
Location, location, location:
Revisiting modeling and exploitation for

location-based side channel leakages

Christos Andrikos1, Lejla Batina2, Lukasz Chmielewski2,4, Liran Lerman5,
Vasilios Mavroudis6, Kostas Papagiannopoulos2,3, Guilherme Perin4, Giorgos

Rassias1, and Alberto Sonnino6

1 National Techical University of Athens
christos candrikos@cslab.ece.ntua.gr, grassias@cslab.ece.ntua.gr

2 Radboud University
lejla@cs.ru.nl

3 NXP Semiconductors Hamburg
kostaspap88@gmail.com

4 Riscure BV
chmielewski@riscure.com, guilhermeperin7@gmail.com

5 Thales Belgium
liran.lerman@be.thalesgroup.com

6 University College London
v.mavroudis@cs.ucl.ac.uk , alberto.sonnino@ucl.ac.uk

Abstract. Near-field microprobes have the capability to isolate small
regions of a chip surface and enable precise measurements with high
spatial resolution. Being able to distinguish the activity of small regions
has given rise to the location-based side-channel attacks, which exploit
the spatial dependencies of cryptographic algorithms in order to recover
the secret key. Given the fairly uncharted nature of such leakages, this
work revisits the location side-channel to broaden our modeling and ex-
ploitation capabilities. Our contribution is threefold. First, we provide a
simple spatial model that partially captures the effect of location-based
leakages. We use the newly established model to simulate the leakage of
different scenarios/countermeasures and follow an information-theoretic
approach to evaluate the security level achieved in every case. Second,
we perform the first successful location-based attack on the SRAM of a
modern ARM Cortex-M4 chip, using standard techniques such as differ-
ence of means and multivariate template attacks. Third, we put forward
neural networks as classifiers that exploit the location side-channel and
showcase their effectiveness on ARM Cortex-M4, especially in the con-
text of single-shot attacks and small memory regions. Template attacks
and neural network classifiers are able to reach high spacial accuracy,
distinguishing between 2 SRAM regions of 128 bytes each with 100%
success rate and distinguishing even between 256 SRAM byte-regions
with 32% success rate. Such improved exploitation capabilities revitalize
the interest for location vulnerabilities on various implementations, rang-
ing from RSA/ECC with large memory footprint, to lookup-table-based
AES with smaller memory usage.

Keywords: Side-channel analysis · location leakage · microprobe · tem-
plate attack· neural network · ARM Cortex-M

1 Introduction

Side-channel analysis (SCA) allows adversaries to recover sensitive information,
by observing and analyzing the physical characteristics and emanations of a
cryptographic implementation. Usually, physical observables such as the power
consumption and electromagnetic (EM) emission of a device [24,13] are closely
related to the data that is being accessed, stored or processed. Such data-based
leakage compromises the device’s security and may allow the adversary to infer
the implemented cipher’s secret key.

Location-based leakage is a less common form of side-channel leakage when
compared to data-based leakages, yet it arises in many practical scenarios. This
form of leakage stems from the fact that chip components such as registers,
memory regions, storage units, as well as their respective addressing mechanisms
(control logic, buses) exhibit leakage when accessed and such leakage is identi-
fiable and data-independent. Thus, the power or EM side-channel potentially
conveys information about the location of the accessed component, i.e. it can
reveal the particular register or memory address that has been accessed, regard-
less of the data stored in it. If there exists any dependence between the secret
key and the location of the activated component, then a side-channel adversary
can exploit it to his advantage and recover the key.

1.1 Previous Research & Terminology

The work of Sugawara et al. [48] demonstrates the presence of location-based
leakage in an ASIC. In particular, they show that the power consumption of
the chip’s SRAM conveys information about the memory address that is be-
ing accessed. They refer to this effect as “geometric” leakage since it relates to
the memory layout. Similarly, Andrikos et al. [2] performed preliminary anal-
yses using the EM-based location leakage exhibited at the SRAM of an ARM
Cortex-M4. The work of Heyszl et al. [18] manages to recover the secret scalar
by exploiting the spatial dependencies of the double-and-add-always algorithm
for elliptic curve cryptography. The experiments were carried out on a decap-
sulated FPGA, using near-field microprobes that identify the accessed register.
Schlösser et al. [40] use the photonic side-channel in order to recover the exact
SRAM location that is accessed during the activation of an AES Sbox lookup
table. This location information can assist in key recovery, thus even cases of
photonic emission analysis can be classified as location-based leakage. Moreover,
countermeasures such as RSM [31] rely on rotating lookup tables to mask the
data. Location-based leakage can identify which lookup table is currently under
use and potentially weaken masking.

For the sake of clarity, we distinguish between “location leakage” and “local-
ized leakage”. Location leakage arises when knowing the location of a component

(register, memory region, etc.) is assisting towards key recovery. On the contrary,
localized leakage arises when the adversary is able to focus on the leakage of a
specific (usually small) region of the chip. For example, recovering the memory
address accessed during an Sbox lookup implies location leakage. Being able to
measure the leakage right on top of a processor’s register file implies that the
adversary is capturing localized leakage. Note that capturing localized leakage
can be useful for data-based attacks as well as for location-based attacks. The
works of Unterstein et al. [51], Immler et al. [20] and Specht et al. [45,44,43] ac-
quire localized leakage via a microprobe in order to improve the signal-to-noise
ratio of their data-dependent leakage. The work of Heyszl et al. [18] uses the
same technique in order to improve the signal-to-noise ratio of their location-
dependent leakage. The current work follows experimental techniques similar to
Heyszl et al. (localized EM) to showcase a potent location-based attack on ARM
Cortex-M4 devices.

Again, for the sake of clarity we distinguish between “location leakage” and
“address leakage” [21]. In our work, address leakage implies the leakage of ad-
dressing mechanisms, e.g. the leakage of the control logic of a storage unit. Such
leakage can even be observed far from the storage unit itself, e.g. at memory
buses or at the CPU. Location leakage implies the leakage caused by such ad-
dress leakage and the leakage of the unit itself, which is often observed near
it. We refer to the latter as “spatial leakage”, i.e. location leakage encapsulates
both address-related and spatial effects. For example accessing a table in mem-
ory requires indexing and memory addressing in the CPU (address leakage). In
addition, accessing causes the memory itself to be activated (spatial leakage).
The adversary is usually able to observe both types of leakage and it is often
hard to distinguish between them.

1.2 Contribution & Organization

This work presents the following results in the field on location-based leakage by
expanding our modeling and exploitation capabilities.

1. We provide a simple model that captures the effect of spatial leakages. The
model is motivated by experimental data observed in the SRAM of an ARM
Cortex-M4.

2. Using the newly established model, we simulate the different theoretical sce-
narios that enhance or diminish spatial leakage. We investigate the security
of every scenario using the perceived information (PI) metric.

3. We perform the first practical location-based attack on the SRAM of a mod-
ern ARM Cortex-M4, using difference-of-means, multivariate template at-
tacks and neural networks.

4. We showcase attacks where it is possible to distinguish consecutive SRAM
regions of 128 bytes each, with 100% success rate and to distinguish between
256 consecutive SRAM bytes with 32% success rate. We conclude that EM
location-based leakages are potent enough to compromise the security of
AES implementations that use SRAM lookup-tables.

Notation. Capital letters denote random variables and small case letters
denote instances of random variables or constant values. Bold font denotes vec-
tors. For instance, side-channel leakage variables are denoted by L and their
instances by l; and likewise leakage vectors are denoted by L and their in-
stances by l. The notation Unif({a, b}), Bern(p), Binomial(n, p) and finally
Norm(µ, σ2) denotes random variables with uniform, Bernoulli, binomial and
normal probability distributions respectively. Parameter p denotes the probabil-
ity of Bernoulli/binomial trials and µ, σ2 denote the mean and variance of the
normal distribution. The set {a, b} denotes that the discrete uniform distribu-
tion can receive value a or b equiprobably. The notation E[·], V ar[·] and H[·]
describes the expected value, variance and entropy of a random variable. Fi-
nally, the notation Hp,q[·] shows the cross entropy of a random variable, between
probability distributions p and q.

Organization. Section 2 describes the microprobe-based experimental setup
on ARM Cortex-M4, shows a simple location analysis using difference-of-means,
and motivates experimentally the spatial part of location leakage. Section 3
puts forward the spatial leakage model, describes several theoretical scenarios,
and performs an evaluation using the perceived information metric. Section 4
demonstrates real-world template attacks on ARM Cortex-M4 for various cases
and Section 5 demonstrates the attacks using neural networks on the same de-
vice. We conclude and discuss future directions in Section 6.

