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Abstract. The GSM standard developed by ETSI for 2G networks
adopts the A5/1 stream cipher to protect the over-the-air privacy in cell
phone and has become the de-facto global standard in mobile communi-
cations, though the emerging of subsequent 3G/4G standards. There are
many cryptanalytic results available so far and the most notable ones
share the need of a heavy pre-computation with large rainbow tables or
distributed cracking network. In this paper, we present a fast near colli-
sion attack on GSM encryption in 2G/3G networks, which is completely
new and more threatening compared to the previous best results. We
adapt the fast near collision attack proposed at Eurocrypt 2018 with
the concrete irregular clocking manner in A5/1 to have a state recov-
ery attack with a low complexity. It is shown that if the first 64 bits of
one keystream frame are available, the secret key of A5/1 can be reli-
ably found in 231.79 cipher ticks, given around 1 MB memory and after
the pre-computation of 220.26 cipher ticks. Our current implementation
clearly certified the validity of the suggested attack. Due to the fact that
A5/3 and GPRS share the same key with A5/1, this can be converted
into attacks against any GSM network eventually.
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1 Introduction

The GSM standard, developed by ETSI for 2G networks used by mobile phones,
specifies the A5/1 stream cipher to protect the over-the-air privacy all over the
world. As of today, A5/1 has become the de-facto global standard for mobile
communications with more than 4 billion customers and over 90% market share,
operating in over 219 countries and territories.

A5/1 is the strong version of the encryption algorithm in GSM standard and
A5/2 is the weak version free of export limitations. A5/1 was designed in the 80’s
of last century as a typical LFSR-based stream cipher with an irregular clocking
mechanism. The exact design was reverse-engineered in [6] in 1999 and confirmed



by the relevant authorities subsequently. A newly standardized version in GSM
networks is A5/3, which is based on the block cipher KASUMI. In practice, the
algorithm is frequently re-synchronized and a GSM conversation consists of a
series of frames sent every 4.6 milliseconds. From a 64-bit secret key and a 22-
bit publicly known frame counter, only 228 bits keystream are generated in each
frame, and after that a new frame counter is mixed with the same key again in
initialization to generate another frame.

There are lots of attacks published so far against A5/1 and the GSM en-
cryption, to name but a few [1–5, 7–9, 12–14]. Different cryptanalytic strategies,
e.g., time/memory/data (TMD) tradeoff attacks, guess-and-determine attack-
s and (conditional) correlation attacks have been tried, resulting in more and
more powerful attacks in terms of complexity cost. But from both the theoreti-
cal and practical viewpoints, only a few results [2, 13] have given new theoretical
insights and have the direct and important consequence on the GSM encryption
itself. At Crypto 2003, a practical ciphertext-only attack on A5/2 was depicted
in [2], which could be extended to more complex and more expensive attacks
on A5/1, of which the cheapest pre-computation required 35 PCs (that were
available around 2003) to work a few years with about 600 GB disks. Given the
protocol flaws of the GSM networks and with the assumption that the targeted
mobile phone supports A5/2, various active attacks were launched accordingly.
In January 2007, the Hacker’s Choice started the A5/1 cracking project with
plans to use FPGAs that allow A5/1 to be broken with a rainbow table attack.
Then in 2010, K. Nohl announced a new attack in [13] without the reveal of
many details, using a thick rainbow table with the distinguished points tech-
nique. It had an online attack time of about 10 seconds on a general-purpose
GPU with the success probability of 87%, given 8 known keystream frames and
30 pre-computation tables of about 1.7 Terabytes. The most recent attack on
A5/1 was presented in [11], where a unified rainbow table cryptanalytic method
was introduced and applied to A5/1. To have a comparable success probability
and online attack time to the relevant attacks, two pre-computation tables of
984 GB were needed, each has to be prepared in 55 · 2 = 110 days.

