1(f, θ1), with randomly chosen f and fixed θ1, was proposed
and implemented in [2]. This variant is sometimes called bgj1. Here we call it
RandomBucketSearch. This algorithm has asymptotic complexity 2(0.349...+o(1))d

classically [2] and 2(0.301...+o(1))d quantumly.5 This is worse than the Becker–
Gama–Joux algorithm, but RandomBucketSearch is conceptually simple and still
provides an enormous improvement over AllPairSearch. Pseudocode is presented
in Algorithm 3.

Description of Algorithm 3. The algorithm takes as input a list of N points
uniformly distributed on the sphere. A random bucket centre f is drawn uniformly
from Sd−1 in each of the t iterations of the outer loop. The choice of f defines a
bucket in Line 5, Lf = L ∩ Cd−1(f, θ1), which is of expected size N · Cd(θ1). For
each vj ∈ Lf , the inner loop searches a set Lf,j ⊂ Lf for neighbours of vj . The
quantity |Lf,j | takes each value in {1, . . . , |Lf | − 1} as vj ranges over Lf . The
inner loop is identical to the loop in AllPairSearch apart from indexing and the
fact that elements of Lf are known to be in the cap Cd−1(f, θ1).

A bucket Lf is expected to contain
(
N
2

)
· Pr[R̂θ ∧ B̂f,θ1 ] neighbouring pairs.

Only a 1− η(k, n) fraction of these are expected to be identified by the popcount
filter. When θ1 > θ it is reasonable to assume that Pr[R̂θ ∧ B̂f,θ1 ] ≈ Cd(θ) ·
Wd(θ, θ1, θ1). We use this approximation. The expected number of neighbouring

5 The asymptotic quantum complexity is calculated, similarly to the classical complex-
ity [2], using the asymptotic value of Wd(θ, θ1, θ1) given in [8]. Let N = 1/Cd(π/3)
and t(θ1) = 1/Wd(π/3, θ1, θ1). The exponent 0.3013 . . . is obtained by minimising

t(θ1)
(
N + (NCd(θ1))3/2

)
with respect to θ1.
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Algorithm 3 RandomBucketSearch

Input: A list L = (v1, v2, . . . vN ) ⊂ Sd−1 of N points. Parameters θ, θ1 ∈ (0, π/2) and
t ∈ Z+.

Output: A list of pairs (u, v) ∈ L× L with θ(u, v) ≤ θ.

1: function RandomBucketSearch(L; θ, θ1, t)
2: L′ ← ∅
3: for 1 ≤ i ≤ t do
4: Sample f uniformly on Sd−1

5: Lf ← L ∩ Cd−1(f, θ1)
6: for j such that vj ∈ Lf do
7: Lf,j ← {vk ∈ Lf : j < k ≤ N}
8: Search Lf,j for any number of u that satisfy θ(vj , u) ≤ θ
9: For each such u found, add (vj , u) to L′.

10: If |L′| ≥ N , return L′.

11: return L′

pairs in Lf that are detected by the popcount filter is therefore approximately(
N
2

)
· (1−η(k, n)) ·Cd(θ) ·Wd(θ, θ1, θ1). When N = `(k, n) this is N ·Wd(θ, θ1, θ1).

If all detectable neighbours are found by the search routine then the algorithm is
list-size preserving when N = `(k, n) and t = 1/Wd(θ, θ1, θ1).

We can now derive optimal popcount parameters for various implementations
of Line 8.

Filtered search. Suppose that Line 8 of Algorithm 3 applies popcountk,n(vj , ·)
to each element of Lf,j and then applies an inner product test to each vector

that passes. This implementation applies popcount tests to all
(|Lf |

2

)
≈
(
N ·Cd(θ1)

2

)
pairs of elements in Lf and finds all of the neighbouring pairs that pass. In the

process it applies inner product tests to a p(θ1, k, n) = Pr[P̂k,n | B̂f,θ1 ] fraction
of pairs. The cost of populating buckets in one iteration of Line 5 is c1 · `(k, n).