2 Experimental Setup & T-Test Analysis

This section describes a high-precision EM-based setup that is able to detect
location leakage on the surface of an ARM Cortex-M4 (Sections 2.1, 2.2). Us-
ing the setup, we obtain intuition about the location leakage that is caused
by switching circuitry and is observable via EM emissions on the die surface
(Section 2.3). Throughout the text, we concentrate on the following adversarial
scenario. The device has implemented a key-dependent cipher operation that
uses a lookup-table and the adversary aims to infer which part of the table is
active, i.e. uncover the location information leading to key recovery.

2.1 Experimental Setup

The main goal of our experimental evaluation is to examine whether it is pos-
sible to detect the access to different SRAM regions in a modern ARM-based
device. Rephrasing, we examine the device’s susceptibility to location-based at-
tacks during e.g. key-dependent memory lookups, similarly to AES LUT. Our
measurement setup consists of a decapsulated Riscure Piñata device7, on a mod-
ified board, fabricated with 90 nm technology. The decapsulated chip surface
(roughly 6 mm2 ≈ 2.4 mm× 2.4 mm) is scanned using an ICR HH 100-27
Langer microprobe8 with diameter of 100 µm (approximately 0.03 mm2). The

7 https://tinyurl.com/y9tmnklr
8 https://tinyurl.com/mcd3ntp

https://tinyurl.com/y9tmnklr
https://tinyurl.com/mcd3ntp

scan is performed on a rectangular grid of dimension 300, using the Inspector
tooling9 and resulting in 300 × 300 measurement spots. The near-field probe is
moved over the chip surface with the assistance of an XYZ-table with position-
ing accuracy of 50 µm. At every position of the scan grid, a single measurement
is performed, using sampling rate of 1 Gsample/sec and resulting in 170k sam-
ples. Due to the complex and non-homogeneous nature of a modern chip, several
types of EM emissions are present on the surface, most of which are unrelated
to the SRAM location. In this particular case study, the signals of interest were
observed in amplitudes of roughly 70 mV, so we set the oscilloscope voltage
range accordingly. In addition, several device peripherals (such as USB commu-
nication) have been disabled in order to reduce interference. The decapsulated
surface where the scan is performed is visible in Figure 1 and the approximate
microprobe area is also overlaid on the figure (in red) for comparison.

Fig. 1: The chip surface of the device-under-test (ARM Cortex-M4) after re-
moval of the plastic layer. The approximate area of the ICR HH 100-27 Langer
microprobe is shown by the red circle (0.03 mm2).

To effectively cause location-dependent leakage, we perform sequential ac-
cesses to a continuous region of 16 KBytes in the SRAM by loading data from
all memory positions. The data at all accessed memory positions have been fixed
to value zero prior to the experiment in order to remove any data-based leakage.
The word size of this ARM architecture is 32 bits, i.e. we accessed 4096 words
in memory. We opted to access the SRAM using ARM assembly instead of a
high-level language in order to avoid compiler-induced optimizations that could
alter the side-channel behavior

9 https://tinyurl.com/jlgfx95

https://tinyurl.com/jlgfx95

2.2 Difference-of-Means T-Test

The initial scan measurements were analyzed using a simple difference-of-means
test. To demonstrate the presence of location-based leakage, we partitioned every
trace (170k samples) into two classes. The first class contains SRAM accesses
from the beginning of the memory until word no. 2047 and the second class
contains SRAM accesses from word 2048 until word 4096. Each class corresponds
to 8 KBytes of SRAM. For every grid position (x, y), we averaged the leakages

samples of class 1 and class 2 producing l̄class1 = 1
85k

∑85k
j=1 l

j
x,y and l̄class2 =

1
85k

∑170k
j=85k l

j
x,y respectively. Continuing, we computed the difference of means

l̄class1 − l̄class2 and we performed a Welch t-test with significance level of 0.1%
in order to determine if location-based leakage is present. The results are visible
in Figure 2a, which is focusing on a specific part of the chip surface that exhibits
high difference.

(a) Distinguishing two 8 KByte regions
of the SRAM with difference-of-means.
Yellow region indicates stronger leakage
from class 1 while blue region from class
2.

(b) Chip surface of ARM Cortex-M4 af-
ter removal of the top metal layer. The
red rectangular region corresponds to the
difference-of-means plot of Figure 2a, i.e.
it shows the location where the highest
differences were observed.

Fig. 2: Spatial properties of chip leakage.

2.3 Motivating the Location Leakage Model

In Figure 2a we can observe that the spatial part of location leakage is indeed
present in the ARM Cortex-M4 and it can even be detected through simple
visual inspection if memory regions are large enough (8 KBytes). Repeating
the same difference-of-means test for SRAM regions of 4 KBytes yields similar
results, i.e. the regions remain visually distinct. In both cases, we observe that

these location dependencies demonstrate strong spatial characteristics. That is,
in Figure 2a we see two regions at close proximity (yellow and blue) where
the yellow region shows positive difference between class 1 and 2, while the
blue region shows negative difference between class 1 and 2. To investigate this
proximity, we performed additional chemical etching on the chip surface in order
to remove the top metal layer (Figure 2b).

The different regions (yellow, blue) shown in Figure 2a are observed directly
above the chip area enclosed by the red rectangle of Figure 2b. Interestingly,
after the removal of the top metal layer, we see that the red rectangular region
contains large continuous chip components, possibly indicating that SRAM cir-
cuitry is present at this location. This hypothesis is corroborated by the following
fact: when we perform difference-of-means test for 4 KByte regions, the yellow
and blue regions shrink, indicating that the leakage area is proportional to the
memory size that is being activated.

The approximate surface area of an SRAM component can be estimated as
a = m·abit

e , where m is the number of bits in the memory region, abit is the area
of a single-bit memory cell and e is the array layout efficiency (usually around
70%) [54]. The value of abit ranges from 600λ2 to 1000λ2, where λ is equal to half
the feature size, i.e. for the current device-under-test λ = 0.5 ∗ 90 nm, thus the
area of a 32-bit word is between 55 and 92 µm2. Likewise, an 8 KByte region of
the ARM Cortex-M4 amounts to an area of approximately 0.12 until 0.19 mm2,
depending on the fabrication process. Notably, this area estimation is quite close
to the area of the yellow or the blue region of Figure 2a (approximately half of
the red rectangle). Similar spatial characteristics have been observed by Heyszl
et al. [18] in the context of FPGA registers.

Thus, experimental evidence that suggest that A) proximity exists between
leaky regions and B) the area of leaky regions is approximately proportional
to the memory size that we activate. Section 3 builds up on these observations
and develops a simple model that describes spatial leakage, yet we first need to
provide the following disclaimer.

Word of caution. The activation of a memory region can indeed be inferred
by observing spatial leakage, which according to experimental data is quite rich
in location information. Still, this does not imply that spatial leakage is the
sole source of location leakage. It is possible that location information is also
revealed through address leakage on the CPU and the memory control logic
or buses when they process SRAM addresses, or even by other effects such as
imperfect routing [52]. Thus, modeling spatial leakage captures part of the avail-
able information and can be considered as the first step towards full modeling
of location leakage.

3 A Spatial Model For Location Leakage

Unlike the well-established power and EM data leakage models [12,46], high-
resolution EM-based location leakage remains less explored. The main reason is
the semi-invasive nature of location attacks (often requiring chemical decapsu-

lation), the time-consuming chip surface scanning and the lengthy measurement
procedures involved. Still, we maintain that such attacks are increasingly rele-
vant due to the fairly average cost (approx. 15k euros), along with the widespread
protection against data leakages [39,33], which encourages attackers towards dif-
ferent exploitation strategies.

Hence, this section puts forward a theoretical model that describes the spa-
tial part of location leakage on a chip surface. The model can be viewed as an
extension of the standard data-based model to the spatial domain, encapsulat-
ing the complexity of surface-scanning experiments. The proposed simulation
of Section 3.1, in conjunction with the analysis of Section 3.2 can significantly
enhance the design and evaluation cycle of SCA-resistant devices. Our approach
allows the countermeasure designer to gauge the amount of experimental work
an adversary would need to breach the device using spatial leakage. Thus, the
designer can fine-tune protection mechanisms, provide customized security and
avoid lengthy design-evaluation cycles by capturing certain security hazards at
an early stage. The time-consuming leakage certification on the physical device
can be carried out at a later stage, once obvious defects have been fixed. Nat-
urally, all simulation-driven models (including this work) have inherent limita-
tions, i.e. they are incapable to describe all the underlying physical phenomena,
as we shall see in Section 4. Still, avoiding core issues early on, can free up
valuable time that evaluators can invest towards device-specific effects such as
coupling [10] and leakage combination [35].

