
Homomorphic Encryption for Finite Automata

Nicholas Genise1?, Craig Gentry2??, Shai Halevi2??, Baiyu Li3, and Daniele
Micciancio3

1 Rutgers University, USA.
nicholasgenise@gmail.com

2 Algorand Foundation, USA.
craigbgentry@gmail.com, shaih@alum.mit.edu

3 University of California, San Diego, USA.
{baiyu,daniele}@cs.ucsd.edu

Abstract. We describe a somewhat homomorphic GSW-like encryption
scheme, natively encrypting matrices rather than just single elements.
This scheme offers much better performance than existing homomorphic
encryption schemes for evaluating encrypted (nondeterministic) finite
automata (NFAs). Differently from GSW, we do not know how to re-
duce the security of this scheme from LWE, instead we reduce it from a
stronger assumption, that can be thought of as an inhomogeneous vari-
ant of the NTRU assumption. This assumption (that we term iNTRU)
may be useful and interesting in its own right, and we examine a few of
its properties. We also examine methods to encode regular expressions as
NFAs, and in particular explore a new optimization problem, motivated
by our application to encrypted NFA evaluation. In this problem, we
seek to minimize the number of states in an NFA for a given expression,
subject to the constraint on the ambiguity of the NFA.
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Regular Expressions.

1 Introduction

Homomorphic encryption (HE) [40] enables computation on encrypted data even
without knowing the secret key. Ten years after Gentry described the first scheme
capable of supporting arbitrary computations [19], we now have an arsenal of
several different schemes and variations, with various capabilities and tradeoffs
(see, e.g., [43, 10, 9, 32, 17, 22, 14] for a few examples).

Our original motivation for the current work is the simple example of en-
crypted virus scan: consider a center that deploys many remote systems, operat-
ing in many different environments, and wants to protect them against viruses
that it knows about. The center would like to periodically send updated virus
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signatures to all its systems, and have them scan their systems to check for
infections. The virus signatures, however, could be sensitive, perhaps because
some of them are not yet widely known and exposing the signatures could tip
the hand of the center as it develops countermeasures.

A plausible solution would have the center encrypt the virus signatures, the
remote systems could then perform the virus scan on the encrypted signatures,
and report the (encrypted) results to the center. The center could then decrypt,
and take appropriate actions when infections are detected. As virus signatures
usually take the form of many small regular expressions4, this application calls
for a homomorphic encryption scheme that can quickly test for a match against
many small regular expressions. Equivalently, it should quickly evaluate (many,
encrypted) non-deterministic finite automata (NFAs) on a given cleartext file.
Notice that this is quite different from, and incomparable to, the DFA computa-
tion problem studied in previous works on homomorphic encryption, like [18, 15,
16]. Specifically, nondeterminism aside, the crucial difference is that those works
consider the evaluation of a plaintext automaton on an encrypted file. In other
words, the roles of the input and the program are reversed. In our motivating
application, the problem studied in [18, 15, 16] would correspond to searching for
arbitrary (possibly nonregular) patterns, on files described by regular languages,
a very unlikely scenario.

Evaluating an encrypted NFA on a cleartext string w = w1 · · ·wk can be
done by computing a product of a single vector v (representing the initial state
of the NFA) by many matrices Mwi

(representing the transition matrices of the
NFA associated to each input symbol wi). Namely the operation that we want
to support is computing

u :=

(
1∏
i=k

Mwi

)
× v,

(with operations over the integers), where the matrices Mwi
and the vector v are

encrypted.5 Most of the HE schemes from above can be used to carry out this
computation, but none of them is ideal for the job. For practical purposes, the
homomorphic schemes that offer the best performance are either the BGV-type
schemes (scale-invariant or not), or GSW-type schemes.

BGV-type schemes. These schemes have an advantage that they can use packed
ciphertexts, where each ciphertext encrypts not just one plaintext element but
a vector of them, and each ciphertext operation affects all the elements of the

4 For example, many ClamAV virus signatures (https://www.clamav.net/downloads)
are regular expressions of the form Σ∗K1 · · ·Σ∗Kn · Σ∗ with no more than 1K
symbols, where Σ is the alphabet and each Ki is a set of a few hex strings.

5 The initial vector v is not required to be encrypted, as it reveals no information
about the automaton. However, the intermediate vectors obtained after each matrix-
vector multiplication should be kept secret. So, we will need a scheme supporting
matrix-vector multiplication where both the matrix and the vector are encrypted.
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vector simultaneously, cf. [42]. Moreover, they can even be made to support
efficient matrix-vector operations, as was demonstrated in [23].6

However, for BGV-type schemes it is crucial to keep the computation multi-
plicative depth to a minimum, which in our case means using a binary multipli-
cation tree. But this means that we have to use matrix-matrix multiplication7

(rather than the matrix-vector products that are computed in the sequential
procedure). This increases the total work (and hence the computation time) by
a factor equal to the dimension of these matrices — which must be substantial
for security reasons.

GSW-type schemes. A major advantage of GSW-like schemes is the asymmetric
noise growth, that makes it possible to handle sequential processing of products
[12]. For our purposes, it lets us evaluate the product while performing only
matrix-vector multiplications.

While “textbook GSW” can only encrypt individual elements, it is possible
to adapt the ciphertext-packing techniques from [42] also to GSW, as long as
we have a priori bound on the size of the plaintext vectors that occur in the
computation. However porting the matrix-multiplication optimizations from [23]
is far from simple, and we expect significant overhead when trying to implement
it in practice.

In [25], Hiromasa, Abe, and Okamoto proposed a GSW-like FHE scheme
that is capable of encrypting square matrices and doing homomorphic matrix
addition and multiplication. The HAO15 FHE scheme can be viewed as a matrix
extension of the standard GSW-FHE scheme, where the secret key S = [I| − S′]
consists of a random secret matrix S′. Like in GSW [22], the decryption invariant
for a ciphertext C encrypting a message M relative to the secret key S is

S×C = M× S×G + E (mod q),

where E is a low-norm error and G is the “gadget matrix” from [36]. Notice
that M and S are both matrices in the matrix-FHE case, whereas in the GSW
scheme M is a scalar and S is a vector. The GSW security reduction [22] from the
learning-with-errors (LWE) problem still applies to the HAO15 scheme, except
that an additional circular security assumption is required. Being able to encrypt
matrices in an atomic operation and support homomorphic matrix operations
makes the HAO15 scheme an interesting candidate to use in our application of
homomorphic NFA evaluation. Moreover, as we will show in Section 3.1, the
HAO15 scheme with some modification can also encrypt vectors and homomor-
phically multiply an encrypted matrix by an encrypted vector. However, the
HAO15 scheme is not optimal due to overhead in the size of keys and cipher-
texts. So we seek to find a better solution that would allow us to scan longer
strings with faster execution times in practice.

6 The techniques in [23] only handle multiplication of plaintext matrices by encrypted
vectors, but many of these tools can be adapted to the case of encrypted matrices.

7 Technically, the nodes on the rightmost path of the tree can use matrix-vector mul-
tiplications, but this makes hardly any difference on the efficiency of the overall
computation.
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1.1 Our New HE Scheme

In this work we introduce a new scheme, that can be viewed as another GSW-
type encryption for matrices but with a different hardness assumption. (Alterna-
tively, it can be viewed as a variant of the GGH15 graded encoding [20], but with
no zero-test parameter.) In addition, our scheme can also encrypt vectors and na-
tively support homomorphic matrix-vector multiplication. Similar to the HAO15
scheme, the decryption invariant in our scheme for a ciphertext C ← EncS(M)
encrypting a matrix M is also S ×C = MSG + E (mod q), where E is a low-
norm error matrix.8 Differently from the HAO15 scheme, in our construction
we assume that the key S is a square invertible matrix, and so we can express
the ciphertext as C := S−1(M× S×G + E) mod q. As a result, both keys and
ciphertexts are smaller in our scheme.

The operations of the scheme, and the analysis of the noise development are
identical to the GSW scheme, except that here we typically cannot ensure that
the plaintext size never grows, and instead must use properties of the application
to reason about the plaintext size.

When it comes to security, however, we can no longer use the GSW reduction
[22] from the LWE problem. That reduction relies heavily on the scalar M com-
muting with the vector S, which no longer holds in our case. Instead, we reduce
the security of this scheme from a stonger assumption, that can be viewed as an
inhomogeneous version of NTRU (or alternatively as an LWE instance with an
additional hint).

1.2 The iNTRU Hardness Assumption

Recall that in LWE9, we are given two matrices A,B ∈ Zn×mq (m > n), with A
a uniformly random matrix, and need to decide if B is also a uniformly random
matrix, or it is chosen as B = SA+E with a uniform S ∈ Zn×nq and a low-norm
E ∈ Zn×mq .

It is easy to see that this problem becomes easy if we are also given a trapdoor
for the matrix A, in this case it is even easy to recover the secret matrix S when
B = SA + E. But what if we are given a trapdoor for the matrix B instead? In
this case we do not know of any effective distinguisher, so we assume that the
decision problem is still hard and show a hardness reduction from this version
of LWE to our hardness assumption, iNTRU, in Section 4. We remark that this
“LWE with a trapdoor for B” assumption is not standard and it deserves further
study.

