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Abstract. MPC functionalities are increasingly specified in high-level
languages, where control-flow constructions such as conditional state-
ments are extensively used. Today, concretely efficient MPC protocols
are circuit-based and must evaluate all conditional branches at high cost
to hide the taken branch.

The Goldreich-Micali-Wigderson, or GMW, protocol is a foundational
circuit-based technique that realizes MPC for p players and is secure
against up to p− 1 semi-honest corruptions. While GMW requires com-
munication rounds proportional to the computed circuit’s depth, it is
effective in many natural settings.

Our main contribution is MOTIF (Minimizing OTs for IFs), a novel
GMW extension that evaluates conditional branches almost for free by
amortizing Oblivious Transfers (OTs) across branches. That is, we si-
multaneously evaluate multiple independent AND gates, one gate from
each mutually exclusive branch, by representing them as a single cheap
vector-scalar multiplication (VS) gate.

For 2PC with b branches, we simultaneously evaluate up to b AND gates
using only two 1-out-of-2 OTs of b-bit secrets. This is a factor ≈ b im-
provement over the state-of-the-art 2b 1-out-of-2 OTs of 1-bit secrets.
Our factor b improvement generalizes to the multiparty setting as well:
b AND gates consume only p(p− 1) 1-out-of-2 OTs of b-bit secrets.

We implemented our approach and report its performance. For 2PC and
a circuit with 16 branches, each comparing two length-65000 bitstrings,
MOTIF outperforms standard GMW in terms of communication by ≈
9.4×. Total wall-clock time is improved by 4.1 − 9.2× depending on
network settings.

Our work is in the semi-honest model, tolerating all-but-one corruptions.
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1 Introduction

Secure Multiparty Computation (MPC) enables mutually untrusting parties to
compute a function of their private inputs while revealing only the function out-
put. The Goldreich-Micali-Wigderson (GMW) protocol is a foundational tech-
nique that realizes MPC for p players and that tolerates up to p− 1 semi-honest



corruptions. In GMW, the players jointly evaluate a circuit C by (1) randomly
secret sharing their private input values, (2) privately evaluating C gate-by-gate,
ensuring that the random secret shares encode the correct value for each wire,
and (3) reconstructing secret shares on the output wires.

While XOR gates are evaluated without interaction, AND gates require com-
munication in the form of oblivious transfer (OT). The bottleneck in GMW
performance is communication incurred by OTs, both in terms of bandwidth
consumption and latency.

In this work, we improve the bandwidth consumption of the GMW
protocol for circuits that include conditional branching. In particular,
we improve by up to the branching factor: for a circuit with b branches, we
reduce bandwidth consumption by up to b×.

The cost of round complexity and GMW use cases. GMW requires a
round of communication for each of the circuit’s layers of AND gates1. Because
in many scenarios the network latency is substantial, constant-round protocols,
such as Garbled Circuit (GC) are often preferred.

Nevertheless, there are a number of scenarios where GMW is preferable to
GC and other protocols:

– GMW efficiently supports multiparty computation and is resilient against a
dishonest majority. While multiparty GC protocols exist, they are expensive:
the GC is generated jointly among players such that no small subset of
players can decrypt wire labels. Thus, the GC must be generated inside
MPC, which is expensive.

– Many useful circuits are low-depth or have low-depth variants. GMW’s multi-
round nature is less impactful for low-depth circuits, and prior work has
shown that the protocol can outperform GC in these cases [SZ13].

– It is possible to front-load most of GMW’s bandwidth consumption to a
pre-computation phase. When pre-computation is allowed, GMW can per-
form useful work even before the computed function is known. Indeed, given
precomputed random OTs, GMW consumes only 6 bits per AND gate in the
2PC setting (1-out-of-2 bit OT can be done by transferring a single one-bit
secret and a single two-bit secret as introduced in [Bea95]); this holds for
arbitrary C. In contrast, GC protocols cannot perform useful work until the
circuit is known2.

1 Circuit depth can be reduced by rebalancing at the cost of increased overall circuit
size [BCE91, BB94]. Further, in the 2PC setting, two-input/one-output gates can be
aggregated into multi-input/multi-output gates and evaluated in one round at cost
exponential in the number of inputs [KKW17, DKS+17].

2 Universal circuits (UCs) can be programmed in an online phase to model any circuit
up to a given size n. Hence, UCs technically allow GC protocols to precompute a
garbling before the circuit topology is known, but at great cost. A UC of size n is
implemented with 3n logn gates [LYZ+20]. Further, large numbers of GC labels (of
total size greater than the garbling of the underlying circuit) must be transferred in
the online phase in order to program the UC.
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In sum, GMW is suitable for a number of practical scenarios, and its im-
provement benefits many applications.

Goal: (Almost) free branching in GMW. GMW is a circuit-based protocol,
and as such, all of C’s branches must be evaluated by the players. Until the
recent work of [HK20] (whose improvement is not for MPC, but for the simpler
zero-knowledge setting), it was widely believed that the cost of branching is
unavoidable in circuit-based protocols. In this work, we show how to essentially
eliminate the cost of branching for GMW. Our technique is wholly different from
that of [HK20]; their ‘stacking’ technique has no obvious analog in GMW due
to the interactive nature of the protocol.

Semi-honest GMW requires two bit-OTs per AND gate per each pair of
players. The cost of such OT includes the transfer of the secrets (cheap, 3 bits
from [Bea95]) and consumes one row of the OT extension matrix (expensive, κ
bits). Evaluation of all but one branch is ultimately discarded by the MPC, and
our goal is to eliminate this waste.

We work in the semi-honest model, which is useful in many scenarios (e.g.
protecting against players who may become corrupted in the future). Further-
more, advances in the semi-honest model often lead to similar advances in the
malicious model. We leave exploring such improvements to future work.

1.1 Our Contributions

– Efficient VS gate. We extend the GMW protocol with gates that we call
‘vector-scalar’ gates (VS). VS gates allow p players to multiply a shared vector
of b bits by a shared scalar bit for only p · (p − 1) OTs. Standard GMW
computes each multiplication separately and thus requires b · p · (p− 1) OTs.
Thus, we reduce bandwidth consumption by b× when evaluating the VS gate.

– (Almost) free conditional branching. We show how to use VS to es-
sentially eliminate the communication cost of inactive branches. Precisely,
we amortize random OTs needed to securely compute AND gates across a
conditional. The players must still broadcast several bits per AND gate, but
this cost is small compared to the expensive κ-bit random OTs which we
amortize. For a circuit with b branches, we improve communication by up to
b× as compared to state-of-the-art GMW. Our computation costs are also
slightly lower than standard GMW because we process fewer OTs.

– Implementation and evaluation. We implemented our approach in C++

and report performance (see Section 9). For 2PC and a circuit with 16
branches, we improve communication by 9.4× and total wall-clock time by
5.1× on a LAN and 9.2× on a LAN with shared traffic (i.e. lower bandwidth).

1.2 Presentation Outline

We motivated our work in Section 1 and summarized the contributions in Sec-
tion 1.1. We present related work in Section 2, review the basic GMW protocol
in Section 3, and introduce notation in Section 4.
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We present a technical summary of our approach in Section 5. We formally
specify our protocols in Section 6 and provide proofs in Section 7. We discuss
implementation details and evaluate performance in Sections 8 and 9.