3.1 Model Definition and Assumptions

Experimental Parameters. We define a side-channel experiment ε as any
valid instance of the random variable set E = {S,O,G,A,P}. The experimental
parameters are shown in Table 1. We designate the experiment’s goal to be the

Parameter Description Unit

S chip surface area u2

O probe area u2

G scan grid dimension ¡no unit¿
A component areas vector with 1D entries of u2

P component positions vector with 2D entries of u

Table 1: Parameters of simulated experiment

acquisition of spatial leakage L, i.e. obtain (L|E = ε) or (L|ε) for short. Much
like in Section 2, the experiment consists of a probe scan over the chip surface
in order to distinguish between different components (or regions) and ultimately
between different memory addresses, registers, etc. The parameter S denotes
the area of the chip surface on which we perform measurements, e.g. s can be
the whole chip die (6 mm2) or any smaller surface. Parameter O denotes the

area of the measuring probe that we use in our experiments, e.g. the area o of
the ICR HH 100-27 microprobe is roughly 0.03 mm2. Continuing, parameter
G denotes the measurement grid dimensions, i.e. it specifies the resolution of a
uniform rectangular array of antennas [53]. In Section 2 we opted for g = 300.
Continuing, the vector parameters A,P describe the nc surface components that
emit EM-based spatial leakage. The parameter A = [A1, A2, . . . , Anc

] describes
the surface area occupied by each component, e.g. in Section 2.3 we estimated
the area of an 32-bit word component to be at most 92 µm2. The parameter
P = [P1,P2, . . . ,Pnc] describes the position of every component on the chip
surface, i.e. Pi is a 2-dimensional vector. For simplicity, we assume the geometry
of the surface, probe and components to be square, yet we note that the model
can be extended to different geometrical shapes in a straightforward manner.
Moreover, we assume that the measuring probe can capture only emissions that
are directly beneath it, i.e. it functions like an identity spatial filter with area o.

Control Parameter. Every device can use program code to activate dif-
ferent components of the chip surface, e.g. by accessing different SRAM words
through load/store instructions. To describe this, we use an additional control
parameter C that denotes which components (indexed 1, . . . , nc) are accessed
during a particular experiment ε. Analytically, C = [C1, C2, . . . , Cnc

], where
Ci = 1 if component i is active during the experiment and Ci = 0 if it is
inactive; for instance the vector c = [0, 1, 0] implies that the surface has 3 com-
ponents (nc = 3) and only component no. 2 is currently active. Note also that
in our model only one out of nc components can be active at a given point in
time, since we assume that the ordinary microcontrollers do not support con-
current memory access.10. Thus the parameter c uses the one-hot encoding and
we define vi as an nc-dimensional vector where all entries are zero except for
the ith entry. For instance, if nc = 3, then v3 is equal to [0, 0, 1] and it describes
the program state where only component no. 3 is active. In general, we use the
notation (L|E = ε,C = vi) or equivalently (L|ε,vi) to describe a side-channel
experiment ε that captures the leakage when the ith component is active. For
an attack to be successful, we need to distinguish between two (or more) dif-
ferent components using this spatial leakage. Formally, we need to be able to
distinguish between (L|ε,vi) and (L|ε,vj) , for i 6= j.

Representative Example. To elucidate the model, Figure 3 presents an ex-
periment ε with parameters {s, o, g,a,p} = {25, 3, 2, [0.8, 3], [[0.6, 1.5], [1.6, 4.1]]},
where all position parameters are in arbitrary units u and all area parameters
are in square units u2. The experiment targets two components (nc = 2) and
their position is [0.6 u, 1.5 u] and [1.6 u, 4.1 u] respectively. The surface area s,
probe area o, and component areas a1 and a2 are respectively 25 u2, 3 u2, 0.8
u2 and 3 u2. The dimension g of the measurement grid is 2, resulting in a 2× 2
scan and we capture a single measurement (trace) in every grid spot. We use the
program code (control parameter) to activate components 1 and 2, generating
(L|ε, [1, 0]) and (L|ε, [0, 1]) respectively. Note that in general (L|ε,vi) results in
leakage with g2 dimensions, e.g. (L|ε, [1, 0]) is a 4-dimensional vector. We refer

10 Parallel word processing can be easily included.

to the leakage measured at any specified position [x, y] as (L[x,y]|ε,vi) or simply
L[x,y].

al.noise

al.noise

component 1

d2d′2

component 2

p1

[0,0]

[0,5]

[5,0]

surface s

y axis

x axis

•

•

•

•

•p2

×

×

×

×

Fig. 3: Sample experiment ε. The × spots show the measurement points of the
2 × 2 scan grid. Dashed black-line rectangles enclosing these spots denote the
measuring probe area o. Vectors p1,p2 show the position of two components
(nc = 2), whose areas (a1, a2) are enclosed by the solid black-line rectangles.
The blue area d2 shows the area of component 2 captured by the top-right mea-
surement point and the yellow area d′2 shows the area of component 2 captured
by the top-left measurement point.

Independent Noise. In accordance with standard data-based leakage mod-
els, we assume that for given parameters ε,vi, the leakage L[x,y] at any grid

position [x, y] consists of a deterministic part ldet[x,y], an algorithmic noise part

Nalgo and an electrical noise part Nel, thus: L[x,y] = ldet[x,y] +Nalgo +Nel

Deterministic Leakage. We assume that the deterministic part of the leak-
age ldet[x,y] at position [x, y] is caused by the activation (switching behavior) of any
component that is captured by the probe at this grid position. Based on the ex-
perimental observations of Section 2.3, we assume the deterministic leakage to be
proportional to the area of the active component located underneath the probe
surface, thus:

ldet[x,y]|v
i =


0, if comp. i is not captured at [x,y]

di, 0 < di < ai, if comp. i is partially

captured at [x,y]

ai, if comp. i is fully captured at [x,y]

For example, Figure 3 shows that component 1 is fully captured by the probe
on the bottom-left grid spot, thus (ldet[down,left]|v

1) = a1. Since no other mea-

surement position can capture component 1, it holds that (ldet|v1) = 0 for
the other three grid positions. On the contrary, component 2 is partially cap-
tured in two grid positions. Thus, it holds that (ldet[up,right]|v

2) = d2 (blue area),

(ldet[up,left]|v
2) = d′2 (yellow area) and zero elsewhere.

Electrical and Algorithmic Noise. We employ the common assumption
that the electrical noise Nel follows a normal distribution with zero mean and
variance σ2

el, i.e. Nel ∼ Norm(0, σ2
el). The variance σ2

el is related to the specific
device-under-test and measurement apparatus that we use.

The algorithmic noise in our model is caused by components that, like the
targeted components, leak underneath the probe on measurement spot of the
scan grid. However, unlike our targeted components, they exhibit uniformly
random switching activity (equiprobable ‘on’ and ‘off’ states) that is indepen-
dent of the control parameter c. If na such components, with area parameter
b = [b1, b2, . . . , bna] are located under the probe, then we assume again their
leakage to be proportional to the respective captured area. The leakage of these
independent, noise-generating components is denoted by Nalgo

i , i = 1, . . . , na.
Thus, Nalgo constitutes of the following sum.

Nalgo =

na∑
i=1

Nalgo
i ,where Nalgo

i ∼ Unif({0, bi})

The algorithmic noise is highly dependent on the device-under-test, i.e. we
could potentially encounter cases where there is little or no random switching
activity around the critical (targeted) components, or we may face tightly packed
implementations that induce such noise in large quantities. For example, in Fig-
ure 3 the top-left and bottom-right spots have no algorithmic noise, while the
top-right and bottom-left spots contain randomly switching components (red
rectangles) that induce noise. Note that the larger the probe area o, the more
likely we are to capture leakage from such components. Appendix A elaborates
on the form of algorithmic noise on tightly-packed surfaces.

3.2 Information-Theoretic Analysis

The proposed spatial leakage model of Section 3.1 is able to simulate the EM
emission over a chip surface and provide us with side-channel observables. Due
to the complexity of surface-scanning experiments, the model needs to take into
account multiple parameters in ε (component area, grid size, noise level, etc.), all
of which can directly impact our ability to distinguish between different regions.

