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Abstract. The Luby-Rackoff construction, or the Feistel construction,
is one of the most important approaches to construct secure block ciphers
from secure pseudorandom functions. The 3- and 4-round Luby-Rackoff
constructions are proven to be secure against chosen-plaintext attacks
(CPAs) and chosen-ciphertext attacks (CCAs), respectively, in the classi-
cal setting. However, Kuwakado and Morii showed that a quantum super-
posed chosen-plaintext attack (qCPA) can distinguish the 3-round Luby-
Rackoff construction from a random permutation in polynomial time.
In addition, Ito et al. recently showed a quantum superposed chosen-
ciphertext attack (qCCA) that distinguishes the 4-round Luby-Rackoff
construction. Since Kuwakado and Morii showed the result, a problem
of much interest has been how many rounds are sufficient to achieve
provable security against quantum query attacks. This paper answers to
this fundamental question by showing that 4-rounds suffice against qC-
PAs. Concretely, we prove that the 4-round Luby-Rackoff construction
is secure up to 0(2”/ 12) quantum queries. We also give a query upper
bound for the problem of distinguishing the 4-round Luby-Rackoff con-
struction from a random permutation by showing a distinguishing qCPA
with O(2"/%) quantum queries. Our result is the first to demonstrate the
security of a typical block-cipher construction against quantum query at-
tacks, without any algebraic assumptions. To give security proofs, we use
an alternative formalization of Zhandry’s compressed oracle technique.
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1 Introduction

Post-quantum public-key cryptography has been one of the most actively re-
searched areas in cryptography since Shor developed the polynomial-time in-
teger factoring quantum algorithm [30]. NIST is working on a standardization
process for post-quantum public-key schemes such as public-key encryption, key-
establishment, and digital signature schemes [27].

On the other hand, for symmetric key cryptography, it was said that the
security of symmetric-key schemes would not be much affected by quantum



computers. However, a series of recent results has shown that some symmetric
key schemes are also broken in polynomial time by using Simon’s algorithm [31]
if quantum adversaries have access to quantum circuits that implement keyed
primitives [T820/8/6I2TI29T3IT2ITTITT], though they are proven or assumed to be
secure in the classical setting. Thus, the post-quantum security of symmetric-key
schemes also needs to be studied.

Although many quantum query attacks on symmetric-key schemes have been
proposed, post-quantum provable security of symmetric-key schemes has at-
tracted little attention. There are two possible post-quantum security notions
for symmetric-key schemes: standard security and quantum security [33]. The
standard security assumes adversaries have quantum computers, but have ac-
cess to keyed oracles in a classical manner. On the other hand, the quantum
security assumes adversaries can make queries to keyed primitives in quantum
superpositions. If a scheme is proven to have quantum security, then it will re-
main secure even in a far future where all computations and communications
are done in quantum superpositions. Therefore, it is a problem of much interest
whether a classically secure symmetric-key scheme also has quantum security.

The Luby-Rackoff construction. The Luby-Rackoff construction, or the Feis-
tel construction, is one of the most important approaches to construct efficient
and secure block ciphers, which are pseudorandom permutations (PRPs), from
efficient and secure pseudorandom functions (PRFs). A significant number of
block ciphers including commonly used ones such as DES [25] and Camellia [3]
has been designed on the basis of this construction.

For families of functions f; := {fix : {0,1}"/2 — {0,1}"/2}4cx that are
parameterized by k in a key space K (1 < i < r), the r-round Luby-Rackoff
construction LR, (f1,..., fr) is defined as follows: First, keys ki, . . ., k, are chosen
independently and uniformly at random from K. For each input z¢ = oL ||Zor,
where oz, zor € {0,1}™/2, the state is updated as

I(i—l)LHI(i—nR = zipl|Tir = T(i—1)r D Jik: (x(i—l)L)Hx(i—l)L (1)

for i = 1,...,r in a sequential order (see Fig. . The output is the final state
xy = rr||zrr. Then the resulting function becomes a keyed permutation over
{0,1}"™ with keys in (K)".

Xir, Xir

Fig. 1. The i-th round state update.



In the classical setting, if each f; is a secure PRF, LR, becomes a secure PRP
against chosen-plaintext attacks (CPAs) for » > 3 and a secure PRP against
chosen-ciphertext attacks (CCAs) for r > 4 [23], i.e., LR, becomes a strong
PRP. However, in the quantum setting, Kuwakado and Morii showed that LR3
can be distinguished in polynomial time from a truly random permutation by
a quantum superposed chosen-plaintext attack [20] (qCPA). E| Moreover, Ito
et al. recently showed that LRy can be distinguished in polynomial time by a
quantum superposed chosen-ciphertext attack (qCCA) [I7]. On the other hand,
for any r, no post-quantum security proof of LR, is known. A very natural
question is then whether such a proof is feasible for some 7, and if so, the
minimum number of r such that we can prove the post-quantum security of LR,
needs to be determined.

1.1 Our Contributions

As the first step to giving post-quantum security proofs for the Luby-Rackoff
constructions, this paper shows that the 4-round Luby-Rackoff construction LR,
is secure against qCPAs. In particular, we give a security bound of LRy against
qCPAs when all round functions are truly random functions. We also give a query
upper bound for the problem of distinguishing LRy from a random permutation
by showing a distinguishing attack. Concretely, we show the following theorems
(see Table (1] for comparing security proofs and attacks for LRy).

Theorem 1 (Lower bound and upper bound, informal). If all round func-
tions are truly random functions, then the following claims hold.

1. LRy cannot be distinguished from a truly random permutation by qCPAs up
to O(2"/12) quantum queries.

2. A quantum algorithm exists that distinguishes LRy from a truly random per-
mutation with a constant probability by making O(2"/%) quantum chosen-
plaintext queries.

Theorem 2 (Construction of PRP from PRF, informal). Suppose that
each f; is a secure PRF against efficient quantum query attacks, for 1 < i < 4.
Then LR4(f1, f2, f3, f4) is a secure PRP against efficient qCPAs.

Technical details. To give a quantum security proof for LR4 in the case that
all round functions are truly random, we use the compressed oracle technique
developed by Zhandry [37]. To be precise, we give an alternative formalization
of the technique and use it.

One challenging obstacle to giving security proofs against quantum super-
posed query adversaries is that we cannot record transcripts of quantum queries

3 Strictly speaking, the attack by Kuwakado and Morii works only when all round
functions are keyed permutations. Kaplan et al. [I8] showed that the attack works
for more general cases.



Attack Classical Classical Quantum Quantum
setting CPA CCA CPA CCA
. Secure up to Secure up to Secure up to

N i
Sec;:;;;y O(2"/*) queries | O(2"/*) queries | O(2"/12) queries (Ir(isle)(ii?ei
P 23] 23] [Ours] (Section

Distinguishing || O(2"/*) queries | O(2"/*) queries| O(2"/%) queries |O(n) queries

attack 28] 28] [Ours] (Section 17

Table 1. Comparison of security proofs and attacks for the 4-round Luby-Rackoff con-
struction LR4 when all round functions are truly random. In the quantum CPA/CCA
settings, adversaries can make quantum superposed queries.

and answers. Although it is trivial to store query-answer records in the classical
setting, it is highly non-trivial to store them in the quantum setting, since mea-
suring or copying (parts of) quantum states will lead to perturbing them, which
may be detected by adversaries.

Zhandry’s compressed oracle technique enables us to overcome the obstacle
when oracles are truly random functions. The technique is so powerful that it
can be used to show quantum indifferentiability of the Merkle-Damgard domain
extender and quantum security for the Fujisaki-Okamoto transformation [37], in
addition to the (tight) lower bounds for the multicollision-finding problems [22].
His crucial observation is that we can record queries and answers without affect-
ing quantum states by appropriately forgetting previous records. In addition,
he observed that transcripts of queries can be recorded in an compressed man-
ner, which enables us to simulate random functions (random oracles) extremely
efficiently.

The compressed oracle technique is a powerful tool, although the formaliza-
tion of the technique is (necessarily) somewhat complex. A simpler alternative
formalization would be better to have when we apply the technique to complex
schemes that use multiple random functions, such as the Luby-Rackoff construc-
tion.

Zhandry’s formalization enables us to both record transcripts and compress
recorded data. We need the compression to efficiently simulate random func-
tions but not when we focus on information theoretic security of cryptographic
schemes.

