
iUC: Flexible Universal Composability
Made Simple?

Jan Camenisch1, Stephan Krenn2,
Ralf Küsters3, and Daniel Rausch3

1 Dfinity, Zurich, Switzerland
jan@dfinity.org

2 AIT Austrian Institute of Technology GmbH, Vienna, Austria
stephan.krenn@ait.ac.at

3 University of Stuttgart, Stuttgart, Germany
{ralf.kuesters,daniel.rausch}@sec.uni-stuttgart.de

Abstract. Proving the security of complex protocols is a crucial and
very challenging task. A widely used approach for reasoning about such
protocols in a modular way is universal composability. A perfect model
for universal composability should provide a sound basis for formal proofs
and be very flexible in order to allow for modeling a multitude of different
protocols. It should also be easy to use, including useful design conventions
for repetitive modeling aspects, such as corruption, parties, sessions, and
subroutine relationships, such that protocol designers can focus on the
core logic of their protocols.
While many models for universal composability exist, including the UC,
GNUC, and IITM models, none of them has achieved this ideal goal yet.
As a result, protocols cannot be modeled faithfully and/or using these
models is a burden rather than a help, often even leading to underspecified
protocols and formally incorrect proofs.
Given this dire state of affairs, the goal of this work is to provide a frame-
work for universal composability which combines soundness, flexibility,
and usability in an unmatched way. Developing such a security framework
is a very difficult and delicate task, as the long history of frameworks for
universal composability shows.
We build our framework, called iUC, on top of the IITM model, which
already provides soundness and flexibility while lacking sufficient usability.
At the core of iUC is a single simple template for specifying essentially
arbitrary protocols in a convenient, formally precise, and flexible way. We
illustrate the main features of our framework with example functionalities
and realizations.

Keywords: Universal Composability, Foundations
? This work was in part funded by the European Commission through grant agree-

ments n◦s 321310 (PERCY) and 644962 (PRISMACLOUD), and by the Deutsche
Forschungsgemeinschaft (DFG) through Grant KU 1434/9-1. We would like to thank
Robert Enderlein for helpful discussions.

1 Introduction

Universal composability [4, 25] is an important concept for reasoning about the
security of protocols in a modular way. It has found wide spread use, not only
for the modular design and analysis of cryptographic protocols, but also in other
areas, for example for modeling and analyzing OpenStack [16], network time
protocols [11], OAuth v2.0 [14], the integrity of file systems [8], as well as privacy
in email ecosystems [13].

The idea of universal composability is that one first defines an ideal protocol
(or ideal functionality) F that specifies the intended behavior of a target proto-
col/system, abstracting away implementation details. For a concrete realization
(real protocol) P, one then proves that “P behaves just like F” in arbitrary
contexts. Therefore, it is ensured that the real protocol enjoys the security and
functional properties specified by F .

Several models for universal composability have been proposed in the litera-
ture [4, 5, 7, 9, 10,15,18,23–25]. Ideally, a framework for universal composability
should support a protocol designer in easily creating full, precise, and detailed
specifications of various applications and in various adversary models, instead
of being an additional obstacle. In particular, such frameworks should satisfy at
least the following requirements:

Soundness: This includes the soundness of the framework itself and the general
theorems, such as composition theorems, proven in it.

Flexibility: The framework must be flexible enough to allow for the precise design
and analysis of a wide range of protocols and applications as well as security
models, e.g., in terms of corruption, setup assumptions, etc.

Usability: It should be easy to precisely and fully formalize protocols; this is also
an important prerequisite for carrying out formally/mathematically correct
proofs. There should exist (easy to use) modeling conventions that allow a
protocol designer to focus on the core logic of protocols instead of having
to deal with technical details of the framework or repeatedly taking care of
recurrent issues, such as modeling standard corruption behavior.

Unfortunately, despite the wide spread use of the universal composability ap-
proach, existing models and frameworks are still unsatisfying in these respects as
none combines all of these requirements simultaneously (we discuss this in more
detail below). Thus, the goal of this paper is to provide a universal composability
framework that is sound, flexible, and easy to use, and hence constitutes a solid
framework for designing and analyzing essentially any protocol and application
in a modular, universally composable, and sound way. Developing such a security
framework is a difficult and very delicate task that takes multiple years if not
decades as the history on models for universal composability shows. Indeed, this
paper is the result of many years of iterations, refinements, and discussions.

Contributions: To achieve the above described goal, we here propose a new
universal composability framework called iUC (“IITM based Universal Compos-
ability”). This framework builds on top of the IITM model with its extension to

2

so-called responsive environments [1]. The IITM model was originally proposed
in [18], with a full and revised version – containing a simpler and more general
runtime notion – presented in [22].

The IITM model already meets our goals of soundness and flexibility. That is,
the IITM model offers a very general and at the same time simple runtime notion
so that protocol designers do not have to care much about runtime issues, making
sound proofs easier to carry out. Also, protocols are defined in a very general
way, i.e., they are essentially just arbitrary sets of Interactive Turing Machines
(ITMs), which may be connected in some way. In addition, the model offers a
general addressing mechanism for machine instances. This gives great flexibility as
arbitrary protocols can be specified; all theorems, such as composition theorems,
are proven for this very general class of protocols. Unfortunately, this generality
hampers usability. The model does not provide design conventions, for example, to
deal with party IDs, sessions, subroutine relationships, shared state, or (different
forms of) corruption; all of this is left to the protocol designer to manually specify
for every design and analysis task, distracting from modeling the actual core
logic of a protocol.

In essence, iUC is an instantiation of the IITM model that provides a conve-
nient and powerful framework for specifying protocols. In particular, iUC greatly
improves upon usability of the IITM model by adding missing conventions for
many of the above mentioned repetitive aspects of modeling a protocol, while
also abstracting from some of the (few) technical aspects of the underlying model;
see below for the comparison of iUC with other frameworks.

At the core of iUC is one convenient template that supports protocol designers
in specifying arbitrary types of protocols in a precise, intuitive, and compact
way. This is made possible by new concepts, including the concept of entities as
well as public and private roles. The template comes with a clear and intuitive
syntax which further facilitates specifications and allows others to quickly pick up
protocol specifications and use them as subroutines in their higher-level protocols.

A key difficulty in designing iUC was to preserve the flexibility of the original
IITM model in expressing (and composing) arbitrary protocols while still improv-
ing usability by fixing modeling conventions for certain repetitive aspects. We
solve this tension between flexibility and usability by, on the one hand, allowing
for a high degree of customization and, on the other hand, by providing sensible
defaults for repetitive and standard specifications. Indeed, as further explained
and discussed in §3 and also illustrated by our case study (cf. §4), iUC preserves
flexibility and supports a wide range of protocol types, protocol features, and
composition operations, such as: ideal and global functionalities with arbitrary
protocol structures, i.e., rather than being just monolithic machines, they may,
for example, contain subroutines; protocols with joint-state and/or global state;
shared state between multiple protocol sessions (without resorting to joint-state
realizations); subroutines that are partially globally available while other parts
are only locally available; realizing global functionalities with other protocols
(including joint-state realizations that combine multiple global functionalities);
different types of addressing mechanisms via globally unique and/or locally chosen

3

session IDs; global functionalities that can be changed to be local when used
as a subroutine; many different highly customizable corruption types (including
incorruptability, static corruption, dynamic corruption, corruption only under
certain conditions, automatic corruption upon subroutine corruptions); a cor-
ruption model that is fully compatible with joint-state realizations; arbitrary
protocol structures that are not necessarily hierarchical trees and which allow
for, e.g., multiple highest-level protocols that are accessible to the environment.

Importantly, all of the above is supported by just a single template and two
composition theorems (one for parallel composition of multiple protocols and
one for unbounded self composition of the same protocol). This makes iUC quite
user friendly as protocol designers can leverage the full flexibility with just the
basic framework; there are no extensions or special cases required to support a
wide range of protocol types.

We emphasize that we do not claim specifications done in iUC to be shorter
than the informal descriptions commonly found in the universal composability
literature. A full, non-ambiguous specification cannot compete with such informal
descriptions in terms of brevity, as these descriptions are often underspecified
and ignore details, including model specific details and the precise corruption
behavior. iUC is rather meant as a powerful and sound tool for protocol designers
that desire to specify protocols fully, without sweeping or having to sweep anything
under the rug, and at the same time without being overburdened with modeling
details and technical artifacts. Such specifications are crucial for being able to
understand, reuse, and compose results and to carry out sound proofs.

Related work: The currently most relevant universal composability models are
the UC model [4] (see [3] for the latest version), the GNUC model [15], the IITM
model [18] (see [22] for the full and revised version), and the CC model [23]. The
former three models are closely related in that they are based on polynomial
runtime machines that can be instantiated during a run. In contrast, the CC
model follows a more abstract approach that does not fix a machine model or
runtime notion, and is thus not directly comparable to the other models (including
iUC). Indeed, it is still an open research question if and how typical UC-style
specifications, proofs, and arguments can be modeled in the CC model. In what
follows, we therefore relate iUC with the UC and GNUC models; as already
explained and further detailed in the rest of the paper, iUC is an instantiation of
the IITM model.

While both the UC and GNUC models also enjoy the benefits of established
protocol modeling conventions, those are, however, less flexible and less expressive
than iUC. Let us give several concrete examples: conventions in UC and GNUC
are built around the assumption of having globally unique SIDs that are shared
between all participants of a protocol session, and thus locally managed SIDs
cannot directly be expressed (cf. §3, §4, and §4.3 for details including a discussion
of local SIDs). Both models also assume protocols to have disjoint sessions and
thus their conventions do not support expressing protocols that directly share state
between sessions, such as signature keys (while both models support joint-state
realizations to somewhat remedy this drawback, those realizations have to modify

4

the protocols at hand, which is not always desirable; cf. §4.3). Furthermore, in
both models there is only a single highest-level protocol machine with potentially
multiple instances, whereas iUC supports arbitrarily many highest-level protocol
machines. This is very useful as it, for example, allows for seamlessly modeling
global state without needing any extensions or modifications to our framework
or protocol template (as illustrated in §4). In the case of GNUC, there are also
several additional restrictions imposed on protocols, such as a hierarchical tree
structure where all subroutines have a single uniquely defined caller (unless they
are globally available also to the environment) and a fixed top-down corruption
mechanism; none of which is required in iUC.