The cost of all searches on Line 8 is (c1 · p(θ1, k, n) + c2(k, n)) ·
(
NCd(θ1)

2

)
. With

the list-size preserving parameters N and t given above, the optimal θ1, k, and n
can be obtained by minimising the total cost

c1 · `(k, n) + (c1 · p(θ1, k, n) + c2(k, n)) ·
(
`(k,n)·Cd(θ1)

2

)
Wd(θ, θ1, θ1)

. (12)

Filtered quantum search. Suppose that Line 8 is implemented using the
search routine Algorithm 2. We take the predicate f to be θ(vj , ·) ≤ θ with
domain Lf,j . We take the filter g to be popcountk,n(vj , ·). Each call to the search
routine returns at most one neighbour of vj . To find all detectable neighbours of
vj in Lf,j we must repeat the search several times. Known neighbours of vj can
be removed from Lf,j to avoid a coupon collector scenario. Proposition 1 with

P = |Lf,j | · Pr[P̂k,n | B̂f,θ1 ], Q = 1, and γ = 1 gives us that the number of G(g)

iterations in a search on a set of size |Lf,j | is q0 (|Lf,j |) = 1
2

√
|Lf,j |.
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We consider an implementation of Line 8 in which searches are repeated
until a search fails to find a neighbour of vj . With N = `(k, n), the set Lf is
of expected size `(k, n) · Cd(θ1) and contains an expected `(k, n) ·Wd(θ, θ1, θ1)
neighbouring pairs detectable by popcount. The set Lf,j is expected to contain
a proportional fraction of these pairs. As such, we expect to call the search
subroutine |Lf,j | · r(θ1, k, n) + 1 times in iteration j where

r(θ1, k, n) =
N ·Wd(θ, θ1, θ1)(|Lf |

2

) ≈ 2Wd(θ, θ1, θ1)

`(k, n) · Cd(θ1)
2 .

The inner loop makes an expected

|Lf |−1∑
j=1

1

2

√
j (j · r(θ1, k, n) + 1)

applications of G(g). This admits an asymptotic expansion similar to that of
Equation 10. If we assume that |Lf | takes its expected value of `(k, n) · Cd(θ1),
then the inner loop makes

q3(θ1, k, n) · (`(k, n) · Cd(θ1))
3/2

applications of G(g), where

q3(θ1, k, n) =
2Wd(θ, θ1, θ1)

5Cd(θ1)
+

1

3
.

Proposition 1 also provides an estimate for the rate at which reflections
about the true positives, Rf∩g are performed. With P and Q as above, we find

that Rf∩g is applied at roughly p(θ1, k, n) =
√

Pr[P̂k,n | B̂f,θ1 ] the rate of G(g)

iterations. The total cost of searching for neighbouring pairs in Lf is therefore

s(θ1, k, n) = (q1 · p(θ1, k, n) + q2(k, n)) · q3(θ1, k, n) ·
(
`(k, n) · Cd(θ1)

)3/2
. (13)

Populating Lf has a cost of c1 · `(k, n). With the list-size preserving t given
above, the optimal parameters θ1, k, and n can be obtained by minimising the
total cost

c1 · `(k, n) + s(θ1, k, n)

Wd(θ, θ1, θ1)
. (14)

6.3 ListDecodingSearch

The optimal choice of θ1 in RandomBucketSearch balances the cost of N · t cap
membership tests against the cost of all calls to the search subroutine. It can be
seen that reducing the cost of populating the buckets would allow us to choose a
smaller θ1, which would reduce the cost of searching within each bucket.
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Algorithm 4, ListDecodingSearch, is due to Becker, Ducas, Gama, and Laar-
hoven [8]. Its complexity is 2(0.292...+o(1))d classically and 2(0.265...+o(1))d quan-
tumly [34, 35]. Like RandomBucketSearch, it computes a large number of list-cap
intersections. However, these list-cap intersections involve a structured list—the
list-cap intersections in RandomBucketSearch involve the inherently unstructured
input list.

Algorithm 4 ListDecodingSearch

Input: A list L = (v1, v2, . . . vN ) ⊂ Sd−1 of N . Parameters θ, θ1, θ2 ∈ (0, π/2) and
t ∈ Z+.

Output: A list of pairs (u, v) ∈ L× L with θ(u, v) ≤ θ.