In order to demonstrate and gauge the impact of the experimental param-
eters on the side-channel security level, this section introduces an information-
theoretic apporach to analyze the following simple location-leakage scenario.
Using the model of Section 3.1, we simulate the spatial leakage emitted by the
ARM Cortex-M4 SRAM, while accessing a lookup-table (LUT) of 256 bytes.
This LUT computation, emulates the spatial leakage of an AES LUT, while ex-
cluding any data-based leakages. The processor uses a 32-bit architecture, thus

we represent the 256-byte lookup table with 64 words (4 bytes each) stored con-
secutively in SRAM. The LUT memory region is placed randomly11 on a chip
surface with s = 0.6 mm2. Then our model generates leakage stemming from 64
chip components (nc = 64), where each one occupies surface area pertaining to
4 SRAM bytes. Using the simulated traceset, we perform template attacks [6]
after PCA-based dimensionality reduction [3], in order to distinguish between
different LUT regions (consisting of one or more words). Being able to infer
which LUT/SRAM region was accessed can substantially reduce the number of
AES key candidates. For instance, the adversary may template separately the
leakage of all 64 words (high granularity) in order to recover the exact activated
word and reduce the possible AES key candidates from 256 to 4. Alternatively,
he can partition the LUT to two regions (words 0 until 31 and words 32 until 63),
profile both regions (low granularity), in order to recover the activated 128-byte
region and reduce the AES key candidates from 256 to 128.

Formally, at a certain point in time, the microcontroller is able to access
only one out of 64 components (high granularity), thus the control variable
c ∈ V = {v1,v2, . . . ,v64} and the adversary can observe the leakage of word-
sized regions (L|C = vi), for i = 1, 2, . . . , 64. Alternatively (low granularity), he
can focus on |R| memory regions and partition the set V to sets V1,V2, . . . ,V |R|,
where usually Vr ⊂ V and Vi ∩ Vj = ∅, for i 6= j. We define random variable
R ∈ R = {1, 2, . . . , k} to denote the activated region and we represent the leakage
of region r as (L|R = r) = (L|c ∈ Vr). For example, in the high granularity
scenario, the adversary observes and profiles (L|v1), (L|v2), . . . , (L|v64), while
in the low granularity scenario he profiles two regions (R = {1, 2}) with V1 =
{v1,v2, . . . ,v32} and V2 = {v33,v34, . . . ,v64}. Thus he can obtain (L|R = 1) =
(L|c ∈ V1) and (L|R = 2) = (L|c ∈ V2).

Having completed the profiling of regions for a certain experiment ε, we
quantify the leakage, using the perceived information metric (PI) [38] as follows.

PI(L;R) = H[R]−Htrue,model[L|R] =

H[R] +
∑
r∈R

Pr[r] ·
∫

l∈Lg2

Prtrue[l|r] · log2Prmodel[r|l] dl

Prmodel[r|l] =
Prmodel[l|r]∑

r∗∈R Prmodel[l|r∗]
Prtrue[l|r] =

1

ntest
, ntest size of test set

PI can quantify the amount of information that leakage L conveys about the
activated region R, taking into account the divergence between the real and
estimated distributions. Computing PI requires the distribution Prmodel[l|r], i.e.
the template that is estimated from the training dataset. In addition, it requires
the true leakage distribution Prtrue[l|r], which is unknown and can only be
sampled directly from the test dataset. We opt for this metric since it indicates
when degraded (under-trained) leakage models are present, due to our choice

11 Unless specified otherwise, we place every word directly next to each other, starting
from a random position in the surface.

of experimental parameters. Negative PI values indicate that the trained model
is incapable of distinguishing regions, while a positive value indicates a sound
model that can lead to classification.

Using the proposed leakage simulation and the PI metric we evaluate several
scenarios for the LUT case. Sections 3.2 until 3.2 showcase how different exper-
imental parameters hinder or enhance leakage, offering several design options.
To apply the theoretical model in an evaluation context we can simply set our
current device SNR to the PI graphs.

Area and number of regions The first simulation scenario examines the
core attack question: using a certain experimental setup with parameters ε =
{s, o, g,a,p}, what is the smallest region size that I can distinguish reliably?
Rephrasing, we assess how much location information can be extracted from
the observed leakage by plotting the PI(L;R) metric against the electrical noise
variance σ2

el for certain ε and c parameters. We simulate an adversary that
distinguishes regions of a 256-byte LUT using the following three LUT partitions
of increasing granularity. First, he partitions the 256-byte LUT to 2 regions of
128 bytes each (depicted by the solid line in Figure 4). Second, he partitions
the LUT to 8 regions of 32 bytes (dashed line) and third to 16 regions of 16
bytes (dotted line). For every partition we profile the regions’ leakage (L|R =
r) = (L|c ∈ Vr) for r = 1, 2, . . . , |R|, where |R| = 2 or 8 or 16 and subsequently
tries to distinguish. Note that surface s = 6 mm2, probe size o = 0.03 mm2

(ICR HH 100-27), feature size 90 nm and g = 100, i.e. the scan resolution is
100× 100. The component area a = 92 µm2 for all SRAM words and the words
are placed adjacent to each other, starting from a random surface position; we
denote this as p = random. Along with parameters ε and c, we need to include
the measurement complexity in our simulation. Thus, we specify the amount of
traces measured at every grid spot, resulting in an acquisition of g2 · #traces.
As expected, the experiments with higher region granularity yield more location
information, as shown by the vertical gaps of the PI metric in Figure 4. Still,
we also observe that smaller regions are harder to distinguish, even for low
noise levels. Partitioning to 8 or 16 regions could optimally yield 3 or 4 bits of
information respectively, yet the dashed and dotted curves remain well below this
limit. Thus, we note that the adversary may need to improve his experiment ε
by measuring more traces, using smaller probes or increasing the grid dimension
in order to extract the maximum information.

Measurement grid dimension Any side-channel experiment involving surface
scanning can be particularly time-consuming. Moving the microprobe between
adjacent positions takes approximately 2 seconds, thus the 300 × 300 surface
scan carried out in Section 2 takes almost 2 days to conduct. Using the spatial
leakage simulation, we can specify the grid dimension g and find the minimum
scan resolution required to distinguish between certain SRAM regions. Figure 5
demonstrates the information captured when conducting scans with resolutions
100 × 100, 40 × 40 and 20 × 20, taking approximately 6 hours, 1 hour and 15

Fig. 4: Region partition of 256-byte LUT to 2, 8, 16 regions. Parameters ε =
{6 mm2, 0.03 mm2, 100, 92 µm2, random}, capturing 10 traces /spot 100k traces
in total.

minutes respectively. Across the three simulations we maintain constant data
complexity of 100k traces, distributed to grid spots accordingly (10, 62 and
250 traces per spot). Figure 5 shows information loss (vertical gap) as the grid
dimension is decreasing, i.e. when trying to distinguish 4 regions only the 6
hour-experiment with 100 × 100 grid is able reach maximum information (2
bits). Notably, we see that for larger noise levels, small grid sizes with many
traces per spot (dense measurements) are able to outperform larger grid sizes
with less traces per spot (spread measurements).

Feature size A common issue encountered in the side-channel literature is the
scaling of attacks and countermeasures as devices become more complicated and
feature size decreases [32,22,30]. This section uses our simple leakage model to
describe the effect of feature size on SCA. We simulate the location leakage of
SRAM cells fabricated with 180 nm, 120 nm and 90 nm technologies, resulting
in bit cell areas of approximately 8 µm2, 3.5 µm2 and 2 µm2. The results are
visible in Figure 6. Naturally, smaller technology sizes can potentially limit the
amount of available information, as they decrease the region’s area and force the
adversary towards more expensive tooling.

Algorithmic noise This section simulates the countermeasure of spatial algo-
rithmic noise, when implemented on the ARM device. Analytically, we examine
the case where the designer is able to place word-sized noise-generating compo-
nents on the chip surface in order to “blur” the location leakage of a targeted
region and hinder recovery. The simulation (Figure 7) uses the analysis of Ap-
pendix A to approximate the algorithmic noise when the probe captures the
leakage of 11 SRAM words, one of which is the target word (and reveals the

Fig. 5: Grid dimension g = 100, 40 and 20. Parameters ε =
{6 mm2, 0.03 mm2, g, 92 µm2, random}, distinguishing 4 regions of 64 bytes
each, 100k traces in total.

critical region information) and the ten remaining words are randomly activated
at the same time. Observing Figure 7, we see the algorithmic-noise PI curve
(dashed line) shifting to the left of the PI curve without algorithmic noise (solid
line). Thus, much like data-based algorithmic noise [47], we see that randomly
activating words functions indeed as an SCA countermeasure.