Once we know a trapdoor for B, we might as well consider the case where B is
the gadget matrix G (for which everyone knows a trapdoor). Namely we assume
that the following decision problem is hard:

8 As we describe later, we use a slightly different variant to encrypt the vector v.
9 Here we refer to the multiple-secret variant of LWE, which can be reduced from the

normal LWE.
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iNTRU. As in LWE, we have the parameters n,m, q, with m > n log q and
q > m. The input is a matrix A ∈ Zn×mq , which is either uniform in Zn×mq , or
is set as A := S−1(G − E) mod q (with S ∈ Zn×nq a random invertible matrix,
G the gadget matrix, and E a low-norm matrix). The goal is to decide which is
the case.

One can think of the above problem as an inhomogeneous version of NTRU,
over matrices, as follows. Recall that in the NTRU cryptosystem [26], the secret
key is given by two polynomials (or ring elements) with small coefficients f, g, and
the corresponding public key is the product h = f−1 · g. The NTRU cryptosys-
tem can be proved secure under the assumption that this public key h is pseudo-
random, i.e., indistinguishable from a uniformly random polynomial (or ring ele-
ment) with arbitrary coefficients. We extend this assumption as follows. First, we
replace g with a sequence of vectors g1, . . . , gk, chosen independently at random,
with small coefficients. Then, the assumption is that f−1g1, f

−1g2, . . . , f
−1gk is

pseudorandom. This is a simple syntactic extension of NTRU (that would allow,
for example, the encryption of longer messages), akin to changing some param-
eter, and not a qualitative change in the security assumption. Next, we add a
(known, constant) “shift”, replacing each gi with (2i−1 − gi), and still requir-
ing f−1(1 − g1), f−1(2 − g2), . . . , f−1(2k−1 − gk) to be indistinguishable from
uniform. We call this the “inhomogeneous” NTRU assumption. Finally, instead
of working over a ring of polynomials of degree n, we replace each f, g1, . . . , gk
with a square n× n random matrix with small entries. Intuitively, moving from
polynomial rings (which are commutative) to the ring of matrices, should only
make the assumption weaker, though we do not know how to prove a formal
relation between the two problems. This last problem is essentially equivalent
to the pseudorandomness of A = S−1(G−E), where E = [E0| . . . |Ek] is a ran-
dom matrix with small entries, and G = [0|I|2I| . . . |2k−1I] is a constant known
matrix. In fact, putting A in Hermite Normal Form [35] “cancels out” the S ma-
trix, and gives a sequence of square matrices −E−10 (2Ii−1 − Ei), corresponding
to the matrix version of our inhomogeneous NTRU problem10 with f = −E0

and gi = Ei.

1.3 From Regular Expression to NFAs

While our scheme directly supports the evaluation of (encrypted) NFAs, pat-
terns (e.g., virus signatures) are typically, and most conveniently, represented
by regular expressions. Since the noise growth of our homomorphic encryption
scheme depends on the details of the NFA being evaluated and its computations,
the conversion of regular expressions to NFA is a critical part of our application.
In Section 5 we describe a specific conversion following the method of [13, 3]
based on the use of partial derivatives of regular expressions, which is both very
elegant and efficient. Derivatives of regular expressions [13] are themselves regu-
lar expressions and they are defined similarly to formal derivatives of arithmetic

10 Matrix-NTRU has been used in lattice-based signatures [5], though the most efficient
versions of these lattice signatures use the standard, algebraic NTRU assumption.
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expressions, e.g., da(e0+e1) = da(e0)+da(e1) for the sum (set union) operation,
and da(e∗) = da(e)e∗ for exponentiation (Kleene star). Informally, when parsing
an input string according to regular expression e, the derivative da(e) represents
the part of the input to be expected after reading a first symbol “a”. A reg-
ular expression e can be converted into an automaton with states labeled by
derivatives (modulo a natural equivalence relation on regular expressions), and

transitions of the form e
a→ da(e). A classical result of Brzozowski [13] shows

that this produces an automaton with a finite number of states, and, in fact, the
minimal DFA of the regular expression. As our homomorphic encryption scheme
supports the evaluation of nondeterministic automata, we are interested in the
conversion of regular expressions to NFAs, which are potentially much smaller
than the equivalent minimal DFA. However, optimizing NFAs in our application
is far from trivial. To start with, in stark contrast to the DFA case, minimizing
the number of states of an NFA is a PSPACE-complete problem. Moreover, due
to noise growth, minimizing the number of states may not even be the right
goal for our homomorphic encryption application. We address the first issue by
using the partial derivative construction of [3], where a partial derivative ∂a(e)
maps an expression e to a set of regular expressions (representing possible non-
deterministic choices), and in particular ∂a(e0 + e1) = ∂a(e0) ∪ ∂a(e1). This
construction results in NFAs that, while not necessarily minimal, have a very
small number of states, bounded by the number of alphabet symbols in the input
regular expression. In order to bound the noise growth, we show that a simple
optimization of the homomorphic NFA evaluation procedure11 allows to relate
the noise growth to the degree of ambiguity of the NFA, a standard quantity
studied in automata theory, which can be evaluated in polynomial time [45]. We
reduce the problem of finding an optimal noise to a variant of NFA minimization
problem with bounded ambiguity. Although solving this optimization problem
is hard in general, we use techniques of determining ambiguity in Section 5 to
explore some tradeoffs between automata size and degree of ambiguity/noise
growth.

1.4 Implementation and Performance

We implemented our scheme in C++ using the Number Theory Library (NTL)
and describe its details in Section 6. Despite being a simple implementation
without optimizations, the on-line pattern matching was exceptionally fast. For
example, we could homomorphically match a 65536 bit string in 394 seconds
on an encrypted NFA with 1024 states of size 66Mb. Using the same set of
parameters, we estimate that an HAO15 implementation can only match up
to 16000 bits with a slower execution time and a bigger program size. More
performance details and comparisons can be found in Section 6.

11 Namely, one can let the initial state vector v be an “errorless” encryption, because
the initial state does not reveal any information about the rest of the automaton.
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1.5 Related Work

As already mentioned, the problem of homomorphically evaluating finite au-
tomata or branching programs has been considered before [12, 18, 15, 16], but in
a very different context, where the branching program or automaton are publicly
known, and the computation is performed homomorphically on an encrypted in-
put string. This is motivated, for example, by applications to FHE bootstrapping,
where the program is specified by the publicly known decryption/refreshing pro-
cedure, and the input in the (encrypted) secret key. In our setting, the role of
the program and input are reversed, and we want the computation to be homo-
morphic on the automaton, rather than the input string. In the case of general
computation, program and input are easily interchanged using a universal Tur-
ing machine. But in the case of restricted models of computation, like finite
automata, swapping the program and the input results in a completely different
problem.

On the relation with other matrix-FHE schemes. As we mentioned earlier, the
HAO15 [25] FHE scheme is also capable of encrypting square matrices and doing
homomorphic matrix addition and multiplication on ciphertexts. In the private-
key version of their scheme, the secrete key is S = [Ir| − S′] for a secret matrix
S′, and a matrix M ∈ Zr×r is encrypted as

C =

(
S′A + E

A

)
+

(
MS

0

)
×G mod q,

where A← Zn×Nq , E← χr×N for N = (n+ r) dlog qe.
It may be tempting to claim that our scheme is the same as the HAO15

scheme due to having the same decryption invariant SC = MSG + E. How-
ever, these two schemes are not quite identical. The relation between them is
very similar to the relation between NTRU and RLWE Regev-like schemes12,
where the difference is that the secret key S is a small square matrix for NTRU
(representing multiply-by-s in the ring), whereas the secret key is S = [I|S′] in
RLWE (where S′ represents multiply-by-s′ in the ring). Notice that, instead of
the Regev invariant, both the HAO15 scheme and our scheme use the GSW-like
invariant SC = MSG + E for a small noise matrix E.

More specifically, in our scheme the secret key S is a small square matrix
that must be invertible, while in HAO15 we have S = [I| − S′] where S′ can be
any random matrix. Consider the “leveled versions” of the HAO15 scheme and
our scheme, in which the secret key matrices S0,S1, . . . ,SL are generated such
that Si is used to encrypt the matrices in level i of the computation. In both
schemes it holds that

SiCi = MSi+1G + Ei.

12 Consider writing both NTRU and RLWE-Regev in matrix form, representing ring
elements by their matrices: In both NTRU and RLWE-Regev we have a ciphertext
matrix C encrypting a plaintext matrix M relative to the secret matrix S (and
plaintext space mod p) if SC = M + pE mod q.
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The security of the HAO15 scheme can be reduced from the standard LWE
assumption, while our scheme relies on the NTRU-like assumption that we in-
troduce. On the other hand, our scheme is more efficient: we encrypt a matrix
M ∈ Zr×rq in a ciphertext matrix of dimension max(r, λ), whereas the HAO15
scheme requires a dimension r + λ ciphertext matrix. One can view our scheme
as an NTRU-like variant of the HAO15 scheme (or perhaps an NTRU-like vari-
ant of the GSW scheme). From that viewpoint, we introduce in this work the
assumption that lets us adapt NTRU to get a GSW-like scheme.