1: function ListDecodingSearch(L; θ, θ1, θ2, t)
2: Sample a random product code F of size t
3: Initialise an empty list Lf for each f ∈ F
4: for 1 ≤ i ≤ N do
5: Fi ← F ∩ Cd−1(vi, θ2)
6: Add vi to Lf for each f in Fi

7: for 1 ≤ j < N do
8: Fj ← F ∩ Cd−1(vj , θ1)
9: for f ∈ Fj do

10: Lf,j ← {vk ∈ Lf : j < k ≤ N}
11: LF,j ←

∐
f∈Fj

Lf,j (disjoint union)

12: Search LF,j for any number of u that satisfy θ(vj , u) ≤ θ
13: For each such u found, add (vj , u) to L′.
14: If |L′| ≥ N , return L′.

15: return L′

Description of Algorithm 4. The algorithm first samples a t point random
product code F . See [8] for background on random product codes. In our analysis,
we treat F as a list of uniformly random points on Sd−1. A formal statement is
given as [8, Theorem 5.1], showing that such a heuristic is essentially true, up to
a subexponential loss on the probability of finding the intend pairs.

The first loop populates t buckets that have as centres the points f of F .
Bucket Lf stores elements of L that lie in the cap of angle θ2 about f . Each
bucket is of expected size N · Cd(θ2).

The second loop iterates over vj ∈ L and searches for neighbours of vj in
the disjoint union of buckets with centres within an angle θ1 of vj . The set Fj
constructed on Line 8 contains an expected t ·Cd(θ1) bucket centres. The disjoint
union of certain elements from the corresponding buckets, denoted LF,j , is of
expected size (N−j) ·Cd(θ2) ·t ·Cd(θ1). We note that by simplifying and assuming
the expected size of LF,j is N ·Cd(θ2) · t ·Cd(θ1) the costs given below are never
wrong by more than a factor of two.
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Suppose that w is a neighbour of vj , so θ(vj , w) ≤ θ. The measure of the
wedge formed by a cap of angle θ1 about vj and a cap of angle θ2 about w is
at least Wd(θ, θ1, θ2). Assuming that the points of a random product code are
indistinguishable from points sampled uniformly on the sphere, the probability
that some f ∈ Fj contains w is at least t ·Wd(θ, θ1, θ2).

The second loop is executed N times. Iteration j searches LF,j for neighbours
of vj . With N = `(k, n) there are expected to be N detectable neighbouring pairs
in L. With t = 1/Wd(θ, θ1, θ2) we expect that each neighbouring pair is of the
form (vj , w) with w ∈ LF,j .

The angles θ1, θ2 relate to the spherical cap parameters α, β respectively in [8],
and are such that θ1 ≥ θ2. Optimal time complexity is achieved when θ1 = θ2.

We have omitted the list decoding mechanism by which list-cap intersections
are computed. In our analysis we assume that the cost of a list-cap intersection
such as Fi = F ∩ Cd−1(vi, θ2) is proportional to |Fi|, but independent of |F |,
i.e. we are in the “efficient list-decodability regime” of [8, Section 5.1] and may
take their parameter m = log d. In particular, we assume that in the cost of

O(log(d) · |Fi|) inner products and |F |O(1/ log(d))
other operations, as stated in [8,

Lemma 5.1], the first cost dominates. In [8] these costs relate to O(m ·M · Cn(α))
and O(nB + mB logB) respectively. We therefore assume the cost of forming
Fi = F ∩ Cd−1(vi, θ2) is log(d) · |Fi| inner product tests.

Filtered search. Suppose that the implementation of Line 12 of Algorithm 4
applies popcountk,n(vj , ·) to each element of LF,j and then applies an inner
product test to each vector that passes. This implementation applies popcount
tests to all N · Cd(θ2) · t · Cd(θ1) elements of LF,j and finds all of the neighbours
of vj that pass. Note that w ∈ LF,j implies that there exists some f ∈ F such
that both vj and w lie in a cap of angle θ1 around f . Inner product tests are

applied to a p(θ1, k, n) ≥ Pr[P̂k,n | B̂f,θ1 ] fraction of all pairs.6

The cost of preparing all t buckets in the first loop is c1 ·N · t · Cd(θ2). The
cost of constructing the search spaces in the second loop is c1 ·N · t ·Cd(θ1). Each
search has a cost of |LF,j | popcount tests and |LF,j | · p(θ1, k, n) inner product
tests. With the list-size preserving parameterisation given above, the optimal θ1,
θ2, k, and n can be obtained by minimising the total cost