Region proximity and interleaving Last, we simulate the countermeasure of
region proximity and region interleaving on the ARM device, which was consid-
ered by He et. al [16] and Heyszl [17]. Analytically, we assume that the designer
controls the place-and-route process and can place two memory regions on the
chip surface using the following three configurations.

1. Distant placement: the distance between the two regions is roughly 1 mm.
2. Close placement: adjacent placement of the two regions.
3. Interleaved placement: the words of the two regions are interleaved together

in a checkered fashion, i.e. word 0,2,4,... of SRAM belonds to 1st region and
word no. 1,3,5,... belongs to 2nd region.

Figure 8 demonstrates the effect of different placement choices, confirming the
basic intuition that higher proximity is essentially a countermeasure against
location-based leakage. The vertical gap in PI between distant, close and inter-
leaved placement shows that as components get closer, the attainable information
decreases, forcing the adversary to increase the grid size or use a smaller probe.

4 Exploitation Using Template Attacks

Having established a theoretical model for spatial leakages, we move towards a
practical scenario. In particular, we exploit the available location leakages in the

Fig. 6: Feature size of 180, 120, 90 nm, word area a = 368, 163, 92 µm2. Param-
eters ε = {6 mm2, 0.03 mm2, 40, a, random}, for 2 regions of 128 bytes each, 250
measurements/spot, 400k traces in total.

ARM Cortex-M4 so as to infer the accessed memory position of an 256-byte,
data-independent LUT. Note that in the real chip we cannot isolate spatial
from address leakage, i.e. we observe location leakage in its entirety. We use
the template attack [6], i.e. we model the leakage using a multivariate normal
distribution and attack trying to identify the key, or in our case region r of the
SRAM.

The leakage vector (L|R = r) exhibits particularly large dimensionality and
can generate a sizeable dataset, even for modest values of the grid dimension g.
Thus, we employ dimensionality reduction techniques based on the correlation
heuristic so as to detect points of interest (POIs) in the 300 × 300 grid and use
a train-test ratio of 70-30. In addition, when performing template matching, we
combine several time samples from the test set together (multi-sample/multi-
shot attack), in order to reduce the noise and improve our detection capabili-
ties12. We also opt for the improved template formulas by Choudary et al. [9]
with pooled covariance matrix and numerical speedups. The goal of our template-
based evaluation is not only to answer whether location exploitation is possible
but also to gauge the effect of the experimental parameters ε on the exploitation
process. Thus, similarly to Sections 3.2, 3.2, 3.2, we will investigate the effect of
region partition, grid dimension and region placement in the real-world scenario.
Unfortunately Sections 3.2 and 3.2 would require control over the manufacturing
process (i.e. chips of different feature size) or control over regions with algorith-
mic noise (i.e. parallel memory activation), thus they cannot be tested in our
current context. Throughout this section we will engage in comparisons between

12 Whether this constitutes an option depends on the situation. If any sort of random-
ization such as masking or re-keying is present in the device then the adversary is
limited in the number of shots that he can combine.

Fig. 7: Deploying 10 noise-generating words. Parameters ε =
{6 mm2, 0.03 mm2, 40, 92 µm2, random}, for 2 regions of 128 bytes each,
250 measurements/spot, 400k traces in total.

the theoretical model of Section 2 and our real-world attack, i.e. we will put
the model’s assumptions to test, discover its limitations and obtain more insight
into the source of location leakage.

4.1 Area and Number of Regions

To observe the effect of partitioning, we gradually split the 256 bytes of the LUT
into classes and built the corresponding template for each class. We perform a
template attack on 2, 4, 8 and 16 partitions (with 128, 64, 32 and 16 bytes each
respectively), i.e. we gauge the distinguishing capability of the adversary, as the
number of components increases and their respective areas decrease. The results
are visible in Figure 9, which showcases how the number of grid positions (spatial
POIs) and samples/shots per attack affects the success rate (SR). The adversary
can achieve a success rate of 100% when distinguishing between 2 or 4 regions,
assuming that he uses multiple samples in his attack. The success rate drops to
75% for 8 and 50% for 16 regions, an improvement compared to random guess
SRs of 12.5% and 6.25% respectively. Although we are not able to reach success-
ful byte-level classification, we can safely conclude that location-based attacks
are definitely possible on small LUTs and they can reduce the security level of an
LUT-based implementations, unless address randomization countermeasures are
deployed. When performing single-shot attacks, the template strategy becomes
less potent, achieving SR of 57%, 33%, 17% and 11% for 2, 4, 8 and 16 regions,
i.e. only slightly better than a random guess. In order to compare the success
rate of the real attack to the theoretical model, we compute the model’s SR
for current device SNR under the same data complexity13. The model’s single-

13 The template attack uses the experimental data, while the theoretical SR uses sim-
ulated data of the same size and dimensionality.

Fig. 8: Distant, close, interleaved placement. Parameters ε =
{6 mm2, 0.03 mm2, 20, 92 µm2, random}, distinguishing 2 regions of 128
bytes each and using 250 measurements/spot, 100k traces in total.

shot SR is 99%, 50%, 13% and 12% for 2, 4, 8 and 16 regions respectively. We
observe that the model follows the same trend, yet the device leakage exhibits
divergences that indicate modeling imperfections.

4.2 Measurement Grid Dimension

Using the same approach, we evaluate the effect of grid dimension on the success
rate of the template attack. We commence with the full 300 × 300 grid (2-day
experiment) and subsequently scale down to 40 × 40 grid (1-hour) and 10 ×
10 grid (2-minutes), as shown in Figure 10. We observe that for small grid
sizes such as 10× 10 the reduced dataset makes training harder, yet the multi-
shot template attack is able to distinguish with SR equal to 100%. On the
contrary, the theoretical model is unable classify correctly because the spatial
POIs are often missed by such a coarse grid. To pinpoint this model limitation,
we assess the spread of the POIs across the die surface and we visualize the best
(according to correlation) grid positions in Figure 11. Interestingly, we discover
numerous surface positions that leak location information, while being far away
from the SRAM circuitry itself. This finding is in accordance with Unterstein et
al. [51] on FPGAs. The figure suggests that location leakage is a combination
of SRAM spatial leakage (as in the model), address leakage in the control logic
and potentially out-of-model effects.

4.3 Region Proximity and Interleaving

Finally, we evaluate the effect of region proximity and interleaving on the SR
of templates. We examine close placement (adjacent SRAM regions), distant

(a) 2 regions of 128 bytes
each

(b) 4 regions of 64 bytes
each

(c) 8 regions of 32 bytes
each

Fig. 9: The success rate of the template classifier as we partition the LUT. Y-axis
denotes the number of spatial POIs used in model, X-axis denotes the number
of samples used in attack. Scale denotes SR where white is 100% and black is
0%.

(a) 300× 300 grid (b) 40× 40 grid (c) 10× 10 grid

Fig. 10: The success rate of the 2-region template classifier as we decrease the
experiment’s grid size.

placement (SRAM regions at a large distance14) and word-interleaved placement
(checkered SRAM regions). The results are visible in Figure 12. We observe
that in all cases we reach multi-sample SR of 100%, in accordance with the
theoretical model at the device SNR. However, attacking the word-interleaved
LUT requires a bigger effort in modeling in terms of both grid POIs and samples
per attack. Likewise, distinguishing between distant regions puts considerably
less strain on the model. Thus, we conclude that distance and interleaving does
indeed function like a countermeasure against location leakage, albeit it offers
only mild protection in our ARM device.

14 Without knowledge of the chip layout we cannot be fully certain about the distance
between memory addresses. Here we assume that the low addresses of the SRAM
are sufficiently distant from mid ones, which are approx. 8 KBytes away.

Fig. 11: Spread of spatial POIs on chip surface.

(a) close (b) distant (c) word-interleaved

Fig. 12: The success rate of the 2-region template-based classifier as we change
the placement of regions.

5 Exploitation Using Neural Networks

Despite the fact that the multivariate normal leakage assumption is fairly realis-
tic in the side channel context, applying distribution-agnostic techniques appears
to be another rational approach [26]. Over the past few years, there has been a
resurgence of interest in Deep Learning (DL) techniques, powered by the rapid
hardware evolution and the need for rigorous SCA modeling [5,29,28,27,55,37].