When applied to homomorphically evaluating NFAs, the efficiency advantage
of our scheme is more significant. Note that the HAO15 scheme can be used to
do homomorphic matrix-vector multiplication as well. But, since we rely on an
NTRU-like assumption, the noise bound in our scheme is smaller than the noise
bound in the HAO15 scheme, which allows us to homomorphically evaluate
longer strings with the same lattice parameters. In terms of the complexity of
the homomorphic computation on encrypted NFAs, our scheme runs faster than
the HAO15 scheme in practice due to smaller ciphertexts. For more detailed
performance comparison, we refer the readers to Section 6 and Appendix C.

Recently, Wang et. al. [44] proposed another matrix-FHE scheme, similar to
[9], that has smaller ciphertexts than the HAO15 scheme and can be reduced
from the standard LWE assumption. We note that it is possible to perform ho-
momorphic matrix-vector multiplication in their scheme. However, their scheme
relies heavily on tensor product to perform homomorphic multiplication, so the
security and the complexity of applying their scheme to homomorphic NFA com-
putation is at least on the same level as the HAO15 scheme.

2 Preliminaries

We denote vectors by lower-case bold letters (e.g., v), and we assume they are
always in column form. We denote matrices by upper-case bold letters (e.g., M).
A distribution D over a finite set X is ε-uniform if its statistical distance from the
uniform distribution over X is at most ε, where the statistical difference between
two distributions D1,D2 over a finite domain X is 1

2

∑
x∈X |D1(x)−D2(x)|. We

denote by x← D drawing x from the distribution D, and for a set X we denote
by x← X drawing x uniformly at random from X.

2.1 Leftover Hash Lemma

A distribution D over X has min-entropy k if maxx∈X D(x) = 2−k. A family H
of hash functions from X to Y (with Y a finite set) is said to be 2-universal if
for all distinct x, x′ ∈ X, Prh←H[h(x) = h(x′)] = 1/|Y |.

Lemma 1. (Leftover Hash Lemma [24]). Let H be a family of 2-universal hash
functions from X to Y , and let D be a distribution over X with min-entropy k.
Suppose that h ← H and x ← D are chosen independently, then, (h, h(x)) is
( 1
2

√
|Y |/2k)-uniform over H× Y .
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In this work we apply Lemma 1 to the hashing family H : Zmq → Znq defined
by

H = {hA(v) = Av mod q}A∈Zn×m
q

,

(which is clearly 2-universal). In particular we use the following corollary:

Corollary 1. Fix the integers k, n,m,m′, q, and let D1,D2, . . . ,Dm be indepen-
dent distributions over Zmq , all with min-entropy at least k. Let D be a distribu-

tion over matrices R ∈ Zm×m′q , where the i’th column is drawn from Di. Then
the distribution

{(A,AR mod q) : A← Zn×mq ,R← D}

is (m
′

2

√
qn/2k)-uniform over Zn×mq × Zn×m′q .

2.2 Gadget Lattice Sampling

Definitions. We consider the norm of a matrix as the length of its longest col-
umn in the l2 norm. A lattice Λ is a discrete subgroup of Rn (we only con-
sider full-rank, integer lattices). It can be represented by a basis B ∈ Zn×n
where the lattice is the set of all integer combinations of B’s columns. Let
G = [I|2I| · · · |2`−1I] ∈ Zn×n`q where ` = dlog2(q)e. The G-lattice for a fixed

modulus q is Λ⊥q (G) = {x ∈ Zn` : Gx mod q = 0}. The distribution sampled

over Λ⊥q (G) and its integer cosets is the discrete gaussian, a gaussian distribution
conditioned on being in the lattice. The probability a sample equals some lattice
coset vector y is proportional to exp(−π‖y‖2/s2) where s > 0 is the width of
the gaussian (we are only concerned with 0-centered distributions). Denote a
discrete gaussian of width s on a lattice coset Λ+c as DΛ+c,s. We can efficiently

sample from DΛ⊥q (G)+v,s for any q ≥ 2 and s ≥
√

5 ln(2n`+ 4)/π (Theorem 4.1

[36] and Lemma 2.3 [11]). We denote G−1(v) as a discrete gaussian vector y
such that Gy = v mod q. Further, we assume the width is set just above twice
the smoothing parameter (defined below) of the G-lattice.

Concentration and min-entropy. The smoothing parameter [37] of a lattice is
needed for our purposes, and it is denoted as ηε(Λ) for an ε > 0. Informally, this
is the smallest width for which a discrete gaussian shares many properties of the
continuous gaussian distribution. If B is a basis with minimum Gram-Schmidt
norm ‖B̃‖, we can bound the smoothing parameter ηε(Λ) ≤ ‖B̃‖ω(

√
log n) for

negligible ε(n) = n−ω(1) [21]. Discrete gaussian samples’ l2 norms are bounded
by their width as follows.

Lemma 2. (Lemma 1.5 [6]) Let Λ ⊂ Rn be a lattice, r ≥ ηε(Λ) for some
ε ∈ (0, 1), and c ∈ Rn. Then,

Pr(‖DΛ+c,r ≥ r
√
n‖) ≤ 2−n ·

(
1 + ε

1− ε

)
.
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Therefore, we can efficiently sample a discrete gaussian G−1(·) with length

less than Õ(
√
n log q)13 with overwhelming probability, and assume G−1(·)’s sup-

port is Zn`q . Since we will be using the leftover hash lemma on discrete gaussian
input, we will use the following lemma on the min-entropy of a discrete gaussian.
Further, the proof of Lemma 3 is identical to the proof of [38, Lemma 2.11].

Lemma 3. (Lemma 2.11 [38]) Let Λ + v ⊂ Rn be a lattice coset, c > 0, and
s ≥ 21+cηε(Λ) for ε ∈ (0, 1). Then for any y ∈ Λ+ v and for x← DΛ+v,s,

Pr(x = y) ≤ 2−n(1+c)
(

1 + ε

1− ε

)
.

Leftover Hash Lemma with G−1(·). Let m = n`, now we can replace the distri-
butions Di in Corollary 1 with independent discrete gaussian samples G−1(v)
(with potential repeats in the coset vector v). Let R← G−1(X) in Corollary 1
for some X ∈ Zn×m′q with R’s columns sampled independently. Then by the
lemmas above, the min-entropy a column of R is at least n(1+ c) log q−2 when-
ever G−1(·)’s width is just above twice ηε(Λ

⊥
q (G)) for any ε ∈ (0, 1/2]. Say we

let c = logq(2) in Lemma 3. This implies the distribution

{(A,AR mod q) : A← Zn×mq ,R← G−1(X)}

is O(m′2−n/2)-uniform for any X ∈ Zm×m′q .

3 The Schemes

Given an NFA M of r states over a finite alphabet Σ, we denote by Mσ ∈
{0, 1}r×r the transition matrix of M for each input symbol σ ∈ Σ, where
(Mσ)j,i = 1 if and only if there is a transition from state i to state j on σ.
Let v ∈ {0, 1}r be the vector representing the initial states. To check if a string
w = w1 · · ·wk ∈ Σ∗ is accepted by M, we simply check whether there are any
non-zero entries in the vector (

∏1
i=k Mwi

) × v that correspond to final states.
So we need a scheme that can compute matrix-vector multiplication homomor-
phically over encrypted matrices and vectors.

3.1 The HAO15 matrix-FHE scheme [25]

The FHE scheme from [25] can be extended to support homomorphic matrix-
vector multiplication. We first recall the private-key version of the HAO15 scheme,
and we then slightly extend it for vector encryption and homomorphic matrix-
vector multiplication. For a given security parameter λ, choose lattice parameters
n,m, q and a noise distribution χ over Zq. Let ` = dlog qe, m = (n + r) log q,
and N = (n + r)`. Here we describe a leveled version of the HAO15 scheme
that supports multiplication depth up to k ≥ 1. We abuse notation and have
G = [0|I|2I| · · · |2`−1I] in this subsection.

13 Õ(·) hides poly-logarithmic factors in n.

10



Key generation. Same as in HAO15, the secret key for level i ≥ 0 is set to
ski := Si = [Ir| − S′i], where S′i ← χr×n.

Matrix encryption. Given a plaintext matrix M ∈ {0, 1}r×r and a level i ≥ 0,
to encrypt it for the i’th level of computation, the HAO15 scheme outputs

C := HAO.MatEncski(M) =

(
S′iA

′ + E

A′

)
+

(
MSi−1

0n×(n+r)

)
G mod q,

where A′ ← Zn×Nq and E ← χr×N . For i = 0, we consider S−1 = [Ir|0r×n].

Notice that C ∈ Z(r+n)×N
q . The decryption procedure is exactly the same as

in [25], but we skip it as it is not needed in our application.