In this paper, we take an entirely different cryptanalytic approach to break
A5/1 used in the GSM networks, free of the extremely heavy rainbow tables and
long time pre-computation. While all the previous TMD tradeoff attacks regard
the internal state of A5/1 as a whole and try to restore it in one shot immediately,
we adopt the fast near collision attack (FNCA) strategy in [16] and make a
divide-and-conquer partition of the full internal state. Precisely, we regard the
internal state as the union of the crucial part (CP) and the rest part (RP),
which could be retrieved easily given the corresponding CP and the keystream
prefix. Thus, the security of the primitive mainly depends on the intractability
of restoring the CP and the efficiency of restoring the RP accordingly. We first
launch a fast near collision attack to recover the CP part of the internal state
in A5/1 according to the irregular clocking mechanism, based on which the RP
part could be recovered later by a dynamic guess-and-determine attack similar
to [9]. It is surprising that the irregular clocking mechanism in A5/1 actually
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facilitates the list merging procedure in a fast near collision attack. Due to
the event that not all the three registers moves simultaneously happens with a
probability of 0.75, two more overlapping bits are gained for free for each such
step. Further in A5/1, it is found that the parameter configuration in a fast near
collision attack can be easily tuned to have the desirable non-random behaviour
between the resultant list size and a good existence probability of each correct
restricted internal state in FNCA. As a result of these findings, it is shown that
if the first 64 bits of one keystream frame are intercepted, the internal state,
thus the secret key of A5/1 can be reliably found in 231.79 cipher ticks, given
around 1 MB memory and after a pre-computation of 220.26 cipher ticks. Our
current implementation in C language on a single core of a PC clearly certified
the correctness of this new attack. It takes tens of seconds on average to find
the targeted internal state of A5/1, and we feel that further optimization of the
code will reduce the time to several seconds. This is the best known attack on
A5/1 so far and it is worthy noting that due to the fact that A5/3 and GPRS
share the same key with A5/1 in GSM, our attack can be leveraged into attacks
against any GSM 2G/3G network eventually.

This paper is organized as follows. A brief description of the A5/1 stream
cipher and the GSM encryption scheme is presented in Section 2. Some basic
definitions and preliminaries of the fast near collision attack relevant to our
analysis are provided in Section 3. Then a high-level description of our attack
against A5/1 and the technical details are presented in Section 4, followed by the
experimental results in Section 5. We leverage our attack to any GSM network
in Section 6 and finally, some conclusions are drawn in Section 7.

2 Description of A5/1 and the GSM Encryption

Let us first present the algorithmic details of the A5/1 stream cipher and the
GSM encryption scheme that are relevant to our analysis. A5/1 consists of 3
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Fig. 1. The A5/1 stream cipher.

short linear feedback shift registers (LFSR), denoted by R1, R2 and R3, which
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are of length 19, 22 and 23 bits respectively. Each register has a primitive feed-
back polynomial and thus generates a maximum-length binary sequence. The
rightmost bit in each register is labelled as bit 0. The taps of R1 are at the 13th,
16th, 17th and 18th bit positions; the taps of R2 are at the 20th, 21st bits and
the taps of R3 are at the 7th, 20th, 21st and 22nd bits, as depicted in Figure 1.

Besides, each register has another clocking tap, i.e., bit 8 for R1, bit 10 for R2
and bit 10 for for R3, to feed a majority function defined as maj(ct1, ct2, ct3) =
ct1 · ct2 ⊕ ct2 · ct3 ⊕ ct3 · ct1, where ct1 =R1[8], ct2 =R2[10] and ct3 =R3[10].
The three registers are clocked in a stop/go fashion using the majority rule: at
each clock, take the majority function of the clocking taps and only run those
registers whose clocking taps agree with the computed majority bit. It is easy
to see that at each step, either two or three registers are clocked, and that each
register moves with a probability of 3/4 and stops with a probability of 1/4.

In the initialization phase, the three registers are all first set to zero. The
secret session key K and a publicly known frame number FN are first injected
and then mixed, after that 228 keystream bits are generated in each frame.

One Session of GSM Encryption
Input Parameters:
1: K = (K63, · · · ,K1,K0) is the 64-bit secret key
2: FN = (FN21, · · · , FN0) is a 22-bit frame counter
3: for i = 0 to 63 do
4: regularly clock R1, R2 and R3
5: R1[0] =R1[0]⊕Ki

6: R2[0] =R2[0]⊕Ki

7: R3[0] =R3[0]⊕Ki

8: for i = 0 to 21 do
9: regularly clock R1, R2 and R3
10: R1[0] =R1[0]⊕ FNi
11: R2[0] =R2[0]⊕ FNi
12: R3[0] =R3[0]⊕ FNi
13: for i = 0 to 99 do
14: clock R1, R2 and R3 in the specified stop/go fashion

without producing any output
15: for i = 0 to 227 do
16: clock R1, R2 and R3 in the specified stop/go fashion
17: generate zi =R1[18] ⊕ R2[21] ⊕ R3[22]
Output: the keystream segment {zi}227i=0

In the initialization phase (Step 3 to Step 14), the content of the three registers
after step 12 is called the initial state, which is denoted by S(0). The internal
state before Step 15 is denoted by S(100). In one session of a GSM conversation,
one 114-bit keystream segment is generated for one direction communication and
the other 114-bit segment for the opposite direction. Thus, only 228 keystream
bits are available in each frame.
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3 Preliminaries

In this section, some notations and basic definitions relevant to the fast near
collision attack and our work are presented.