2 Related Work

We improve the state-of-the-art Goldreich-Micali-Wigderson (GMW) protocol
[GMW87] by adding an efficient vector-scalar multiplication gate (VS) that is
notably useful for executing conditional branches. We therefore review related
work that improves (1) secure computation of conditional branches and (2) the
classic GMW protocol.

Stacked Garbling. A recent line of work improves communication of GC with con-
ditional branching in settings where one player knows the evaluated branch [Kol18,
HK20]. [Kol18] is motivated by the use case where the GC generator knows the
taken branch, e.g. while evaluating one of several DB queries. [HK20] is moti-
vated by ZK proofs.

Prior to these works, it was generally believed that all circuit branches
must be processed and transmitted according to the underlying protocol. [Kol18,
HK20] break this assumption by using communication proportional to only the
longest branch, given that one of the players knows which branch is taken.

Our research direction was inspired by these prior works: we show that com-
munication reduction via conditional branching efficiently carries to GMW as
well. In particular, the OTs used to compute AND gates can be amortized across
branches. Unlike [Kol18, HK20], we do not require any player to know which
branch is taken.

Universal Circuits. Our work improves conditional branching by adding a new
gate primitive that amortizes OTs across branches. Another approach instead
recompiles branches into a new form. Universal circuits (UCs) are programmable
constructions that can evaluate arbitrary circuits up to a given size n. Thus, a
single UC can be programmed to compute any single branch in a conditional,
amortizing the gate costs of the individual branches.

Unfortunately, a UC representing circuits of size n incurs significant overhead
in the number of gates. Decades after Valiant’s original construction [Val76], UC
enjoyed a renewed interest due to its use in MPC, and UC size has steadily
improved [KS08, LMS16, GKS17, AGKS19, KS16, ZYZL18]. The state-of-the-
art UC construction has size 3n log n [LYZ+20]. Even with these improvements,
representing conditional branches with UCs is often impractical. For example, if
we consider branches of size n = 210 gates, the state-of-the-art UC construction
has factor 3 · log(210) = 30× overhead. In addition, programming the UC based
on branch conditions known only to the MPC player is a difficult and expensive
process. Thus, in use cases arising in evaluation of typical programs, UC-based
branch evaluation is slower than näıve circuit evaluation.

[KKW17] observed that UCs are overly general for conditional branching: a
UC can represent any circuit up to size n, while a conditional has a fixed and
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often small set of publicly known circuits. Correspondingly, [KKW17] general-
ized UCs to Set Universal Circuits (S-UCs). An S-UC can be programmed to
implement any circuit in a fixed set S, rather than the entire universe of circuits
of size n. By constraining the problem to smaller sets, the authors improved
UC overhead. [KKW17] used heuristics to exploit common sub-structures in the
topologies of the circuits in S by overlaying the circuits with one another. For a
specific set of 32 circuits, the authors achieved 6.1× size reduction compared to
separately representing each circuit. For 32 circuits, our approach can improve
by up to 32×. Additionally, we do not face the expensive problem of program-
ming the conditional based on conditions known only to the MPC player. Fi-
nally, [KKW17] is a heuristic whose performance depends on the specific circuits.
Our approach is much more general.

Oblivious Transfer (OT) extension and Silent OT. Since OT requires expensive
public-key primitives, efficient GMW relies on OT extension [Bea96, IKNP03].
Our implementation uses the highly performant 1-out-of-2 OT extension of
[IKNP03] as implemented by the EMP-toolkit [WMK16]. More specifically, we
precompute 1-out-of-2 random OTs in a precomputation phase and use the stan-
dard trick [Bea95] to cheaply construct 1-out-of-2 OT from random OT.

With [IKNP03], each 1-out-of-2 OT requires transmission of a κ-bit (e.g.
128-bit) OT matrix row, regardless of the length of the sent secrets. Reducing
the number of consumed OT matrix rows is the source of our improvement: our
VS gate takes advantage of the fact that a single 1-out-of-2 OT of b-bit strings
is much cheaper than b 1-out-of-2 OTs of 1-bit strings, since in the former case
only one κ-bit OT matrix row is consumed.

Silent OT is an exciting recent primitive that generates large numbers of ran-
dom OTs from relatively short pseudorandom correlation generators [BCG+19].
It largely removes the communication overhead of random OT when a large
batch is executed. Currently, [IKNP03] remains more efficient than Silent OT
in many contexts because Silent OT incurs expensive computation and involves
operations with high RAM consumption [BCG+19]. We stress that although we
emphasize communication improvement via amortizing OTs, Silent OT does not
replace our approach. Indeed, our approach yields improvement even if we use
Silent OT, because we reduce the number of needed random OTs, thus allowing
us to run a smaller Silent OT instance. Therefore, our approach significantly
reduces the computation overhead of Silent OT, both in terms of RAM con-
sumption and wall-clock time.

GMW with multi-input/multi-output gates. Prior work [KK13, KKW17, DKS+17]
noticed that the cost of OTs associated with GMW gate evaluation could be
amortized across several gates. [KK13] improved OT for short secrets by ex-
tending [IKNP03] 1-out-of-2 OT to a 1-out-of-n OT at only double the cost.
[KKW17, DKS+17] applied the [KK13] OT to larger gates with more than the
standard two inputs/one output, thus amortizing the OT matrix cost across sev-
eral gates. As a secondary benefit, merging several gates into larger gates reduces
the circuit depth and latency overhead.
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Unfortunately, the above multi-input gate constructions encounter two signif-
icant problems. First, the size of the truth table, and thus bandwidth consump-
tion, grows exponentially in the number of inputs. Therefore, it is unrealistic to
construct multi-gates with large numbers of inputs. Second, gates that encode
arbitrary functions do not cleanly generalize from the two-party to the multi-
party setting. To explain why, we contrast arbitrary gates with AND gates. AND
gates generalize to the multi-party setting because logical AND distributes over
XOR secret shares. Therefore, the multiple players can construct XOR shares of
the AND gate truth table. In contrast, an arbitrary function does not distribute
over shares, and thus players cannot construct shares of the table.

Our VS gate can be viewed as a particularly useful multi-input/multi-output
gate that ANDs (multiplies) any number of vector elements with a scalar. The
advantage of our approach over prior multi-input/multi-output gates is that our
approach is based on algebra, not on the brute-force encoding of truth-tables.
This algebra scales well both to any number of inputs/outputs and to any number
of players. Of course, the most important difference is the key application of our
approach – efficient branching – which was not achievable with prior work.

Arithmetic MPC and Vector OLE. A number of works presented arithmetic
generalizations of MPC in the GMW style, e.g. [IPS09, ADI+17]. Modern works
in this area can efficiently multiply arbitrary field elements using a generaliza-
tion of 1-out-of-2 string OT called ‘vector oblivious linear function evaluation’
(vOLE) [ADI+17, BCGI18, DGN+17]. In addition, these works point out that
field scalar-vector multiplication can be efficiently achieved with two vOLEs,
and emphasize the usefulness of this technique for efficient linear algebra oper-
ations (e.g., matrix multiplication). Because we work with Boolean circuits, we
do not need generalized vOLEs, and instead more efficiently base our vector-
ization directly on the efficient OT extension technique [IKNP03]. Importantly,
our branching application benefits from multiplication of relatively small vec-
tors (of size equal to the branching factors), while break-even points of prior
constructions imply their usefulness with much longer vectors.