In this section, we evaluate the performance of various DL methods, including
convolutional neural networks (CNNs, Subsection 5.1) and multi layer percep-
trons (MLPs, Subsection 5.2), in inferring the activated region of the 256-byte,
data-independent LUT on the ARM Cortex-M4. First, motivated by reusable
neural networks, we use trained CNNs with all grid positions (no POI selection),
but the results are fairly unsuccessful. We suspect that the results are affected
by noise coming from spatial points that contain no location information. This
approach can be compared to using full pictures for DL training.

To solve the above problem, we apply a dimensionality reduction based spa-
tial POI selection similarly to Section 4.1. We notice that even a simple CNN
already provides good results in a limited number of epochs and there is no gain
in using a complex CNN. Thus, we move our attention to simpler MLPs. Inter-
estingly, this approach surpasses the template attacks in effectiveness, enabling

stronger location-based attacks that use less attack samples and can distinguish
between smaller regions. The above method can be compared to using only the
most meaningful parts of pictures for DL training.

5.1 Convolutional Neural Network Analysis

Fully pretrained CNNs. Before developing and customizing our own CNN
model, we evaluate the performance of existing, state-of-the-art pre-trained net-
works. Pre-trained models are usually large networks that have been trained
for several weeks over vast image datasets. As a result, their first layers tend
to learn very good, generic discriminative features. Transfer Learning [34] is a
set of techniques that, given such a pre-trained network, repurposes its last few
layers for another similar (but not necessarily identical) task. Indeed, the ob-
jectives of our spacial identification task appear to be very close to those of
standard image classification. Moreover, as outlined in Section 2, our data is for-
mulated as 300×300 grid images, which makes them compatible with the input
format of several computer vision classification networks. For this first attempt
at CNN classification we use several state-of-the-art networks, namely Oxford
VGG16 and VGG19 [42], Microsoft ResNet50 [15], Google InceptionV3 [50] and
Google InceptionResNetV2 [49]. It should be noted that the input format of
these networks is often RGB images, while our 300×300 heatmaps resemble
single-channel, grayscale images. To address this and recreate the three color
channels that the original networks were trained for, we experiment with two
techniques; (1) we assemble triplets of randomly chosen heatmaps, and (2) we
recreate the three color channels by replicating the heatmaps of the samples
three times.

We apply the pretrained CNN classification on 2 closely placed SRAM regions
of 128 bytes each. In accordance with the standard transfer learning methodol-
ogy, during re-training we freeze the first few layers of the networks to preserve
the generic features they represent. In each re-training cycle, we perform sev-
eral thousand training-testing iterations. Despite all these and multiple hours of
training, none of the aforementioned CNNs results into a retrained network with
high classification success rate.

Custom pretrained CNNs. As a result of the low success rate of fully pre-
trained networks, we choose to proceed with Xavier [14] weight initialization and
training from scratch. We observe that, despite the transformation of the sequen-
tial problem (SRAM accesses over time) to a spatial one, our dataset is dissimi-
lar to visual classification datasets. Rephrasing, the images that we have to cope
with feature intricate characteristics having little resemblance with those of the
datasets that the pretrained CNN versions have been trained on, such as the Im-
ageNet dataset [11]. Moreover, due to the fully distribution-agnostic approach,
any randomly initialized CNN may suffer the effect of vanishing or exploding
gradients, a danger that Xavier initialization should eliminate. The framework
that was used for training and evaluating our customized CNNs is Keras [7] over

TensorFlow [1] backend and the customized CNNs tested were VGG19 [42], In-
ceptionV3 [50], ResNet50 [15], DenseNet121 [19] and Xception [8]. We also made
use of the scikit-learn Python library [36] for the preprocessing of our data. The
execution of this customized CNN training and testing was carried out in ARIS
GRNET HPC (High-Performance Computing) infrastructure15.

To gauge the effect of SRAM memory addressing on the training, all five
CNNs are trained in two ways: one-batch training and multiple-batch training.
During one-batch training we use location leakage from a single SRAM LUT,
while for multiple-batch training we use four LUTs placed within a 16 KByte
SRAM address range. The dataset is split into training, validation and test sets
using a 70-20-10 ratio and is standardized by removing the median and scaling
the data according to the quantile range. The networks are trained for 150 epochs
of 32 images each, using the Adam optimizer [23] with default parameters. The
results are visible in Figure 13.

We observe that the single-shot success rate of the Xception network (green
line) exceeds by far all others’ at 84% and the SR improves in stability when using
multiple-batch training. It is worth noting that some CNNs, especially VGG19,
remain incapable of learning anything meaningful about the discrimination of
the two 128-byte regions. Another troubling fact is the sudden drops of valida-
tion accuracy during training time for both best-performing networks, Xception
and ResNet50, a phenomenon rather indicative of overfitting. In our efforts to
squeeze the best possible performance without sacrificing training stability and
generalization capacity, we investigated the tolerance of the best performing
network against two additional preprocessing techniques, namely sample-wise
standardization and feature-wise standardization. The test set success rate of
the three alternative techniques is visible in Table 2. Comparing with Section
4, we observe that CNNs are capable of surpassing the single-shot accuracy of
template attacks, reaching 88% and making the CNN-based attack particularly
useful against randomization countermeasures that limit the number of samples
we can combine. Moreover we observe that spreading the training phase over
several SRAM addresses (multiple batch) can assist classification, showing that
the knowledge learned in a certain address range may be applicable elsewhere
in the SRAM.

Table 2: Success rate of Xception network for alternative preprocessing tech-
niques.

Alternative Pipeline Preprocessing step Success Rate

Xception-V1 dataset-wise, robust to 84.47 %
outliers standardization

Xception-V2 sample-wise standardization 88.636 %
Xception-V3 feature-wise standardization 84.848 %

15 https://hpc.grnet.gr/en/

https://hpc.grnet.gr/en/

(a) Single-batch training.

(b) Multiple-batch training.

Fig. 13: CNN validation accuracy for single/multiple-batch training.

5.2 Multi Layer Perceptron Network Analysis

We believe that the results from the previous section are affected by noise coming
from spatial points that contain no location information. To eliminate this issue,
we apply a dimensionality reduction techniques based on the correlation heuristic
to detect the best spatial POI in the 300 × 300 grid, like in Section 4.1 Initial
results using CNN show that even a simple CNN already provides good results
in a limited number of epochs . Therefore there is no gain in using a complex
CNN and we move our focus to simpler MLPs.

In [27], the authors presented how to use Multi Layer Perceptron (MLP)
network to perform SCA on AES. In this section we present how to use MLP to
recognize accesses to different addresses in the memory. Based on experiments,
we discover that 5000 POI yielded the best network training.

We define our MLP to contain a single dense layer and used the back-
propagation with NESTEROVS updater, with momentum 0.9, during training.

Epochs 30− 80 (depends on the number
of regions)

Mini-Batch 100

Learning Rate 0.003

Learning Rate Decay Rate 0.5%

Learning Rate Decay Interval 100 epochs

L1 0.001

L2 (weight decay) 0.001

Weight Initialization RELU

Activation Output Layer SOFTMAX

Loss Function NEGATIVELOGLIKELIHOOD

Updater NESTEROVS

1 Dense Layer:
- Number of Neurons: 20
- Activation Dense Layer: TANH

Table 3: Hyper-Parameters for training and validation.

The weights are initialized at random and applied to a RELU activation. The
MLP is also configured with L1 and L2 regularization in order to improve the
generalization. The analysis presented in this section is performed using Deep
Learning for Java16 in conjunction with Riscure Inspector deep learning func-
tionality. To observe the effectiveness of MLPs, we gradually partition the 256
bytes of the LUT into classes and built the corresponding MLP for each class.
We perform an MLP analysis on 2, 4, 8, 16, 32, 64, 128, and 256 partitions (with
128, 64, 32, 16, 8, 4, 2, and 1 bytes each, respectively). The dataset is split into
training, validation and test sets using a 40-30-30 ratio. Then we select best
hyper-parameters for training and validation17 of our MLP network using a trial
and error method. The chosen parameters are listed in Table 3.