We start with the notions of keystream prefix, keystream segment difference
(KSD) and internal state difference (ISD).

Definition 1. For a specified cipher such as A5/1, a keystream prefix z =
(z0, z1, · · · , zl−1) of l-bit length is the keystream vector generated consecutive-
ly and directly from the corresponding internal state x.

Definition 2. For a specified cipher such as A5/1 and two keystream prefixes
z and z′, if z is generated from the internal state x and z′ is generated from the
internal state x′, the keystream segment difference (KSD) is ∆z = z ⊕ z′ and
the internal difference (ISD) is defined as ∆x = x⊕ x′.

In a fast near collision attack, the full internal state which usually contains a
large number of variables is not targeted directly; instead the adversary only
considers the subset of the full internal state which is directly associated with
a specified keystream prefix, as shown in the following definition of restricted
internal state.

Definition 3. For a specified cipher such as A5/1, the subset x = (xi0 , xi1 , · · · ,
xin−1

) of the full internal state which is directly associated with the keystream
prefix z = (z0, z1, · · · , zl−1) is called the restricted internal state of z.

Note that Definition 3 has a subtle difference with the corresponding Definition
1 in [16]. Here we only consider the keystream prefix which is generated consec-
utively from a given internal state, while Definition 1 in [16] covers the general
cases that the keystream bits under consideration are non-consecutive, which is
called the keystream vector.

We also need the notions of two kinds of sampling resistance of the primitive,
which characterizes the enumeration procedure in a fast near collision attack.

Definition 4. For a specified cipher such as A5/1, if there exists some efficient
method to enumerate directly some subset of the full internal state which pro-
duces a special keystream prefix of l bits, e.g., a string of 0s, without trying and
discarding the other states, then it has a BSW sampling resistance of l bits, or
equivalently its BSW sampling resistance is 2−l.

It was shown in [5] that when targeting the full 64-bit internal state, A5/1 has
a BSW sampling resisitance of 2−16 due to the poor choice of the clocking taps,
which makes the register bits that affect the clock control and those affecting
the keystream bits unrelated for about 16 clock cycles, so the adversary can
independently choose them. This technique can be transformed as follows when
only considering the subset of the full internal state.

Definition 5. For a specified cipher such as A5/1, let z = (z0, z1, · · · , zl−1) be
the keystream prefix whose restricted internal state is x = (xi0 , xi1 , · · · , xin−1

),
if l bits in x could be derived explicitly by z and the other bits in x, then l is the
restricted BSW sampling resistance corresponding to (x, z).
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Definition 4 is generalized in [16] to deal with the restricted internal states, as
described in Definition 5. Now we only use very short keystream prefix once a
time, e.g., l = 2 bits in a fast near collision attack, the time complexity to fulfill
the enumeration step becomes negligible compared to the other procedures of
the attack.

Let ∅ be the empty set, the partition of the full internal state into the CP
and RP parts is formally introduced in the following definition.

Definition 6. For a specified cipher such as A5/1, the subset x∗ of the full
internal state xfull that is crucial for the security of the primitive under our
framework is the CP part, the rest of the internal state x̄∗, where x∗ ∩ x̄∗ = ∅
and x∗ ∪ x̄∗ = xfull is the RP part.

Note that it is the freedom of the adversary to determine how to choose the
CP part of the internal state. Usually, the CP part is selected in such a way
that once retrieved, the rest internal state named RP could be relatively easy
to restore, provided the corresponding keystream segment. The partition of CP
and RP may be non-unique in a fast near collision attack, we do not exclude
other possible choices.

Now we come to the theoretical foundation of a fast near collision attack.
Let GF(2) be the binary field and its n-dimensional vector space is denoted by
GF(2)n. First comes the definition of d-near-collision in [15, 16].

Definition 7. Two bit strings s1 ∈ GF(2)n and s2 ∈ GF(2)n are d-near-
collision, if wH(s1 ⊕ s2) ≤ d, where wH(·) is the Hamming weight of the input.