There are also some major differences between UC/GNUC and iUC on a
technical level which further affect overall usability as well as expressiveness.
Firstly, both UC and GNUC had to introduce various extensions of the basic
computational model to support new types of protocols and composition, including
new syntax and new composition theorems for joint-state, global state, and
realizations of global functionalities [5, 7, 12, 15]. This not only forces protocol
designers to learn new protocol syntax and conventions for different types of
composition, but also indicates a lack of flexibility in supporting new types of
composition (say, for example, a joint-state realization that combines several
separate global functionalities, cf. §4.3). In contrast, both composition theorems
in iUC as well as our single template for protocols seamlessly support all of
those types of protocols and composition, including some not considered in the
literature so far (cf. §4.3). Secondly, there are several technical aspects in the UC
model a protocol designer has to take care of in order to perform sound proofs: a
runtime notion that allows for exhaustion of machines, even ideal functionalities,
and that forces protocols to manually send runtime tokens between individual
machine instances; a directory machine where protocols have to register all
instances when they are created; “subroutine respecting” protocols that keep
sessions disjoint. Technical requirements of the GNUC model mainly consist of
several restrictions imposed on protocol structures (as mentioned above) which
in particular keep protocol sessions disjoint. Unlike UC, the runtime notion of
GNUC supports modeling protocols that cannot be exhausted, however, GNUC
introduces additional flow-bounds to limit the number of bits sent between
certain machines. In contrast, as also illustrated by our case study, iUC does not
require directory machines, iUC’s notion for protocols with disjoint sessions is
completely optional and can be avoided entirely, and iUC’s runtime notion allows
for modeling protocols without exhaustion, without manual runtime transfers,
and without requiring flow bounds (exhaustion and runtime transfers can of
course be modeled as special cases, if desired).

The difference in flexibility and expressiveness of iUC compared to UC and
GNUC is further explained in §3 and illustrated by our case study in §4, where
we model a real world key exchange protocol exactly as it would be deployed
in practice. This case study is not directly supported by the UC and GNUC
models (as further discussed in §4.3). A second illustrative example is given in
the full version of this paper [2], where we show that iUC can capture the SUC

5

model [10] as a mere special case. The SUC model was proposed as a simpler
version of the UC model specifically designed for secure multi party computation
(MPC), but has to break out of (some technical aspects of) the UC model.

Structure of this paper: We describe the iUC framework in §2, with a discussion
of the main concepts and features in §3. A case study further illustrates and
highlights some features of iUC in §4. We conclude in §5. Full details are given
in our full version [2].

2 The iUC Framework

In this section, we present the iUC framework which is built on top of the
IITM model. As explained in §1, the main shortcoming of the IITM model is
a lack of usability due to missing conventions for protocol specifications. Thus,
protocol designers have to manually define many repetitive modeling related
aspects such as a corruption model, connections between machines, specifying
the desired machine instances (e.g., does an instance model a single party, a
protocol session consisting of multiple parties, a globally available resource), the
application specific addressing of individual instances, etc. The iUC framework
solves this shortcoming by adding convenient and powerful conventions for
protocol specifications to the IITM model. A key difficulty in crafting these
conventions is preserving the flexibility of the original IITM model in terms of
expressing a multitude of various protocols in natural ways, while at the same
time not overburdening a protocol designer with too many details. We solve this
tension by providing a single template for specifying arbitrary types of protocols,
including real, ideal, joint-state, global state protocols, which needed several sets
of conventions and syntax in other frameworks, and sometimes even new theorems.
Our template includes many optional parts with sensible defaults such that a
protocol designer has to define only those parts relevant to her specific protocol.
As the iUC framework is an instantiation of the IITM model, all composition
theorems and properties of the IITM model carry over.

The following description of the iUC framework is kept independently of the
IITM model, i.e., one can understand and use the iUC framework without knowing
the IITM model. More details of the underlying IITM model are available in the
full version [2]. Here we explain the IITM model not explicitly, but rather explain
relevant parts as part of the description of the iUC framework. We start with some
preliminaries in §2.1, mainly describing the general computational model, before
we explain the general structure of protocols in iUC in §2.2, with corruption
explained in §2.3. We then present our protocol template in §2.4. In §2.5, we
explain how protocol specifications can be composed in iUC to create new, more
complex protocol specification. Finally, in §2.6, we present the realization relation
and the composition theorem of iUC. As mentioned, concrete examples are given
in our case study (cf. §4). We provide a precise mapping from iUC protocols to
the underlying IITM model in the full version, which is crucial to verify that
our framework indeed is an instantiation of the IITM model, and hence, inherits

6

soundness and all theorems of the IITM model. We note, however, that it is not
necessary to read this technical mapping to be able to use our framework. The
abstraction level provided by iUC is entirely sufficient to understand and use this
framework.

2.1 Preliminaries

Just as the IITM model, the iUC framework uses interactive Turing machines
as its underlying computational model. Such interactive Turing machines can
be connected to each other to be able to exchange messages. A set of machines
Q = {M1, . . .,Mk} is called a system. In a run of Q, there can be one or more
instances (copies) of each machine in Q. One instance can send messages to
another instance. At any point in a run, only a single instance is active, namely,
the one to receive the last message; all other instances wait for input. The
active instance becomes inactive once it has sent a message; then the instance
that receives the message becomes active instead and can perform arbitrary
computations. The first machine to run is the so-called master. The master is
also triggered if the last active machine did not output a message. In iUC, the
environment (see next) will take the role of the master. Jumping ahead, in the
iUC framework a special user-specified CheckID algorithm is used to determine
which instance of a machine receives a message and whether a new instance is to
be created (cf. §2.4).

To define the universal composability security experiment (cf. Figure 1 and
§2.5), one distinguishes between three types of systems: protocols, environments,
and adversaries. Intuitively, the security experiment in any universal composability
model compares a protocol P with another protocol F , where F is typically an
ideal specification of some task, called ideal protocol or ideal functionality. The
idea is that if one cannot distinguish P from F , then P must be “as good as”
F . More specifically, the protocol P is considered secure (written P ≤ F) if for
all adversaries A controlling the network of P there exists an (ideal) adversary
S, called simulator, controlling the network of F such that {A,P} and {S,F}
are indistinguishable for all environments E . Indistinguishability means that the
probability of the environment outputting 1 in runs of the system {E ,A,P} is
negligibly close to the probability of outputting 1 in runs of the system {E ,S,
F} (written {E ,A,P} ≡ {E ,S,F}).

In the security experiment, systems are connected as follows (cf. arrows in
Figure 1): Every (machine in a) protocol has an I/O interface that is used to
connect to other protocol machines, higher-level protocols, or an environment,
which, in turn, can simulate higher-level protocols. Every (machine in a) protocol
also has a network interface to connect to a network adversary. We sometimes
let the environment subsume the network adversary. That is, the environment
performs both roles: on the left-hand side of Figure 1, instead of having the
systems E and A we can have an environment E ′ that connects to both the I/O
interface and the network interface of P.

The iUC framework includes support for so-called responsive environments
and responsive adversaries introduced in [1]. Such environments/adversaries can

7

E

Mrole1,role2 Mrole3
P

Mrole4

A

E

FS
≡

Fig. 1: The setup for the universal composability experiment (P ≤ F) and internal
structure of protocols. Here E is an environment, A and S are adversaries, and
P and F are protocols. Arrows between systems denote connections/interfaces
that allow for exchanging messages. The boxes Mi in P are different machines
modeling various tasks in the protocol. Note that the machines in P and the
way they are connected is just an example; other protocols can have a different
internal structure.

be forced to answer certain messages on the network interface of the protocol
immediately, without interfering with the protocol in between. These messages
are called restricting messages. This mechanism is very handy to, e.g., exchange
meta information such as the corruption state of a protocol participant or obtain
cryptographic keys from the adversary; see our full version [2] and [1] for a more
detailed discussion.

We require environments to be universally bounded, i.e., there is a fixed
polynomial in the security parameter (and possibly external input) that upper
bounds the runtime of an environment no matter to which protocol and adversary
it is connected to. A system Q is called environmentally bounded if for every
(universally bounded) environment E there is a polynomial that bounds the
runtime of the system Q connected to E (except for potentially a negligible
probability). This will mostly be required for protocols; note that natural protocols
used in practice are typically environmentally bounded, including all protocols
that run in polynomial time in their inputs received so far and the security
parameter. This is the same runtime notion used in the IITM model. Compared
to other models, this notion is very general and particularly simple (see [22] for
a discussion).

We define Env(Q) to be the set of all universally bounded (responsive) en-
vironments that connect to a system Q via network and I/O interfaces. We
further define Adv(P) to be the set of (responsive) adversaries that connect to
the network interface of a protocol P such that the combined system {A,P} is
environmentally bounded.