The validation accuracy for 2, 4, 8, 16, 32, 64, 128, and 256 partitions is
visible in Figure 14a. We have discovered that we achieve the best results for
various numbers of epochs depending on the number of partitions. We have used
30 epochs for the 2 and 4 partitions, 40 epochs for the 16 and 32 partitions, 40
epochs for the 8 partitions, 70 for the 128 partitions, and 80 for the 64 and 256
partitions. Figure 14a indicates that the MLP network reaches high accuracy
even for a large number of regions. To visualize the validation set success rate
we present the validation final partitioning (for 16 partitions) in Appendix B.
The greatest values are located on the diagonal and this indicates that the MLP
learns correctly with high probability. The attack success rates for the test traces
for 2, 4, 8, 16, 32, 64, 128, and 256 partitions are presented in Figure 14b;
the exact accuracy values are 96%, 91%, 90%, 88%, 83%, 75%, 57%, and 32%,
respectively. As expected, these values are slightly lower for the attacking phase

16 https://deeplearning4j.org/
17 The MLP parameters are chosen to maximize the attack success rate (which is

equivalent to accuracy).

https://deeplearning4j.org/

(a) Blue line denotes validation accuracy
and red line denotes random guess success
rate.

(b) Green line denotes attack success rate
and red line denotes random guess success
rate.

Fig. 14: Validation accuracy for training and success rate for testing in MLP.

than the validation ones in the learning phase. We observe that even the SR for
the 256 partitions, namely the 32% SR is significantly higher then a SR of a
random guess: 1/256 = 4%.

Observing these results, we conclude that the MLP network can be substan-
tially stronger than the template attacks when exploiting location leakage. It can
achieve high SR using single-shot attacks, reaching 98% for 2 regions and 32%
even when targeting single bytes in the SRAM. Notably, the MLP classification
can strongly enhance the SR of a microprobe setup making it almost on par with
the substantially more expensive photonic emission setup.

6 Conclusions & Future Directions

In this work, we have revisited the potent, yet often overlooked location-based
leakage. We take the first steps towards theoretical modeling of such effects and
we put forward a simple spatial model to capture them. Continuing, we demon-
strate successful location-based attacks on a modern ARM Cortex-M4 using
both standard template attacks, CNNs and MLPs. Throughout these attacks we
assess the impact of various experimental parameters in order to elucidate the
nature and exploitability of location-based leakage.

Regarding future work, we note that during the last years of side-channel
research, the community has established a multitude of potent tools (ranging
from Bayesian techniques to neural networks), all of which are particularly good
at extracting the available leakage. Still, we remain far less capable of finding
the exact cause behind it, especially in complex modern chips [4,35]. Thus, a
natural extension to this work is to delve deeper into the electrical layer of a
system-on-chip, try to identify the “culprits” behind location leakage and ulti-
mately diminish the emitted information. In the same spirit, we should strive

towards improved circuit modeling, similarly to the works of Šijačić et al. [41]
and Kumar et al. [25], adapt them to the spatial model and use it in order to
shorten the development-testing cycle of products. Finally, going back to algo-
rithmic countermeasures, we can start designing masking schemes that account
for data and location leakage in order to provide a fully-fledged security that
encapsulates multiple side-channel vulnerabilities.

Acknowledgments

We would like to thank Riscure BV, Rafael Boix Carpi, Ilya Kizhvatov and Tin
Soerdien for supporting the process of chip decapsulation and scan.

References

1. Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

2. Christos Andrikos, Giorgos Rassias, Liran Lerman, Kostas Papagiannopoulos, and
Lejla Batina. Location-based leakages: New directions in modeling and exploiting.
In 2017 International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), pages 246–252, July 2017.

3. Cédric Archambeau, Eric Peeters, François-Xavier Standaert, and Jean-Jacques
Quisquater. Template attacks in principal subspaces. In Cryptographic Hardware
and Embedded Systems - CHES 2006, 8th International Workshop, Yokohama,
Japan, October 10-13, 2006, Proceedings, pages 1–14, 2006.

4. Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-
Xavier Standaert. On the cost of lazy engineering for masked software implemen-
tations. In Smart Card Research and Advanced Applications - 13th International
Conference, CARDIS 2014, Paris, France, November 5-7, 2014. Revised Selected
Papers, pages 64–81, 2014.

5. Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural net-
works with data augmentation against jitter-based countermeasures. In Interna-
tional Conference on Cryptographic Hardware and Embedded Systems, pages 45–68.
Springer, 2017.

6. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Crypto-
graphic Hardware and Embedded Systems - CHES 2002, 4th International Work-
shop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, pages 13–28,
2002.

7. François Chollet et al. Keras. https://keras.io, 2015.
8. François Chollet. Xception: Deep learning with depthwise separable convolutions.

CoRR, abs/1610.02357, 2016.

https://keras.io

9. Omar Choudary and Markus G. Kuhn. Efficient template attacks. In Smart Card
Research and Advanced Applications - 12th International Conference, CARDIS
2013, Berlin, Germany, November 27-29, 2013. Revised Selected Papers, pages
253–270, 2013.

10. Thomas De Cnudde, Begül Bilgin, Benedikt Gierlichs, Ventzislav Nikov, Svetla
Nikova, and Vincent Rijmen. Does coupling affect the security of masked imple-
mentations? In Constructive Side-Channel Analysis and Secure Design - 8th In-
ternational Workshop, COSADE 2017, Paris, France, April 13-14, 2017, Revised
Selected Papers, pages 1–18, 2017.

11. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-
Scale Hierarchical Image Database. In CVPR09, 2009.

12. Julien Doget, Emmanuel Prouff, Matthieu Rivain, and François-Xavier Standaert.
Univariate side channel attacks and leakage modeling. J. Cryptographic Engineer-
ing, 1(2):123–144, 2011.

13. Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analy-
sis: Concrete results. In Çetin K. Koç, David Naccache, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems — CHES 2001, pages 251–261,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

14. Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In JMLR W&CP: Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics (AISTATS 2010),
volume 9, pages 249–256, May 2010.

15. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

16. Wei He, Eduardo de la Torre, and Teresa Riesgo. An interleaved epe-immune pa-dpl
structure for resisting concentrated em side channel attacks on fpga implementa-
tion. In Werner Schindler and Sorin A. Huss, editors, Constructive Side-Channel
Analysis and Secure Design, pages 39–53, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

17. Johann Heyszl. Impact of Localized Electromagnetic Field Measurements on Im-
plementations of Asymmetric Cryptography. https://mediatum.ub.tum.de/doc/

1129375/1129375.pdf.
18. Johann Heyszl, Stefan Mangard, Benedikt Heinz, Frederic Stumpf, and Georg Sigl.

Localized electromagnetic analysis of cryptographic implementations. In Topics in
Cryptology - CT-RSA 2012 - The Cryptographers’ Track at the RSA Conference
2012, San Francisco, CA, USA, February 27 - March 2, 2012. Proceedings, pages
231–244, 2012.

19. Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolu-
tional networks. CoRR, abs/1608.06993, 2016.

20. Vincent Immler, Robert Specht, and Florian Unterstein. Your rails cannot hide
from localized EM: how dual-rail logic fails on fpgas. In Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Tai-
wan, September 25-28, 2017, Proceedings, pages 403–424, 2017.

21. Kouichi Itoh, Tetsuya Izu, and Masahiko Takenaka. Address-bit differential power
analysis of cryptographic schemes ok-ecdh and ok-ecdsa. In Revised Papers from the
4th International Workshop on Cryptographic Hardware and Embedded Systems,
CHES ’02, pages 129–143, London, UK, UK, 2003. Springer-Verlag.

22. Dina Kamel, François-Xavier Standaert, and Denis Flandre. Scaling trends of the
AES s-box low power consumption in 130 and 65 nm CMOS technology nodes.

https://mediatum.ub.tum.de/doc/1129375/1129375.pdf
https://mediatum.ub.tum.de/doc/1129375/1129375.pdf

In International Symposium on Circuits and Systems (ISCAS 2009), 24-17 May
2009, Taipei, Taiwan, pages 1385–1388, 2009.

23. Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

24. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
pages 388–397, 1999.

25. A. Kumar, C. Scarborough, A. Yilmaz, and M. Orshansky. Efficient simulation of
em side-channel attack resilience. In 2017 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 123–130, Nov 2017.

26. Liran Lerman, Romain Poussier, Olivier Markowitch, and François-Xavier Stan-
daert. Template attacks versus machine learning revisited and the curse of di-
mensionality in side-channel analysis: extended version. Journal of Cryptographic
Engineering, 8(4):301–313, Nov 2018.

27. Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking cryp-
tographic implementations using deep learning techniques. In International Con-
ference on Security, Privacy, and Applied Cryptography Engineering, pages 3–26.
Springer, 2016.

28. Zdenek Martinasek, Jan Hajny, and Lukas Malina. Optimization of power analysis
using neural network. In International Conference on Smart Card Research and
Advanced Applications, pages 94–107. Springer, 2013.