Our work applies efficient scalar-vector multiplication to the unobvious and
important use case of conditional branching.

Constant-overhead MPC. Ishai et al. [IKOS08] proposed a constant-overhead
GMW-based MPC. They observe that once sufficiently many random OTs are
available to the players, the remainder of the protocol can be done with constant
overhead per Boolean gate. They exhibit a construction of such a pool of OTs
with constant cost per OT. For this, [IKOS08] relies on Beaver’s non-black-box
OT extension [Bea96], decomposable randomized encoding and an NC0 PRG.
While asymptotically [IKOS08]’s cost is optimal, in concrete terms, it is imprac-
tically high. Our work does not achieve constant factor overhead, but similarly
improves OT utilization and is concretely efficient.

GMW optimizations. [CHK+12] showed that GMW is particularly suitable in
low-latency network settings and that it outperforms GCs in certain scenarios.
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[CHK+12] further showed an application in a set of online marketplaces such
as a mobile social network, where a provider helps its users connect according
to mutual interests. Their implementation used multi-threaded programming to
take advantage of inherent parallelism available in the execution of OT and the
evaluation of AND gates of the same depth.

[SZ13] introduced several low-level computation improvements, such as us-
ing SIMD instructions and performing load-balancing, and circuit representa-
tion improvements, such as choosing low-depth circuits even at the cost of
larger overall circuits. [SZ13] also elaborated on a number of examples where
GMW is suitable, including a privacy-preserving face recognition with Eigenfaces
[EFG+09, HKS+10, SSW10] or Hamming distance [OPJM10]. We draw our key
evaluation benchmark, a log-depth bitstring comparison circuit, from [SZ13].

3 GMW Protocol Review

The GMW protocol allows p semi-honest players to securely compute a Boolean
function of their private inputs. The key invariant is that on each wire, the p
players together hold an XOR secret share of the truth value.

Consider p players P1, ..., Pp who together evaluate a Boolean circuit C. For a
wire a, we denote Pi’s share of a as ai. The players step through C gate-by-gate:

– For each wire a corresponding to an input bit from player Pi, Pi uniformly
samples a p-bit XOR secret share of a and sends a share to each player.

– To compute an XOR gate c = a⊕ b, the players locally add their shares:

(a1 ⊕ ...⊕ ap)⊕ (b1 ⊕ ...⊕ bp) = (a1 ⊕ b1)⊕ ...⊕ (ap ⊕ bp)

– To compute an AND gate, the players communicate. Consider an AND Gate
c = ab and the following equality:

c = ab = (a1 ⊕ ...⊕ ap)(b1 ⊕ ...⊕ bp) =

 ⊕
i,j∈1..p

aibj


That is, to compute an AND gate it suffices for each pair of players to multiply
together their respective shares and then for the players to locally XOR the
results. Consider two players Pi and Pj . The players compute shares of aibj
and ajbi via 1-out-of-2 OT: To compute aibj , Pi first samples a uniform bit
xi. Then, the players perform 1-out-of-2 OT where Pj inputs bj as her choice
bit and Pi submits as input xi and xi ⊕ ai. Let xj be Pj ’s OT output and
note that xi ⊕ xj = aibj . Pi XORs together her OT outputs with aibi (which
is computed locally) and outputs the sum.

– For each output wire a, the players reconstruct the cleartext output by broad-
casting their share and then locally XORing all shares.

Thus, the GMW protocol securely computes an arbitrary function by con-
suming p(p − 1) OTs per AND gate. Our construction uses this same protocol,
except that we replace AND gates by a generalized VS gate that ANDs an entire
vector of bits with a scalar bit for p(p − 1) OTs. As our key use-case, we show
that this improves conditional branching.
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4 Notation

– We use p to denote the number of players.
– We use subscript notation to associate a variable with a player. E.g., ai is

the share of wire a held by player Pi.
– t denotes the ‘active’ branch in a conditional i.e. a branch that is taken

during the oblivious execution. t̄ implies an ‘inactive’ branch.
– In this work, we manipulate strings of bits as vectors:
• Superscript notation denotes vector indexes. E.g. ai refers to the i-th

index of a vector a.
• We denote a vector of bits by writing parenthesized comma-separated

values. E.g., (a, b, c) is a vector of a, b, and c.
• We use n to denote the length of a vector.
• When two vectors are known to have the same length, we use ⊕ to denote

the bitwise XOR sum:

(a1, . . . , an)⊕ (b1, . . . , bn) = (a1 ⊕ b1, . . . , an ⊕ bn)

• We indicate a vector scalar Boolean product by writing the scalar to the
left of the vector:

a(b1, . . . , bn) = (ab1, . . . , abn)

5 Technical Overview

Our approach amortizes OTs across conditional branches. Section 6 formalizes
this approach in technical detail. In this section, we explain at a high level.

Recall, that GMW computes AND (Boolean multiplication) gates via 1-out-
of-2 OT. Suppose that we wish to multiply an entire vector of Boolean bits
(b1, . . . , bn) by the same scalar a. I.e., we wish to compute (ab1, . . . , abn). MOTIF
amortizes the expensive 1-out-of-2 OTs needed to multiply each shared vector
element by a shared scalar (hence the notation VS for vector-scalar). Namely, to
evaluate n AND gates of this form, instead of using n · p · (p− 1) OTs of length-1
secrets, we use only p ·(p−1) OTs of length-n secrets. This reduces consumption
of the OT extension matrix rows, the most expensive resource in the GMW
evaluation.

We first show how we achieve this cheap vector scalar multiplication. Then,
we show how this tool is used to reduce the cost of conditional branching.

In this section, for simplicity, we focus on the case of b = 2 branches and
p = 2 players. Our approach naturally generalizes to arbitrary b and p, and we
formally present our constructions in full generality in Section 6.

5.1 VS Gates

As we showed in Section 3, a single AND gate computed amongst p players requires
p(p−1) 1-out-of-2 OTs. Our VS gate construction consumes the same number of
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OTs, but multiplies an entire vector of bits by a scalar bit. Suppose two players
P1, P2 wish to compute the following vector operation:

a(b, c) = (ab, ac)

where a = a1 ⊕ a2, b = b1 ⊕ b2, and c = c1 ⊕ c2 are GMW secret shared between
P1, P2. Note the following equality:

a(b, c) = (a1 ⊕ a2)(b1 ⊕ b2, c1 ⊕ c2) XOR shares

= (a1b1 ⊕ a1b2 ⊕ a2b1 ⊕ a2b2, a1c1 ⊕ a1c2 ⊕ a2c1 ⊕ a2c2) distribute

= a1(b1, c1)⊕ a1(b2, c2)⊕ a2(b1, c1)⊕ a2(b2, c2) group

The first and fourth summands can be computed locally by the respective play-
ers. Thus, we need only show how to compute a1(b2, c2) (the remaining third
summand is computed symmetrically). To compute this vector AND, the players
perform a single 1-out-of-2 OT of length-2 secrets. Here, P2 plays the OT sender
and P1 the receiver. P2 draws two uniform bits x and y and allows P1 to choose
between the following two secrets:

(x, y) (x⊕ b2, y ⊕ c2)

P1 chooses based on a1 and hence receives (x⊕a1b2, y⊕a1c2). P2 uses the vector
(x, y) as her secret share of this summand. Thus, the players successfully hold
shares of a1(b2, c2).