Vector encryption and decryption. For a vector v ∈ Zrq, we can follow the same
idea as in the matrix encryption procedure, except that we do not multiply v
by S nor G. Since we only need to encrypt the initial state vector to evaluate
an NFA, we always encrypt a vector using the secret key for the first level:

c := HAO.VecEncsk0(v) =

(
S′0a + e

a

)
+

(
v

0n

)
mod q,

where a ← Znq and e ← χr. Note that c has dimension r + n. To decrypt a
ciphertext vector c from the i’th level of a computation, output the vector

v′ := HAO.VecDecski(c) = dSicc2 .

Homomorphic operations. To add and multiply two ciphertext matrices C1 and
C2, we follow [25]: HAO.Add(C1,C2) = C1 + C2, and HAO.Mul(C1,C2) =
C1 ×G−1(C2). To multiply a ciphertext matrix C by an encrypted vector c,
output

HAO.Mul(C, c) := C×G−1(c).

The security of this extended scheme can be proved in the same way as in
[25], reducing from the standard DLWEn,m,q,χ hardness assumption. It is easy
to check that, if C is an encryption of M ∈ {0, 1}r×r for level i and c is an
encryption of v of level i− 1, then Si × (C×G−1(c)) = Mv + e′ for some low
norm error vector e′. More generally, for any Mi ∈ {0, 1}r×r for i = 1, . . . , k
and v ∈ Zrq, if Ci ← HAO.MatEncski(Mi) with an error matrix Ei for each i,
c0 ← HAO.VecEncsk0(v) with an error vector e, and ci ← HAO.Mul(Ci, ci−1)

for i = 1, . . . , k, then Sk × ck = (
∏1
j=k Mj)v + ek where

ek = EkG
−1(ck−1) +

k∑
i=2

(

i∏
j=k

Mj)Ei−1G
−1(ci−2) + (

1∏
j=k

Mj)e.

The l∞ norm of ek can be bounded by

‖ek‖∞ ≤ χN(1 + k max
1≤i≤k

‖
i∏

j=k

Mj‖∞). (1)

To successfully decrypt ck, we require ‖ek‖∞ ≤ q/8 as in [25].
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3.2 Our new matrix-HE scheme

To achieve sufficient level of security and a desired capability of homomorphic
NFA evaluation, we may need to use a large lattice dimension n in practice. The
above extension of the HAO15 scheme seems suboptimal with an overhead n
in ciphertext dimension. In this section we describe a new matrix homomor-
phic encryption scheme that supports atomic matrix and vector encryption and
matrix-vector multiplication. Our scheme is more efficient in practical applica-
tions.

Fix integer parameters n,m, q (to be determined later) and an error distri-
bution χ over Zq that outputs with high probability integers of magnitude � q.
Given any NFA with r ≤ n states, we pad its transition matrices Mσ with 0
entries such that Mσ ∈ {0, 1}n×n for all σ ∈ Σ. For our application we use two
variants of (private-key) encryption, one for matrices and the other for vectors.
Both variants share a noise-sampling procedure, that takes as input the secret
key and another vector (that comes from the plaintext) and outputs a noise
vector for use in the encryption (which may be different than just sampling from
χ). We denote this procedure by e← NoiseSamp(sk,v), and will describe it later
in this section.

Key generation. We draw two matrices using χ, a square matrix S← χn×n and
a rectangular E← χn×m (which is only used in the NoiseSamp procedure). We
insist that S is invertible, and re-sample if it is not (which happens with a small
probability ≈ 1/q). The secret key is sk := (S,E).

The NoiseSamp procedure. To prove semantic security of our encryption method,
we need a somewhat convoluted procedure for sampling the noise. Specifically,
the procedure NoiseSamp((S,E),v) begins by sampling r← G−1(v), then out-
puts e := E× r mod q.

Basic “encryption” transformation. Underlying both the vector and matrix en-
cryption procedure, is the following “encryption” procedure (in quotes, since it
does not have a matching decryption procedure). Given the secret key sk = (S,E)
and a vector v ∈ Znq , we draw a noise vector e← NoiseSamp(sk,v), then output
the “ciphertext”

c := Enc∗sk(v) = S−1(v + e).

We remark that the low-order bits of v are lost in this transformation, due the
added noise. Still, the “ciphertext” satisfies the property that Sc ≈ v, up to the
low-norm noise vector e.

We provide in Section 4 a detailed proof that the procedure above provides
semantic security for v, under the inhomogeneous NTRU hardness assumption.

Vector encryption and decryption. As with Regev encryption [39], to convert
the above to real encryption we just need to multiply v by a large enough scalar
β so that ‖e‖∞ < β with high probability. Let b be an upper bound on the l∞
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norm of vectors that can be dealt with (which depends on the application), we
assume that b� q and set β := bq/bc.

To encrypt a vector v ∈ Znb we just set c := VecEncsk(v) = Enc∗sk(β · v). To
decrypt we set u := S × c = β · v + e (mod q), then decode each entry of u to
the nearest multiple of β. Namely, we decrypt as

v := VecDecsk(c) =

⌈
b · (S× c mod q)

q

⌋
.

Matrix encryption and decryption. Matrix encryption is similar, except that
instead of just multiplying by a large scalar, we use the GSW technique of
redundant encoding using G.

The “native plaintext space” consists of square matrices M ∈ Zn×nq . To
encrypt M we first compute M′ = M × G (mod q) and let m′j be the j’th
column of M′ (j = 1, . . . ,m). Then we set

cj := Enc∗sk(m
′
j), and C := MatEncsk(M) = [c1|c2| . . . |cm].

Note that the ciphertext C has the form C = S−1 × (MG + E′), where E′ is
the low-norm matrix consisting of all the noise vectors that were drawn inside of
Enc∗sk. In other words, the property that this ciphertext satisfies is S×C ≈M×G,
up to the low-norm error matrix E′.

In our application we never need to decrypt matrices, but note that we could
compute U := S×C = MG + E′ (mod q), and then recover M from U (since
E′ is low norm and G is the gadget matrix that has a known trapdoor).

3.3 A Leveled NFA-Homomorphic Scheme

Computing a single product chain. To enable homomorphic computation of a
product of k matrices by a vector, (

∏1
i=k Mi)×v, we choose k+1 secret keys as

above, ski = (Si,Ei), for i = 0, 1, . . . , k. We then encrypt the vector v under the
first key sk0, and for 1 ≤ i ≤ k we use ski to encrypt the matrix M′

i = Mi×Si−1.
In other words, we prepare the ciphertexts

c = S−10 × (βv + e) mod q,

and
Ci = S−1i × (MiSi−1G + E′i) mod q, for i = 1, . . . , k,

where the noise vectors/matrices are all low-norm. To perform the homomorphic
computation, we initialize c0 := c, and then repeatedly set

ci := Ci ×G−1(ci−1) mod q,

outputting the final vector ciphertext ck. We now show (by induction) that for
every i, the vector ciphertext ci is a valid encryption of the plaintext vector
vi = (

∏1
j=i Mj) × v under the key ski. This holds by definition for v0 = v, so
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we now assume that it holds for i ≥ 0 and show for i + 1. By assumption we
have

ci = S−1i × (βvi + ei),

for some low-norm noise vector ei. Hence we get

ci+1 = Ci+1 ×G−1(ci) = S−1i+1 × (Mi+1SiG + E′i+1)×G−1(ci)

= S−1i+1 ×
(
Mi+1Si × ci + E′i+1 ×G−1(ci)

)
= S−1i+1 ×

(
Mi+1Si × S−1i × (βvi + ei) + E′i+1 ×G−1(ci)

)
= S−1i+1 ×

(
βMi+1vi︸ ︷︷ ︸

vi+1

+ Mi+1ei + E′i+1 ×G−1(ci)︸ ︷︷ ︸
ei+1

)
.

Since ei,E
′
i+1, and G−1(ci) are all low norm, the noise term ei+1 will be low

norm as long as Mi+1 is. We conclude that ck = S−1k (βvk + ek) (mod q), where
the noise term is

ek =
( 1∏
j=k

Mj

)
e +

k∑
i=2

( i∏
j=k

Mj

)
E′i−1G

−1(ci−2) + E′kG
−1(ck−1) (mod q).

(2)

Hence as long as all the products
∏i
j=k Mj have low norm, the final noise term

ek will also have low norm. We will present a detailed analysis on the bounds of
the noise terms in relation with NFAs in Section 5.

Encrypting and evaluating an NFA. To be able to evaluate this NFA on strings
of up to k symbols, we set the parameters so that β = bq/bc is sufficiently

larger than maxw∈Σ≤k ‖
∏1
i=|w|Mwi

‖∞, then choose k + 1 secret keys ski for
i = 0, . . . , k. We encrypt the initial state vector v under sk0, and encrypt each
of the matrices Mσ for σ ∈ Σ under all the other keys. Namely we set

c = VecEncsk0(v), and Cσ,i = MatEncski(MσSi−1) for i = 1, . . . , k.

Clearly this method provides semantic security for the NFA, so long as the basic
“encryption” transformation from above is semantically secure.

To evaluate the encrypted NFA on a k-symbol string w1w2 . . . wk, we apply
the chain-product procedure from above to evaluate homomorphically the prod-
uct (

∏1
i=k Mwi

) × v. Namely we set c′0 = c and then c′i = Cwi,i ×G−1(c′i−1)
for i = 1, . . . , k. At the end of the evaluation, we decrypt the final ciphertext c′k
to u = VecDecskk(c′k) and check if the computation is accepting.