`(k, n)

Wd(θ, θ1, θ2)

(
c1 · Cd(θ1) + c1 · Cd(θ2)

+
(
c1 · p(θ1, k, n) + c2(k, n)

)
· `(k, n) · Cd(θ1) · Cd(θ2)

)
. (15)

Filtered quantum search. Suppose that Line 12 is implemented using Algo-
rithm 2. We take the predicate f to be θ(vj , ·) ≤ θ with domain LF,j . We take
the filter g to be popcountk,n(vj , ·). Each call to the search routine returns at
most one neighbour of vj . Known neighbours of vj can be removed from LF,j to

6 The inequality is because vj and w may be contained in multiple buckets, Lf,j .
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avoid a coupon collector scenario. Proposition 1 with P = |LF,j | ·Pr[P̂k,n | B̂f,θ2 ],
Q = 1, and γ = 1 gives us that the number of G(g) iterations in a search on a
set of size |LF,j | is q0 (|LF,j |) ≈ 1

2

√
|LF,j |.

Assuming that computing Fj = F ∩ C(vj , θ1) has a cost of c1 |Fj |, the N
iterations of Lines 5 and 8 have a total cost of

c1 ·N · t · (Cd(θ1) + Cd(θ2)) (16)

Each search applies an expected

q0 (|LF,j |) ≈
1

2

√
N · Cd(θ1) · t · Cd(θ2)

applications of G(g). Reflections about the true positives, Rf∩g, are performed at

roughly p(θ1, k, n) =
√

Pr[P̂k,n | Bf,θ1 ] the rate of G(g) iterations. We consider

an implementation of Line 8 in which searches are repeated until a search fails
to find a neighbour of vj . With the list-size preserving parameters given above,
we expect to perform two filtered quantum searches per iteration of the second
loop. The optimal parameters can be obtained by minimising the total cost

`(k, n)

(
c1
Cd(θ1) + Cd(θ2)

Wd(θ, θ1, θ2)
+ (q1p(θ1, k, n) + q2(k, n))

√
`(k, n)Cd(θ1)Cd(θ2)

Wd(θ, θ1, θ2)

)
.

7 Cost estimates

Our software numerically optimises the cost functions in Sections 6.1, 6.2 and 6.3
with respect to several classical and quantum cost metrics. The classical cost
metrics that we consider are: c (unit cost), which assigns unit cost to popcount; c
(RAM), which uses the classical circuits of Section 4. The quantum cost metrics
that we consider are: q (unit cost), which assigns unit cost to a Grover iteration;
q (depth-width), which assigns unit cost to every gate (including the identity) in
the quantum circuits of Section 4; q (gates), which assigns unit cost only to the
non-identity gates; q (T count), which assigns unit cost only to T gates; and q
(GE19), which is described in Section 7.1.

We stress that our software, and Figure 2, give estimates for the cost of
each algorithm. These estimates are neither upper bounds nor lower bounds. As
we mention above, we have systematically omitted and underestimated some
costs. For instance, we have omitted the list decoding mechanism in our costing
of Algorithm 4. We have approximated other costs. For instance, the cost that
we assign to an inner product in Section 4.3. We have also not explored the
entire optimisation space. We only consider values of the popcount parameter
n that are one less than a power of two. Moreover, following the discussion in
Section 2.4, we set k = bn/3c.

While we have omitted and approximated some costs, we have tried to ensure
that these omissions and approximations will ultimately lead our software to
underestimate of the total cost of the algorithm. For instance, if our inner product
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cost is accurate, our optimisation procedure ensures that we satisfy Remark 2
and can ignore costs relating to Rf∩g.

Our results are presented in Figure 2. We also plot the leading term of the
asymptotic complexity of the respective algorithms as these are routinely referred
to in the literature. The source code, and raw data for all considered cost metrics,
is available at https://github.com/jschanck/eprint-2019-1161.

7.1 Barriers to a quantum advantage

As expected, our results in Figure 2 indicate that quantum search provides a
substantial savings over classical search asymptotically. Our plots fully contain the
range of costs from 2128 to 2256 that are commonly thought to be cryptanalytically
interesting. Modest cost improvements are attained in this range.