With this in mind, we modify the construction of Zhandry’s compressed stan-
dard oracle and give an alternative formalization of Zhandry’s technique without
compression of the database. Moreover, we scrutinize the properties of our modi-
fied oracle and observe that its behaviors can be described in an intuitively clear
manner by introducing some errors. We also explicitly describe error terms,
which enables us to give mathematically rigorous proofs. We name our alter-
native oracle the recording standard oracle with errors, because it records tran-
scripts of queries and its behavior is described with errors. We believe that our
alternative formalization and analyses for our oracle’s behavior help us under-



stand Zhandry’s technique better, which will lead to the technique being applied
even more widely. See Section [3] for details on our alternative formalization.

By heavily using our recording standard oracle with errors, we complete
the security proof of LR, against quantum superposed query attacks, taking
advantage of classical proof intuitions to some extent. First, we consider LR3,
the 3-round Luby-Rackoff construction, which is easy to distinguish from a truly
random permutation, and a slightly modified version of it, where the last-round
state update of LR3 is modified. Our observation is that even quantum (chosen-
plaintext) query adversaries seem to have difficulty noticing the modification,
and we are actually able to show that this is indeed the case. Intuitively, the
proof is possible since even quantum query adversaries cannot feasibly produce
collisions on the input of the third round. Second, we prove that a family of
random permutations (i.e., a function P : {0,1}"/2 x {0,1}"/2 — {0,1}"™/2 such
that P(x,-) is a truly random permutation over {0,1}"/2 for each z) is hard to
distinguish from a truly random function. To show the first hardness result, we
use our recording standard oracle with errors. On the other hand, for the second
hardness result, we can show it by just combining some previous results. Once
we prove these two hardness results, the rest of the proof can be done easily
without any argument specific to the quantum setting. Our proof is much more
complex than the classical one, though, we give rigorous and careful analyses.
See Section [4] for details on the security proof of LRy.

In contrast to the high complexity of the provable security result, our quan-
tum distinguishing attack is a simple quantum polynomial speed-up of existing
classical attacks. See Section [f for details on the quantum distinguishing attack.

1.2 Related Works

Other than the ones introduced above, security proofs against quantum query
adversaries for symmetric key schemes include a proof for standard modes of
operations by Targhi et al. [2], one for the Carter-Wegman message authen-
tication codes (MACs) by Boneh and Zhandry [5], one for NMAC by Song
and Yun [32], and one for Davies-Meyer and Merkle-Damgard constructions
by Hosoyamada and Yasuda [16]. Zhandry showed the PRP-PRF switching
lemma in the quantum setting [35] and demonstrated that quantum-secure PRPs
can be constructed from quantum-secure PRFs by using a technique of format
preserving encryption [36]. Czajkowski et al. showed that the sponge construc-
tion is collapsing (collapsing is a quantum extension of the classical notion of
collision-resistance) when round functions are one-way random permutations or
functions [9]E| Alagic and Russell proved that polynomial-time attacks against
symmetric-key schemes that use Simon’s algorithm can be prevented by replac-
ing XOR operations with modular additions on the basis of an algebraic hardness
assumption [I]. However, Bonnetain and Naya-Plasecia showed that the coun-
termeasure is not practical [7]. For standard security proofs (against quantum

4 Note that the condition in which the round function of the sponge construction is
one-way is unusual in the context of classical symmetric-key provable security.



adversaries that make only classical queries) for symmetric-schemes, Mennink
and Szepieniec proved security for XOR of PRPs [24]. Czajkowski et al. [10] re-
cently showed that the compressing technique can be extended to quantum ora-
cles with non-uniform distributions such as a random permutation, and showed
quantum indifferentiability of the sponge construction.

2 Preliminaries

This section describes notations and definitions. In this paper, all algorithms
(or adversaries) are assumed to be quantum algorithms, and make quantum
superposed queries to oracles. For any finite sets X and Y, let Func(X,Y") denote
the set of all functions from X to Y. For any n-bit string x, we denote the left-half
n/2-bits of x by z;, and the right-half n/2-bits by zg, respectively. We identify
the set {0,1}™ with the set of the integers {0, 1,...,2™ — 1}.

2.1 Quantum Computation

Throughout this paper, we assume that readers have basic knowledge about
quantum computation and finite dimensional linear algebra (see textbooks such
as [26]19] for an introduction). We use the computational model of quantum cir-
cuits. We measure complexity of quantum algorithms by the number of queries,
and the number of basic gates in addition to oracle gates. In this paper, basic
gates denote the gates in the standard basis of quantum circuits Q [19]. Let || -||
and || - |l denote the norm of vectors and the trace norm of operators, respec-
tively. In addition, let td(-, ) denote the trace distance. For Hermitian operators
p,o on a Hilbert space H, td(p, o) = 3||p — o|lw holds. For a mixed state p of
a joint quantum system H4 ® Hp, let trg(p) (resp., tra(p)) denote the partial
trace of p over Hp (resp., Ha). Moreover, for a pure state [¢) of the joint quan-
tum system Ha @ Hp, we write trg(|¢))) (resp., tra(|1))) instead of trp(|¢) (¥])
(resp., tra(|v) (¢])), for simplicity. Similarly, for a pure state |¢) and a mixed
state p of a quantum system H, we write td(|¢), p) and td(p, |¢)) instead of
td(|w) (v], p) and td(p, |1) (1)), respectively. For an integer n > 1, I,, and H®"
denote the identity operator on n-qubit systems and the n-qubit Hadamard op-
erator, respectively. If n is clear from the context, we just write I instead of I,,,
for concision. By abuse of notation, for an operator V, we sometimes use the
same notation V to denote V ® I or I ® V for simplicity, when it will cause no
confusion. In addition, for a vector |¢) and a positive integer m, we sometimes
use the same notation |¢) to denote |¢) ® |0™) or |0™) @ |¢) for simplicity, when
it will cause no confusion.

Quantum oracle query algorithms. Following previous works (see [4], for
example), any quantum oracle query algorithm 4 that makes at most ¢ queries
to oracles is modeled as a sequence of unitary operators (Uy, ..., U,), where each
U; is a unitary operator on an /-qubit quantum system, for some integer ¢. Here,
Up can be regarded as the initialization process, and for 1 < i < ¢ —1, U; is



the process after the i-th query. U, can be regarded as the finalization process.
We only consider quantum algorithms that take no inputs and assume that the
initial state of A is |0).

Stateless oracles. For a function f : {0,1}" — {0,1}", the quantum oracle of
f is defined as the unitary operator Oy : |z,y) — |z,y & f(x)). When we run
A relative to the oracle Oy, the unitary operators Uy, Oy, ...,Uq—1,0¢, U, act
sequentially on the initial state |0°). (We consider that Oy acts on the first (m +
n)-qubits of A’s quantum register.) Finally, A measures the resulting quantum
state U,0;U,—1 - - - O;Up |0), and returns the measurement result as the output.
f may be chosen in accordance with a distribution at the beginning of each game.
Let us denote the event that A runs relative to the oracle Oy and returns an
output a by a « A% () or by A% () = a.

Stateful oracles. In this paper, we also consider more general cases in which
quantum oracles are stateful, i.e., oracles have ¢/-qubit quantum states for an
integer ¢’ > ()E| In these cases, an oracle O is modeled as a sequence of unitary
operators (Oq,...,0,) that acts on the first (m + n)-qubits of A’s quantum
register in addition to O’s quantum register. When we run A relative to the
oracle O, the unitary operators Uy @ Ipr, O1, ..., (Us—1 @ Ipy), Oy, (Uy ® Ipr) act
in a sequential order on the initial state |0¢) ® |initp), where [inite) is the initial
state of O. Finally, A measures the resulting quantum state (Uy ® Iy ) Og(Ug—1 ®
Ip) - O01(Uy ® I) [0°) @ [inite), and returns the measurement result as the
output. If O has no state and O; = Oy holds for each 7, the behavior of A relative
to O precisely matches that of A relative to the stateless oracle O¢. Thus, our
model of stateful oracles is an extension of the typical model of stateless oracles
described above. @ may be chosen in accordance with a distribution at the
beginning of each game. We denote the event that A runs relative to the oracle
O and returns an output a by a + A°() or by A°() — a.