2.2 Structure of Protocols

A protocol P in our framework is specified via a system of machines {M1, . . .,
Ml}. Each machine Mi implements one or more roles of the protocol, where
a role describes a piece of code that performs a specific task. For example, a

8

Msigner,verifierFsig
(pidA, sid, signer)

(pidB, sid, verifier)
(pidC , sid, verifier)

(pidA, sid ′, signer)
(pidC , sid ′, verifier) Instances modeling whole

sessions

Psig Instances modeling one
party in one session and

one role

Msigner Mverifier

(pidB, sid, verifier)

(pidC , sid, verifier)

Pjssig
Instances modeling a

single party in one role
but all sessions

Msigner Mverifier

MCRSFCRS
One instance manages all

entities (i.e., parties,
sessions, roles)

(pidA, sid, CRS)
(pidA, sid ′, CRS)
(pidB, sid ′′, CRS)
(pidC , sid, CRS)

(pidB, sid, verifier)

(pidA, sid, signer)
(pidA, sid ′, signer)

(pidC , sid, verifier)
(pidC , sid ′, verifier)

(pidA, sid, signer)

(pidA, sid ′, signer)

(pidC , sid ′, verifier)

Fig. 2: Examples of static and dynamic structures of various protocol types. Fsig
is an ideal protocol, Psig a real protocol, Pjssig a so-called joint-state realization,
and FCRS a global state protocol. On the left-hand side: static structures, i.e.,
(specifications of) machines/protocols. On the right-hand side: possible dynamic
structures (i.e., several machine instances managing various entities).

(real) protocol Psig for digital signatures might contain a signer role for signing
messages and a verifier role for verifying signatures. In a run of a protocol,
there can be several instances of every machine, interacting with each other
(and the environment) via I/O interfaces and interacting with the adversary
(and possibly the environment) via network interfaces. An instance of a machine
Mi manages one or more so-called entities. An entity is identified by a tuple
(pid , sid , role) and describes a specific party with party ID (PID) pid running
in a session with session ID (SID) sid and executing some code defined by the
role role where this role has to be (one of) the role(s) of Mi according to the
specification of Mi. Entities can send messages to and receive messages from
other entities and the adversary using the I/O and network interfaces of their
respective machine instances. In the following, we explain each of these parts in
more detail, including roles and entities; we also provide examples of the static
and dynamic structure of various protocols in Figure 2.

Roles: As already mentioned, a role is a piece of code that performs a specific
task in a protocol P . Every role in P is implemented by a single unique machine
Mi, but one machine can implement more than one role. This is useful for sharing
state between several roles: for example, consider an ideal functionality Fsig for
digital signatures consisting of a signer and a verifier role. Such an ideal
protocol usually stores all messages signed by the signer role in some global
set that the verifier role can then use to prevent forgery. To share such a set
between roles, both roles must run on the same (instance of a) machine, i.e., Fsig
generally consists of a single machine Msigner,verifier implementing both roles. In
contrast, the real protocol Psig uses two machines Msigner and Mverifier as those
roles do not and cannot directly share state in a real implementation (cf. left-hand

9

side of Figure 2). Machines provide an I/O interface and a network interface for
every role that they implement. The I/O interfaces of two roles of two different
machines can be connected. This means that, in a run of a system, two entities
(managed by two instances of machines) with connected roles can then directly
send and receive messages to/from each other; in contrast, entities of unconnected
roles cannot directly send and receive messages to/from each other. Jumping
ahead, in a protocol specification (see below) it is specified for each machine in
that protocol to which other roles (subroutines) a machine connects to (see, e.g.,
also Figure 3a where the arrows denote connected roles/machines). The network
interface of every role is connected to the adversary (or simulator), allowing
for sending and receiving messages to and from the adversary. For addressing
purposes, we assume that each role in P has a unique name. Thus, role names
can be used for communicating with a specific piece of code, i.e., sending and
receiving a message to/from the correct machine.

Public and private roles: We, in addition, introduce the concept of public and
private roles, which, as we will explain, is a very powerful tool. Every role of a
protocol P is either private or public. Intuitively, a private role can be called/used
only internally by other roles of P whereas a public role can be called/used by
any protocol and the environment. Thus, private roles provide their functionality
only internally within P, whereas public roles provide their functionality also
to other protocols and the environment. More precisely, a private role connects
via its I/O interface only to (some of the) other roles in P such that only those
roles can send messages to and receive messages from a private role; a public
role additionally provides its I/O interface for arbitrary other protocols and the
environment such that they can also send messages to and receive messages from
a public role. We illustrate the concept of public and private roles by an example
below.

Using other protocols as subroutines: Protocols can be combined to construct new,
more complex protocols. Intuitively, two protocols P and R can be combined
if they connect to each other only via (the I/O interfaces of) their public roles.
(We give a formal definition of connectable protocols in §2.5.) The new combined
protocol Q consists of all roles of P and R, where private roles remain private
while public roles can be either public or private in Q; this is up to the protocol
designer to decide. To keep role names unique within Q, even if the same role
name was used in both P and R, we (implicitly) assume that role names are
prefixed with the name of their original protocol. We will often also explicitly
write down this prefix in the protocol specification for better readability (cf.
§2.4).

Examples illustrating the above concepts: Figure 3a, which is further explained in
our case study (cf. §4), illustrates the structure of the protocols we use to model a
real key exchange protocol. This protocol as a whole forms a protocol in the above
sense and at the same time consists of three separate (sub-) protocols: The highest-
level protocol PKE has two public roles initiator and responder executing

10

I/O

signer / verifier

retrieval / registration

initiator responder
PKE

Fsig-CA

FCA

setup

(a) Real world

≤
I/O

retrieval / registration

initiator / responder FKE

FCA

(b) Ideal world
Fig. 3: The static structures of the ideal key exchange functionality FKE (right
side) and its realization PKE (left side), including their subroutines, in our case
study. Arrows denote direct connections of I/O interfaces; network connections
are omitted for simplicity. Solid boxes (labeled with one or two role names) denote
individual machines, dotted boxes denote (sub-)protocols that are specified by
one instance of our template each (cf. §2.4).

the actual key exchange and one private role setup that generates some global
system parameters. The protocol PKE uses two other protocols as subroutines,
namely the ideal functionality Fsig-CA for digital signatures with roles signer and
verifier, for signing and verifying messages, and an ideal functionality FCA for
certificate authorities with roles registration and retrieval, for registering
and retrieving public keys (public key infrastructure). Now, in the context of
the combined key exchange protocol, the registration role of FCA is private
as it should be used by Fsig-CA only; if everyone could register keys, then it
would not be possible to give any security guarantees in the key exchange. The
retrieval role of FCA remains public, modeling that public keys are generally
considered to be known to everyone, so not only PKE but also the environment
(and possibly other protocols later using PKE) should be able to access those
keys. This models so-called global state. Similarly to role registration, the
signer role of Fsig-CA is private too. For simplicity of presentation, we made the
verifier role private, although it could be made public. Note that this does
not affect the security statement: the environment knows the public verification
algorithm and can obtain all verification keys from FCA, i.e., the environment
can locally compute the results of the verification algorithm. Altogether, with
the concept of public and private roles, we can easily decide whether we want to
model global state or make parts of a machine globally available while others
remain local subroutines. We can even change globally available roles to be only
locally available in the context of a new combined protocol.

As it is important to specify which roles of a (potentially combined) pro-
tocol are public and which ones are private, we introduce a simple notation
for this. We write (role1, . . . , rolen | rolen+1, . . . , rolem) to denote a protocol P
with public roles role1, . . . , rolen and private roles rolen+1, . . . , rolem. If there
are no private roles, we just write (role1, . . . , rolen), i.e., we omit “|”. Using this

11

notation, the example key exchange protocol from Figure 3a can be written as
(initiator, responder, retrieval | setup, signer, verifier, registration).

Entities and Instances: As mentioned before, in a run of a protocol there can
be several instances of every protocol machine, and every instance of a protocol
machine can manage one or more, what we call, entities. Recall that an entity
is identified by a tuple (pid , sid , role), which represents party pid running in a
session with SID sid and executing some code defined by the role role. As also
mentioned, such an entity can be managed by an instance of a machine only if
this machine implements role. We note that sid does not necessarily identify a
protocol session in a classical sense. The general purpose is to identify multiple
instantiations of the role role executed by party pid. In particular, entities with
different SIDs may very well interact with each other, if so desired, unlike in
many other frameworks.

The novel concept of entities allows for easily customizing the interpretation
of a machine instance by managing appropriate sets of entities. An important
property of entities managed by the same instance is that they have access to
the same internal state, i.e., they can share state; entities managed by different
instances cannot access each others internal state directly. This property is
usually the main factor for deciding which entities should be managed in the
same instance. With this concept of entities, we obtain a single definitional
framework for modeling various types of protocols and protocol components in a
uniform way, as illustrated by the examples in Figure 2, explained next.

One instance of an ideal protocol in the literature, such as a signature
functionality Fsig, often models a single session of a protocol. In particular, such
an instance contains all entities for all parties and all roles of one session. Figure 2
shows two instances of the machine Msigner,verifier, managing sessions sid and
sid ′, respectively. In contrast, instances of real protocols in the literature, such as
the realization Psig of Fsig, often model a single party in a single session of a single
role, i.e., every instance manages just a single unique entity, as also illustrated
in Figure 2. If, instead, we want to model one global common reference string
(CRS), for example, we have one instance of a machine MCRS which manages all
entities, for all sessions, parties, and roles. To give another example, the literature
also considers so-called joint-state realizations [7, 20] where a party re-uses some
state, such as a cryptographic key, in multiple sessions. An instance of such a
joint-state realization thus contains entities for a single party in one role and in
all sessions. Figure 2 shows an example joint-state realization Pjssig of Fsig where a
party uses the same signing key in all sessions. As illustrated by these examples,
instances model different things depending on the entities they manage.