The basic near collision lemma is as follows, as stated in [16].

Lemma 1. Let A and B be two random subsets of GF(2)n and D is a condition
set, then there exist a pair (a, b) ∈ A × B satisfying one of the conditions in D
if

|A| · |B| ≥ c · 2n

|D|
holds, where |A|, |B| and |D| are the cardinalities of sets A, B and D respectively;
c is the constant that determines the actual existence probability of the good pair
(a, b). In particular, if D = {∆x ∈ GF(2)n|wH(∆x) ≤ d}, then |D| = v(n, d) =∑d
i=0

(
n
i

)
is the total number of ISDs with wH(∆x) ≤ d and (a, b) ∈ A×B is a

d-near-collision pair.

Lemma 1 has a very large connotation in the sense that it does not restrict
what kind of condition is defined in D and has nothing to do with any secret
information. The only premise is the randomness of the two involved sets. As in
[16], we have the following statements as the corollary of Lemma 1.

Corollary 1. For a specified cipher such as A5/1 and a constant c, if we choose
|A| = 1 and |B| = c · 2n

|D| with A and B being the n-bit restricted internal states

associated with a l-bit keystream prefix, and D = {∆x ∈ GF(2)n|wH(∆x) ≤ d},
then there exists an element bi ∈ B such that the pair (a, bi) with the unique
element a ∈ A forms a d-near collision pair with a probability dependent on c.
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Corollary 1 implies that we can carefully choose the constant c and the parameter
d to control the existence probability of the desirably good near collision pair.

3.1 The Fast Near Collision Attack

At Eurocrypt 2018, a new cryptanalytic method called fast near collision attack
was introduced in [16] to analyze modern stream ciphers with a large internal s-
tate. The idea is to combine a near collision property with the divide-and-conquer
strategy to restore several partial internal states first, merge the recovered partial
states together according to the concrete internal structure and finally recover
the full large internal state based on the merged part.

While the original near collision attack in [15] tried to collect two keystream
vector sets and to identify a near collision in the whole internal state at different
time instants, a fast near collision attack only targets several well-chosen partial
restricted internal states based on the refined self-contained method first, whose
idea is depicted in Figure.2. The observation here is that the adversary could
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z  ́ = z  ksd ?  
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Fig. 2. The idea of the refined self contained method.

simply collect only one keystream prefix set A and virtualize the other set B
by directly computing it by himself/herself, i.e., B is not captured. Since we are
playing with the internal states directly, the adversary could randomly produce
the internal state x so that it will have the keystream prefix z = prefix. As stat-
ed before, the premise in Lemma 1 is just the randomness of the two sets A and
B, it does not restrict the way how the adversary gets them. Thus, the adversary
could generate one keystream prefix set by himself/herself without knowing any
secret key. Given the pre-computed table T mapping from a specified ksd to all
the possible ISDs, each partner state x′ = x ⊕ ∆x will be checked and stored
in the list L only if it would generate z′ = z ⊕ ksd. The following Algorithm a
shows this technique in the general form, i.e., it could deal with both the full
and the restricted internal state cases. This method will be integrated into the
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A5/1 setting with the corresponding chosen parameters and formally introduced
in section 4.4.

Algorithm a The refined self-contained method in general [10, 16]

1: for each prefix in A do
2: Let i = 0
3: while i ≤ c · 2n/|T | do
4: randomly generate a new (full or restricted) internal state x
5: such that x produces z = prefix

6: for each ∆x in |T| do
7: if x′ = x⊕∆x generates z′ = prefix⊕ ksd then
8: store x′ into the list L indexed by prefix

9: i = i+ 1
10: Output: The list L

In general, there are two phases in a fast near collision attack: the offline and
online phases. The pre-computation phase is quite efficient due to the divide-
and-conquer strategy, in which the adversary tries to construct some relatively
small tables, instead of one large table, mapping from a fixed ksd to all the
possible ISDs of the corresponding restricted internal state. Now the adversary
does not need to exhaustively search through all the possible ISDs over the full
internal state; instead, he/she just search through all the possible ISDs over
a specified restricted internal state associated with a given keystream prefix,
which could be much smaller than the whole internal state. In the online phase,
the adversary uses the above self-contained method to get a list of the candidates
of the targeted restricted internal state. There is a distilling procedure afterwards
to get a smaller list of the candidates with a higher existence probability of the
correct partial internal state, which consists of some set intersection and union
operations with carefully selected parameters. Then merge the restored restricted
internal states together to cover the chosen CP portion of the full internal state,
which is used later as the starting point for the full recovery of the internal state.