Quantum distinguishing advantages. Let A be a quantum algorithm that
makes at most g queries and outputs 0 or 1 as the final output, and let O
and Qs be some oracles. We consider the situation in which O; and O are
chosen randomly in accordance with some distributions. We define the quantum
distinguishing advantage of A by

Advplo, (A) = Br[AZ() 1] = Pr[A®() > 1]|. (2)

When we are interested only in the number of queries and do not consider
other complexities such as the number of gates (i.e., we focus on information

5 Here we do not mean that our model captures all reasonable stateful quantum ora-
cles. We use our model of stateful quantum oracles just for intermediate arguments
to prove our main results, and the claims of the main results are described in the
typical model of stateless oracles.



theoretic adversaries), we use the notation
dis dis
AdvEo,(q) = max { AdvEo, ()}, (3)

where the maximum is taken over all quantum algorithms that make at most ¢
quantum queries.

Quantum PRF advantages. RF denotes the quantum oracle of random func-
tions, i.e., the oracle such that a function f € Func({0,1}™,{0,1}") is chosen
uniformly at random, and an oracle access to Oy is given to adversaries.

Let F = {Fy : {0,1}" — {0,1}"}rex be a family of functions. Let us use
the same symbol F to denote the oracle such that k is chosen uniformly at
random, and an oracle access to Op, is given to adversaries. In addition, let A
be an oracle query algorithm that outputs 0 or 1. Then we define the quantum
pseudorandom-function (qPRF) advantage by AdvquRF(A) = Advffij%F(A).

Similarly, we define Adv}PRF(q) by Advq}-PRF(q) ‘= maxy {Adv(}_-PRF(A)},

where the maximum is taken over all quantum algorithms A that make at most
¢ quantum queries.

Quantum PRP advantages. By RP we denote the quantum oracle of random
permutations, i.e., the oracle such that a permutation P € Perm({0,1}") is
chosen uniformly at random, and an oracle access to Op is given to adversaries.

Let P = {P; : {0,1}" — {0,1}"}rex be a family of permutations. We use
the same symbol P to denote the oracle such that k is chosen uniformly at ran-
dom, and an oracle access to Op, is given to adversaries. Let A be an oracle
query algorithm that outputs 0 or 1, and we define the quantum pseudorandom-
permutation (qPRP) advantage by Advh " (A) := Advipp(A). Similarly, we

define Adv ™" (¢) by Advh ™™ () := max4 {Adv%PRP(A)} , where the max-

imum is taken over all quantum algorithms A that make at most ¢ quantum
queries.

Security against efficient adversaries. An algorithm A is called efficient if
it can be realized as a quantum circuit that has a polynomial number of basic
gates and oracle gates in n. A set of functions F (resp., a set of permutations
P) is a quantumly secure PRF (resp., a quantumly secure PRP) if the following
properties are satisfied:

1. Uniform sampling f EF (vesp., P & P) and evaluation of each f (resp.,
each P) can be implemented on quantum circuits that have a polynomial
number of basic gates in n.

2. Advg_-PRF (A) (resp., Adv%PRP(A)) is negligible (i.e., for any positive integer
¢, it is upper bounded by n~¢ for all sufficiently large n) for any efficient
algorithm A.



2.2 The Luby-Rackoff Constructions

The Luby-Rackoff construction [23] is a construction of n-bit permutations from
n/2-bit functions by using the Feistel network.

Fix 7 > 1, and for 1 <4 <7, let f; := {fix :{0,1}"/2 = {0,1}"/?} ek be a
family of functions parameterized by key k in a key space K. Then, the Luby-
Rackoff construction for fi,..., f, is defined as a family of n-bit permutations
LRy (f1,- s fr) == {LRe(fr ks - - frk ) biy g, exc With the key space (K)". For
each fixed key (k1,...,k:), LR (fikys. .., fr,.) is defined by the following pro-
cedure: First, given an input z¢ € {0,1}", divide it into n/2-bit strings xoz, and
Tor. Second, iteratively update n-bit states as

(TG—1yLs T—1)r) = (@i, Tir) = (T—1)r © fik (Ta—1)L) Ta—1)n)  (4)

for 1 < ¢ < r. Finally, return the final state =, := x,r||z,r as the output (see
Fig. ).

Fig. 2. The 3-round Luby-Rackoff construction.

The resulting function LR, (f1,k,,- .- frk.) : To — @, becomes an n-bit per-
mutation owing to the property of the Feistel network. Each f; , is called the
i-th round function. When we say that an adversary is given an oracle access to
LR, (f1,..., fr), we consider the situation in which keys k1, ..., k, are first chosen
independently and uniformly at random, and then the adversary runs relative to
the stateless oracle OLRr(fl,kl ,,,,, Froen) |2) |y) = |2) |y ® LR (f1kys- -+ froke) ().
When each round function is chosen from Func({0,1}"/2,{0,1}"/2) uniformly at
random (i.e., each f; is the set of all functions Func({0,1}"/2,{0,1}"/2) for all
i), we use the notation LR, for short.

3 An Alternative Formalization for the Compressed
Oracle Technique

Many security proofs in the classical random oracle model (ROM), implic-
itly rely on the fact that transcripts of queries and answers can be recorded.



However, such proofs do not necessarily work in the quantum random oracle
model (QROM) [4], since recording transcripts may significantly perturb quan-
tum states, which might be detected by adversaries. To solve this issue, Zhandry
introduced the “compressed oracle technique” [37] to enable us to record tran-
scripts of queries and answers even in QROM. In addition to recording tran-
scripts, Zhandry’s technique enables us to simulate the random oracle extremely
efficiently by compressing databases of transcripts.

Zhandry’s technique was originally developed for QROM, in which adver-
saries can make direct queries to random functions, but it can also be applied
when adversaries can make queries to random functions only indirectly. In par-
ticular, one may think that the technique is applicable to giving a security proof
for the Luby-Rackoff constructions when all round functions are truly random.

The compressed oracle technique is very insightful and promising, but its
formal description is somewhat (necessarily) complex. A simpler formalization
would be better to have when we want to apply the technique to complex schemes
that use multiple random functions, such as the Luby-Rackoff construction.

In provable security, especially for symmetric-key mode of operations, we
often focus on security against information theoretic adversaries. When we are
interested in such security, we do not care about efficient simulation of a random
oracle, and thus do not have to compress databases. With this in mind, we
modify the construction of Zhandry’s compressed standard oracle and give an
alternative formalization of his technique without compressing databases that
can be used when we focus on (quantum) information theoretic security.

We also study the behavior of our oracle in detail and show that its properties
can be described intuitively by introducing the notion of errors. Since our oracle
records transcripts of queries and its behavior is described with errors, we call
our oracle recording standard oracle with errors and denote it by RstOE.

We believe that our alternative formalization and analyses for its behavior
help us understand Zhandry’s technique better, which will lead to the technique
begin applied even more widely.

In Section |3.1f we give an overview of the original technique by Zhandry, and
describe which part of it can be improved. Then, in Section we describe our
alternative formalization for the technique.

3.1 An Overview of the Original Technique

First, Zhandry observed that the oracle Oy can be implemented with an encoding
of f and an operator stO that is independent of f. In this subsection, we consider
that each function f : {0,1}" — {0,1}" is encoded into the (n2™)-qubit state
15y =1fOf)]---|If(2™ — 1)). The operator stO is the unitary operator that
acts on (n + m + n2™)-qubit states defined as

stO : [z) |y) @ |ag) - - [agm 1) = [2) [y © az) @ |ag) -+~ |agm 1), (5)

where «, € {0,1}" for each 0 < z < 2™ — 1. We can easily confirm that
stO |z) ly) |f) = |=) ly® f(x))|f) holds. Here, we consider that |z)|y) corre-
sponds to the first (m + n)-qubits of adversaries’ registers.

10



When f is chosen uniformly at random and A runs relative to stO and |f)
(i.e., A runs relative to the quantum oracle of a random function), the whole
quantum state before 4 makes the (¢ + 1)-st quantum query becomes

|pfiv1) = (Ui @ I)stO(U;_y @ I)stO - --stO(Uy @ I) |0°) | £) (6)

with probability 1/2"2". Here, we assume that A has f-qubit quantum states.