29. Zdenek Martinasek and Vaclav Zeman. Innovative method of the power analysis.
Radioengineering, 22(2):586–594, 2013.

30. Philippe Maurine. Securing SoCs in advanced technologies, https: // cosade.

telecom-paristech. fr/ presentations/ invited2. pdf .

31. M. Nassar, Y. Souissi, S. Guilley, and J. L. Danger. Rsm: A small and fast coun-
termeasure for aes, secure against 1st and 2nd-order zero-offset scas. In 2012 De-
sign, Automation Test in Europe Conference Exhibition (DATE), pages 1173–1178,
March 2012.

32. Kashif Nawaz, Dinal Kamel, François-Xavier Standaert, and Denis Flandre. Scal-
ing trends for dual-rail logic styles against side-channel attacks: A case-study. In
Constructive Side-Channel Analysis and Secure Design - 8th International Work-
shop, COSADE 2017, Paris, France, April 13-14, 2017, Revised Selected Papers,
pages 19–33, 2017.

33. Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implemen-
tations against side-channel attacks and glitches. In Information and Communi-
cations Security, 8th International Conference, ICICS 2006, Raleigh, NC, USA,
December 4-7, 2006, Proceedings, pages 529–545, 2006.

34. Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer learning. IEEE Trans-
actions on knowledge and data engineering, 22(10):1345–1359, 2010.

35. Kostas Papagiannopoulos and Nikita Veshchikov. Mind the gap: Towards secure
1st-order masking in software. In Constructive Side-Channel Analysis and Secure
Design - 8th International Workshop, COSADE 2017, Paris, France, April 13-14,
2017, Revised Selected Papers, pages 282–297, 2017.

36. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

https://cosade.telecom-paristech.fr/presentations/invited2.pdf
https://cosade.telecom-paristech.fr/presentations/invited2.pdf

37. Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, and Cécile Du-
mas. Study of deep learning techniques for side-channel analysis and introduction
to ASCAD database. IACR Cryptology ePrint Archive, 2018:53, 2018.

38. Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon, Dina
Kamel, and Denis Flandre. A formal study of power variability issues and side-
channel attacks for nanoscale devices. In Kenneth G. Paterson, editor, Advances
in Cryptology – EUROCRYPT 2011, pages 109–128, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

39. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of aes. In Stefan Mangard and François-Xavier Standaert, editors, Cryptographic
Hardware and Embedded Systems, CHES 2010, pages 413–427, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

40. Alexander Schlösser, Dmitry Nedospasov, Juliane Krämer, Susanna Orlic, and
Jean-Pierre Seifert. Simple Photonic Emission Analysis of AES, pages 41–57.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

41. Danilo Sijacic, Josep Balasch, Bohan Yang, Santosh Ghosh, and Ingrid Ver-
bauwhede. Towards efficient and automated side channel evaluations at design
time. In Lejla Batina, Ulrich K\”uhne, and Nele Mentens, editors, PROOFS 2018.
7th International Workshop on Security Proofs for Embedded Systems, volume 7
of Kalpa Publications in Computing, pages 16–31. EasyChair, 2018.

42. Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

43. R. Specht, V. Immler, F. Unterstein, J. Heyszl, and G. Sig. Dividing the threshold:
Multi-probe localized em analysis on threshold implementations. In 2018 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), pages
33–40, April 2018.

44. Robert Specht, Johann Heyszl, Martin Kleinsteuber, and Georg Sigl. Improv-
ing non-profiled attacks on exponentiations based on clustering and extracting
leakage from multi-channel high-resolution EM measurements. In Constructive
Side-Channel Analysis and Secure Design - 6th International Workshop, COSADE
2015, Berlin, Germany, April 13-14, 2015. Revised Selected Papers, pages 3–19,
2015.

45. Robert Specht, Johann Heyszl, and Georg Sigl. Investigating measurement meth-
ods for high-resolution electromagnetic field side-channel analysis. In 2014 In-
ternational Symposium on Integrated Circuits (ISIC), Singapore, December 10-12,
2014, pages 21–24, 2014.

46. François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for
the analysis of side-channel key recovery attacks. In Advances in Cryptology -
EUROCRYPT 2009, 28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings, pages 443–461, 2009.

47. François-Xavier Standaert, Eric Peeters, Cédric Archambeau, and Jean-Jacques
Quisquater. Towards security limits in side-channel attacks. In Cryptographic
Hardware and Embedded Systems - CHES 2006, 8th International Workshop, Yoko-
hama, Japan, October 10-13, 2006, Proceedings, pages 30–45, 2006.

48. Takeshi Sugawara, Daisuke Suzuki, Minoru Saeki, Mitsuru Shiozaki, and Takeshi
Fujino. On measurable side-channel leaks inside ASIC design primitives. J. Cryp-
tographic Engineering, 4(1):59–73, 2014.

49. Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learning.
In AAAI, volume 4, page 12, 2017.

50. Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 2818–
2826, 2016.

51. Florian Unterstein, Johann Heyszl, Fabrizio De Santis, and Robert Specht. Dis-
secting leakage resilient prfs with multivariate localized EM attacks - A practical
security evaluation on FPGA. COSADE, 2017:272, 2017.

52. Florian Unterstein, Johann Heyszl, Fabrizio De Santis, Robert Specht, and Georg
Sigl. High-resolution em attacks against leakage-resilient prfs explained - and an
improved construction. Cryptology ePrint Archive, Report 2018/055, 2018. https:
//eprint.iacr.org/2018/055.

53. Harry L. Van Trees. Detection, Estimation, and Modulation Theory: Part IV:
Optimum Array Processing. John Wiley and Sons, Inc., 2002.

54. Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems Per-
spective. Addison-Wesley Publishing Company, USA, 4th edition, 2010.

55. Shuguo Yang, Yongbin Zhou, Jiye Liu, and Danyang Chen. Back propagation neu-
ral network based leakage characterization for practical security analysis of cryp-
tographic implementations. In International Conference on Information Security
and Cryptology, pages 169–185. Springer, 2011.

7 Appendix A

Algorithmic Noise in Tightly-Packed Surfaces. Since countermeasure de-
signers opt often for algorithmic noise countermeasures, we investigate the sta-
tistical variance of Nalgo for a tightly packed circuit that contains a large number
of randomly switching components which try to hide the targeted component.
We assume every noise-generating component to have area bi ≈ d, where d is
the area of the targeted component Since we assume large na, both the noise-
generating components as well as the targeted component are small w.r.t. the
probe size, i.e. d � o. In a tightly packed circuit, the probe area o contains
roughly o

d randomly switching components, i.e. na ≈ o
d . In this particular sce-

nario, the following formula approximates Nalgo.

Nalgo =

na∑
i=1

Nalgo
i = d ·

na∑
i=1

Bi = d ·A,

Bi ∼ Bern(0.5) , A ∼ Binomial(na, 0.5)

Thus, Nalgo Central Limit−−−−−−−−→
Theorem

Norm(
d · na

2
,
d · na

4
)

Using the approximation of the Central Limit Theorem, we see that V ar[Nalgo] =
d·na

4 = o
4 . Thus, for the tightly-packed, small-component scenario we have estab-

lished a direct link between the probe area o and the level of algorithmic noise,
demonstrating how increasing the probe area induces extra noise.

https://eprint.iacr.org/2018/055
https://eprint.iacr.org/2018/055

8 Appendix B

Predicted versus actual values, visualizing the validation set success rate.

Predicted: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Actual:
0 35 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 30 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 40 1 1 0 0 0 0 0 0 0 0 0 0
4 2 0 0 1 31 0 0 1 0 0 0 0 1 0 0 0
5 0 1 0 1 0 28 1 0 0 0 0 0 0 0 0 0
6 0 1 0 0 0 0 37 0 0 0 0 0 0 1 0 0
7 0 0 0 1 2 1 0 26 0 0 0 0 0 0 1 0
8 0 0 0 1 0 0 0 0 26 0 0 0 0 0 0 0
9 0 0 1 0 0 1 1 0 1 30 0 0 0 0 0 0
10 0 0 0 0 0 2 0 0 1 1 37 0 1 0 0 2
11 0 1 0 1 1 0 0 1 0 1 0 34 0 1 0 0
12 0 1 0 0 0 0 0 2 1 0 0 0 34 0 0 0
13 0 0 0 0 0 0 1 1 0 0 3 0 0 32 2 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0
15 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 31

	Location, location, location: Revisiting modeling and exploitation for location-based side channel leakages