We will go into the details of the refined self-contained method, the distilling
and merge procedures, and the final retrieval of the targeted internal state in
the context of A5/1 in the following sections.

4 Our New Attack

In this section, we will present our new attack against A5/1 in a step-by-step
manner following the above cryptanalytic principles.

4.1 A General Description of the Attack

We first present a high-level overview of our attack. As stated in section 3, the
goal is to first recover the CP part of the internal state, and then the RP part
at a fixed time instance which is consistent with the captured keystream.
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The main idea is as follows. In A5/1, the size of the internal state is only 64
bits, thus in the assumed fast near collision attack, if we target a well-chosen CP
part of the internal state, the pre-computation and the memory complexities will
be considerably reduced compared to the previous best attacks. What we need
to do is just to prepare the partial differential tables which record the mappings
from the l-bit KSDs to all the possible ISDs of the restricted internal state with
the sorted occurring probabilities. In the online phase, we exploit the special
internal structure of A5/1 to partition the 64-bit internal state into the CP and
the RP part, and its irregular clocking mechanism to launch the concrete fast
near collision attack against it. Formally, a high-level description of our attack
is depicted in Algorithm 1.

Algorithm 1 Fast near collision attack on A5/1

Parameters: l, α, γ
Offline: Prepare the tables T[ksd, prefix]
1: for each possible value of (ksd, prefix) do
2: use the method in section 4.3 to construct T[ksd, prefix]

Input: A keystream segment z = (z0, z1, . . . , zγ−1)
Online: Recover the full internal state matching with z
3: Divide z into α overlapping prefixes zi (0 ≤ i ≤ α− 1) and a suffix zµ
4: for i = 0 to α− 1 do
5: derive the partial state list Li for zi in section 4.4 and 4.5
6: Merge Lis to get a candidate list for the CP part in section 4.6
7: Recover the RP in section 4.7 and check the consistency with zµ

In the following, we will embed Algorithm 1 into the concrete attack scenario
of A5/1 to demonstrate the attack in details.

4.2 Basic Facts of A5/1

As described in section 2, A5/1 adopts the stop/go clocking fashion according
to a majority function defined over the 3 taps from R1, R2 and R3, respectively.
Thus, for one keystream bit zi, it actually depends on 9 internal state bits: the 2
leftmost bits from each register, i.e., R1[18], R1[17], R2[21], R2[20], R3[22] and
R3[21], and the three clock control bits R1[8], R2[10] and R3[10].

Further, as discussed in section 3.1, the adversary needs to randomly gen-
erate the keystream prefix without knowing the secret key in a fast near col-
lision attack. In this case, we could use either the oracle which generates the
corresponding keystream prefix directly or the following Algebraic Norm Form
(ANF) of zi, which could be verified by enumerating all the possible values of
x = (x0, x1, x2, . . . , x8):

f(x) = x3 + x4 + x5 + x0x6 + x3x6 + x1x7 + x4x7 + x2x8 + x5x8

+ x0x6x7 + x1x6x7 + x2x6x7 + x3x6x7 + x4x6x7 + x5x6x7

+ x0x6x8 + x1x6x8 + x2x6x8 + x3x6x8 + x4x6x8 + x5x6x8

+ x0x7x8 + x1x7x8 + x2x7x8 + x3x7x8 + x4x7x8 + x5x7x8,
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where x0=R1[18], x1=R2[21], x2=R3[22], x3=R1[17], x4=R2[20], x5=R3[21],
x6=R1[8], x7=R2[10] and x8=R3[10]. As in [16], in order to have an efficient
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Fig. 3. The 15-bit restricted internal state that a 2-bit keystream prefix depends on.

fast near collision attack, we have also tried to use the 2-bit keystream prefix
to recover the corresponding restricted internal state, which contains 6 more
variables than the single bit case, as depicted in Figure 3. Due to the action
of the majority function, there are now 15 input variables involved for a 2-bit
keystream prefix. Precisely, in addition to the above 9 state bits in the ANF
of zi, we have x9=R1[16], x10=R2[19], x11=R3[20], x12=R1[7], x13=R2[9] and
x14=R3[9]. For a 2-bit keystream prefix, we just directly exploit the keystream
generation oracle to generate it in the refined self-contained method.