Random choice of f can be implemented by first making the uniform su-
perposition of functions >, ﬁ |f) = H®"2" |0"?™) and then measuring the
state with the computational basis. So far we have considered that a random
function f is chosen at the beginning of games, but the output distribution of
A will not be changed even if we measure the |f) register at the same time as
A’s register. Thus, below we consider that all quantum registers including those
of functions are measured only once at the end of each game.

Then the whole quantum state before A makes the (i 4+ 1)-st quantum query
becomes

1
/2n21n

(Gir1) =D Ibrin1) = (U @ DstO---stO(Up @ 1) [ 0) @ |f)
f f

(7)

Next, we change the basis of the y register and «; registers in from
the standard computational basis {|u)},ecf0,13» to one called the Fourier basis
{H®" |u>}u6{0,1}nﬁ by Zhandry [37]. In what follows, we use the symbol « =7
to denote the encoding of classical bit strings into quantum states by using the
Fourier basis instead of the computational basis, and we ambiguously denote
H®™ |u) by |u) for each u € {0,1}". Then, it can be easily confirmed that

stO [z) [§) @ [ao) -+ [azn 1) = |2) [§) @ |an) -+ |og @ y) |Gz 1) (8)

holds. Intuitively, the direction of data writing changes when we change the
basis: When we use the standard computational basis, data is written from the
function registers to adversaries’ registers as in . On the other hand, when we
use the Fourier basis, data is written in the opposite direction as in . With
the Fourier basis, |¢;+1) can be written as

pis1) = (U; @ D)stO(Us_y @ I)stO - - - stO(Up @ I) (|of> ® |o/nz\’">) . (9)

Here, note that 3, |f) = H®"*" [0"") = |(ﬁ2\m) holds. In particular, the reg-

ister of the functions are initially set as [072™), and at most one data is written
(in superpositions) when an adversary makes a query. Thus

EEDY @, .plvyz) ® D) (10)
zyzD

5 Note that the Hadamard operator H®" corresponds to the Fourier transformation
over the group (7/27)%".

11



holds for some complex numbers a’ - such that - 5 la/ | = 1, where

yzD myzf)

each z is an m-bit string that corresponds to A’s query register, y is an n-bit
string that corresponds to A’s answer register, z corresponds to A’s remaining
register, and D = agl| - - - [|@am_1 is a concatenation of 2™ many n-bit strings.
__ Zhandry’s key observation is that, since stO adds at most one data to the
D-register in each query, a, # 0™ holds for at most ¢ many x, and thus D can
be regarded as a database with at most ¢ many non-zero entries. (Note that
D may contain fewer than i non-zero entries. For example, if a state |x) [7) is
successively queried to stO twice, then the database will remain unchanged since
stO - stO = I.) We use the same notation D to denote the database and call it
the Fourier database since now we are using the Fourier basis for D. Each entry
of the database D has the form (x,ay), where z € {0,1}™, &, € {0,1}", and
Qa, #0m.

Intuitively, if the Fourier database D contains an entry (x, @, ), it means that
A has queried z to a random function f and holds some information about the
value f(x). Hence D can be seen as a record of transcripts for queries and an-
swers. However, it is still not clear what kind of information A has about the
value f(x), since we are now using the Fourier basis. To clarify this information,
let the Hadamard operator H®™ act on each @, in D and obtain another (su-
perposition of) database D. Then, intuitively, D satisfies the condition in which
“(z,,) € D corresponds to the condition that A has queried = to the oracle
and received the value o, in response.” We call D a standard database.

In summary, Zhandry observed that the quantum random oracle can be de-
scribed as a stateful quantum oracle CstO. The whole quantum state of an ad-
versary A and the oracle just before the (i + 1)-st query is

|¢i+1> = Z AryzD |xyz> & ‘D> ) (11)
zyzD

where each D is a standard database that contains at most i entries. Initially,
the database D is empty. Intuitively, when A makes a query |z, y) to the oracle,
CstO does the following three-step procedure. E]

The three-step procedure of CstO.

1. Look for a tuple (x, o) € D. If one is found, respond with |z,y @ ay).

2. If no tuple is found, create new registers initialized to the state \/127 Dw, ).
Add the registers (z, ;) to D. Then respond with |z,y ® a,).

3. Finally, regardless of whether the tuple was found or added, there is now a
tuple (z,ay) in D, which may have to be removed. To do so, test whether
the registers containing «, contain 0™ in the Fourier basis. If so, remove the

tuple from D. Otherwise, leave the tuple in D.

" Note that this three-step procedure is a quoted verbatim from the original paper [37]
of version 20180814:183812, except that the symbol 3" and 0 are used instead of oy
and 0", respectively, in the original procedure.
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Intuitively, the first and second steps correspond to the classical lazy sam-
pling, which do the following procedure: When an adversary makes a query x to
the oracle, look for a tuple (x, ;) in the database. If one is found, respond with
o, (this part corresponds to the first procedure of CstO). If no tuple is found,
choose o, uniformly at random from {0,1}" (this part corresponds to creating
the superposition \/127 o, lz) in the second step of CstO), respond with a,,
and add (z,a;) to the database.

The third “test and forget” step is crucial and specific to the quantum setting.
Intuitively, the third step forgets data that is no longer used by the adversary
from the database. By appropriately forgetting information, we can record tran-
scripts of queries and answers without perturbing quantum states.

Formalization with compression. On the basis of above clever intuitions,
Zhandry gave a formalized description of the compressed standard oracle CstO
(although we do not give the explicit description here). Note that, since each
database D has at most ¢ entries before the (i +1)-st query, D can be encoded in
a compressed manner by using only O(i(m + n)) qubits. With this observation,
CstO is formalized in such a way that it has O(i(m +n))-qubit states before the
(i 4+ 1)-st query for each ¢, which enables us to simulate a random oracle very
efficiently on the fly, without an a priori bound on the number of queries (which
required computational assumption before Zhandry’s work).

3.2 Our Alternative Formalization

Next we give our alternative formalization. The original oracle CstO maintains
only a O(i(m + n))-qubit state by compressing databases. On the other hand,
in our alternative formalization, we do not consider any compression to focus
on recording transcripts of queries, and our oralce always has (n + 1)2™-qubit
states.

From now on, we represent each function f : {0,1}" — {0,1}" as (n +
1)2™-bit strings (0] £(0))[](O]| fF(1)]| - - - ||(0]| f(2™—1)). Remember that the whole
quantum state before A makes the (i + 1)-st query is described as

1
|gig1) = (U;R1)stO(U; -1 @1)stO - - - stO(Up 1) \of>®§f:W\f> . (12)

At each query, unlike the original technique that adds/deletes at most one entry
to/from each database, we first “decode” superpositions of databases to super-
positions of functions when an adversary makes a query, then respond to the
adversary, and finally “encode” again superpositions of functions to superposi-
tions of databases. Below we describe our encoding.

Encoding functions to databases: Intuitive descriptions. Modifying the
idea of Zhandry, we apply the following operations to the | f)-register of |¢;41).

13



1. Let the Hadamard operator H®™ act on the f(x) register for all . Now the
state becomes

S o, slay2) 91D) (13)
zyzD
for some complex numbers a;yzﬁ, where each D = (0|dp)| - - - [|(0[|Gigm_1) is

a concatenation of 2™ many (n + 1)-bit strings, and @, # 0" at most i-many
x.

2. For each z, if a, # 0™, flip the bit just before a,. Now each D changes to
the bit strings (bo||@o)]| - - - || (b2m —1||@am —1), where b, € {0,1}, and b, = 1 if
and only if a, # 0™.

3. For each = € {0,1}", let the n-bit Hadamard transformation H®" act on
|ai;) if and only if b, = 1. Then the quantum state becomes

|wi+1> = Z AxyzD |517y2> oy |D> (14)

zyzD

for some complex numbers az,.p, where each D is a concatenation of 2"
many (n+ 1)-bit strings (bo|lao)] - - - || (b2m —1||cem —1) such that b, # 0 holds
for at most ¢ many x, and intuitively b, # 0 means that A has queried z to
a random function f and has information that f(z) = .