Exchanging messages: Entities can send and receive messages using the I/O and
network interfaces belonging to their respective roles. When an entity sends a
message it has to specify the receiver, which is either the adversary in the case of
the network interface or some other entity (with a role that has a connected I/O
interface) in the case of the I/O interface. If a message is sent to another entity
(pidrcv, sidrcv, rolercv), then the message is sent to the machine M implementing

12

rolercv; a special user-defined CheckID algorithm (see §2.4) is then used to
determine the instance of M that manages (pidrcv, sidrcv, rolercv) and should
hence receive the message. When an entity (pidrcv, sidrcv, rolercv) receives a
message on the I/O interface, i.e., from another entity (pidsnd, sidsnd, rolesnd),
then the receiver learns pidsnd, sidsnd4 and either the actual role name rolesnd
(if the sender is a known subroutine of the receiver, cf. §2.4) or an arbitrary but
fixed number i (from an arbitrary but fixed range of natural numbers) denoting
a specific I/O connection to some (unknown) sender role (if the sender is an
unknown higher-level protocol or the environment5). The latter models that a
receiver/subroutine does not necessarily know the exact machine code of a caller
in some arbitrary higher-level protocol, but the receiver can at least address the
caller in a consistent way for sending a response. If a message is received from
the network interface, then the receiving entity learns only that it was sent from
the adversary.

We note that we do not restrict which entities can communicate with each
other as long as their roles are connected via their I/O interfaces, i.e., entities
need not share the same SID or PID to communicate via an I/O connection.
This, for example, facilitates modeling entities in different sessions using the same
resource, as illustrated in our case study. It, for example, also allows us to model
the global functionality FCRS from Figure 2 in the following natural way: FCRS
could manage only a single (dummy) entity (ε, ε, CRS) in one machine instance,
which can be accessed by all entities of higher-level protocols.

2.3 Modeling Corruption
We now explain on an abstract level how our framework models corruption of
entities. In §2.4, we then explain in detail how particular aspects of the corruption
model are specified and implemented. Our framework supports five different modes
of corruption: incorruptible, static corruption, dynamic corruption with/without
secure erasures, and custom corruption. Incorruptible protocols do not allow
the adversary to corrupt any entities; this can, e.g., be used to model setup
assumptions such as common reference strings which should not be controllable
by an adversary. Static corruption allows adversaries to corrupt entities when
they are first created, but not later on, whereas dynamic corruption allows for
corruption at arbitrary points in time. In the case of dynamic corruption, one can
additionally choose whether by default only the current internal state (known
as dynamic corruption with secure erasures) or also a history of the entire state,
including all messages and internal random coins (known as dynamic corruption
without secure erasures) is given to the adversary upon corruption. Finally, custom
corruption is a special case that allows a protocol designer to disable corruption
handling of our framework and instead define her own corruption model while
still taking advantage of our template and the defaults that we provide; we will
ignore this custom case in the following description.
4 The environment can claim arbitrary PIDs and SIDs as sender.
5 The environment can choose the number that it claims as a sender as long as it does

not collide with a number used by another (higher-level) role in the protocol.

13

To corrupt an entity (pid , sid , role) in a run, the adversary can send the special
message corrupt on the network interface to that entity. Note that, depending on
the corruption model, such a request might automatically be rejected (e.g., because
the entity is part of an incorruptible protocol). In addition to this automatic check,
protocol designers are also able to specify an algorithm AllowCorruption, which
can be used to specify arbitrary other conditions that must be met for a corrupt
request to be accepted. For example, one could require that all subroutines must
be corrupted before a corruption request is accepted (whether or not subroutines
are corrupted can be determined using CorruptionStatus? requests, see later),
modeling that an adversary must corrupt the entire protocol stack running on
some computer instead of just individual programs, which is often easier to
analyze (but yields a less fine grained security result). One could also prevent
corruption during a protected/trusted “setup” phase of the protocol, and allow
corruption only afterwards.

If a corrupt request for some entity (pid , sid , role) passes all checks and is
accepted, then the state of the entity is leaked to the adversary (which can be
customized by specifying an algorithm LeakedData) and the entity is considered
explicitly corrupted for the rest of the protocol run. The adversary gains full
control over explicitly corrupted entities: messages arriving on the I/O interface of
(pid , sid , role) are forwarded on the network interface to the adversary, while the
adversary can tell (pid , sid , role) (via its network interface) to send messages to
arbitrary other entities on behalf of the corrupted entity (as long as both entities
have connected I/O interfaces). The protocol designer can control which messages
the adversary can send in the name of a corrupted instance by specifying an
algorithm AllowAdvMessage. This can be used, e.g., to prevent the adversary
from accessing uncorrupted instances or from communicating with other (disjoint)
sessions, as detailed in §2.4.

In addition to the corruption mechanism described above, entities that are
activated for the first time also determine their initial corruption status by actively
asking the adversary whether he wants to corrupt them. More precisely, once an
entity (pid , sid , role) has finished its initialization (see §2.4), it asks the adversary
via a restricting message6 whether he wants to corrupt (pid , sid , role) before
performing any other computations. The answer of the adversary is processed as
discussed before, i.e., the entity decides whether to accept or reject a corruption
request. This gives the adversary the power to corrupt new entities right from
the start, if he desires; note that in the case of static corruption, this is also the
last point in time where an adversary can explicitly corrupt (pid , sid , role).

For modeling purposes, we allow other entities and the environment to obtain
the current corruption status of an entity (pid , sid , role).7 This is done by sending
6 Recall from §2.1 that by sending a restricting message, the adversary is forced to

answer, and hence, decide upon corruption right away, before he can interact in
any other way with the protocol, preventing artificial interference with the protocol
run. This is a very typical use of restricting messages, which very much simplifies
corruption modeling (see also [1]).

7 This operation is purely for modeling purposes and does of course not exist in reality.
It is crucial for obtaining a reasonable realization relation: The environment needs a

14

a special CorruptionStatus? request on the I/O interface of (pid , sid , role). If
(pid, sid, role) has been explicitly corrupted by the adversary, the entity returns
true immediately. Otherwise, the entity is free to decide whether true or false is
returned, i.e., whether it considers itself corrupted nevertheless (this is specified by
the protocol designer via an algorithm DetermineCorrStatus). For example,
a higher level protocol might consider itself corrupted if at least one of its
subroutines is (explicitly or implicitly) corrupted, which models that no security
guarantees can be given if certain subroutines are controlled by the adversary.
To figure out whether subroutines are corrupted, a higher level protocol can send
CorruptionStatus? requests to subroutines itself. We call an entity that was
not explicitly corrupted but still returns true implicitly corrupted. We note that
the responses to CorruptionStatus? request are guaranteed to be consistent in
the sense that if an entity returns true once, it will always return true. Also,
according to the defaults of our framework, CorruptionStatus? request are
answered immediately (without intervention of the adversary) and processing
these requests does not change state. These are important features which allow
for a smooth handling of corruption.

2.4 Specifying Protocols

We now present our template for fully specifying a protocol Q, including its
uncorrupted behavior, its corruption model, and its connections to other protocols.
As mentioned previously, the template is sufficiently general to capture many
different types of protocols (real, ideal, hybrid, joint-state, global, ...) and includes
several optional parts with reasonable defaults. Thus, our template combines
freedom with ease of specification.

The template is given in Figure 4. Some parts are self-explanatory; the other
parts are described in more detail in the following. The first section of the
template specifies properties of the whole protocol that apply to all machines.

Participating roles: This list of sets of roles specifies which roles are (jointly)
implemented by a machine. To give an example, the list “{role1, role2}, role3,
{role4, role5, role6}” specifies a protocolQ consisting of three machines Mrole1,role2 ,
Mrole3 , and Mrole4,role5,role6 , where Mrole1,role2 implements role1 and role2, and
so on.

Corruption model: This fixes one of the default corruption models supported
by iUC, as explained in §2.3: incorruptible, static, dynamic with erasures, and
dynamic without erasures. Moreover, if the corruption model is set to custom, the
protocol designer has to manually define his own corruption model and process

way to check that the simulator in the ideal world corrupts exactly those entities that
are corrupted in the real world, i.e., the simulation should be perfect also with respect
to the corruption states. If we did not provide such a mechanism, the simulator
could simply corrupt all entities in the ideal world which generally allows for a trivial
simulation of arbitrary protocols.

15

Setup for the protocol Q = {M1, . . ., Mn}:
Participating roles: list of all n sets of roles participating in this protocol. Each set

corresponds to one machine Mi.
Corruption model: incorruptible, static, dynamic with/without erasures, custom.
Protocol parameters∗: e.g., externally provided algorithms parametrizing a machine.

Implementation of Mi for each set of roles:
Implemented role(s): the set of roles that is implemented by this machine.
Subroutines∗: a list of all (other) roles that this machine uses as subroutines.
Internal state∗: state variables used to store data across different invocations.
CheckID∗: algorithm for deciding whether this machine is responsible for an entity

(pid , sid , role).
Corruption behavior∗: description of DetermineCorrStatus, AllowCorruption,

LeakedData, and/or AllowAdvMessage algorithms.
Initialization∗: this block is executed only the first time an instance of the machine

accepts a message; useful to, e.g., assign initial values that are globally used for all
entities managed by this instance.

EntityInitialization∗: this block is executed only the first time that some message for a
(new) entity is received; useful to, e.g., assign initial values that are specific for single
entities.

MessagePreprocessing∗: this algorithm is executed every time a message for an un-
corrupted entity is received.

Main: specification of the actual behavior of an uncorrupted entity.

Fig. 4: Template for specifying protocols. Blocks labeled with an asterisk (*) are
optional. Note that the template does not specify public and private roles as
those change depending on how several protocols (each defined via a copy of this
template) are connected.

corruption related messages, such as CorruptionStatus?, using the algorithms
MessagePreprocessing and/or Main (see below), providing full flexibility.

Apart from the protocol setup, one has to specify each procotol machine Mi,
and hence, the behavior of each set of roles listed in the protocol setup.