The range of parameters in which a sieve could conceivably be run, however,
is much narrower. If one assumes a memory density of one petabyte per gram
(253 bits per gram), a 2140 bit memory would have a mass comparable with that
of the Moon. Supposing that a 2-sieve stores 1/Cd(π/3) vectors, and that each
vector is log2(d) bits, an adversary with a 2140 bit memory could only run a
sieve in dimension 608 or lower. The potential cost improvement in dimension
608 is smaller than the potential cost improvement in, say, dimension 1000. The
potential cost improvement that can be actualised is likely smaller still.

We expect that our cost estimates are underestimates. However, the quantum
advantage could grow, shrink, or even be eliminated if our underestimates do not
affect quantum and classical costs equally. In this section, we list several reasons
to think that the advantage might shrink or disappear.

Error correction overhead. By using the depth-width metric for quantum
circuits, we assume that dispatching a logical gate to a logical qubit costs one
RAM instruction. In practice, however, the cost depends on the error correcting
code that is used for logical qubits. This cost may be significant.

Gidney and Eker̊a have estimated the resources required to factor a 2048
bit RSA modulus using Shor’s algorithm on a surface code based quantum
computer [20]. Under a plausible assumption on the physical qubit error rate, they
calculate that a factoring circuit with 212.6 logical qubits and depth 231 requires
a distance δ = 27 surface code. Each logical qubit is encoded in 2 δ2 = 1458
physical qubits, and the error tracking routine applies at least δ2 = 729 bit
instructions, per logical qubit per layer of logical circuit depth, to read its input.

In general, a circuit of depth D and width W requires a distance δ =
Θ(log(DW )) surface code. To perform a single logical gate, classical control
hardware dispatches several instructions to each of the Θ(log2(DW )) physical
qubits. The classical control hardware also performs a non-trivial error tracking
routine between logical gates, which takes measurement results from half of the
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Fig. 2: Quantum (“q”) and classical (“c”) resource estimates for NNS search.
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physical qubits as input.7 Consequently, the cost of surface code computation
grows like Ω(DW log2(DW )).

We have adapted scripts provided by Gidney and Eker̊a to estimate δ for
our circuits. The last plot of Figure 2 shows the cost of ListDecodingSearch
when every logical gate (including the identity) is assigned a cost of δ2. For
ListDecodingSearch the cost in the Gidney–Eker̊a metric grows from 2128 to 2256

between dimensions 352 and 824, and we calculate a 2128 bit memory is sufficient
to run in dimension 544. We find that the advantage of quantum search over
classical search is a factor of 21.8 in dimension 352, a factor of 27.1 in dimension
544, and a factor of 214.4 in dimension 824. Compare this with the näıve estimate
for the advantage, 20.292d−0.265d, which is a factor of 29.5 in dimension 352, a
factor of 214.7 in dimension 544, and a factor of 222.5 in dimension 824.

One should also note that error correction for the surface code sets a natural
clock speed, which Gidney and Eker̊a estimate at one cycle per microsecond.
Gidney and Eker̊a estimate that their factoring circuit, the cost of which is
dominated by a single modular exponentiation, would take 7.44 hours to run.
This additional overhead in terms of time is not refelected in the instruction
count.

On the positive side, the cost estimate used in Figure 2 is specific to the surface
code architecture. Significant improvements may be possible. Gottesman has
shown that an overhead of Θ(1) physical qubits per logical qubit is theoretically
possible [22]. Whether this technique offers lower overhead than the surface code
in practice is yet to be seen.

Dependence on qRAM. Quantum accessible classical memories are used in
many quantum algorithms. For example, they are used in black box search
algorithms [25], in collision finding algorithms [14], and in some algorithms for
the the dihedral hidden subgroup problem [32]. The use of qRAM is not without
controversy [11, 24]. Previous work on quantum lattice sieve algorithms [34, 35]
has noted that constructing practical qRAM seems challenging.

Morally, looking up an ` bit value in a table with 2n entries should have
a cost that grows at least with n + `. Recent results [5, 6, 38] indicate that
realistic implementations of qRAM have costs that grow much more quickly than
this. When ancillary qubits are kept to a minimum, the best known Clifford+T
implementation of a qRAM has a T count of 4 ·(2n−1) [6]. While it is conceivable
that a qRAM could be constructed at lower cost on a different architecture, as
has been suggested in [21], a unit cost qRAM gate should be seen as a powerful,
and potentially unrealistic, resource.