Encoding functions to databases: Formal descriptions. The above three
operations can be formally realized as actions of unitary operators on | f)-registers.
The first one is realized as IH := (I; ® H®")®2" . The second one is realized as
Usoggle := (I1 ® [0™) (0" + X & (I, — |0™) (0"]))®2", where X is the 1-qubit
operator such that X |0) = |1) and X |1) = |0). The third one is realized by the
operator CH := (CH®™)®?"  where CH := |0) (0| ® I,, + |1) (1| ® H®".

We call the action of unitary operator Ueyc := CH-Uyoggle*IH and its conjugate
U, encoding and decoding, respectively. By using our encoding and decoding,
the recording standard oracle with errors is defined as follows.

Definition 1 (Recording standard oracle with errors). The recording
standard oracle with errors is the stateful quantum oracle such that queries are
processed with the unitary operator RstOE defined by RstOE := (I ® Uep) - stO -
(I ® Uye)-

Note that [1;41) = (U; ® I)RstOE(U;_; ® I)RstOE - --RstOE(Uy ® I)(|0%) ®
|0 +D2Y) and |¢i1) = (I @ Ug,) [¥it1) hold for each i.

Next, we introduce notations related to our recording standard oracle with
errors that are required to describe properties of RstOE.

Notations related to RstOE. We call a bit string D = (bollao)|l -]l
(bgm_1||agm_1), where b, € {0,1} and a, € {0,1}" for each z € {0,1}™, is
a valid database if o, # 0™ holds only if b, # 0. We call D an invalid database
if it is not a valid database. Note that, in a valid database, b, can be 0 or 1
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if a, = 0™. We identify a valid database D with the partially defined function
from {0,1}™ to {0,1}" of which the value on = € {0,1}"™ is defined to be y if
and only if b, # 0 and a, = y. We use the same notation D for this function.
Moreover, we identify D with the set {(z, D(2))}zecdom(p) C {0,1}™ x {0,1}™.
We say that an entry of © is in D if (x,y) € D for some y. Unless otherwise
noted, we always assume that D is valid.

We say that a valid database D is compatible with a function f : {0,1}"™ —
{0,1}" if D(z) = f(z) holds for each x in the domain of D. For each valid
database D, let comp(D) denote the set of functions that are compatible with
D.

If || ) — |¢') || is in O(e) for two vectors |¢),|¢), and some parameter e
(which will be a function of n in later applications), then we say that [¢) is
equal to |¢') with an error in O(€), or just write |¢) = |[¢') with an error in
O(e).

The following proposition describes the core properties of RstOE.

Proposition 1 (Core Properties). Let D be a valid database. Then, the fol-
lowing properties hold.

1. Suppose that |D| < i holds. Then

1

Ur.|D) = B
e D) \/ Teomp(D)

f€comp(D

1) (15)

holds with an error in O(4/i2/27).
2. Suppose that there is no entry of x in D. Then, for any y and «,

RstOE [z) |y) ® |D U (2, @) = |2) [y ® @) @ [D U (2, )
with an error in O(1/v/2%). More precisely,
RstOE |z,y) ® |D U (z, )

= e,y ® ) ©[D U (z,a))

1 1
+ﬁ\x,y®a> |D) — Z W|DU($»7)>

~v€{0,1}

- \/127 > \/% lz,y @) @ (|D U (z,7)) — | D)

L DU (2,8)) ~ |D) (16)

1 —~
+2—n|x>|on>® 2y 7

6e{0,1}™

holds, where |Dl;“’a"d> is a superposition of invalid databases for each vy, and
[07) = H®™ o).
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8. Suppose that there is no entry of x in D. Then, for any vy,

RstOE [z) |y) ® |D) = ) |y @ ) @D U (2, )

> &

ac{0,1}"

with an error in O(1/v/2%). To be more precise,

RstOE |z) |y) ® |D) = Z |z, y ® o) ® |DU (x,a))
ac{0,1}" \ﬁ

1 —~ 1
+ VoD lz) [0m) @ | |D) — 76%}71 Vo DU (x,7))
(17)

holds, where [07) = H®™ |0™).

Proposition [1| can be shown by straightforward calculations. For completeness,
a proof of Proposition [I]is given in Section A in this paper’s full version [I4].

An intuitive interpretation of Proposition The first property is a sub-
sidiary one, which will be useful in later applications. When we ignore error
terms, the second and third properties correspond to the first and second proce-
dures of CstO, respectively: When an adversary makes a query z to the oracle,
RstOE looks for a tuple (z,«) in the database. If one is found, respond with «
(the second property in the above proposition). If no tuple is found, create the
superposition \ﬁ >, laz), respond with oy, and add (z, ;) to the database
(the third property in the above proposition).

Note that we do not need any “test and forget” step to describe the second
and third properties in Proposition [[} Thus we can intuitively capture time
evolutions of databases with only the (classical) lazy-sampling-like arguments.

To get rid of the “test and forget” step, we have to introduce some errors. The
error increases as the number of adversaries’ queries ¢ increases, but it remains
negligible as long as ¢ < 2™/2. Thus the error will not be problematic when we
focus on the situation ¢ < 2"/2, which is the case for showing the security bound
of the 4-round Luby-Rackoff construction.

In later applications, similarly to classical proofs, we introduce good and
bad transcripts. The explicit formulas of the second and third properties will
be used to show that, intuitively, adversaries cannot distinguish two oracles if
transcripts are “good”. Moreover, the first property and the descriptions with
errors of the second and third properties will be used to show that the probability
that transcripts become “bad” is negligible.

4 Security Proofs

The goal of this section is to show the following theorem, which gives the quan-
tum query lower bound for the problem of distinguishing the 4-round Luby-
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Rackoff construction LR, from random permutations RP, when all round func-
tions are truly random functions.

Theorem 3. Let q be a positive integer. Let A be an adversary that makes at
most q¢ quantum queries. Then, Advﬁgfp (A) is in O (\/(]6/2”/2).

Since we can efficiently simulate truly random functions against efficient
quantum algorithms [34], the following corollary follows from Theorem

Corollary 1. Let f; be a quantumly secure PRE for each 1 < i < 4. Then,
the 4-round Luby-Rackoff construction LR4(f1, fo, f3, f4) s a quantumly secure
PRP.

In the rest of this section, we assume that all round functions in the Luby-
Rackoff constructions are truly random functions, and we focus on the number
of queries when we consider computational resources of adversaries. To have
a good intuition on our proof in the quantum setting, it would be better to
intuitively capture how LR3 is proven to be secure against classical CPAs, how the
quantum attack on LR3 works, and what problem will be hard even for quantum
adversaries. Thus, before giving a formal proof for the above theorem, in what
follows we give some observations about these questions, and then explain where
to start.

An overview of a classical security proof for LR3. Here we give an overview
of a classical proof for the security of LR3 against chosen plaintext attacks in
the classical setting. For simplicity, we consider a proof for PRF security of LRj.

Let bads be the event that an adversary makes two distinct plaintext queries
(xor,xor) # (x4, Typ) to the real oracle LR3 such that the corresponding inputs
x1r, and z); to the second round function fo are equal, i.e., inputs to fa collide.
In addition, let bads be the event that inputs to f3 collide, and define bad :=
bads V bads.

If badsy (resp., bads) does not occur, then the right-half (resp., left-half) n/2
bits of LR3’s outputs cannot be distinguished from truly random n/2-bit strings.
Thus, unless the event bad occurs, adversaries cannot distinguish LR3 from ran-
dom functions.

If the number of queries of an adversary A is at most ¢, we can show that the
probability that the event bad occurs when A runs relative to the oracle LR is
in O(g%/2™/?). Thus we can deduce that LR3 is indistinguishable from a random
function up to O(2"/4) queries.

Quantum chosen plaintext attack on LR3. Next, we give an overview of the
quantum chosen plaintext attack on LR3 by Kuwakado and Morii [20]. Note that
we consider the setting in which adversaries can make quantum superposition
queries. The attack distinguishes LRz from a random permutation with only
O(n) queries.
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Fix ag # a; € {0,1}? and for i = 0,1, define g; : {0,1}*/2 — {0,1}"/2
by gi(x) = (LRs(cw, z))r ® «;, where (LR3(a;,x))r denote the right half n/2-
bits of LR3(c, ). In addition, define G' : {0,1} x {0,1}*/2 — {0,1}*/2 by
G(b,x) = gu(z). Then, go(z) = g1(z @ s) can be easily confirmed to hold for any
x € {0,1}"/2, where s = f1(a) @ f1(a). Thus G(b,z) = G((b,2) ® (1, s)) holds
for any b and z, i.e., the function G has the period (1, s).