Circular Security for Better Efficiency. As usual, we can improve efficiency by
assuming circular security of the encryption. Namely, instead of choosing all
the secret keys independently, we choose just a single secret key and use it
everywhere. This means that we only need the ciphertexts

c = S−1 × (βv + e), and Cσ = S−1 × (MσSG + Eσ) for each σ ∈ Σ.
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3.4 The Parameters

To determine the parameters that are needed for certain NFA (or a class of
NFAs) on k-symbol strings, we first need an upper bound on the size of the
plaintext, specifically

Bptxt ≥ max
w∈Σ≤k

‖
1∏

i=|w|

Mwi
‖∞.

(See Section 5 for methods of converting regular expressions to NFAs while
keeping this bound small.) Once we have the bound Bptxt, we use it on Equation 2
to compute a high probability bound on the expression

B∗ ≥ ‖Bptxt · e + k ·Bptxt ·E×G−1(c)‖,

where e,E are noise terms that are output by the NoiseSamp procedure. This
value B∗ bounds with high probability the size of the noise that we can get when
evaluating the NFA, and so we need to choose q > B∗ ·Bptxt (since our plaintext
can be as large as Bptxt).

At the same time, we need to set n large enough relative to q to ensure the
required security level (say q < 2n/λ), and m > O(n log q) (since we rely on
the leftover hash lemma). As usual with lattice-based systems, there is a weak
circular dependence between these constraints, but it is not hard to find values
that satisfy them all.

4 Security Analysis

Below we define (two variants of) the inhomogeneous NTRU problem, one over
a ring and one over integer matrices. We describe some properties of this prob-
lem, and show that hardness of the matrix variant implies the security of our
encryption scheme.

4.1 Inhomogeneous NTRU

We begin with the ring variant of our hardness assumption. Fix a ring R, a
modulus q, and an error distribution χ over R, producing with overwhelming
probability elements with norm � q and −χ = χ. Denoting ` = dlog qe, the
iNTRU distribution with these parameters is defined as follows:

iNTRU =


draw s← R/qR, and ei ← χ, for i = 0, . . . , `,
set a0 := e0/s mod q,
and ai := (2i−1 − ei)/s mod q for i = 1, . . . , `,

output (a0, . . . , a`−1)

 . (3)

The inhomogeneous NTRU problem is to distinguish between this distribution
and the uniform distribution over (R/qR)`.
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In the matrix variant of this assumption, the ring elements s, ei are replaced
by n-by-n integer matrices, and the ai’s are similarly replaced with matrices
A0 := −S−1×E0, Ai := S−1× (2iI−Ei). In matrix notation, let m′ = n(`+ 1)
and G′ be the gadget matrix14 G′ = [0|I|2I|4I| . . . |2`−1I] ∈ Zn×m′ , and let χ be
a distribution over Z, producing with overwhelming probability integers of mag-
nitude � q. The matrix-iNTRU distribution (MiNTRU) with these parameters
is defined as follows:

MiNTRU =

{
draw S← Zn×nq , and E′ ← χn×m

′
,

output A′ := S−1 × (G′ −E′) mod q

}
. (4)

As before, the hardness assumption says that MiNTRU is pseudorandom, namely
that the matrix A′ is indistinguishable from a matrix uniform in Zn×m′q .

Small-Secret Inhomogeneous NTRU Similarly to LWE, here too we can
prove that the inhomogeneous NTRU problem remains hard even when the secret
is chosen from the error distribution. We lose a little on parameters in the con-
version, specifically the extra block at the beginning of G′. With the parameters
n,m′, q, χ as above, let m = n dlog qe = m′ − n, and G = [I|2I|4I| . . . |2`−1I] ∈
Zn×m. The matrix-iNTRU distribution with small secret (MiNTRUs) is as fol-
lows:

MiNTRUs =

{
draw S← χn×n, and E← χn×m,

output A := S−1 × (G−E) mod q

}
. (5)

Lemma 4. For the parameters n,m,m′, q, χ as above, if MiNTRU is pseudoran-
dom in Zn×m′q , then MiNTRUs is pseudorandom in Zn×mq .

Proof. We show that if we could distinguish MiNTRUs from uniformly random
n-by-m matrices over Zq then we could also distinguish MiNTRU from uniformly
random n-by-m′ matrices over Zq. Given a MiNTRU instance that we want to
distinguish, A′ = [A′0|A′1| . . . |A′`] (with A′i ∈ Zn×nq ), we set

Ai = A′0
−1 ×A′i mod q, for i = 1, . . . , `,

(aborting if A′0 is not invertible), then run the MiNTRUs distinguisher on A =
[A1|A2| . . . |A`]. Observe that if A′ is uniformly random then so is A, and if A′

is chosen from the MiNTRU distribution then

Ai = A′0
−1 ×A′i = −E′0

−1 × S× S−1 × (2i−1I−E′i) = −E′0
−1 × (2i−1I−E′i),

for i = 1, . . . , `, and hence A follows the MiNTRUs distribution as needed. ut

14 We use a slightly larger gadget matrix than usual, with an extra first block. The
reason will become clear when we prove Lemma 4 below.
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4.2 Security Reduction

We next show that pseudorandomness of MiNTRUs (or equivalently MiNTRU)
with some error distribution χ, implies the semantic security of our scheme with
a related error distribution (but not quite the same). Specifically, let n,m, q, χ be
the parameters of the MiNTRUs distribution above. For a fixed pair of matrices
E,Y ∈ Zn×mq , consider the distribution

ψ[E,Y] = {R← G−1(Y), output E×R mod q}.

In the provable version of our scheme, the secret key includes the square invertible
matrix S ← χn×n, and in addition a fixed error matrix E ← χn×m, and we
use the error distribution ψ[E,M ×G] when encrypting a matrix M ∈ Zn×nq .
Namely we draw a sample R← G−1(MG) ∈ Zm×mq , then output the ciphertext
C := S−1× (MG−ER) mod q. Note that given a MiNTRUs sample S−1× (G−
E), one can efficiently generate samples of the form S−1 × (MiG − ER). This
means Proposition 1 is a reduction from CPA security to distinguishing a single
MiNTRUs sample.

Proposition 1. If MiNTRUs is pseudorandom, then our encryption scheme us-
ing the error distribution ψ[E,M×G] is semantically secure.

Proof. We use the “real-or-random” formulation of semantic security for secret-
key encryption [7]. Namely, we have a challenger that chooses a secret key sk =
(S,E), where S ← χn×n,E ← χn×m, and a bit σ ← {0, 1}, then the adversary
repeatedly chooses messages Mi ∈ Zn×nq for i = 1, . . . , k and sends them to the
challenger, who replies either with uniformly random matrices Ci ∈ Zn×mq if
σ = 0, or with ciphertexts Ci := MatEncsk(Mi) = S−1 × (MiG + Ei) if σ = 1,
where Ei ← ψ[E,MiG], for i = 1, . . . , k. The adversary eventually outputs a
guess σ′ for σ, and is considered successful if σ′ = σ with probability significantly
larger than 1/2.

We show that an adversary Adv with a noticeable advantage ε can be trans-
formed into a distinguisher between MiNTRUs and the uniform distribution
over Zn×mq , with an advantage close to ε. The distinguisher D receives as in-
put A ∈ Zn×mq that is either an instance of MiNTRUs or a uniformly random
matrix, and it interacts with the adversary Adv as follows:

When receiving a matrix Mi from Adv, the distinguisher D draws a sample
Ri ← G−1(MiG), and replies with the “ciphertext” Ci := ARi mod q. When
Adv eventually outputs a guess σ′, the distinguisher D outputs the same guess.
We next show that the distinguishing advantage of D is very close to ε.

If A is a uniformly random matrix in Zn×mq then, by the leftover hash lemma,
each Ci = A×G−1(something) mod q is statistically close to uniformly random
matrices in Zn×mq and independent of A. On the other hand, if A = S−1×(G−
E) is an instance of MiNTRUs, then we have

Ci = A×G−1(MiG) = S−1 ×
(
G×G−1(MiG)−E×G−1(MiG)

)
= S−1 ×

(
MiG−E×G−1(MiG)

)
,

which is identical to the distribution produced by our encryption procedure. ut
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4.3 Hardness of MiNTRU from LWE with a Trapdoor

Here we prove the reduction alluded to in Section 1.2. We define a trapdoor
oracle for an arbitrary matrix B ∈ Zn×mq as an oracle which takes as input
B, a vector v ∈ Znq , and outputs a discrete Gaussian integer vector x ∈ Zm
conditioned on Bx mod q = v. Repeated calls to the oracle are assumed to use
independent random coins. Further, we assume the oracle’s distribution samples
above the smoothing parameter of

Λ⊥q (B) = {x ∈ Zm : Bx = 0 mod q}

for a uniformly random B, for some negligible function ε(n). In general, the
smoothing parameter of Λ⊥q (B) is just above the smoothing parameter of Zm,
for some negligible ε(n), when m > n log q, [36, Lemma 2.4].