4.3 Pre-computing the Partial Differential Tables

Now we come to the offline phase of Algorithm 1. Since there are only n = 15
or n = 9 variables involved for the 2-bit keystream prefix or 1-bit keystream,
given a small value of d, we could fully enumerate all the possible values of
the corresponding restricted internal state and all the v(n, d) ISDs to accurately
compute the occurring probabilities of each ISD.

Algorithm 2 The offline algorithm

Parameters: n, d and ksd, prefix
1: for each possible value of (ksd, prefix) do
2: Initialize the table T[ksd, prefix]
3: for each of the v(n, d) ∆x do
4: Initialize t = 0 and cc = 0
5: for each i ∈ {0, 1, · · · , 2n − 1} do
6: check if x = i generates the prefix

7: if yes then
8: t = t+ 1
9: generate the partial internal state x′ = x⊕∆x
10: compute the prefix z′ generated by x′

11: if z′ = prefix⊕ ksd then store ∆x and cc = cc+ 1
12: Sort the ISDs according to the occurring rates cc/t
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Algorithm 2 describes how to generate a series of pre-computed tables, which
record the mappings from a specified ksd to all the possible ISDs ∆x, each with
a sorted occurring probability. The core point here is that the only premise in
Lemma 1, i.e., the randomness, enables the adversary to freely compute the
second set B by himself/herself. Thus, the adversary would know the matching
between the partial internal state x′ and the output prefix z′ = prefix⊕ ksd.

Table 1. The complete differential table when ksd = 0x3 and d = 2

ISD Prob. ISD Prob. ISD Prob. ISD Prob.

(x3, x9) 0.75 (x6, x11) 0.25 (x6,−) 0.25 (x0, x5) 0.125
(x5, x11) 0.75 (x2, x6) 0.25 (x1, x7) 0.25 (x0, x4) 0.125
(x4, x10) 0.75 (x6, x13) 0.25 (x7,−) 0.25 (x1, x14) 0.125
(x0, x3) 0.4375 (x6, x14) 0.25 (x8,−) 0.25 (x1, x11) 0.125
(x2, x5) 0.4375 (x2, x7) 0.25 (x6, x12) 0.234375 (x2, x4) 0.125
(x1, x4) 0.4375 (x7, x9) 0.25 (x7, x8) 0.234375 (x2, x12) 0.125
(x3, x12) 0.375 (x2, x8) 0.25 (x6, x8) 0.234375 (x0, x11) 0.125
(x5, x14) 0.375 (x7, x10) 0.25 (x8, x14) 0.234375 (x2, x13) 0.125
(x4, x13) 0.375 (x0, x7) 0.25 (x7, x13) 0.234375 (x1, x12) 0.125
(x3, x14) 0.3125 (x7, x11) 0.25 (x6, x7) 0.234375 (x1, x5) 0.125
(x4, x9) 0.3125 (x1, x6) 0.25 (x4, x8) 0.21875 (x2, x3) 0.125
(x4, x12) 0.3125 (x7, x12) 0.25 (x3, x7) 0.21875 (x0, x13) 0.125
(x4, x14) 0.3125 (x1, x8) 0.25 (x5, x6) 0.21875 (x1, x2) 0.125
(x5, x9) 0.3125 (x7, x14) 0.25 (x5, x7) 0.21875 (x0, x14) 0.125
(x3, x11) 0.3125 (x6, x10) 0.25 (x3, x8) 0.21875 (x0, x1) 0.125
(x5, x10) 0.3125 (x8, x9) 0.25 (x4, x6) 0.21875 (x1, x10) 0.0625
(x3, x13) 0.3125 (x4, x5) 0.25 (x3,−) 0.1875 (x0, x12) 0.0625
(x5, x12) 0.3125 (x8, x10) 0.25 (x4,−) 0.1875 (x2, x11) 0.0625
(x3, x10) 0.3125 (x0, x6) 0.25 (x5,−) 0.1875 (x1,−) 0.0625
(x5, x13) 0.3125 (x8, x11) 0.25 (x0, x10) 0.125 (x2, x14) 0.0625
(x4, x11) 0.3125 (x3, x5) 0.25 (x2, x9) 0.125 (x1, x13) 0.0625
(x3, x6) 0.28125 (x8, x12) 0.25 (x1, x9) 0.125 (x0, x9) 0.0625
(x4, x7) 0.28125 (x6, x9) 0.25 (x2, x10) 0.125 (x2,−) 0.0625
(x5, x8) 0.28125 (x8, x13) 0.25 (x1, x3) 0.125 (x0,−) 0.0625
(x0, x8) 0.25 (x3, x4) 0.25 (x0, x2) 0.125