If we can make quantum superposed queries to G, then we can find the period
(1, s) by using Simon’s period finding algorithm [31], making O(n) queries to G.
In fact G can be implemented on an oracle-querying quantum circuit CtR? by
making O(1) queries to LRs. |§|

Roughly speaking, Simon’s algorithm outputs the periods with a high prob-
ability by making O(n) queries if applied to periodic functions, and outputs the
result that “this function is not periodic” if applied to functions without periods.

If we are given the oracle of a random permutation RP, the circuit CRP
will implement an almost random function, which does not have any period
with a high probability. Thus, if we run Simon’s algorithm on CRP, with a high
probability, it does not output any period. Therefore, we can distinguish LRj
from RP by checking if Simon’s period finding algorithm outputs a period.

Observation: Why the classical proof does not work? Here we give an
observation about why quantum adversaries can distinguish LR3 from random
permutations even though LRj3 is proven to be indistinguishable from a random
permutation in the classical setting.

We observe that quantum adversaries can make the event bads occur: Once
we find the period 1||s = 1|| f1(c) D f2 (a1 ) given the real oracle LR3, we can force
collisions on the input of fo. Concretely, take = € {0,1}"/2 arbitrarily and set
(xor,zor) = (0, %), (24, 24R) = (1,2 & s). Then the corresponding inputs
to fo become f1(ag) @ = for both plaintexts. Thus the classical proof idea does
not work in the quantum setting.

Quantum security proof for LR4: The idea. As we explained above, the
essence of the quantum attack on LRj3 is finding collisions for inputs to the
second round function fs. On the other hand, finding collisions for inputs to
the third round function f3 seems difficult even for quantum (chosen-plaintext)
query adversaries.

Having these observations, our idea is that even quantum adversaries would
have difficulty in noticing that the third state update (xar,z2r) — (xar @
fa(xar), xar) of LRs is modified as (x2y, xar) — (F(z2r,22r),x21), where F :
{0,132 x {0,1}"/2 — {0,1}"/? is a random function. We denote this modified
function by LR} (see Fig. [3) and begin by showing that it is hard to distinguish
LRg from LR3.

8 Here we have to truncate outputs of @ without destroying quantum states, which is

pointed out to be non-trivial in the quantum setting [18]. However, this “truncation”
issue can be overcome by using a technique described in [I5].
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Fig. 3. LR}

We will show this by combining the classical proof idea and our recording
standard oracle with errors. Roughly speaking, we define “bad” databases as
the ones that contain “collisions at left-half inputs to the third round function”.
Then we show that the probability that we measure bad databases is very small,
and that adversaries cannot distinguish LR} from LR3 when databases are not
bad.

Next, let FamP({0,1}"/2) be the set of functions F : {0,1}"/2 x {0,1}"/? —
{0,1}"/2 such that F(z,) is a permutation for each z. If P is chosen uniformly at
random from FamP({0,1}"/2), we say that P is a family of random permutations
(FRP). Then, we intuitively see that FRP is hard to distinguish from a random
function RF from {0,1}" to {0,1}"/2.

Once we show the above two properties, i.e.,

1. LR} is hard to distinguish from LR3, and
2. FRP is hard to distinguish from RF,

we can prove Theorem [3| with simple and easy arguments. In other words, those
two properties are technically the most difficult parts to show in our proof for
Theorem 3] To show the first property, we use our recording standard oracle with
errors. On the other hand, to show the second property, we can just combine
some previous results.

Organization of the rest of Section Sectionshows that LR} is hard to
distinguish from LR3. Section 2] shows that FRP is hard to distinguish from RF.
Section [£.3] proves Theorem [3| by combining the results in Sections [£.1] and [.2]
4.1 Hardness of Distinguishing LR;’ from LR3

Here we show the following proposition.

Proposition 2. Let q be a positive integer. Let A be an adversary that makes
at most q quantum queries. Then, Advf,i;;LRé (A) is in O (\/q3/2"/2).

First, let us discuss the behavior of the quantum oracles of LRz and LRj.
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Quantum oracle of LR3. Let O, denote the quantum oracle of each round
function f;. In addition, let us define the unitary operator Oyp ; that computes
the state update of the i-th round by
Ovp.i : |T(i—1)L, T(i-1)R) |YL, UR)
= z-nn, Te-0r) (YL, yr) ® (fi(xa-1)L) © Ta-1)r, Zai—1)L)) -

Ovyp.; can be implemented by making one query to f; (see Fig. 4)).

lyr) ( [yr @ x@-1)1)
— D (x: )
lyL) \\ [y. @ filx@-1L) © xi-1r)
fi
[XGi-1)L) — [x-1)L)
[x@-1)r) [x-1)r)

Fig. 4. Implementation of Oup.;. f; will be implemented by using the recording stan-
dard oracle with errors.

Now O(g, can be implemented as follows by using {Oup.; }1<i<3:

1. Take |z) |y) = |zoL, Tor) |YL, Yr) as an input.
2. Compute the state (z1r,x1r) by querying |zor, zor) |0™) to Oup.1, and ob-
tain
|zoL, Tor) YL, Yr) @ |11, T1R) - (18)

3. Compute the state (zor,x2r) by querying |z1z,, z1r) |0™) to Oup.2, and ob-
tain
|zor, Tor) [YL, YR) @ |10, T1R) @ |T2L, T2R) - (19)
4. Query |za2r,z2r) YL, Yr) to Oup.3, and obtain
z) ly © LR3(2)) ® |211, 71R) @ |22, T2R) - (20)
5. Uncompute Steps 2 and 3 to obtain
|z) |y ® LRs(x)) . (21)
6. Return |z) |y & LR3(x)).

The above implementation is illustrated in Fig. [}

Quantum oracle of LR;’. The quantum oracle of LR} is implemented in the
same way as LRjs, except that the third round state update oracle Oyp 3 is
replaced with another oracle Of;p 5 defined as

Oup.s : |T2L, %2r) YL, Yr) — |T2r, 22R) |(y, YR) ® (F(x2L, T2R) ® T2R, T2L)) -
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ly) ly © LR3(x))
0 |Oups |, M
10y 1 OUP.Z OUP.Z I L |0)
0 0
|x)— UP.1 UP.1 | lx)

Fig. 5. Implementation of LRs.

[yr) 469— |yr © x21)

[y) — [y ® F(xz1, x2))
[xz)—] F [x21)
[x2r) — [x2r)

Fig. 6. Implementation of Ofp 5. F will be implemented by using the recording stan-
dard oracle with errors.

Oyp 5 is implemented by making one query to Op, i.e., the quantum oracle of
F (see Fig. [6).

Below, we show the claim of the proposition by using the recording standard
oracle with errors for fi, fo, f3, and F. We consider that the oracles of these
functions are implemented as the recording standard oracle with errors, and
we use D1, Dy, D3, and Dp to denote (valid) databases for fi, fo, f3, and F,
respectively. In particular, after the i-th query of an adversary to LR3, the joint
quantum states of the adversary and functions can be described as

Y GuyepibyDs l2y2) @ |D1) | D2) | Ds) (22)
IyZD1D2D3

for some complex numbers agy.p, p,p, such that nyleDzDs |@ay D1 Dy Dy |2 =
1. Here, x, y, and z correspond to the adversary’s query, answer, and output
registers, respectively. (If the oracle is LR}, then the register |D3), which corre-
sponds to f3, is replaced with | D), which corresponds to F.)

Next, we define good and bad databases for LRz and LRj. Intuitively, we say
that a tuple (D, Da, D3) (resp., (D1, Do, D)) for LR3 (resp., LR3) is bad if and
only if it contains the information that some inputs to fs (resp., the left halves of
some inputs to F') collide. Roughly speaking, we define good and bad databases
in such a way that a one-to-one correspondence exists between good databases
for LR3 and those for LR}, so that adversaries will not be able to distinguish LR}
from LR3 as long as databases are good.

Good and bad databases for LR3. Here we introduce the notion of good
and bad for each tuple (D1, D, D3) of valid database for LR3. We say that
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(D1, Dy, D3) is good if, for each entry (xar,7) € Ds, there exists exactly one
pair ((zor, ), (x11,8)) € Dy x Dg such that 8 @® xor, = x27,. We say that
(D1, Dy, D3) is bad if it is not good.