One can argue that classical RAMs also have a large cost. This is not to
say that classical and quantum RAMs have the same cost. A qRAM can be
used to construct an arbitrary superposition over the elements of a memory.
This process relies on quantum interference and necessarily takes as long as a
worst case memory access time. This is in contrast with classical RAM, where

7 For a thorough introduction to how logical gates are performed on the surface code
see [19], and for more advanced techniques see e.g. [27].
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careful programming and attention to a computer’s caches can mask the fact
that accessing an N bit memory laid out in a 3-dimensional space necessarily
takes Ω(N1/3) time.

If the cost of a qRAM gate is equivalent to Θ(N1/3) Clifford+T gates, then
the asymptotic cost of quantum AllPair search is 2(0.380...+o(1))d, the asymptotic
cost of quantum RandomBucket search is 2(0.336...+o(1))d, and the asymptotic
cost of quantum ListDecoding search is 2(0.284...+o(1))d. If memory is constrained
to two dimensions, and qRAM costs Θ(N1/2) Clifford+T gates, the quantum
asymptotics match the classical RAM asymptotics.

Quantum sampling routines. We have assumed that D in Section 4.1 (the
uniform sampling subroutine in Grover’s algorithm) is implemented using parallel
H gates. This is the smallest possible circuit that might implement D, and may
be a significant underestimate. In Line 12 of Algorithm 4 we must construct a
superposition (ideally uniform) over {k : vk ∈ LF,j}. The set LF,j is presented
as a disjoint union of smaller sets. Copying the elements of these smaller sets to
a flat array would be more expensive than our estimate for the cost of search.
While we do not expect the cost of sampling near uniformly from LF,j to be
large, it could easily exceed the cost of popcount.

7.2 Relevance to SVP

The NNS algorithms that we have analysed are closely related to lattice sieves
for SVP. While the asymptotic cost of NNS algorithms are often used as a proxy
for the asymptotic cost of solving SVP, we caution the reader against making
this comparison in a non-asymptotic setting. On the one hand, our estimates
might lead one to underestimate the cost of solving SVP:

– the costs given in Figure 2 represent one iteration of NNS within a sieve,
while sieve algorithms make poly(d) iterations;

– the costs given in Figure 2 do not account for all of the subroutines within
each NNS algorithm.

On the other hand, our estimates might lead one to overestimate the cost of
solving SVP:

– it is a mistake to conflate the cost of NNS in dimension d with the cost of
SVP in dimension d. The “dimensions for free” technique of [17] can be used
to solve SVP in dimension d by calling an NNS routine polynomially many
times in dimension d′ < d. Our analysis seamlessly applies to dimension d′;

– there are heuristics that exploit structure present in applications to SVP not
captured in our general setting, e.g. the vector space structure allowing both
±u to be tested for the cost of u, and keeping the vectors sorted by length.
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7.3 Future work

The sieving techniques considered here are not exhaustive. While it would be
relatively easy to adapt our software to other 2-sieves, like the cross polytope
sieve [10], future work might consider k-sieves such as [7, 30].

Future work might also address the barriers to a quantum advantage discussed
in Section 7.1. Two additional barriers are worth mentioning here. First, as Grover
search does not parallelise well, one might consider depth restrictions for classical
and quantum circuits. Second, our estimates might be refined by including some
of the classical subroutines, present in both the classical and quantum variants of
the same sieve, that we have ignored, e.g. the cost of sampling lattice vectors or
the cost of list-decoding in Algorithm 4. Any cost increase will reduce the range
of cryptanalytically relevant dimensions, giving fewer dimensions to overcome
quantum overheads.

Finally, our estimates should be checked against experiments. Our analysis
of Algorithm 3 recommends a database of size N(d) ≈ 2/Cd(π/3), while the
largest sieving experiments to date [2] runs Algorithm 3 with a database of size
N ′(d) = 3.2 · 20.2075d up to dimension d = 127. There is a factor of 8 gap between
N ′(127) and N(127). A factor of two can be explained by the fact that [2] treats
each database entry u as ±u. It is possible that the remaining factor of four can
be explained by the other heuristics used in [2]. As d increases, N(d) and N ′(d)
continue to diverge, so future work could attempt to determine more accurately
the required list size.
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