Subroutines: Here the protocol designer lists all roles that Mi uses as subrou-
tines. These roles may be part of this or potentially other protocols, but may not
include roles that are implemented by Mi. The I/O interface of (all roles of) the
machine Mi will then be connected to the I/O interfaces of those roles, allowing
Mi to access and send messages to those subroutines.8 We note that (subroutine)
roles are uniquely specified by their name since we assume globally unique names
for each role. We also note that subroutines are specified on the level of roles,
instead of the level of whole protocols, as this yields more flexibility and a more
fine grained subroutine relationship, and hence, access structure.

If roles of some other protocol R are used, then protocol authors should prefix
the roles with the protocol name to improve readability, e.g., “R : roleInR” to
denote a connection to the role roleInR in the protocol R. This is mandatory if
the same role name is used in several protocols to avoid ambiguity. If a machine
8 We emphasize that we do not put any restrictions on the graph that the subroutine

relationships of machines of several protocols form. For example, it is entirely possible
to have machines in two different protocols that specify each other as subroutines.

16

is supposed to connect to all roles of some protocol R, then, as a short-hand
notation, one can list the name R of the protocol instead.

Internal state: State variables declared here (henceforth denoted by sans-serif
fonts, e.g., a, b) preserve their values across different activations of an instance of
Mi.

In addition to these user-specified state variables, every machine has some ad-
ditional framework-specific state variables that are set and changed automatically
according to our conventions. Most of these variables are for internal bookkeeping
and need not be accessed by protocol designers. Those that might be useful in
certain algorithms are mentioned and explained further below (we provide a
complete list of all framework specific variables in the full version).

CheckID: As mentioned before, instances of machines in our framework manage
(potentially several) entities (pidi, sidi, rolei). The algorithm CheckID allows an
instance of a machine to decide which of those entities are accepted and thus man-
aged by that instance, and which are not. Furthermore, it allows for imposing a
certain structure on pidi and sidi; for example, SIDs might only be accepted if they
encode certain session parameters, e.g., sidi = (parameter1, parameter2, sid ′

i).
More precisely, the algorithm CheckID(pid , sid , role) is a deterministic al-

gorithm that computes on the input (pid , sid , role), the internal state of the
machine instance, and the security parameter. It runs in polynomial time in the
length of the current input, the internal state, and the security parameter and
outputs accept or reject.

Whenever one (entity in one) instance of a machine, the adversary, or the
environment sends a message m to some entity (pid , sid , role) (via the entity’s
I/O interface or network interface), the following happens: m is delivered to
the first instance of the machine, say M , that implements role, where instances
of a machine are ordered by the time of their creation. That instance then
runs CheckID(pid , sid , role) to determine whether it manages (pid , sid , role),
and hence, whether the message m (that was sent to (pid , sid , role)) should
be accepted. If CheckID accepts the entity, then the instance gets to process
the message m; otherwise, it resets itself to the state before running CheckID
and the message is given to the next instance of M (according to the order of
instances mentioned before) which then runs CheckID(pid , sid , role), and so on.
If no instance accepts, or no instance exists yet, then a new one is created that
also runs CheckID(pid , sid , role). If that final instance accepts, it also gets to
process m; otherwise, the new instance is deleted, the message m is dropped, and
the environment is triggered (with a default trigger message).

We require that CheckID behaves consistently, i.e., it never accepts an entity
that has previously been rejected, and it never rejects an entity that has previously
been accepted; this ensures that there are no two instances that manage the same
entity. For this purpose, we provide access to a convenient framework specific list
acceptedEntities that contains all entities that have been accepted so far (in the
order in which they were first accepted). We note that CheckID cannot change
the (internal) state of an instance; all changes caused by running CheckID are

17

dropped after outputting a decision, i.e., the state of an instance is set back to
the state before running CheckID.

If CheckID is not specified, its default behavior is as follows: Given input
(pid , sid , role), if the machine instance in which CheckID is running has not
accepted an entity yet, it outputs accept. If it has already accepted an entity
(pid ′, sid ′, role′), then it outputs accept iff pid = pid ′ and sid = sid ′. Otherwise,
it outputs reject. Thus, by default, a machine instance accepts, and hence,
manages, not more than one entity per role for the roles the machine implements.

Corruption behavior: This element of the template allows for customization
of corruption related behavior of machines by specifying one or more of the op-
tional algorithms DetermineCorrStatus, AllowCorruption, LeakedData,
and AllowAdvMessage, as explained and motivated in §2.3, with the formal
definition of these algorithms, including their default behavior if not specified,
given in the full version. A protocol designer can access two useful framework
specific variables for defining these algorithms: transcript, which, informally, con-
tains a transcript of all messages sent and received by the current machine
instance, and CorruptionSet, which contains all explicitly corrupted entities that
are managed by the current machine instance. As these algorithms are part of
our corruption conventions, they are used only if Corruption model is not set
to custom.

Initialization, EntityInitialization, MessagePreprocessing, Main: These
algorithms specify the actual behavior of a machine for uncorrupted entities.

The Initialization algorithm is run exactly once per machine instance (not
per entity in that instance) and is mainly supposed to be used for initializing the
internal state of that instance. For example, one can generate global parameters
or cryptographic key material in this algorithm.

The EntityInitialization(pid , sid , role) algorithm is similar to Initialization
but is run once for each entity (pid , sid , role) instead of once for each ma-
chine instance. More precisely, it runs directly after a potential execution of
Initialization if EntityInitialization has not been run for the current entity
(pid , sid , role) yet. This is particularly useful if a machine instance manages
several entities, where not all of them might be known from the beginning.

After the algorithms Initialization and, for the current entity, the algorithm
EntityInitialization have finished, the current entity determines its initial
corruption status (if not done yet) and processes a corrupt request from the
network/adversary, if any. Note that this allows for using the initialization
algorithms to setup some internal state that can be used by the entity to
determine its corruption status.

Finally, after all of the previous steps, if the current entity has not been
explicitly corrupted,9 the algorithms MessagePreprocessing and Main are
run. The MessagePreprocessing algorithm is executed first. If it does not
9 As mentioned in §2.3, if an entity is explicitly corrupted, it instead acts as a forwarder

for messages to and from the adversary.

18

end the current activation, Main is executed directly afterwards. While we
do not fix how authors have to use these algorithms, one would typically use
MessagePreprocessing to prepare the input m for the Main algorithm, e.g.,
by dropping malformed messages or extracting some key information from m.
The algorithm Main should contain the core logic of the protocol.

If any of the optional algorithms are not specified, then they are simply
skipped during computation. We provide a convenient syntax for specifying these
algorithms in the full version; see our case study in §4 for examples.

This concludes the description of our template. As already mentioned, in the
full version of this paper we give a formal mapping of this template to protocols in
the sense of the IITM model, which provides a precise semantics for the templates
and also allows us to carry over all definitions, such as realization relations, and
theorems, such as composition theorems, of the IITM model to iUC (see §2.6).

2.5 Composing Protocol Specifications

Protocols in our framework can be composed to obtain more complex protocols.
More precisely, two protocols Q and Q′ that are specified using our template
are called connectable if they connect via their public roles only. That is, if a
machine in Q specifies a subroutine role of Q′, then this subroutine role has to
be public in Q′, and vice versa.

Two connectable protocols can be composed to obtain a new protocol R
containing all roles of Q and Q′ such that the public roles of R are a subset of
the public roles of Q and Q′. Which potentially public roles of R are actually
declared to be public in R is up the protocol designer and depends on the type
of protocol that is to be modeled (see §2.2 and our case study in §4). In any case,
the notation from §2.2 of the form (rolepub

1 . . . rolepub
i | rolepriv

1 . . . rolepriv
j) should

be used for this purpose.
For pairwise connectable protocols Q1, . . . ,Qn we define Comb(Q1, . . . ,Qn)

to be the (finite) set of all protocols R that can be obtained by connecting
Q1, . . . ,Qn. Note that all protocols R in this set differ only by their sets of
public roles. We define two shorthand notations for easily specifying the most
common types of combined protocols: by (Q1, . . . ,Qi | Qi+1, . . . ,Qn) we denote
the protocol R ∈ Comb(Q1, . . . ,Qn), where the public roles of Q1, . . . ,Qi remain
public in R and all other roles are private. This notation can be mixed with the
notation from §2.2 in the natural way by replacing a protocol Qj with its roles,
some of which might be public while others might be private in R. Furthermore,
by Q1 || Q2 we denote the protocol R ∈ Comb(Q1,Q2) where exactly those public
roles of Q1 and Q2 remain public that are not used as a subroutine by any
machine in Q1 or Q2.

We call a protocol Q complete if every subroutine role used by a machine in Q
is also part of Q. In other words, Q fully specifies the behavior of all subroutines.
Since security analysis makes sense only for a fully specified protocol, we will
(implicitly) consider this to be the default in the following.

19

2.6 Realization Relation and Composition Theorems

In the following, we define the universal composability experiment and state the
main composition theorem of iUC. Since iUC is an instantiation of the IITM
model, as shown by our mapping mentioned in §2.4, both the experiment and
theorem are directly carried over from the IITM model and hence do not need to
be re-proven.

Definition 1 (Realization relation in iUC). Let P and F be two environ-
mentally bounded complete protocols with identical sets of public roles. The protocol
P realizes F (denoted by P ≤ F) iff there exists a simulator (system) S ∈ Adv(F)
such that for all E ∈ Env(P) it holds true that {E ,P} ≡ {E ,S,F} .10

Note that E in {E ,P} connects to the I/O interfaces of public roles as well as
the network interfaces of all roles of P. In contrast, E in the system {E ,S,F}
connects to the I/O interfaces of public roles of F and the network interface of S.
The simulator S connects to E (simulating the network interface of P) and the
network interface of F ; see also Figure 1, where here we consider the case that
E subsumes the adversary A. (As shown in [1], whether or not the adversary A
is considered does not change the realization relation. The resulting notions are
equivalent.)