Good and bad databases for LRj. Next we introduce the notion of good and
bad for each tuple (Dy, D2, D) of valid database for LR}. We say that a valid
database Dp is without overlap if each pair of distinct entries (zar,,x2r,7y) and
(@b, x5 p,7') in Dp satisfies xop, # xb; . We say that (D1, Do, Dp) is good if Dp
is without overlap, and for each entry (zar,x2r,7vy) € Dp, there exists exactly
one pair ((xor, ), (z11,8)) € D1 x Dy such that 8® xor, = 2oy, and xa2g = 1.
We say that (D1, Da, D) is bad if it is not good.

Compatibility of Dr with Dj3. Let Dg be a valid database for F' without
overlap and Dj3 be a valid database for f;. We say that Dp is compatible with
Dj3 if the following conditions are satisfied:

L. If (x2p, 22R, ) € D, then (z2r,2or ® ) € Ds.
2. If (xar,v) € Ds, there is a unique zog and (2, T2g, 2 ® ) € Dp.

For each valid D without overlap, the unique valid database exists for f3, which
we denote by [Dp]s.

Remark 1. For each good database (Di, Dy, D3) for LR3, a unique Dp with-
out overlap exists such that [Dg]s = D3 and (D1, D2, Dp) is a good database
for LR}, by the definition of good databases. Similarly, for each good database
(D1, Ds, DF) for LR}, (D1, D2, [Dr]3) becomes a good database for LRj.

Next we define regular and irregular quantum states for the oracles O g, and
OLr;- Roughly speaking, we will treat irregular states as some small error terms,
and focus on regular states.

Regular and irregular states of oracles. Recall that, in addition to database
registers, the quantum oracle Og, uses ancillary 2n-qubit registers to compute
the intermediate state after the first and second rounds (see and (20)). We
say that a state vector |Dy) |Ds3) |Ds3) ® |71) ® |z2) for OLRr,, where |z1) ® |x2) is
the ancillary 2n qubits, is irregular if x1 # 0™ V x5 # 0™ holds, or at least one of
the three databases (D1, Da, or D3) is invalid. We say that the state vector is reg-
ular if it is not irregular. We define regular and irregular states for O g, similarly.

Next we define some modified versions of LR3 and LR}, which we denote by
LR3-det and LRj-det, respectively (“det” is an abbreviation of “detection of bad
database”).
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The oracles LR3-det and LRg-det. The oracle LR3-det is defined in the same
way as LRz, except that the oracle checks whether the database is bad (or the
state of the oracle is irregular) after each query, and writes the result to an
additional qubit. Note that we define regular and irregular states for LR3-det in
the same way as for LR3. Additional qubits are prepared before an adversary A
runs (¢ additional qubits are sufficient if A is a ¢ query adversary). If 7 # j, the
results of “detection of bad database” for the i-th and j-th queries are written
in distinct qubits.
Intuitively, LR3-det behaves as follows when A makes the i-th query:

1. Check if the j-th additional qubit is 1 for 1 < j < i —1 (i.e., check if the
database has been bad before the i-th query). If so, do nothing. If not, go to
the next step.

2. Make a query to OyR,.

3. Check if the database is bad, or the quantum state of O\g, is irregular. If
so, flip the i-th additional qubit.

Next, we formally explain how the above procedures can be realized as a
unitary operator. Let I1,,q be the projection to the space spanned by the vectors
of bad databases, and irregular state vectors. In addition, let Hf[fi;pt]d be the
projection onto the space spanned by the vectors such that the j-th additional
qubit is 1 for some 1 < j <4 — 1.

Formally, for the i-th query, the behavior of the quantum oracle of LR3-det
is described by the unitary operator

OlRy-det = ((Hbad L1 ®@X + (I —Ipad) ;i1 ® IY)

(O, @ L @ 1)) - (T = M) @ I) + i b @k, (23)

where I;_; is the identity operator which acts on the first (i — 1) additional
qubits. In addition, I; and X are the identity operator and the operator such
that X |0) = |1) and X |1) = |0), respectively, which act on the i-th additional
qubit.

LR-det is constructed from LR} in the same way as LR3-det is constructed
from LR3-det as above. The behaviors of the oracles of LRj-det and LR3-det
depend on ¢, though for simplicity, we always use the notations O\r/_qet and
OLRg—det without 1.

Below we first show that LR3-det is hard to distinguish from LRj3-det, and
sLeR?,o)nd show that LR3-det (resp., LR5-det) is hard to distinguish from LR3 (resp.,

3)-

Hardness of distinguishing LR3-det from LRj-det. Let |¢;) and [¢]) be the
state just before the i-th query to LR3-det and LR5-det, respectively. By abuse of
notation, we let [¢)(g11)) ; [1)(, 1)) denote the quantum states (Uy®1)Otr,-det [q)
and (U, ® I)ORry-det |1y), respectively.

We need the following lemma. Intuitively, the lemma claims that no adversary
can distinguish LR3-det from LRj}-det if databases are “good”.
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Lemma 1. For each j, let \w§°°d> and |¢;g°°d> denote (I — f[lllpple]d) [v;) and

(I — ﬂfppt]d) %), respectively. Let trp,,, and trp,,, denote the partial trace

over databases and additional qubits for LR3-det and LRy-det, respectively. Then,
Dy (J65°°)) = trop, ([02°)) holds for 1 < i< q+1.

Proof intuition. Lemmal[I]can be shown by straightforward algebraic calculations
using the strict formulas of the second and third properties in Proposition[I} The
equality holds owing to the one-to-one correspondences between good databases
for LR3 and those for LR} (see Remark . More precisely, for every x,y,x’,y €
{0,1}" and for every good databases (D1, Da, D), (D}, D}, D%) for LR, the
“probability” (in the quantum meaning) that

Oyg;, changes the vector |z,y) |D1, D2, Dr) to |2',y') | Dy, Dy, D) (24)
is equal to the probability that
O\Rr, changes the vector |z,y) | D1, Ds, [Dr|s) to |2’,y') | D}, Dy, [Ds]3), (25)

where (D1, D2, [Dr]3) and (D7, D}, [D’]3) are the good databases for LR3 that
correspond to (D1, Ds, D) and (D}, D5, D), respectively. By linearity of uni-

tary operations, this equality shows that if trp,,, (|z/;§:°°d>) =1trp,p, (|,(/};good>>

(i.e., the good probabilities before the j-th queries are equal) then trp,,, (|¢§iold>) =

trp,,p (|¢jg°°d>) (i.e., the good probabilities are still equal after the j-th queries)
holds. A complete proof of Lemma [I] is given in Section B in this paper’s full
version [I4].

We also need the following lemma, which intuitively claims that “good” states
change to “bad” states only with a negligible probability.

Lemma 2. For each j, ‘Hbad - OLR, |¢§°°d>H and HHbad -Orry, |w;g°°d>H are in

O(//27T%).

Proof intuition. Here we give a proof intuition for LR3. Owing to the second
and third properties of Proposition [I] with errors, we can use classical lazy-
sampling intuition (see explanations below Proposition . Roughly speaking,
good databases change to bad if and only if a fresh query is made to f; or
f2, and the corresponding input to f3 collides with some existing record in the
database for fs.

Since each database of |’(/Jjg-00d> has at most (j — 1) entries and outputs of
f1 and fy are (n/2)-bits, the input to f3 that corresponds to a fresh input to
f1 or fa collides with one of the existing records in D3 with a probability at

2
most O(j/2"/?). This corresponds to the claim that Hﬂbad - OLR, |¢§-°°d>H <

O/ on/ 2) holds. This argument actually ignores some errors, but the errors
will be in O(y/1/27/2) due to Proposition [} The claim for LR} can be shown
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similarly. A complete proof of Lemma [2]is given in Section C in this paper’s full
version [I4].

The following proposition guarantees that LR3-det is hard to distinguish from
LR}-det.

Proposition 3. Advf}é’:_det,LRé_det (A) is in O (\/q3/2”/2>.