Now we choose d = 2 in Algorithm 2, i.e., we consider the ISDs of Hamming
weight less than or equal to 2-bit, there are v(15, 2) =

∑2
i=0

(
15
i

)
= 121 ISDs for

the 15-bit restricted internal state under consideration. For each ISD ∆x satis-
fying wH(∆x) ≤ d, we enumerate all the possible values of the 15-bit restricted
internal states x. If x can generate the considered prefix, we xor it with the
∆x and save ∆x into the pre-computed table if and only if the xored state x′

could generate prefix ⊕ ksd. In Algorithm 2, t is the number of times that x
generates the prefix, and cc is the number of occurrences of the event that
z′ = prefix ⊕ ksd under the condition that x generates the prefix. Finally,
the table is sorted according to the occurring probabilities of each ISD. We have
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computed T[ksd, prefix] for each combination of (ksd, prefix) when l = 1 and
2 with a low complexity of 22l · v(n, d) · 2n · l. We list the complete table when
ksd = 0x3 with an arbitrary 2-bit keystream prefix when d = 2 in Table 1.

Note that in Table 1, (xi, xj) for 0 ≤ i, j ≤ 14 means the 2-bit differences are
at the positions xi and xj in Figure 3, respectively. For (xi,−) with 0 ≤ i ≤ 14, it
means the 1-bit difference is at the position xi only. Given all the pre-computed
tables T[ksd, prefix], it is easy to see that for a fixed ksd, the average reduction
effect of each table indexed by prefix is almost the same, which is measured by
the diversified probability defined below and in [16].

Definition 8. The diversified probability is defined as Pdivs =
∑
∆x∈T Pr∆x
|T | ,

where ∆x ranges over all the |T | possible ISDs in the table T[ksd,prefix].

This probability measures the average reducing effect of T[ksd, prefix] so that
for a random restricted internal state x generating prefix, if the bits in x are
flipped according to a ∆x ∈ T to get x′, then with the probability Pdivs, x′ could
produce prefix⊕ ksd. The observation that Pdivs is mainly determined by ksd

further reduces the memory requirement of the pre-computation. Thus, given
the fixed ksd=0x3, Table 1 actually works for an arbitrary keystream prefix.
This property is crucial for the partial restricted state recovery, since the recovery
procedure will be the same even if the keystream prefix under investigation has
varied along the captured keystream, which is shown in Algorithm 3 in section
4.4. It is interesting to see that this small differential table only has 99 < 121
possible ISDs when ksd = 0x3 and d = 2. Note that in the previous TMD trade-
off attacks, the adversary is expected to search through all the possible ISDs over
the full internal state, which will result in a huge pre-computation complexity
and memory consumption. Now we can just try the 99 possible ISDs over the
15-bit restricted internal state in the online phase. Further, the occurring prob-
abilities of the ISDs in Table 1 ranges from 0.75 to 0.0625 and their distribution
is heavily biased. We have tested all the cases for l = 1 and l = 2 with 2 ≤ d ≤ 4
to find the optimal choice of the pre-computed table T[ksd, prefix]. The results
are listed in Table 2.

Table 2 clearly shows that for the case l = 2 and n = 15, we have Pdivs =
0.234848, which is the minimum value among all the empirical results. Besides,
there are some more reasons for choosing this configuration, which are briefly
discussed below. The cost of merging the candidates list in the following section
4.6 accounts for some proportion of our attack, thus we expect to have less
candidates for the involved restricted internal state. Note that the candidates
are generated by xoring all the possible ISDs in the table T[ksd, prefix] in the
refined self-contained method, thus we prefer a small number of possible ISDs
in the selected pre-computed table. Further, we expect the average reduction
effect, measured by Pdivs, to be as low as possible for the efficiency reasons.