Let n-secret LWE define the distribution

{(A,B = SA + E) : A← Zn×mq ,S← Zn×nq ,E← χn×m}

for some distribution χ. Next, we show the pseudorandomness of MiNTRU follows
from the n-secret LWE distribution with a trapdoor oracle for B. Let G ∈
Zn×m′q be any formulation of the gadget matrix. (G = [0|I|2I| · · · |2log q−1I] ∈
Zn×n(log q+1)
q in the MiNTRU definition.)

Proposition 2. Let n ∈ N, q < 2poly(n), χ be a distribution over Zq, m ≥
n log q, and m′ be the number of columns in the G-matrix. Further, let q =
ω(
√
m). Then, the pseudorandomness of MiNTRU with error distribution χn×m ·

B−1(G) follows from the pseudorandomness of n-secret LWE with a trapdoor
oracle for B.

Proof. We show a reduction from the n-secret LWE with a trapdoor oracle for
B to MiNTRU with error distribution χn×m ·B−1(G). Given as input a pair of
matrices (A,B), we call m′ times the trapdoor oracle for B to get X← B−1(G).
Then the reduction outputs A × X mod q. Notice when (A,B) is generated
uniformly and independently, then AX mod q is negligibly close to uniformly
random by leftover hash lemma, along with Lemmas 2 and 3. Conversely, we
have S−1 ∈ Zn×nq exists with high probability and A = S−1 × (B − E) mod q
when (A,B) is sampled from the n-secret LWE distribution. Therefore,

A×B−1(G) = S−1 × (G−EB−1(G)) = S−1 × (G−E′) mod q.

So AX mod q is an instance of MiNTRU with the desired error distribution. ut

Remark 1. There is an identical reduction from n-secret LWE with a trapdoor
for B with small secrets to MiNTRUs.

5 Converting Regular Expressions to Automata

In real world applications, regular languages or finite automata are often rep-
resented by regular expressions, which have a very compact form and are con-
venient to store. So it is important for our scheme to be useful when NFAs are
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specified using regular expressions. In this section we present an efficient method
to convert regular expressions to NFAs of relatively small sizes, and we discuss
how to find a suitable NFA to bound the noise growth. We assume the reader
has some familiarity with regular languages, regular expressions, and finite au-
tomata. See Appendix A for basic notation and definitions.

Partial derivatives and NFAs. Let Σ be a finite alphabet, and RE be the set of all
regular expressions overΣ. We consider the basic operations such as union (“+”),
concatenation (“·”), and Kleene star (“∗”) on regular expressions. For any regular
expression e, the language of e is denoted by L(e). To convert a regular expression
to an NFA, we start with Antimirov’s partial derivative construction [3], which
is an elegant extension of Brzozowski’s derivative construction [13] to NFAs. For
any symbol a ∈ Σ, the partial derivative of e w.r.t. a, denoted as ∂a(e), is a set
of regular expressions defined inductively as

∂a(ε) = ∅, ∂a(e0 + e1) = ∂a(e0) ∪ ∂a(e1), ∂a(e∗) = ∂a(e)e∗

∂a(ai) =

{
{ε} if ai = a
∅ otherwise

∂a(e0 · e1) =

{
∂a(e0)e1 ∪ ∂a(e1) if ε ∈ L(e0)
∂a(e0)e1 otherwise

where e, e0, e1 range over RE. The partial derivative of e w.r.t. any string is
∂ε(e) = {e} and ∂ua(e) =

⋃
{∂a(f) | f ∈ ∂u(e)} where u ∈ Σ∗ and a ∈ Σ. A

regular expression e′ is a partial derivative term of e if e′ is an element of ∂w(e)
for some w ∈ Σ∗, and ∂(e) is the set of all partial derivative terms of e.

Definition 1 (Partial derivative NFA). For any regular expression e, the
partial derivative NFA of e is MPD(e) = (Q,Σ, δ,QI , QF ), where Q = ∂(e),
QI = {e}, QF = {e′ ∈ ∂(e) | ε ∈ L(e′)}, and for any e′ ∈ Q and a ∈ Σ,
δ(e′, a) = ∂a(e′).

Remark 2. It was shown in [3] that ∂(e) is a finite set (with respect to syntactic
equality on regular expressions). In fact, |∂(e)| ≤ r+ 1 where r is the number of
occurrences of alphabet symbols in e.

The language of e satisfies L(e) =
⋃
a∈Σ a ·∂a(e). It follows that the language

accepted by MPD(e) is exactly L(e).

Ambiguity measure. As will be shown later, when evaluating an encrypted NFA,
the noise growth is closely related to the amount of nondeterministic choices
of the NFA. Here we describe some notions that characterize this quantity.
Let M = (Q,Σ, δ,QI , QF ) be an NFA. For any string w = w1 · · ·wk where
w1, . . . , wk ∈ Σ, a path of w from state s to state t is a finite sequence of states
s = si0 , si1 , . . . , sik = t such that sij ∈ δ(sij−1

, wj) for all 1 ≤ j ≤ k. A path
is accepting if s ∈ QI and t ∈ QF . The degree of ambiguity of M, denoted as
da(M, k), is the maximal number of accepting paths for a string of length k. If
da(M, k) ≤ 1 for all k > 0, then we sayM is unambiguous.15 We say thatM is

15 Notice that a DFA M has da(M, k) ≤ 1 for all k ≥ 0, but the converse is not
necessarily true. An NFA can have multiple nondeterministic choices at every state
but still satisfies da(M, k) ≤ 1, in such cases at most one of these choices could lead
to a final state.
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finitely ambiguous if sup{da(M, k) | k ≥ 0} <∞, andM is infinitely ambiguous
otherwise. Clearly da(M, k) ≤ |Q|k+1 for any NFA. To upper bound the quantity
da(M, k) using a function of k, we can define the degree of growth of ambiguity
of M, denoted as deg(M), to be the minimal degree of a polynomial h(·) such
that da(M, k) ≤ h(k) for all k ≥ 0. If no such polynomial exists, we simply set
deg(M) =∞. Note that M is finitely ambiguous if and only if deg(M) = 0. It
was shown in [45] that deg(M) can be computed in time O(r6|Σ|) for any NFA
M with r states.

On optimizing NFA. For our application of evaluating encrypted NFA, an op-
timal NFA should be such that its encryption can be correctly evaluated on as
many strings as possible. Concretely, we want to find an NFA such that the noise
term at the end of evaluation is small enough for a successful decryption. Recall
that (n, q) is the lattice parameter in our scheme, b is the maximum l∞ norm
on plaintext vectors, and χ is an error distribution from which we sample noise
terms. As we assume the first state will be the only initial state in all our NFAs,
we can encrypt the initial state vector with no noise. As a result, we obtain the
following bounds on the noise due to homomorphic evaluation of NFAs, which
can be bounded using the ambiguity measures of M.

Proposition 3. For any n ≥ 1, if M is an NFA with r ≤ n states, and w a
string of length k, the noise vector e(k) at the end of homomorphic evaluation of
encrypted M on w satisfies the following bounds:

– If M is unambiguous, then ‖e(k)‖∞ ≤ bnkχ logb q.
– If M is finitely ambiguous, then ‖e(k)‖∞ ≤ bnrkχ logb q.
– If M is infinitely ambiguous, then ‖e(k)‖∞ ≤ bnkdeg(M)+1χ logb q.

Notice that both the number of states and the degree of ambiguity contribute
to the bound on the noise growth. To find a small noise growth for the general
case of processing an arbitrary long input string, we can try to solve the following
optimization problem on NFA minimization with bounded ambiguity.

Definition 2 (NFA Minimization with Bounded Ambiguity Problem).
For a given NFA of r states and a function B : N→ N, find an equivalent NFA
M with a minimal number of states such that da(M, k) ≤ B(k) for all k ≥ 1.

A closely related problem is to find a minimal NFAM with a given bound on
deg(M). Conversely, we can consider a similar minimization problem of finding
an NFAM with minimal deg(M) when given a regular expression and a bound
on the number of states. These problems seem to be hard in general as evidenced
by several exponential separation results in automata theory, and we briefly
mention a few. It was shown in [30] that, for each r > 0, there exists an NFA
of r states such that the minimal equivalent NFAM′ of bounded deg(M′) have
2r−1 states.16 With a more strict bound on the ambiguity, it was known [28] that

16 Note that deg(M′) is bounded if and only if da(M′, k) is at most a polynomial in k
for all k > 0.
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there exist NFAs of r states such that the equivalent finitely ambiguous NFAs

have at least 2Ω(r1/3) states. A more tractable problem of finding a minimal
unambiguous NFA is NP-complete [29, 8].