Now, the main composition theorem of iUC, which is a corollary of the
composition of the IITM model, is as follows:

Corollary 1 (Concurrent composition in iUC). Let P and F be two pro-
tocols such that P ≤ F . Let Q be another protocol such that Q and F are
connectable. Let R ∈ Comb(Q,P) and let I ∈ Comb(Q,F) such that R and I
have the same sets of public roles. If R is environmentally bounded and complete,
then R ≤ I.

Just as in the IITM model, we emphasize that this corollary also covers the
special cases of protocols with joint-state and global state. Furthermore, a second
composition theorem for secure composition of an unbounded number of sessions
of a protocol is also available, again a corollary of a more general theorem in the
IITM model (see the full version [2]).

3 Concepts and Discussion

Recall from the introduction that a main goal of iUC is to provide a flexible yet
easy to use framework for universally composable protocol analysis and design.
In this section, we briefly summarize and highlight some of the core concepts that
allow us to retain the flexibility and expressiveness of the original IITM model
while adding the usability with a handy set of conventions. We then highlight a
selection of features that are supported by iUC due to the concepts iUC uses and
10 Intuitively, the role names are used to determine which parts of F are realized by

which parts of P, hence they must have the same sets of public roles.

20

that are not supported by other (conventions of) models, including the prominent
UC and GNUC models. Our case study in §4 further illustrates the expressiveness
of iUC. An extended discussion of concepts and features is available in the full
version [2]. Some of the most crucial concepts of iUC, discussed next, are the
separation of entities and machine instances, public and private roles, a model
independent interpretation of SIDs, support for responsive environments as well
as a general addressing mechanism, which enables some of these concepts.
Separation of entities and machine instances: Traditionally, universal composabil-
ity models do not distinguish between a machine instance and its interpretation.
Instead, they specify that, e.g., a real protocol instance always represents a single
party in a single session running a specific piece of code. Sometimes even compo-
sition theorems depend on this view. This has the major downside that, if the
interpretation of a machine instance needs to be changed, then existing models,
conventions, and composition theorems are no longer applicable and have to
be redefined (and, in the case of theorems, reproven). For example, a typical
joint state protocol instance [7, 20] manages a single party in all sessions and
one role. Thus, in the case of the UC and GNUC models, the models had to be
extended and reproven, including conventions and composition theorems. This is
in contrast to iUC, which introduces the concept of entities. A protocol designer
can freely define the interpretation of a machine instance by specifying the set of
entities managed by that instance; the resulting protocol is still supported by
our single template and the main composition theorem. This is a crucial feature
that allows for the unified handling of real, ideal, joint-state, and (in combination
with the next concept) also global state protocols.

We emphasize that this generality is made possible by the highly customizable
addressing mechanism (CheckID in the template) used in iUC, which in turn is
based on the very general addressing mechansim of the IITM model.
Public and private roles: Similar to the previous point, traditionally global state
is defined by adding a special new global functionality with its own sets of
conventions and proving specific global state composition theorems. However,
whether or not state is global is essentially just a matter of access to that state.
Our framework captures this property via the natural concept of public roles,
which provides a straightforward way to make parts of a protocol accessible to the
environment and other protocols. Thus, there is actually no difference between
protocols with and without global state in terms of conventions or composition
theorems in our framework.
A model independent interpretation of SIDs: In most other models, such as UC
and GNUC, SIDs play a crucial role in the composition theorems. Composition
theorems in these frameworks require protocols to either have disjoint sessions,
where a session is defined via the SID, or at least behave as if they had disjoint
sessions (in the case of joint-state composition theorems). This has two major
implications: Firstly, one cannot directly model a protocol where different sessions
share the same state and influence each other. This, however, is often the case
for real world protocols that were not built with session separation in mind. For
example, many protocols such as our case study (cf. §4) use the same signing key

21

in multiple sessions, but do not include a session specific SID in the signature
(as would be required for a joint-state realization). Secondly, sessions in ideal
functionalities can consist only of parties sharing the same SID, which models
so-called global SIDs or pre-shared SIDs [21]. That is, participants of a protocol
session must share the same SID. This is in contrast to so-called local SIDs often
used in practice, where participants with different SIDs can be part of the same
protocol session (cf. 4.3). Because our main composition theorem is independent
of (the interpretation of) SIDs, and in particular does not require state separation,
we can also capture shared state and local SIDs in our framework.

Just as for the concept of entities and instances, this flexibility is made
possible by the general addressing mechanism of iUC (and its underlying IITM
model).
Support for responsive environments: Recall that responsive environments [1] allow
for sending special messages on the network interface, called restricting messages,
that have to be answered immediately by the adversary and environment. This
is a very handy mechanism that allows protocols to exchange modeling related
meta information with the adversary without disrupting the protocol run. For
example, entities in our framework request their initial corruption status via a
restricting message. Hence, the adversary has to provide the corruption status
right away and the protocol run can continue as expected. Without responsive
environments, one would have to deal with undesired behavior such as delayed
responses, missing responses, as well as state changes and unexpected activations
of (other parts of) the protocol before the response is provided. In the case of
messages that exist only for modeling purposes, this adversarial behavior just
complicates the protocol design and analysis without relating to any meaningful
attack in reality, often leading to formally wrong security proofs and protocol
specifications that cannot be re-used in practice. See our full version and [1] for
more information.
Selected Features of iUC. The iUC framework uses and combines the above
concepts to support a wide range of protocols and composition types, some of
which have not even been considered in the literature so far, using just a single
template and one main composition theorem. We list some important examples:

i) Protocols with local SIDs and global SIDs, arbitrary forms of shared state
including state that is shared across multiple protocol sessions, as well as
global state. Our case study in §4 is an example of a protocol that uses
and combines all of these protocol features, with a detailed explanation and
discussion provided in §4.3.

ii) Ideal protocols that are structured into several subcomponents, unlike the
monolithic ideal functionalities considered in other (conventions of) models.
Parts of such structured ideal protocols can also be defined to be global,
allowing for easily mixing traditional ideal protocols with global state. Again,
this is also illustrated in our case study in §4. We also note that in iUC there
is no need to consider so-called dummy machines in ideal protocols, which
are often required in other models that do not allow for addressing the same
machine instance with different IDs (entities).

22

iii) The general composition theorem, which in particular is agnostic to the
specific protocols at hand, allows for combining and mixing classical compo-
sition of protocols with disjoint session, composition of joint-state protocols,
composition of protocols with global state, and composition of protocols with
arbitrarily shared state. One can also, e.g., realize a global functionality with
another protocol (this required an additional composition theorem for the
UC model [12] and is not yet supported by GNUC, whereas in iUC this is
just another trivial special case of protocol composition). iUC even supports
new types of compositions that have not been considered in the literature
so far, such as joint-state realizations of two separate independent protocols
(in contrast to traditional joint-state realizations of multiple independent
sessions of the same protocol; cf. §4.3).

Besides our case study in §4, the flexibility and usability of iUC is also illustrated
by another example in the full version, where we discuss that the iUC framework
can capture the SUC model [10] as a mere special case. As already mentioned in
the introdcution, the SUC model has been specifically designed for secure multi
party computation (MPC) as a simpler version of the UC model, though it has
to break out of (some technical aspects of) the UC model.

4 Case Study

In this section, we illustrate the usage of iUC by means of a concrete example,
demonstrating usability, flexibility, and soundness of our framework. More specif-
ically, we model and analyze a key exchange protocol of the ISO/IEC 9798-3
standard [17], an authenticated version of the Diffie-Hellman key exchange proto-
col, depicted in Figure 5. While this protocol has already been analyzed previously
in universal composability models (e.g., in [6, 19]), these analyses were either for
modified versions of the protocol (as the protocol could not be modeled precisely
as deployed in practice) or had to manually define many recurrent modeling
related aspects (such as a general corruption model and an interpretation of
machine instances), which is not only cumbersome but also hides the core logic
of the protocol.

We have chosen this relatively simple protocol for our case study as it allows
for showing how protocols can be modeled in iUC and highlighting several core
features of the framework without having to spend much time on first explaining
the logic of the protocol.

More specifically, our case study illustrates that our framework manages to
combine soundness and usability: the specifications of the ISO protocol given in
the figures below are formally complete, no details are swept under the rug, unlike
the informal descriptions commonly encountered in the literature on universal
composability. This allows for a precise understanding of the protocol, enabling
formally sound proofs and re-using the protocol in higher-level protocols. At the
same time, specifications of the ISO protocol are not overburdened by recurrent
modeling related aspects as they make use of convenient defaults provided by
the iUC framework. All parts of the ISO protocol are specified using a single

23

Party A Party B
A, gx

B, gy, SIGskB (gx, gy, A)

SIGskA (gy, gx, B)

Fig. 5: ISO 9798-3 key exchange protocol for mutual authentication. A and B are
the names of two parties that, at the end of the protocol, share a session key gxy.

template with one set of syntax rules, including real, ideal, and global state
(sub-)protocols, allowing for a uniform treatment.

This case study also shows the flexibility of our framework: entites are grouped
in different ways into machine instances to model different types of protocols and
setup assumptions; we are able to share state across several sessions; we make
use of the highly adjustable corruption model to precisely capture the desired
corruption behavior of each (sub-)protocol; we are able to model both global
state and locally chosen SIDs in a very natural way (we discuss some of these
aspects, including locally chosen SIDs, in detail in §4.3).

We start by giving a high-level overview of how we model this ISO key
exchange protocol in §4.1, then state our security result in §4.2, and finally
discuss some of the features of our modeling in §4.3.