Put together, the full vector multiplication a(b, c) uses only two 1-out-of-2
OTs of length-2 secrets. Our VS gate generalizes to arbitrary numbers of players
and vector lengths: a vector scaling of b elements between p players requires
p(p− 1) 1-out-of-2 OTs of length b secrets.

5.2 MOTIF: (Almost) Free Conditional Branching in GMW

We now show how VS gates allow improved conditional branching. We amortize
OTs used by AND gates across conditional branches. Branches may be arbitrary,
having different topologies and operating on independent wires.

For simplicity, consider a circuit that has only two branches and that is
computed by only two players; our approach generalizes to b branches and n
players. Since the two branches are conditionally composed, one branch is ‘active’
(i.e. taken) and one is ‘inactive’.

Our key invariant is that on all wires of the inactive branch the players
hold a share of 0, whereas on the active branch they hold valid shares. We begin
by showing how AND gates interact with this invariant. In particular, the invari-
ant allows AND gates across different conditional branches to be simultaneously
computed by a single VS gate. Then we show how all gates maintain the invariant
and how we enter/leave branches.
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AND Gates. Our key optimization allows the players to consider simultaneously
one AND gate from each branch. For example, suppose the players wish to com-
pute both a1b1 and a2b2 where a1, b1 are wires in branch 1 and a2, b2 are wires
in branch 2. Despite the fact that the players compute two gates, they need only
two 1-out-of-2 OTs. Let t be the taken branch. Hence xt, yt are active wires and
xt̄, yt̄ are both 0. Observe the following equalities:

(xt ⊕ xt̄)yt = (xt ⊕ 0)yt = xtyt

(xt ⊕ xt̄)yt̄ = (xt ⊕ 0)0 = 0

Thus if we efficiently compute both (xt⊕xt̄)yt and (xt⊕xt̄)yt̄, then we propagate
the invariant: the active branch’s AND output wire receives the correct value while
the inactive branch’s wire receives 0. These products reduce to a vector-scalar
product computed by our VS gate:

(xt ⊕ xt̄)(yt, yt̄)

Thus, we compute two AND gates for the price of one. This technique generalizes
to arbitrary numbers of branches: to compute b AND gates across b branches, our
approach consumes two OTs of length b secrets.

Additional Details. Our optimization relies on ensuring all inactive wires hold
0. We now show how we establish this invariant upon entering a branch, how
non-AND gates maintain the invariant, and how we leave conditionals.

– Demultiplexing. ‘Entering’ a conditional is controlled by a condition bit,
a single bit whose value determines which of the two branches should be
taken. To enter a conditional with two branches, we demultiplex the input
values based on the condition bit. That is, we AND the branch inputs with
the condition bit. More precisely, for the input to branch 1, i.e. the branch
taken if the condition bit holds 1, we AND the input bits with the condition
bit. Symmetrically, for branch 0, we AND each input bit with the NOT of
the condition bit. Thus, we obtain a vector of valid inputs for the active
branch and a vector of all 0s for the inactive branch. Because we multiply
all inputs by the same two bits, we can use VS gates to efficiently implement
the demultiplexer. In order to implement more than two branches, we nest
conditionals.

– XOR gates. XOR gates trivially maintain our invariant: an XOR gate with two
0 inputs outputs 0.

– NOT gates. Native NOT gates would break our invariant: a NOT gate with input
0 outputs 1. Thus, we do not natively support NOT gates. Fortunately, we can
construct NOT gates from XOR gates. To do so, we maintain a distinguished
‘true’ wire in each branch. We ensure, by demultiplexing, that the ‘true’ wire
holds logical 1 on all active branches and logical 0 on all inactive branches.
A NOT gate of a wire can thus be achieved by XORing the wire with ‘true’.
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– Multiplexing. To ‘leave’ a conditional, we resolve the output wires of the
two branches: we propagate the output values on the active branch and
discard the output of the inactive branch. Fortunately, our invariant means
that this operation is extremely cheap: to multiplex the output values of
wires on the active and inactive branches, we simply XOR corresponding wires
together.

Branch layer alignment. As GMW is an interactive scheme, at any time we
can only evaluate gates whose input shares have already been computed (ready
gates), and thus we cannot include ‘future round’ AND gates into the current VS
computation. In each round of GMW computation, we can only amortize OTs
over the ready gates.

That is, in p-party GMW, in each round our technique eliminates all OTs,
except for the total of p(p − 1) · max(wi) OTs, where wi is the number of AND
gates in the current layer of branch i. Clearly, the more aligned (i.e. having a
similar number of AND gates in each circuit layer) the circuit branches are, the
higher the performance improvement.

In our experiments, we demonstrate the maximum achievable benefit of our
construction by evaluating perfectly aligned circuits. While typical circuits will
not have perfectly aligned branches, we do not expect them to have a poor
alignment either, particularly if the branching factor is high. We leave improving
alignment, perhaps via compilation techniques, as future work.

6 MOTIF: Formalization and Protocol Construction

We now formalize MOTIF, our GMW extension that supports efficient branching.
As in the standard GMW protocol, our approach represents functions as circuits
composed from a collection of low-level gates. We presented the core technical
ideas of our approach in Section 5; the following discussion assumes a familiarity
with Section 5.

Underlying idea. We implement efficient branching by simultaneous eval-
uation of multiple independent AND gates, one gate from each mutually exclusive
branch, by representing them as a single cheap VS gate.

Presentation Roadmap. Our formalization involves intertwined low-level
cryptographic, programming language, and circuit technical details.

In Section 6.1 we motivate our compilation sequence, which takes a program
with if branches written in a high-level language and outputs a straight-line
circuit that uses VS gates. We do not yet explain in detail how it is achieved,
absent a necessary formalization of circuits and gates, which we provide in Sec-
tion 6.2. Armed with the formalization, we explain in Section 6.3 how vectorized
VS gates facilitate branching in a straight-line circuit: we provide a formal algo-
rithm (Figure 1) that generates a straight-line circuit with VS gates implementing
branching over two circuits C0, C1.

11



Then, having converted a program/circuit with branching into a VS circuit
defined in Section 6.2, we focus on efficient secure evaluation of the latter. In Sec-
tion 6.4, we complete our formalization by defining cleartext semantics. In Sec-
tion 6.5, we present a complete protocol, Π - MOTIF, with proofs in Section 7.

6.1 Compiling Conditionals to Straight-line VS Circuits

Our approach is concerned primarily with the efficient handling of conditional
branching. Therefore, we begin our formalization by discussing how conditional
branches can be efficiently represented in terms of only XOR and VS gates.

Assume that the user’s MPC functionality is encoded in some high-level lan-
guage as a program with branching. The user hands this high-level functionality
to a compiler which translates the high-level-language program into a low-level
collection of gates. To interface with our approach, the compiler should output
a circuit that contains XOR and VS gates.