On the other hand, unambiguous NFAs can have much smaller size than
equivalent DFAs. A well-known example is the language Lr = (0+1)∗0(0+1)r−2

for any r ≥ 2: its partial derivative NFA has r states and is unambiguous, but its
minimal equivalent DFA requires 2r−1 states [34]. The exponential upper bound
2r can actually be met: it was shown in [31] that there exists a series {Mr}r≥1 of
unambiguous NFAs such thatMr has r states but the minimal equivalent DFA
of Mr has 2r states. Notice that, if the size of the given regular expression is
small, the bound on the size of the noise is dominated by the degree of ambiguity,
which is same for unambiguous NFAs and DFAs. So we can exploit the fact that
our scheme supports homomorphic encryption of NFAs and try to find a small
unambiguous NFA, which can be much more efficient than encrypting DFAs.

Some particular useful classes of regular languages are the pattern matching
languages L such that L = Σ∗KΣ∗, L = KΣ∗, or L = Σ∗K where K is a finite
set of strings. One can check using the criterion in [45] that the partial derivative
NFA for such a language is unambiguous, but its minimal equivalent DFA may
have exponentially many states. Even if K can be specified using a DFA of m
states, the minimal equivalent DFA of L may still have 2m−2 + 1 states. As our
scheme supports encryption of NFAs, pattern matching on encrypted patterns
can be much more efficient than previous approaches via DFAs.

6 Implementation and Performance

This section describes a proof of concept implementation of our scheme17and
compares its performance with the HAO15 matrix-FHE scheme [25] when ap-
plied to homomorphic evaluation of encrypted NFAs.

Implementation. We implemented our scheme in C++ using the NTL library
(version 10.5.0) for a power of two modulus, q, and we performed experiments
on an Intel i7-2600 3.4 GHz CPU. The implementation is naive in that it only
uses NTL’s native functionality with no further optimizations. It can be done in
a few hundred lines of code and a few days’ programming effort. There are many
opportunities for optimization since the code was written for simplicity and not
efficiency. Despite this, we noticed exceptionally fast evaluation times as listed
in Table 1.

In our experiments, we set lattice parameters to n = 1024 and q = 242. We
kept the modulus both as a power of two and as a power of the maximum l∞
norm b on plaintext vectors in order to take advantage of bit-shifting instead of
multiplications and divisions modulo q. The noise matrices Ei ← χn×mq and the
secret keys S ← χn×nq were chosen as uniformly random binary matrices with

17 The source code of our proof-of-concept implementation can be accessed at
https://www.dropbox.com/s/10g2nocx3pmyu4t/henfa.zip

21



Input Length (4k) NFA Enc. Time Matching Enc. NFA RAM used

256 bit S.L. 16.35 sec 1.53 sec 66Mb 172Mb

512 bit S.L. 16.66 sec 3.34 sec 66Mb 172Mb

1024 bit S.L. 16.53 sec 6.63 sec 66Mb 172Mb

16384 bit S.L. 16.76 sec 98.97 sec 66Mb 172Mb

65536 bit S.L. 16.42 sec 394.47 sec 66Mb 172Mb

Table 1. Running times for each function along with memory for a 1024-state NFA
accepting the language (0 + 1)∗0(0 + 1)r−1 for r = 11. “NFA Enc. Time” is the time to
encrypt the NFA, “Matching” is the time to evaluate an encrypted NFA on an input
of k symbols, “Enc. NFA” is the memory storage for the encrypted NFA, and the last
column measures the total RAM used during encryption, evaluation, and decryption.
Total RAM usage was measured with the “sys/resource.h” library in unix.

the latter being invertible modulo q. We used NTL’s pseudorandom number
generator “Random ZZ” for all random matrices.

Notice that MiNTRUs can be cryptanalyzed by NTRU attacks like dimension
reduction [33] and the hybrid attack [27] for key recovery. Therefore, we use the
uSVP attack to estimate the time for a key recovery attack as in [1] and set the
LWE noise parameter as α =

√
2n/q in the on-line LWE bit security estimator18.

Rough estimates show that our scheme achieves 100 bits of security with these
parameters.

We conducted tests on r-state partial derivative NFAs accepting the pattern-
matching languages (0 + 1)∗0(0 + 1)r−1 with finite ambiguity, for some r smaller
than the lattice dimension n. Notice that the equivalent minimal DFA’s have
2r−1 states. In the experiments, we pad the transition matrices to n-dimensional
matrices by adding transitions from nonreachable states to final states to increase
ambiguity, and hence we effectively obtain n-state NFAs. The strings scanned
were randomly generated. At the end of each scan, our code checked for any
decryption errors. We observed no decryption errors nor noise overflow. The
experiment results for r = 11 are listed in Table 1, where time was measured
using C++’s “time.h” library.

Consider the worst case where the NFA has infinite ambiguity, but bounded
degree of growth of ambiguity. Then the final noise term e(k) has norm ‖e(k)‖∞ ≤
bnkdeg(M)+1χ logb q as discussed in the previous section. By setting the modu-
lus just above the error growth, we see that the bit length of the modulus is
linear in deg(M) + 1. Now as we view total memory for the encrypted NFA,
n2|Σ| log2(q) logb(q) bits, we see that efficiency is quadratic in NFA’s number of
states and quadratic in the degree of growth of ambiguity (though we have some
control over logb(q) by choosing a large base b). This gives us an exact relation
between the number of states, the NFA’s ambiguity, and performance.

Performance improvement over HAO15. Now we compare the performance of
our scheme with the HAO15 matrix-FHE scheme for homomorphic evaluation

18 https://bitbucket.org/malb/lwe-estimator
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Lattice parameters
n = 1024, q = 242 n = 4096, q = 2111 n = 32768, q = 2883

Ours HAO15 Ours HAO15 Ours HAO15

Unambiguous 564918 141229 1.577e25 3.943e24 2.176e255 5.441e254

Finitely ambiguous 551 137 3.850e21 9.626e20 6.642e250 1.660e250

Infinitely ambiguous 82 65 250782489 199046193 1.295e85 1.028e85

Table 2. Maximal lengths of strings can be scanned on any n-state NFA in both
schemes without decryption error. In all cases, the noise parameter is set to α =

√
2n/q.

of encrypted NFAs. Let M be an NFA of r ≤ n states, where n is the lattice
dimension, and let k be the length of the string to be scanned on M. For the
HAO15 scheme, applying the NFA ambiguity analysis technique as in Proposi-
tion 3, we can rewrite Equation 1 to obtain the following bound on the l∞ norm
of the final noise vector ek:

‖ek‖∞ ≤ χ(n+ r) log q + χ(n+ r) log q

k∑
l=2

da(M, l) + χda(M, k), (6)

which must be bounded away from q/4 for successful decryption of the final
ciphertext vector.

Using Proposition 3 and the bound in Equation 6, one can determine each
scheme’s capability of homomorphic NFA evaluation. For concrete results, we
consider three cases of the ambiguity of M:

1. M is unambiguous, so da(M, l) ≤ 1;
2. M is finitely ambiguous, so da(M, l) ≤ r; and
3. M is infinitely ambiguous and its degree of growth of ambiguity is deg(M) =

2, so da(M, l) ≤ l2.

Furthermore, we consider three sets of lattice parameters for at least 100 bits
of security, and hence three different maximal sizes r for M. We list in Table 2
the maximal lengths of strings can be scanned without decryption error using
both schemes on any n-state NFA. The results show that we can almost always
evaluate twice long strings using our scheme.

For the running time, the computational complexity of k homomorphic ma-
trix multiplications in the HAO15 scheme, assuming naive matrix-vector mul-
tiplication of complexity O(n2), is O(k(r + n)2 log q). On the other hand, the
complexity of our homomorphic evaluation procedure is O(kn2 log q). So using
the same parameter and matrix multiplication algorithm, we expect our scheme
runs three times faster than an implementation of the HAO15 scheme.

Potential Optimizations. One potential optimization is parallelization through
the unused states. Say we must evaluate a long string (10000 bits) but only use
a 100 state NFA. Then, we can evaluate ten such NFAs in parallel by setting
the transition matrix for symbol a ∈ Σ as the block diagonal matrix with the
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blocks as the smaller transition matrices in the small parameter setting. The
total number of states must stay above a few hundred for this corresponds to
the lattice dimension of the underlying lattice problem.

Let G = In ⊗ gt for gt = (1, b, · · · , blogb(q)−1) as in [36]. We expect to see
smaller noise growth via a randomized bit decomposition for the decomposition
of the encrypted state vector, as used in [2]. This can be done with a simple tweak
to Babai’s nearest plane algorithm [4] on the G-matrix’s null lattice Λ⊥q (G) =
{x ∈ Zm : Gx = 0 mod q} and its cosets.
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A Definitions on Regular Expressions and NFA

We recall some standard definitions about regular languages and finite au-
tomata [46]. Let Σ be a finite alphabet, and Σ∗ the free monoid generated
by Σ. A string w is an element of Σ∗, which can be written as a finite se-
quence of symbols w = w1w2 · · ·wk where w1, . . . , wk ∈ Σ, and its length is
|w| = k. The empty string is denoted by ε, which is the neutral element of Σ∗.
The concatenation of two strings u = u1 · · ·um and v = v1 · · · vn is a string
uv = u1 · · ·umv1 · · · vn. A language over Σ is a subset of Σ∗. For any languages
L and K, we consider the following regular operations: (union) L∪K, (product)
LK = {uv | u ∈ L, v ∈ K}, and (Kleene star) L∗ = ∪i≥0Li, where L0 = {ε},
and Li = LLi−1 for i > 0. Regular languages are the smallest class of languages
containing the basic languages ∅, {ε}, and {ai} for all ai ∈ Σ that are closed
under regular operations.