4.1 Overview of our Modeling

We model the ISO protocol in a modular way using several smaller protocols.
The static structure of all protocols, including their I/O connections for direct
communication, is shown in Figure 3, which was partly explained already in
§2.2. We provide a formal specification of FCA using our template and syntax
in Figure 6. The remaining protocols specifications are given in the full ver-
sion due to space limitations. The syntax is mostly self-explanatory, except for
(pidcur, sidcur, rolecur), which denotes the currently active entity (that was accepted
by CheckID), (pidcall, sidcall, rolecall), which denotes the entity that called the
currently active entity on the I/O interface, and “ ”, which is a wildcard symbol.
In the following, we give a high-level overview of each protocol.

The ISO key exchange (Figure 5) is modeled as a real protocol PKE that
uses two ideal functionalities as subroutines: an ideal functionality Fsig-CA for
creating and verifying ideal digital signatures and an ideal functionality FCA
modeling a certificate authority (CA) that is used to distribute public verification
keys generated by Fsig-CA. The real protocol PKE, as already mentioned in §2.2,
consists of three roles, initiator, responder, and setup. The setup role models
secure generation and distribution of a system parameter, namely, a description
of a cyclic group (G,n, g). As this parameter must be shared between all runs
of a key exchange protocol, setup is implemented by a single machine which
spawns a single instance that manages all entities and always outputs the same
parameter. The roles initiator and responder implement parties A and B,
respectively, from Figure 5. Each role is implemented by a separate machine

24

and every instance of those machines manages exactly one entity. Thus, these
instances directly correspond to an actual implementation where each run of a
key exchange protocol spawns a new program instance. We emphasize that two
entities can perform a key exchange together even if they do not share the same
SID, which models so-called local SIDs (cf. [21]) and is the expected behavior for
many real-world protocols; we discuss this feature in more detail below.

During a run of PKE, entities use the ideal signature functionality Fsig-CA
to sign messages. The ideal functionality Fsig-CA consists of two roles, signer
and verifier, that allow for the corresponding operations. Both roles are im-
plemented by the same machine and instances of that machine manage entities
that share the same SID. The SID sid of an entity is structured as a tuple
(pidowner, sid′), modeling a specific key pair of the party pidowner. More specifi-
cally, in protocol PKE, every party pid owns a single key pair, represented by SID
(pid, ε)11, and uses this single key pair to sign messages throughout all sessions
of the key exchange. Again, this is precisely what is done in reality, where the
same signing key is re-used several times. The behavior of Fsig-CA is closely
related to the standard ideal signature functionalities found in the literature
(such as [20]), except that public keys are additionally registered with FCA when
being generated.

As also mentioned in §2.2, the ideal CA functionality FCA allows for stor-
ing and retrieving public keys. Both roles, registration and retrieval, are
implemented by one machine and a single instance of that machine accepts all
entities, as FCA has to output the same keys for all sessions and parties. Keys
are stored for arbitrary pairs of PIDs and SIDs, where the SID allows for storing
different keys for a single party. In our protocol, keys can only be registered by
Fsig-CA, and the SID is chosen in a matter that it always has the form (pid, ε),
denoting the single public key of party pid. We emphasize again that arbitrary
other protocols and the environment are able to retrieve public keys from FCA,
which models so-called global state.

In summary, the real protocol that we analyze is the combined protocol
(PKE,FCA : retrieval | Fsig-CA,FCA : registration) (cf. left side of Figure 3).
We note that we analyze this protocol directly in a multi-session setting. That is,
the environment is free to spawn arbitrarily many entities belonging to arbitrary
parties and having arbitrary local SIDs and thus there can be multiple key
exchanges running in parallel. Analyzing a single session of this key exchange
in isolation is not possible due to the shared signing keys and the use of local
SIDs, which, as mentioned, precisely models how this protocol would usually be
deployed in practice.12

11 Since we need only a single key pair per party, we set sid′ to be the fixed value ε,
i.e., the empty string.

12 Note that this is true in all UC-like models that can express this setting: the
assumption of disjoint sessions, which is necessary for performing a single session
analysis, is simply not fulfilled by this protocol. This issue cannot even be circumvented
by using a so-called joint-state realization for digital signatures, as such a realization

25

Description of the protocol FCA = (registration, retrieval):
Participating roles: {registration, retrieval}
Corruption model: incorruptible

Description of Mregistration,retrieval:
Implemented role(s): {registration, retrieval}
Internal state:

– keys : ({0, 1}∗)2 → {0, 1}∗ ∪ {⊥}
{

Mapping from a tuple (PID,SID) to
stored keys; initially ⊥.

CheckID(pid , sid , role): Accept all entities.
{

By this there is only a single machine
instance that manages all entities.

Main:

recv (Register, key) from I/O to (, , registration):


Allows every higher level
protocol that connects to
the registration role to
register a key. The key is
stored for the PID and SID
of the caller of FCA.

if keys[pidcall, sidcall] 6= ⊥:
reply (Register, failed).

else:
keys[pidcall, sidcall] = key
reply (Register, success).

recv (Retrieve, (pid, sid)) from to (, , retrieval):


Everyone, including NET,
can retrieve keys registered
by someone with PID pid
and SID sid.

reply (Retrieve, keys[pid, sid]).

Fig. 6: The ideal CA functionality FCA models a public key infrastructure based
on a trusted certificate authority.

We model the security properties of a multi-session key exchange via an
ideal key exchange functionality FKE. This functionality consists of two roles,
initiator and responder, and uses FCA as a subroutine, thus providing the
same interfaces (including the public role retrieval of FCA) as PKE in the
real world. Both initiator and responder roles are implemented via a single
machine, and one instance of this machine manages all entities. This is due to
the fact that, at the start of a run, it is not yet clear which entities will interact
with each other to form a “session” and perform a key exchange (recall that
entities need not share the same SID to do so, i.e., they use locally chosen SIDs,
see also §4.3). Thus, a single instance of FKE must manage all entities such that
it can internally group entities into appropriate sessions that then obtain the
same session key. Formally, the adversary/simulator is allowed to decide which
entities are grouped into a session, subject to certain restrictions that ensure
the expected security guarantees of a key exchange, including authentication. If
two honest entities finish a key exchange in the same session, then FKE ensures
that they obtain an ideal session key that is unknown to the adversary. The
adversary may also use FKE to register arbitrary keys in the subroutine FCA,
also for honest parties, i.e., no security guarantees for public keys in FCA are
provided.

not only requires global SIDs (cf. §4.3) but also changes the messages that are signed,
thus creating a modified protocol with different security properties.

26

4.2 Security Result

For the above modeling, we obtain the following result, with a proof provided in
the full version.

Theorem 1. Let groupGen(1η) be an algorithm that outputs descriptions (G,n, g)
of cyclical groups (i.e., G is a group of size n with generator g) such that n grows
exponentially in η and the DDH assumption holds true. Then we have:

(PKE,FCA : retrieval | Fsig-CA,FCA : registration)
≤ (FKE,FCA : retrieval | FCA : registration) .

Note that we can realize Fsig-CA via a generic implementation Psig-CA of a
digital signature scheme (we provide a formal definition of Psig-CA in the full
version):

Lemma 1. If the digital signature scheme used in Psig-CA is existentially unfor-
gable under chosen message attacks (EUF-CMA-secure), then

(Psig-CA,FCA : retrieval | FCA : registration)
≤ (Fsig-CA,FCA : retrieval | FCA : registration) .

Proof. Analogous to the proof in [20].

By Corollary 1, we can thus immediately replace the subroutine Fsig-CA of
PKE with its realization Psig-CA to obtain an actual implementation of Figure 3
based on an ideal trusted CA:

Corollary 2. If the conditions of Theorem 1 and Lemma 1 are fulfilled, then

(PKE,FCA : retrieval | Psig-CA,FCA : registration)
≤ (FKE,FCA : retrieval | FCA : registration) .

4.3 Discussion

In the following, we highlight some of the key details of our protocol specification
where we are able to model reality very precisely and in a natural way, illustrating
the flexibility of iUC, also compared to (conventions of) the UC and GNUC
models.

Local SIDs: Many real-world protocols, including the key exchange in our case
study, use so-called local session IDs in practice (cf. [21]). That is, the SID
of an entity (pid , sid , role) models a value that is locally chosen and managed
by each party pid and used only for locally addressing a specific instance of a
protocol run of that party, but is not used as part of the actual protocol logic.
In particular, multiple entities can form a “protocol session” even if they use
different SIDs. This is in contrast to using so-called pre-established SIDs (or
global SIDs), where entities in the same “protocol session” are assumed to already

27

share some globally unique SID that was created prior to the actual protocol run,
e.g., by adding an additional roundtrip to exchange nonces, or that is chosen by
and then transmitted from one entity to the others during the protocol run. As
illustrated by the protocols PKE (and FKE) in our case study, iUC can easily
model such local SIDs in a natural way. This is in contrast to several other
UC-like models, including the UC and GNUC models, that are built around
global SIDs and thus do not directly support local SIDs with their conventions.
While it might be possible to find workarounds by ignoring conventions, e.g., by
modeling all sessions of a protocol in a single machine instance M , i.e., essentially
ignoring the model’s intended SID mechanism and taking care of the addressing
of different sessions with another layer of SIDs within M itself, this has two
major drawbacks: Firstly, it decreases overall usability of the models as this
workaround is not covered by existing conventions of these models. Secondly,
existing composition theorems of UC and GNUC do not allow one to compose
such a protocol with a higher-level protocol modeled in the “standard way” where
different sessions use different SIDs.13 We emphasize that the difference between
local and global SIDs is not just a minor technicality or a cosmetic difference: as
argued by Küsters et al. [21], there are natural protocols that are insecure when
using locally chosen SIDs but become secure if a global SID for all participants
in a session has already been established, i.e., security results for protocols with
global SIDs do not necessarily carry over to actual implementations using local
SIDs.