It is thus the job of the compiler to translate conditionals into the VS cir-
cuit. Recall (from Section 5.2) that our key branching invariant requires that all
inactive branches hold 0 values on all wires. Consider b branches, where each
branch i computes the conjunction xiyi, and where xi, yi are independent values
carried by i-th branch’s wires. Due to the key invariant, and as discussed in de-
tail in Section 5.2, the following vector-scalar product simultaneously computes
these b ANDs:

(x1 ⊕ . . .⊕ xb)(y1, . . . , yb)

The compiler’s job is to output VS gates that simultaneously compute AND gates
in this manner. In Section 6.3 we show how a compiler can merge the gates of
two branches in order to amortize AND gates as just described. First, we describe
the syntax needed for this compiler algorithm and for our protocol.

6.2 Circuit Formal Syntax

Because we add a new gate primitive, we cannot use the community-held implicit
syntax of Boolean circuits. Thus, we formalize the syntax and semantics of our
modified circuits such that we can prove correctness and security.

Gate syntax. Our approach handles two kinds of gates: XOR gates, which can
be evaluated locally, and vector-scalar gates (VS), a new type of gate, which
multiplies a vector of bits by a scalar for the cost of only p(p− 1) OTs. An XOR

gate has two input wires a, b and an output wire c and computes c← a⊕ b. We
denote an XOR gate by writing XOR(c, a, b). A vector-scalar gate VS takes as input
a scalar a and a vector (b1, . . . , bn) and computes:

(c1, . . . , cn)← a(b1, . . . , bn)

We denote a vector-scalar gate by writing VS((c1, . . . , cn), a, (b1, . . . , bn)). We also
formalize the input/output wires of the circuit. We denote an input wire a whose
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value is given by player P by writing INPUT(P, a). Finally, we indicate that wire
a is an output wire by writing OUTPUT(a). Formally, let variables a, b, c, . . . be
arbitrary wires and let P be an arbitrary player. The space of gates is denoted:

G ::= XOR(c, a, b) | VS((c1, . . . , cn), a, (b1, . . . , bn)) | INPUT(P, a) | OUTPUT(a)

NOT gates. Typically, Boolean techniques support gates that perform logical
NOT. As discussed in Section 5, we do not natively support NOT gates as they
would break the correctness of VS implementation of conditional branches: our
invariant requires all inactive wires to hold shares of 0, and NOT gates flip 0 to 1.
Accordingly, our formal syntax does not include NOT gates. Instead, we build NOT

gates from XOR gates and a per branch auxiliary distinguished wire aux, which
is set by the MPC player to aux = 1 in the active branch, and to aux = 0 in
all inactive branches. Then ¬a = a ⊕ aux, which implements NOT in the active
branch and preserves monotonicity in the inactive branches.

Circuit syntax. A circuit is a list of gates. We do not need to “connect” the
gates in the circuit, since gates already refer to specific wire ids. Formally, let
g1, . . . , gk ∈ G be arbitrary gates. The space of circuits with k gates is denoted:

C ::= (g1, . . . , gk)

We consider a circuit to be valid only if the gates are in a topological order : i.e.,
a wire must appear as a gate output before it is used as a subsequent gate input.
In upcoming discussion, we assume circuits are valid.

Circuit layers. In our implementation, our circuit syntax groups collections of
gates into layers, such that all VS gates of the same depth can be computed in
constant communication rounds. We omit this layering from our formalization to
keep notation simple, but emphasize that the required change is straightforward.

6.3 Merging Conditional Branches

As discussed in Section 6.1, we view the problem of translating from programs
with conditional branches to circuits in our syntax as a problem for a compiler.
In this section, we specify an algorithm merge (Figure 1) that demonstrates how
a compiler can combine VS gates from each branch into a single VS gate (of
course, the standard AND gate is a special case of the VS gate).

For simplicity, assume that the high-level source language contains only bi-
nary branching, perhaps through if statements. Even in this simplified model,
the programmer can nest if statements to achieve arbitrary branching. We also
assume that the compiler can translate low-level program statements into cir-
cuits (e.g., assignment statements are converted into circuits).

Consider two branches of an if statement, and suppose that the compiler
already recursively compiled the body of both branches into two circuits C0

and C1. To finish translating the if statement while taking advantage of our
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def merge(C0, C1) :

m← |C0| ; n← |C1|
out← λ

. Initialize counters that point into the two respective circuits.

i← 1 ; j ← 1

. Continue to loop until gates from both input circuits are exhausted.

while(i ≤ m and j ≤ n) :

. Eagerly pull XOR gates from both input circuits.

while(i ≤ m and C0[i] is an XOR gate) :

out.push(C0[i])

i← i+ 1

while(j ≤ n and C1[j] is an XOR gate) :

out.push(C1[j])

j ← j + 1

. Now, the next gate in both circuits either

. does not exist (i.e. the branch has no gates left) or is a VS gate.

if i ≤ m and j ≤ n :

. The general case: both branches have a VS gate that can be merged.

VS((c10, . . . , c
k
0), a0, (b

1
0, . . . , c

k
0))← C0[i]

VS((c11, . . . , c
k
1), a1, (b

1
1, . . . , c

k
1))← C1[j]

. The compiler allocates a fresh wire for the XOR output

a← freshWire()

. Recall, our invariant ensures that at runtime either a0 or a1 holds 0.

out.push(XOR(a, a0, a1))

out.push(VS((c10, . . . , c
k
0 , c

1
1, . . . , c

k
1), a, (b10, . . . , b

k
0 , b

1
1, . . . , b

k
1)

else if i ≤ m :

out.push(C0[i])

i← i+ 1

else if j ≤ n :

out.push(C0[j])

j ← j + 1

return out

Fig. 1: merge, a compiler algorithm, demonstrates how two branch circuits can
be merged into one while joining together VS gates. By using an algorithm like
merge, a compiler can use our approach to amortize the cost of OTs across
conditional branches.
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approach, the compiler should merge together VS gates in C0 and C1. merge is
one technique for performing this combining operation. merge takes C0 and C1

as arguments and outputs a single circuit that computes both input circuits,
but that uses fewer VS gates than simply concatenating C0 and C1. At a high
level, merge walks the two input circuits gate-by-gate. It eagerly moves XOR gates
from the input circuits to the output circuit until the next gate in both circuits
is a VS gate. merge combines these two VS gates into one by concatenating the
two vectors and by XORing the two scalars. merge assumes that circuits inside of
conditionals do not contain INPUT or OUTPUT wires.

By recursively applying merge across many conditional branches, a compiler
can achieve up to b× reduction in the number of VS gates.

Merging layers. As discussed in Section 6.2, our formalization does not account
for circuit layers (i.e. VS gates that occur at the same multiplicative depth) for
simplicity. In order to avoid increasing latency, merging must take care to pre-
serve layers: merging VS gates across layers can increase the overall multiplicative
depth and add communication rounds. Thus, the compiler must be careful when
merging gates.

One straightforward technique, which we implemented, is to only merge to-
gether VS gates of the same depth. That is, our implementation introduces an
extra loop which combines all VS gates that are grouped in the same layer in-
stead of handling VS gates one at a time. Even this straightforward strategy is
likely to yield large improvements, particularly if the branching factor is high.