Proof intuition. Due to Lemma |1} A cannot distinguish LR3-det from LRj-det
as long as databases are good. Thus, intuitively, the distinguishing advantage
is upper bounded by the square root of the probability that databases become
bad while A makes g queries, which is further upper bounded by >_, ;< [[[Tbad -

!’
OLRs-det |¢f°°d> [+ 1< j<q HIbad - OLRry-det |@/Jjg°°d> ||. From Lemma this can be

upper bounded by 7, ., O(\/j/2n/2)+zlgqu 0(\/7/27/2) = O(\/¢q3/27/?).
A complete proof of Proposition [3] is given in Section D in this paper’s full
version [14].

Hardness of distinguishing LR3-det and LRg-det from LR3 and LR;.
The following proposition guarantees that LR3-det and LR3-det are hard to dis-
tinguish from LR3 and LR}, respectively.

Proposition 4. Adv‘,_i};;LRs__dct (A) and Adv‘f}f;,_Rg_dct (A) are in O (\/q3/2”/2>,

Proof intuition. We give a proof intuition for LR3-det and LR3. Since the databases
of round functions for LR3-det are the same as those for LR3, A cannot distinguish

LR3-det from LR5-det as long as databases are good. Thus, roughly speaking, the

distinguishing advantage is upper bounded by the square root of the probability

that databases become bad while A makes ¢ queries. Owing to Lemma 2] we

can show the claim in the same way as the proof intuition for Proposition |3} The

claim for LR3-det and LR} can be shown in a similar way. A complete proof of

Proposition [4] is given in Section E in this paper’s full version [I4].

Proof of Proposition Finally, we show Proposition
Proof (of Proposition@. AdinRS;LRé (A) is upper bounded by Adv{§' | g, qet (A)

+ AdV(E:aS;_det,LRg.det(A) + Advf?ﬁ_det’mg (A). Thus, the claim of Proposition
follows from Proposition [3] and Proposition [ ]

4.2 Hardness of Distinguishing FRP from RF

Recall that FamP({0,1}"/?) is the set of functions F : {0,1}"/2 x {0,1}"/2 —
{0,1}"/2 such that F(z,-) is a permutation for each z, and if P is chosen uni-
formly at random from FamP({0,1}"/2), we say that P is a family of random
permutations (FRP). The following proposition claims that FRP is hard to dis-
tinguish from RF.

Proposition 5. For any quantum adversary A that makes at most q quantum

queries, AdV‘é?E,’RF(A) <0 (\/q6/2"/2) holds.
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Proof intuition. This proposition can be proven by just combining the two
previous results: The first one is the indistinguishability of a random function
and a random permutation shown by Zhandry [35], and the second one is the
equivalence of oracle-indistinguishability and indistinguishability, which was first
shown by Zhandry [33] and later generalized by Song and Yun [32]. If a func-
tion F : {0,1}"/2 x {0,1}"*/2 — {0,1}"/? is a random function RF (resp., a
family of random permutations FRP), F(x,-) is a random function (resp., a
random permutation) for each z € {0, 1}"/2. Roughly speaking, F' can be re-
garded as an “oracle” that returns a random function (resp., random permuta-
tion) for each z. Then, from the equivalence of indistinguishability and oracle-
indistinguishability, indistinguishability of RF and FRP (which is, intuitively,
“oracle”-indistinguishability of a random function and a random permutation)
follows from the indistinguishability of a random function and a random per-
mutation from {0,1}"/2 to {0,1}"/2, which is already shown as the first result
above. See Section F in this paper’s full version [14] for a formal proof.

4.3 Proof of Theorem [3]

This subsection finishes our proof of Theorem [3] by using the results given in

Sections [.1] and [4.2

Proof (of Theorem @ First, let us modify LRy in such a way that the state up-
dates of the third and fourth rounds are replaced with (xar,, zor) — (231, Z3R) :=
(F(zar,xaRr), z2r) and (z31,x3r) — (2ar,xar) := (F'(231,23R), T3L), TeSpec-
tively, where F, F’ : {0,1}"/2 x {0,1}*/2 — {0,1}"/? are random functions. Let
us denote the modified function by LR}. In addition, by LR} (F, F’) we denote
the function defined by (zr,zr) — (F'(F(zr,zr), 21), F(zr,2R)) (see Fig.[7).

Fig.7. LRY and LRY(F, F").

Then, by applying Proposition [2| twice we can show that
dist q3
Advig, 1ry(q) <O onjz (26)

26



holds.

Let us modify LRY(F, F’) in such a way that F is replaced with a family of
random permutations P, and denote the resulting function by LR} (P, F”). Then,
from Proposition [5| it follows that Advfﬁé(F)F,)J_Rg(RF,)(q) < O(y/q8/27/2)
holds. Next, let us define a function G by G(zr,zr) = F'(xp,2zr)||P(xL,xR),
where F” is a random function and P is a family of random permutations (see
Fig. . Then, the function distribution of LRS (P, F') is the same as that of G.

Fig. 8. LRy (P, F') and G.

(Note that P(zr,zr) # P(xr, ) always holds if g # a';. Thus, if (1, zr) #
(27, 2';), the corresponding inputs to F’ will be distinct.) Therefore we have
that Advf}fxz(RF,)’G(q) = 0 holds. Moreover, from Proposition AdvglFSfG(q) <

@) (\/q6/2”/2) holds. Therefore Advﬁ}f;t,(P7F/)7RF(q) <0 (\/q6/2n/2) follows,

which implies that
is q6
AdchiR:f/,RF(Q) <0 ( 2n/2> (27)

holds.

Hence, from and (27), it follows that AdvaLRF(A) <0 (\/q6/2”/2)
holds for any quantum adversary A that makes at most ¢ quantum queries. In
addition, AdvgipszF(A) < 0(q%/2™) follows from a quantum version of the PRP-
PRF switch [35]. (See Proposition 7 in this paper’s full version [I4] for details.)
Therefore Advig' zp(A) < O (¢°/2"/2) follows for any quantum adversary A
that makes at most ¢ quantum queries, which completes the proof of the theorem.

O

Remark 2. In the above proof, we went back and forth between random functions
and (families of) random permutations, which may seem unnatural. The moti-

vation for our proof strategy was to avoid complex arguments that are specific
to the quantum setting as much as possible.

5 A Query Upper Bound

Here we give a query upper bound for the problem of distinguishing LR4 from
a random permutation by showing a distinguishing attack. Again, we consider
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the case that all round functions of LR, are truly random functions, and show
the following theorem.

Theorem 4. A quantum algorithm A exists that makes O(2"/) quantum queries
and satisfies Advﬁg?P(.A) =0(1).

Proof intuition. Intuitively, our distinguishing attack is just a quantum version
of a classical collision-finding-based distinguishing attack [28]. A classical attack
distinguishes LRy from a random permutation by finding a collision of a func-
tion that takes values in {0,1}"/2, which requires O(v27/2) = O(2"/4) queries
in the quantum setting. However, finding a collision of the function requires only
O(V/2n/2) = O(2"/6) queries in the quantum setting, which enables us to make
a 0(2"/%)-query quantum distinguisher. (Note that, we can generally find a col-
lision of random functions from {0,1}"/2 to {0,1}"/2 with O(V'2"/2) = O(2"/9)
quantum queries [35].) See Section G in this paper’s full version [14] for a com-
plete proof.

6 Concluding Remarks

This paper showed that (2(2"/ 12) quantum queries are required to distinguish
the (n-bit block) 4-round Luby-Rackoff construction from a random permuta-
tion by qCPAs. In particular, the 4-round Luby-Rackoff construction becomes a
quantumly secure PRP against qCPAs if round functions are quantumly secure
PRFs. We also gave a qCPA that distinguishes the 4-round Luby-Rackoff con-
struction from a random permutation with 0(2”/ 6) quantum queries. To give
security proofs, we gave an alternative formalization of the compressed oracle
technique by Zhandry and applied it.

An important future work is to give the tight bound for the problem of dis-
tinguishing the 4-round Luby-Rackoff construction from a random permutation.
EI It would be interesting to see if the provable security bound improves when we
increase the number of rounds. Also, analyzing the security of the Luby-Rackoff
constructions against ¢qCCAs is left as an interesting open question. It would
be a challenging problem since we have to treat inverse (decryption) queries to
quantum oracles. Oracles that allow inverse quantum queries are usually much
harder to deal with than the ones that allow only forward quantum queries, and
some other new techniques would be required for the analysis.
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