A nondeterministic finite automaton (NFA) over Σ is a quintuple M =
(Q,Σ, δ,QI , QF ), where Q = {s1, . . . , sn} is a finite set of states, δ : Q × Σ →
℘(Q) is a transition function, QI ⊆ Q is the set of initial states, and QF ⊆ Q is
the set of final states. We can extend δ to a function δ : Q × Σ∗ → ℘(Q) over
strings in the natural way. Without loss of generality, we assume that all our
NFAs have a single initial state s1. A string w ∈ Σ∗ is accepted by an NFA M
if δ(s1, w) ∩QF 6= ∅. The set of all the strings accepted by an NFA M is called
the language of M , and it is denoted by L(M). A deterministic finite automaton
(DFA) is an NFA such that δ(s, ai) is a singleton set for all s ∈ Q and ai ∈ Σ,
and |QI | = 1.

A regular expression over Σ is a formal expression generated by the following
grammar rules:

RE→ ε | ai | (RE + RE) | (RE · RE) | (RE)∗,

where ai ranges over Σ. The operator ∗ takes the highest precedence, followed
by ·, and then by +. The parentheses can be omitted when there is no ambiguity.
The operator · is usually omitted as well, and concatenations can be written as
juxtapositions of regular expressions. For a regular expression e, its language
L(e) can be defined inductively as follows:

L(ε) = {ε}, L(ai) = {ai},
L(e0 + e1) = L(e0) ∪ L(e1), L(e0 · e1) = {uv | u ∈ L(e0), v ∈ L(e1)},
L(e∗) = ∪i≥0L(e)i,
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where ai ranges over Σ, and e0, e1 are regular expressions. For any set R of regu-
lar expressions, let L(R) = ∪e∈RL(e). It is well known that the languages defined
by regular expressions are exactly the regular languages, which are exactly the
languages accepted by finite automata.

For any sets R, T of regular expressions, we write RT for the set of regular
expressions

RT = {e · f | e ∈ R, f ∈ T},

and we write Re = {f · e | f ∈ R} and eR = {e · f | f ∈ R}; in particular,
∅T = R∅ = ∅e = e∅ = ∅.

B Proofs

In this section we present proofs that are omitted in the main paper.

Proposition 3. For any n ≥ 1, if M is an NFA with r ≤ n states, and w a
string of length k, the noise vector e(k) at the end of homomorphic evaluation of
encrypted M on w satisfies the following bounds:

– If M is unambiguous, then ‖e(k)‖∞ ≤ bnkχ logb q.
– If M is finitely ambiguous, then ‖e(k)‖∞ ≤ bnrkχ logb q.
– If M is infinitely ambiguous, then ‖e(k)‖∞ ≤ bnkdeg(M)+1χ logb q.

Proof. Let M = (Q,Σ, δ, {s1}, QF ) be an NFA with r states s1, . . . , sr, and for
each input symbol σ ∈ Σ, denote by Mσ ∈ {0, 1}n×n the transition matrix of
M on σ (padded with 0s in the extra columns and rows), where (Mσ)t,s = 1 if
t ∈ δ(s, σ), and (Mσ)t,s = 0 othewise. For any t ∈ Q let Mt = (Q,Σ, δ,Q, {t})
be the NFA obtained from M by setting all states to be initial and t the only
final state. Notice that da(Mt, l) is an upper bound on the total number of paths
in M on a string of length l from any state to t.

Let w = w1 · · ·wk be the string to be scanned on M. For all 1 ≤ i ≤ k, the
encrypted state vector q(i) after reading wi is:

q(i) =

logb q∑
j=0

Cwi,jq
(i−1)
j = βS−1Mwi · · ·Mw1v+S−1(Mwie

(i−1)+

logb q∑
j=0

Ewi,jq
(i−1)
j ),

where e(i−1) is the noise term after reading the previous symbol wi−1. As in
our assumption, s1 is always the sole initial state in M, we can set the initial
noise e(0) = 0 without leaking any additional information about the NFA M.
By expanding all the noise terms, we get

e(k) =

k∑
l=2

Mwk
· · ·Mwl

logb q∑
j=0

Ewl−1,jq
(l−2)
j +

logb q∑
j=0

Ewk,jq
(k−1)
j . (7)

Notice that, for any symbol a ∈ Σ, the (t, s)’th entry of Ma is 1 if t ∈ δ(s, a)
and it is 0 otherwise. So the (t, s)’th entry of the product Mwk

· · ·Mwl
counts
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the number of paths from s to t on the string wl · · ·wk, where 1 ≤ l ≤ k.
Let 1 be the vector whose entries are all 1. Then the t’th entry of the vector
Mwk

· · ·Mwl
1 counts the total number of paths from an arbitrary state to t on

this string, which is at most da(Mt, k − l + 1). Thus we have

‖Mwk
· · ·Mwl

logb q∑
j=0

Ewl−1,jq
(l−2)
j ‖∞ ≤ bnχ logb q ·max

t∈Q
{da(Mt, k − l + 1)}.

It follows that the final noise vector e(k) can be bounded by

‖e(k)‖∞ ≤ bnχ logb q ·
k−1∑
l=1

max
t∈Q
{da(Mt, l)}+ bnχ logb q (8)

If M is unambiguous, then da(Mt, l) ≤ 1 for all t ∈ Q and l ≥ 0, so

‖e(k)‖∞ ≤ bknχ logb q.

If M is finitely ambiguous, then for all s, t ∈ Q, the number of paths of w from
s to t is at most 1 [45]. So da(Mt, l) ≤ r for all t ∈ Q and l ≥ 0, and e(k) can be
bounded by

‖e(k)‖∞ ≤ bknrχ logb q.

For the case whereM is infinitely ambiguous, notice that da(Mt, l) ≤ ldeg(M)

for all l ≥ 1, and we have

‖e(k)‖∞ ≤ bχ logb q

k−1∑
l=1

ldeg(M) + bχ logb q

≤ bnkdeg(M)+1χ logb q.

ut

C Performance comparisons with HAO15

In this section we present a brief analysis of applying the matrix-FHE scheme
of HAO15 [25] to the case of homomorphic evaluation of NFA.

Fix an NFA M of r states and with an alphabet Σ, and let Mσ ∈ {0, 1}r×r
for σ ∈ Σ be its transition matrices on symbol σ. Recall the “leveled version” of
the HAO15 scheme as described in Section 3.1. To encryptM for homomorphic
evaluation on any string of length at most k, we sample k + 1 secret keys ski
for i = 0, 1, . . . , k, and for each σ ∈ Σ, we encrypt Mσ with all keys ski to
get Cσ,i ← HAO.MatEncski(Mσ). We also encrypt the initial state vector v =
(1, 0, . . . , 0)t in a ciphertext c = HAO.VecEncsk0(v).

To scan w = w1 · · ·wk on M, set c0 = c and ci = HAO.Mul(Cwi,i, ci−1) =

Cwi,i×G−1(ci−1). Then each ciphertext ci satisfies Sici = (
∏1
j=i Mwj

)×v+ei
for some noise vector ei. By Equation 1, the l∞ norm of ek can be bounded by

‖ek‖∞ ≤ χN + χN

k∑
l=2

da(M, l) + χda(M, k),
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which must be bounded away from q/4.
For performance comparison, consider two cases of the ambiguity measures

of M:

– M is finitely ambiguous: We have da(M, l) ≤ r for all 1 ≤ l ≤ k, so w.h.p.

‖ek‖∞ ≤ αq(n+ r)(kr + 1) log q,

where α =
√

2n/q is the LWE noise parameter. Thus, in the HAO15 scheme
we can homomorphically evaluate M on strings of length k ≤ 1

α(n+r)r log q .

For example, assuming at least 100 bit of security is needed, for an NFA of up
to 1024 states on strings of length up to 275, we need n = 1024 and q = 242.
On the other hand, using our scheme we can evaluateM on strings of length
k ≤ q

b2nχr logb q
. So, using our scheme with the above sets of parameters, we

can homomorphically evaluate an NFA of up to 1024 states on strings of
length up to 551.

– M is infinitely ambiguous: We have da(M, l) ≤ ldeg(M), so w.h.p.

‖ek‖∞ ≤ αq(n+ r) log q · (
k∑
l=1

ldeg(M) + 1) ≤ αq(n+ r) log qkdeg(M)+1

Using the same parameters as the above to achieve at least 100 bit of security,
and assuming that deg(M) = 2 for the NFA M, we can homomorphically
evaluate M on strings of length up to 65 in the HAO15 scheme, whereas
we can homomorphically evaluate M on strings of length up to 82 in our
scheme.

Moreover, the computational complexity of k homomorphic matrix multi-
plications, assuming naive matrix-vector multiplication of complexity O(n2), is
O(k(r+n)2 log q). On the other hand, the complexity of our homomorphic eval-
uation procedure is O(kn2 log q).
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