More optimal approaches exist, and the problem of maximally amortizing
OTs across branches thus becomes a relatively interesting compilers problem. An
intelligent compiler could allocate gates to different layers in order to maximally
match up VS gates across branches without increasing depth. An even more
intelligent compiler could account for network settings in order to decide when it
is worth it to increase multiplicative depth in exchange for better layer alignment.

6.4 Circuit Cleartext Semantics

Prior discussion showed that a Boolean circuit with branches can be represented
as a straight-line VS circuit. We present our MPC protocol for evaluating such
circuits in formal detail in Section 6.5.

In order to demonstrate that our protocol is correct, we require a formal
semantics. I.e., we require the functionality that the protocol achieves. In this
section, we specify the formal semantics of circuits as the algorithm eval listed in
Figure 2. eval maintains a circuit wiring: a map from wire indexes to Boolean
values. Each gate reads values from the wiring for input wires and/or writes
values to the wiring for output wires.

6.5 Our Protocol

In this section, we formalize our protocol Π - MOTIF, which securely implements
the semantics of eval (Figure 2):
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def eval(C, inp1, . . . , inpp) :

. Initialize an empty wiring map.

wiring← λ

. Initialize an empty output string.

out← λ

. Update the wiring for each gate in the circuit.

for g ∈ C :

switch g :

case XOR(c, a, b) :

wiring[c]← wiring[a]⊕ wiring[b]

case VS((c1, . . . , cn), a, (b1, . . . , bn))

for i ∈ [1..n] :

. AND each vector input by a.

wiring[ci]← wiring[a] · wiring[bi]

case INPUT(i, a) :

. Read a bit of input from player i.

wiring[a]← inpi.pop()

case OUTPUT(a) :

. Update the output string with the wire value.

out.push(wiring[a])

return out

Fig. 2: The cleartext semantics for a circuit C ∈ C run between p players. Each
player i’s input is modeled as a string of bits inpi. The method pop pops the
first value from the string. Each gate manipulates a wiring, which is a map from
wire indexes to values. The output of evaluation is a string of bits out.

Construction 1. (Protocol Π - MOTIF) Π - MOTIF is defined in Figures 3 and 4.

Theorems in Section 7 imply the following:

Theorem 1. Construction 1 implements the functionality eval (Figure 2) and
is secure against up to p− 1 semi-honest corruptions in the OT-hybrid model.

Figure 3 lists our high level protocol Π - MOTIF from the perspective of an
arbitrary player Pi. For the reader familiar with the detail of the classic GMW
protocol, the only essential difference between the classic protocol and ours is
that we handle VS gates by invoking an instance of our Π - VS protocol.

Π - MOTIF ensures that the p players hold random XOR secret shares of the truth
values on the already computed wires. This invariant ensures both correctness
and security: the protocol is correct because the output wires’ secret shares can
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Functionality:

– Players P1, . . . , Pp agree on a circuit C ∈ C.
– Each player Pi provides as input a bitstring inpi.
– Players output eval(C, inp1, . . . , inpp).

Protocol:

Π - MOTIFi(C, inpi) :

. Each player sets up an empty wiring map and output string.

wiring← λ

out← λ

. The protocol proceeds by case analysis of each gate in C.

for g ∈ C :

switch g :

case XOR(c, a, b) :

. XOR gates are computed locally by each player.

wiring[c]← wiring[a]⊕ wiring[b]

case VS((c1, . . . , cn), a, (b1, . . . , bn)) :

. We delegate VS gates to the protocol Π - VS.

(ab1, · · · , abn)← Π - VSi(wiring[a], wiring[b1], . . . , wiring[bn])

. Each player puts VS gate results into her wiring.

for j ∈ [1..n]

wiring[cj ]← abj

case INPUT(j, a) :

if i == j :

. Player j draws fresh shares that XOR sum to her next input.

. sendShares outputs Pj ’s share, which she adds to her wiring.

wiring[a]← sendShares(inpi.pop())

else :

. Other players add random shares sent by j to their wiring.

wiring[a]← recvShare(j)

case OUTPUT(j, a) :

. Each player broadcasts her output share and locally sums all shares.

. reconstruct performs the broadcasts and the local XOR.

out.push(reconstruct(wiring[a]))

return out

Fig. 3: Our protocol Π - MOTIF from the perspective of player i. Π - MOTIF performs
the same tasks as the classic GMW protocol except for VS gates, where we
delegate to the sub-protocol Π - VS.
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be reconstructed to the correct truth value. The protocol is secure because the
XOR secret shares are uniformly random, and hence no player’s share (or any strict
subset’s shares) gives any information about the truth value on a particular wire.
We argue these facts in detail in our proofs (Section 7).

Like the functionality eval, Π - MOTIF proceeds by case analysis on gates:

– XOR. The players locally XOR their shares. Because XOR is commutative and
associative, this local computation correctly implements the functionality.

– VS. We delegate VS gates to a separate protocol Π - VS (Figure 4). Recall, VS
simultaneously multiplies an entire n-element Boolean vector (x1, . . . , xn)
by a Boolean scalar a, as follows: Let p be the number of players holding
XOR shares of a and x1, ..., xn. Consider an arbitrary k-th vector element xk.
Π - VS is based on the following equivalence:

axk = (a1 ⊕ . . .⊕ ap)(xk1 ⊕ . . .⊕ xkp) =

p⊕
i=1

 p⊕
j=1

aix
k
j

 (1)

Now, the sums
⊕p

j=1 aix
k
j can be delivered to player Pi simultaneously for

all k ∈ [1, ..., n] via only (p − 1) n-bit string 1-out-of-2 OTs executed with
the p − 1 other players. Once this is done for all p players (using a total of
p(p − 1) OTs of n-bit strings), the result is a secret sharing of the vector
(ax1, ..., axn). OT senders introduce uniform masks to protect the secrecy of
their shares xkj . The VS protocol is formalized in Figure 4.

– INPUT. Each input wire has a designated player who provides the input value.
In Π - MOTIF, this player distributes a share of a single bit from their input.
Our formalization assumes two procedures: (1) sendShares constructs a
uniform XOR secret share of a given value and sends the shares to all p
players and (2) recvShare is the symmetric procedure that receives a single
share from the sending player.

– OUTPUT. For output wires, the players simply reconstruct their XOR secret
shares. Our formalization assumes a protocol reconstruct which handles
these details. reconstruct instructs each player to broadcast their share to
all other players. Then, each player locally XORs together all shares.

7 Proofs

Now that we have formalized Π - MOTIF, we prove that it is correct and secure.

7.1 Proof of Correctness

Π - MOTIF implements the functionality eval (Figure 2):

Theorem 2 (Π - MOTIF Correctness). For all circuits C ∈ C and all input
bitstrings inp1, . . . , inpp:

eval(C, inp1, . . . , inpp) = Π - MOTIF(C, inp1, . . . , inpp)
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Functionality:

– Players P1, . . . , Pp input XOR secret shares of a, b1, . . . , bn.
– Players output XOR secret shares of ab1, . . . , abn.