Shared State: In iUC, entities can easily and naturally share arbitrary state
in various ways, even across multiple protocol sessions, if so desired. This is
illustrated, e.g., by PKE in our case study, where every party uses just a single
signature key pair across arbitrarily many key exchanges. This allows for a very
flexible and precise modeling of protocols. In particular, for many real-world
protocols this modeling is much more precise than so-called joint-state realizations
that are often used to share state between sessions in UC-like models that assume
disjoint sessions to be the default, such as the UC and GNUC models. Joint-
state realizations have to modify protocols by, e.g., prefixing signed messages
with some globally unique SID for every protocol session (which is not done by
many real-world protocols, including our case study). Thus, even if the modified
protocol is proven to be secure, this does not imply security of the unmodified
one. The UC and GNUC models do not directly support state sharing without
resorting to joint-state realizations or global functionalities. While one might be
able to come up with workarounds similar to what we described for local SIDs
above, this comes with the same drawbacks in terms of usability and flexibility.

Global State: Our concept of public and private roles allows us to not only easily
model global state but also to specify, in a convenient and flexible way, machines
13 This is because such a higher level protocol would then access the same subrou-

tine session throughout many different higher-level sessions, which violates session
disjointness as required by both UC and GNUC.

28

that are only partially global. This is illustrated by FCA in our case study, which
allows arbitrary other protocols to retrieve keys but limits key registration to one
specific protocol to model that honest users will not register their signing keys
for other contexts (which, in general, otherwise voids all security guarantees).
This feature makes FCA easier to use as a subroutine than the existing global
functionality Gbb for certificate authorities by Canetti et al. [12], which does not
support making parts of the functionality “private”. Thus, everyone has full access
to all operations of Gbb, including key registration, allowing the environment to
register keys in the name of (almost) arbitrary parties, even if they are supposed
to be honest.

Note that our formulation of FCA means that, if the ideal protocol (FKE,FCA :
retrieval | FCA : registration) is used as a subroutine for a new hybrid
protocol, then only FKE but not the higher-level protocol can register keys in
FCA. If desired, one can, however, also obtain a single global FCA where both
FKE and the higher-level protocol can store keys in the following way: First
analyze the whole hybrid protocol while using a second separate copy of FCA, say
F ′

CA, where only the higher-level protocol can register keys. After proving this
to be secure (which is simpler than directly using a global CA where multiple
protocols register keys), one can replace both FCA and F ′

CA with a joint-state
realization where keys are stored in and retrieved from the same FCA subroutine
along with a protocol dependent tag (we discuss this novel type of joint-state
realization in detail in the full version). Of course, this approach can be iterated
to support arbitrarily many protocols using the same FCA. This modeling reflects
reality where keys are certified for certain contexts/purposes.

5 Conclusion

We have introduced the iUC framework for universal composability. As illustrated
by our case study, iUC is highly flexible in that it supports a wide range of
protocol types, protocol features, and composition operations. This flexibility is
combined with greatly improved usability compared to the IITM model due to its
protocol template that fixes recurring modeling related aspects while providing
sensible defaults for optional parts. Adding usability while preserving flexibility
is a difficult task that is made possible, among others, due to the concepts of
roles and entities; these concepts allow for having just a single template and
two composition theorems that are able to handle arbitrary types of protocols,
including real, ideal, joint-state, and global ones, and combinations thereof. The
flexibility and usability provided by iUC also significantly facilitates the precise
modeling of protocols, which is a prerequisite for carrying out formally complete
and sound proofs. Our formal mapping from iUC to the IITM shows that iUC
indeed is an instantiation of the IITM, and hence, immediately inherits all
theorems, in particular, all composition theorems, of the IITM model. Since we
formulate these theorems also in the iUC terminology, protocol designers can
completely stay in the iUC realm when designing and analyzing protocols.

29

Altogether, the iUC framework is a well-founded framework for universal com-
posability which combines soundness, flexibility, and usability in an unmatched
way. As such, it is an important and convenient tool for the precise modular
design and analysis of security protocols and applications.

References

1. Camenisch, J., Enderlein, R.R., Krenn, S., Küsters, R., Rausch, D.: Universal
Composition with Responsive Environments. In: ASIACRYPT 2016. LNCS, vol.
10032, pp. 807–840. Springer (2016), available at http://eprint.iacr.org/2016/
034.

2. Camenisch, Krenn, S., Küsters, R., Rausch, D.: iUC: Flexible Universal Composabil-
ity Made Simple (Full Version). Tech. Rep. 2019/1073, Cryptology ePrint Archive
(2019), available at http://eprint.iacr.org/2019/1073

3. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Tech. Rep. 2000/067, Cryptology ePrint Archive (2000), available at
http://eprint.iacr.org/2000/067 with new versions from December 2005, July
2013, and December 2018

4. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: FOCS 2001. pp. 136–145. IEEE Computer Society (2001)

5. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally Composable Security with
Global Setup. In: TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer (2007)

6. Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and
Secure Channels. In: EUROCRYPT 2002. LNCS, vol. 2332, pp. 337–351. Springer
(2002)

7. Canetti, R., Rabin, T.: Universal Composition with Joint State. In: CRYPTO 2003,
LNCS, vol. 2729, pp. 265–281. Springer (2003)

8. Canetti, R., Chari, S., Halevi, S., Pfitzmann, B., Roy, A., Steiner, M., Venema, W.Z.:
Composable Security Analysis of OS Services. In: ACNS 2011. LNCS, vol. 6715,
pp. 431–448 (2011)

9. Canetti, R., Cheung, L., Kaynar, D.K., Liskov, M., Lynch, N.A., Pereira, O., Segala,
R.: Analyzing Security Protocols Using Time-Bounded Task-PIOAs. Discrete Event
Dynamic Systems 18(1), 111–159 (2008)

10. Canetti, R., Cohen, A., Lindell, Y.: A Simpler Variant of Universally Composable
Security for Standard Multiparty Computation. In: CRYPTO 2015 - Proceedings,
Part II. LNCS, vol. 9216, pp. 3–22. Springer (2015)

11. Canetti, R., Hogan, K., Malhotra, A., Varia, M.: A Universally Composable Treat-
ment of Network Time. In: CSF 2017, pp. 360–375. IEEE Computer Society (2017)

12. Canetti, R., Shahaf, D., Vald, M.: Universally Composable Authentication and
Key-Exchange with Global PKI. In: PKC 2016 - Proceedings, Part II. LNCS,
vol. 9615, pp. 265–296. Springer (2016)

13. Chaidos, P., Fourtounelli, O., Kiayias, A., Zacharias, T.: A Universally Compos-
able Framework for the Privacy of Email Ecosystems. In: ASIACRYPT 2018 -
Proceedings, Part III. LNCS, vol. 11274, pp. 191–221. Springer (2018)

14. Chari, S., Jutla, C.S., Roy, A.: Universally Composable Security Analysis of OAuth
v2.0. IACR Cryptology ePrint Archive 2011, 526 (2011)

15. Hofheinz, D., Shoup, V.: GNUC: A New Universal Composability Framework. J.
Cryptology 28(3), 423–508 (2015)

30

http://eprint.iacr.org/2016/034
http://eprint.iacr.org/2016/034
http://eprint.iacr.org/2019/1073
http://eprint.iacr.org/2000/067

16. Hogan, K., Maleki, H., Rahaeimehr, R., Canetti, R., van Dijk, M., Hennessey, J.,
Varia, M., Zhang, H.: On the Universally Composable Security of OpenStack. IACR
Cryptology ePrint Archive 2018, 602 (2018)

17. ISO/IEC IS 9798-3, Entity authentication mechanisms — Part 3: Entity authenti-
cation using assymetric techniques (1993)

18. Küsters, R.: Simulation-Based Security with Inexhaustible Interactive Turing Ma-
chines. In: CSFW 2006. pp. 309–320. IEEE Computer Society (2006). See [22] for a
full and revised version.

19. Küsters, R., Rausch, D.: A Framework for Universally Composable Diffie-Hellman
Key Exchange. In: S&P 2017. pp. 881–900. IEEE Computer Society (2017)

20. Küsters, R., Tuengerthal, M.: Joint State Theorems for Public-Key Encryption
and Digital Signature Functionalities with Local Computation. In: CSF 2008.
pp. 270–284. IEEE Computer Society (2008). The full version is available at
https://eprint.iacr.org/2008/006 and will appear in Journal of Cryptology

21. Küsters, R., Tuengerthal, M.: Composition Theorems Without Pre-Established
Session Identifiers. In: CCS 2011. pp. 41–50. ACM (2011)

22. Küsters, R., Tuengerthal, M., Rausch, D.: The IITM Model: a Simple and Expressive
Model for Universal Composability. Tech. Rep. 2013/025, Cryptology ePrint Archive
(2013). Available at http://eprint.iacr.org/2013/025. To appear in Journal of
Cryptology

23. Maurer, U.: Constructive Cryptography - A New Paradigm for Security Definitions
and Proofs. In: TOSCA 2011. LNCS, vol. 6993, pp. 33–56 (2011)

24. Maurer, U., Renner, R.: Abstract Cryptography. In: Chazelle, B. (ed.) Innovations
in Computer Science - ICS 2010. Proceedings. pp. 1–21. Tsinghua University Press
(2011)

25. Pfitzmann, B., Waidner, M.: A Model for Asynchronous Reactive Systems and its
Application to Secure Message Transmission. In: S&P 2001. pp. 184–201. IEEE
Computer Society (2001)

31

https://eprint.iacr.org/2008/006
http://eprint.iacr.org/2013/025

	iUC: Flexible Universal Composability Made Simple