Protocol:

Π - VSi(ai, b
1
i , . . . , b

n
i ) :

. Vector scaling is computed by having each player i interact with every player j.

for j ∈ [1..p] :

if i == j :

. Pi computes the AND of her two shares locally.

cj ← (aib
1
i , . . . , aib

n
i )

else if i < j :

. To AND shares with another player, the two players perform two OTs.

. The order of OT send/receive is chosen based on player IDs.

. When sending, Pi’s share is a uniform mask.

x← draw {0, 1}n

OTsend(x, x⊕ (b1i , . . . , b
n
i ))

y ← OTrecv(ai)

. The sub-result computed with Pj is the XOR sum of both OT outputs.

cj ← x⊕ y
else if i > j :

. Symmetric to above: order of send and receive is swapped.

y ← OTrecv(ai)

x← draw {0, 1}n

OTsend(x, x⊕ (b1i , . . . , b
n
i ))

cj ← x⊕ y
. The output vector is the XOR sum of all results computed with all players.

return
⊕
j

cj

Fig. 4: Protocol Π - VS from the perspective of player i. Π - VS explains how the
players perform a vector-scalar multiplication. draw uniformly draws a random
bit-vector of the specified length. OTSend and OTRecv respectively send and
receive a 1-out-of-2 OT of n-bit secrets. In practice, we precompute all random
OTs at the start of the protocol.

Proof. By induction on C. The invariant is that gate input wires hold XOR secret
shares of corresponding cleartext values.

We proceed by case analysis of an individual gate g, showing that the invari-
ant is propagated from input wires to output wires.
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– Suppose g is an input INPUT(i, a). Then Pi secret shares her input bit and
distributes it amongst players, trivially establishing the invariant on wire a.

– Suppose g is an XOR gate XOR(c, a, b). By induction, the input wires a and b
hold correct shares. In Π - MOTIF, the players locally sum their shares. Thus,
the output wire c holds a correct sharing of the XOR of the input shares:

(a1 ⊕ . . .⊕ ap)⊕ (b1 ⊕ . . .⊕ bp) = (a1 ⊕ b1)⊕ . . .⊕ (ap ⊕ bp)

– Suppose g is a vector-scalar gate VS((c1, . . . , cn), a, (b1, . . . , bn)). By induc-
tion, a, b1, . . . , bn hold correct shares. Consider an arbitrary vector element
bk. The specification eval requires that the corresponding output wire ck

obtains a secret sharing of abk. Recall the crucial AND equality given by
Equation (1):

abk = (a1 ⊕ . . .⊕ ap)(bk1 ⊕ . . .⊕ bkp) =

p⊕
i=1

 p⊕
j=1

aib
k
j


The protocol Π - VS (Figure 4) uses local computation and OTs to simul-
taneously compute a secret sharing of the above XOR sum for each vector
element. In particular, for each element bk, each player Pi computes a share⊕p

j=1 aib
k
j (with added random masks). Thus, for each vector element bk,

the players hold correct XOR secret shares, which they store on the wire ck.
– Suppose g is an output OUTPUT(a). By induction, wire a holds correct se-

cret shares. Thus, when the players reconstruct their shares they obtain the
correct truth value for wire a.

Π - MOTIF is correct.

7.2 Proof of Security

We now prove Π - MOTIF secure in the OT-hybrid model. Π - MOTIF uses 1-out-of-2
OT as an oracle functionality.

Our proof is nearly identical to that of classic GMW. The difference between
the two proofs is that our protocol uses VS gates whereas classic GMW uses
AND gates. Both proofs show that interactions involving AND/VS gates can be
simulated by uniform bits.

Theorem 3 (Π - MOTIF Security). Π - MOTIF is secure against semi-honest cor-
ruption of up to p− 1 players in the OT-hybrid model.

Proof. By construction of a simulator S that simulates the view of a player P1,
and an argument that S generalizes to arbitrary strict subsets of players.

At a high level, S computes simulated secret shares on all circuit wires and
adds simulated messages to P1’s simulated view. The crucial property is that
all wire values, except outputs and inputs belonging to P1, are indistinguishable
from uniform bits.
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– Consider an input wire. First, suppose that this wire belongs to P1. In this
case, P1 receives no messages. Hence, S need not modify P1’s view. Instead,
S samples a uniform bit as an XOR secret share of P1’s input and adds it to
the circuit wiring.

Next, suppose that the input wire belongs to some other player Pi 6=1. Recall
that Pi6=1 uniformly samples an XOR secret share of her input and sends one
share to P1. Thus, S simulates an input wire by drawing a uniform bit. S
adds this bit to P1’s view and to the circuit wiring.

– XOR gates are computed locally. Hence, S need not modify P1’s view. Instead,
S simply XORs the gate’s simulated input shares and adds the output share
to the wiring.

– Consider a VS gate. In the real world, P1 interacts with OT twice per every
other player (once as a sender and once as a receiver). On send interactions,
P1 receives no output, so the interaction is trivially simulated. Receiving
OTs is more complex. Recall that for a VS gate (see Figure 4), each player
Pi 6=1 sends via OT either a random string x or x⊕ b where b is Pi 6=1’s shares
for all of the scaled wires. Note that in this second message, b is masked by
x. Since P1 obtains only one of these messages from the OT oracle, both
are indistinguishable from uniform bits. Thus, S simulates each OT output
by drawing uniform bits. Now, S updates the simulated wiring by XORing
the simulated input shares with the simulated OT messages (see Figure 4,
Equation (1) for the required computation) and places the results on the VS

gate output wires.

– Consider an output wire. In the real world, P1 receives all other players’
shares and XOR s them with her own share. S must take care that P1’s view
is consistent with this XORed output value. In particular, S draws uniform
bits to simulate messages for all uncorrupted players except for one. For
this last player, S simulates a message by XORing these drawn bits with P1’s
simulated share (stored in the wiring) and the desired output.

Thus, S simulates P1’s view.

Now, we argue that S is generalizable to any strict subset of players. Because
of the symmetry of the protocol, S is clearly applicable to any one player. Gen-
eralizing to more than one player relies on the fact that players’ values are XOR

secret shares. Thus, holding k player shares gives no information about the other
players’ views. S is easily modified to simulate more messages, i.e. to simulate
the messages received by all simulated players.

Π - MOTIF is secure against semi-honest corruption of up to p− 1 players.

8 Implementation

We implemented MOTIF in C++ using GCC’s experimental support for C++20. Our
implementation consists of a circuit compiler, which converts code with condi-
tionals into circuits, and a circuit evaluator, which implements our protocol.
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Our compiler accepts a C++ program written in a stylized vocabulary. This
vocabulary allows programs with overloaded C++ Boolean operations that con-
struct Boolean circuits (from the programmer’s perspective, this stylized vocab-
ulary is similar to that of EMP’s circuit generation library). We add a special
IF/THEN/ELSE branching syntax that constructs circuits with conditionals of two
branches. Higher branching factor is achieved by nesting.

The compiler outputs XOR and VS gates listed in order of depth. The compiler
also optionally outputs standard GMW circuits (i.e., without our conditional
optimization) for benchmarking purposes.

Our implementation of the MPC protocol Π - MOTIF is natural, but we point
out some of its more interesting aspects. We use 1-out-of-2 [IKNP03] OT as
implemented by EMP [WMK16]. Each pair of players precomputes enough OT
matrix rows for the MPC evaluation. Players evaluate circuits layer-by-layer as
specified by the compiler output. In the case of standard GMW, players evaluate
each AND gate by consuming two OT matrix rows per each pair of players. In
Π - MOTIF, players consume the same number of OT matrix rows, but evaluate
our more expressive VS gates. The benefit of our approach is that up to b× fewer
VS gates (vs AND gates) are needed to implement b branches, thus reducing the
number of consumed OT rows. In both the reference protocol and our optimized
protocol, we parallelize OTs for AND/VS gates in the same circuit layer. Thus,
communication rounds are proportional to the circuit’s multiplicative depth.

9 Performance Evaluation

We compare Π - MOTIF to the standard GMW protocol [GMW87]. All experi-
ments were run on a commodity laptop running Ubuntu 19.04 with an Intel(R)
Core(TM) i5-8350U CPU @ 1.70GHz and 16GB RAM. All players were run on
the same machine, and network settings were configured with the tc command.
We sampled data points over 200 runs, averaging the middle 100 results.

In our experiments, the computed circuit consists of b branches, each imple-
menting the same log-depth string-comparison circuit, which checks the equality
of two length-65000 bitstrings. The active branch is selected based on private
variables chosen by the players. In more realistic circuits, each conditional branch
would have a different topology. We use the same circuit across branches so that
it is easy to understand branching improvement: all branches have the same size.

We emphasize that our compiler does not ‘optimize away’ conditionals: i.e.,
even though each branch is the same circuit, all branches are still evaluated by
both protocols. We use a string-comparison circuit because it is indicative of the
kinds of circuits where GMW excels: the string-comparison circuit has low-depth.
This circuit was suggested as a useful application of GMW by [SZ13].

Choice of benchmark circuit and layering. As discussed in Section 5.2, our ap-
proach cannot always fully amortize OTs across branches because we must pre-
serve the circuit’s multiplicative depth. Thus, in p-party GMW, in each round
our technique eliminates all OTs, except for the total of p(p− 1) ·max(wi) OTs,
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Fig. 5: 2PC comparison of Π - MOTIF against standard GMW. We plot the fol-
lowing metrics as functions of the branching factor (i.e. the number of branches
in the overall conditional): the overall per-player communication (top-left), the
wall-clock time to complete the protocol on a LAN (top-right), the wall-clock
time to complete the protocol on a LAN where other processes share bandwidth
(bottom-left), and the wall-clock time on a WAN (bottom-right).

where wi is the number of AND gates in the current layer of branch i. The ef-
fectiveness of our approach thus varies depending on the relative alignment of
branch layers. Branches that are highly aligned (i.e., have similar numbers of
AND gates in each layer) enjoy significant improvement.

Because our experiment uses the same circuit in each branch, we achieve
perfect alignment. Thus, our experiments show the maximum benefit that our
technique can provide. We emphasize that our approach always reduces the
number of required OTs, because each circuit layer of each branch must have at
least 1 AND gate that can be combined into a VS gate. Additionally, as we discuss
in Section 6.3, compiler technologies can be applied to improve the alignment of
misaligned circuits, further improving the benefit of our approach.

9.1 2PC Improvement over Standard GMW

We first compare the performance of Π - MOTIF to that of standard GMW in
the 2PC setting. Specifically, we run the branching string-comparison circuit
between two players on 3 different simulated network settings:
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# Branches Π - MOTIF(MB) Standard GMW (MB) Improvement
1 1.04 1.04 1×
2 1.09 2.07 1.9×
4 1.18 4.11 3.5×
8 1.37 8.21 6×

16 1.74 16.39 9.4×

Fig. 6: Per-player communication improvement for our 2PC string comparison
experiment as a function of the number of branches.

1. LAN: A simulated gigabit ethernet connection with 1Gbps bandwidth and
and 2ms round-trip latency.

2. Shared LAN: A simulated shared local area network connection where the
protocol shares network bandwidth with a number of other processes. The
connection features 50Mbps bandwidth and 2ms round-trip latency.

3. WAN: A simulated wide area network connection with 100Mbps bandwidth
and 20ms round-trip latency.

Figure 5 plots the total protocol wall-clock time in each network setting and
the total per-player communication. For further reference, Figure 6 tabulates
our communication improvement as a function of branching factor. Note that
total communication is independent of the network settings.

Discussion. In all metrics, our approach significantly improves performance:

– Communication. Our approach improves communication by up to 9.4×.
There are several reasons we do not achieve the full 16× improvement at
branching factor 16. First, both the standard GMW approach and ours
must perform the same number of base OTs to set up an OT extension ma-
trix [IKNP03]. This adds a small amount of communication (around 20KB)
common to both approaches, which cuts slightly into our advantage. Sec-
ond, the online communication for the body of each branch is the same in
both approaches. That is, although we amortize the κ-bit strings sent for
random OTs, we do not amortize the six bits per AND gate needed in the
‘online’ phase of the protocol. Finally, we pay communication cost for the
demultiplexer at the start of each branch. Recall that we AND branch inputs
with the branch condition to ensure that all inactive branches have 0 on each
wire. Although the demultiplexer is achieved using only one VS gate (and
hence two OTs) per branch, the ‘online’ cost of multiplying 65000 wires by
the branch condition is significant. The relative cost of demultiplexers varies
with the number of inputs to each branch: circuits with small inputs incur
less demultiplexer overhead. The string comparison circuit has a particu-
larly costly demultiplexer because the circuit has a large number of input
bits relative to the number of gates in the circuit.

– LAN wall-clock time. On a fast LAN network, our approach’s improve-
ment is diminished compared to our communication improvement. Even so,
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Fig. 7: MPC per-player communication usage of both Π - MOTIF and of standard
GMW as a function of the number of players. Note that, like standard GMW,
our approach uses per-player communication linear in the number of players.

we improve by approximately 5.1× over standard GMW at 16 branches. A
1Gbps network is very fast, and our modest hardware struggles to fill the
communication pipe. With better hardware and low-level implementation
improvements, our wall-clock improvement would approach 9.4×.

– Shared LAN wall-clock time. On the more constrained shared LAN net-
work, our approach excels. We achieve an approximate 9.2× speedup com-
pared to standard GMW at 16 branches. On this slower network, our hard-
ware and implementation easily keep up with the network, and hence we
very nearly match the 9.4× communication improvement.

– WAN wall-clock time. On this high-latency network our advantage is less
pronounced. Still, we achieve a 4.1× speedup compared to standard GMW
at 16 branches. This high-latency network highlights the weakness of GMW’s
multi-round nature. Because we do not reduce the number of rounds, our
approach incurs the same total latency as standard GMW, and hence our
improvement is diminished.

9.2 Scaling to MPC

For our second experiment, we emphasize our approach’s efficient scaling to the
multiparty setting. This experiment uses the same branching string-comparison
circuit as the first, but fixes the number of branches to 16. We run this 16-branch
circuit among varying numbers of MPC players. We plot the results of this
experiment in Figure 7.

Discussion. The key takeaway of this second experiment is that MOTIF works well
in the multiparty setting. In particular, our approach’s branching optimization
does not add extra costs compared to standard GMW: both techniques use total
communication quadratic in the number of players.
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