In Table 2, given 2 ≤ d ≤ 4 and 0 ≤ ksd ≤ 3, we have enumerated all
the ISDs ∆x such that wH(∆x) ≤ d. We have tested the 29 restricted internal
states for the 1-bit keystream case and the 215 restricted internal states for the
2-bit keystream prefix case, respectively. The experimental results in Table 2
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Table 2. The empirical results for l = 1 and l = 2 with 2 ≤ d ≤ 4

l d ksd |T| Pdivs l d ksd |T| Pdivs

1 2 0x0 43 0.511628 2 2 0x0 118 0.313559
0x1 45 0.533333 0x1 96 0.289063
− − − 0x2 111 0.297297
− − − 0x3 99 0.234848

3 0x0 127 0.507874 3 0x0 555 0.269876
0x1 128 0.511719 0x1 547 0.272795
− − − 0x2 521 0.269494
− − − 0x3 533 0.256273

4 0x0 253 0.509881 4 0x0 1875 0.258133
0x1 251 0.505976 0x1 1864 0.261266
− − − 0x2 1853 0.261603
− − − 0x3 1874 0.258938

imply that it seems to be a good choice to restore the involved 15-bit restricted
internal state for l = 2 with (ksd, d) = (0x3, 2). There are only 99 possible ISDs
involved in the corresponding pre-computed table and the diversified probability
is 0.234848. Note that each ISD in the table has 15 bits and can be stored in
2 bytes, which means that this table only requires about 198 bytes memory
complexity.

4.4 Determining the Candidates List of the Involved Restricted
Internal State

Now we are ready to enter the online phase of Algorithm 1, whose aim is to
recover the restricted internal states for the targeted 2-bit keystream prefixes by
using the pre-computed tables prepared in section 4.3.

Algorithm 3 The refined self-contained method in online phase

Parameters: l = 2, n = 15, d = 2 and ksd = 0x3

iter num = 4 · 215/|T[ksd, prefix]| = 4 · 215/99
1: Initialize i = 0
2: while i ≤ iter num do
3: randomly generate a new restricted internal state x
4: such that x produces z = prefix

5: for each of the |T| possible ISDs ∆x do
6: if x′ = x⊕∆x generates z′ = prefix⊕ ksd then
7: store x′ into the list L
8: i = i+ 1
9: Output: The list L

According to Corollary 1, given the pre-computed table T[ksd, prefix], let A
with |A| = 1 be the 15-bit restricted internal state associated with a 2-bit

keystream prefix and B with |B| = c · 215

|T | be the virtualized 15-bit state in

the refined self-contained method, then there should exist an element bi ∈ B
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such that the pair (a, bi) with the unique element a ∈ A forms a d-near collision
pair with a probability dependent on c. This is the theoretical basis of Algorithm
3, where c = 4.

Recall that in the previous near collision attack in [15], the adversary needs
to collect two random keystream vector sets, A and B, and tries to identify a
d-near-collision state pair at two different time instants from the corresponding
keystream segments. In this process, a strong wrong-candidate filter with a low
complexity is needed, while in its form in [15], the reduction effect is not as
good as expected. In [10], the self-contained method is introduced as a generic
approach to obtain the candidates of the involved internal state. As briefly men-
tioned in section 3.1, this method only requires one keystream prefix set, and
allows the adversary to freely compute the other one based on the pre-computed
table. Precisely, let A be the collected keystream prefix set, the adversary just
randomly generates the other set B by himself/herself. For x′ ∈ A and x ∈ B, if
the corresponding keystream prefixes satisfying z′⊕ z = ksd with ksd being the
concrete value of the considered KSD, since the adversary knows the matching
between the internal state x and its corresponding output z, he/she could re-
store the targeted internal state x′ by trying x′ = x ⊕∆x. Thus the adversary
could generate the candidates list of the targeted restricted internal state x′ in
this way. Taking into account the divide-and-conquer strategy on the partition
of the full internal state, we have Algorithm 3.

Note that Steps 3 and 4 in Algorithm 3 can be fulfilled by a method similar
to the BSW sampling enumeration technique in [5], but with a very small l =
2. Besides, Corollary 1 further implies that there is an inherent relationship
between c, d and the existence probability of one good pair. For A5/1, we list
this correspondence when 2-bit keystream prefix is considered with d = 2 in
Table 3, which is achieved from 106 times repetition of empirical simulations.
We have tried all the meaningful combinations of parameter configuration from
the practical implementation point of view, and determined to choose c = 4 in
our attack. Note that in this case, when l = 2 and d = 2, we have n = 15 and
v(n, d) = 121 and the existence probability in one invoking of the refined self-
contained method is 0.9835. As can be seen in the following sections, this choice
provides a very good balance between the complexity aspects and the success
probability.

Table 3. The correspondence between the constant c, the list size and the existence
probability of one good pair for A5/1 when d = 2

c List size r Prob.

2 6903 0.8475
3 7654 0.9510
4 7963 0.9835

Further, Let us have a closer look at Algorithm 3 and Table 3 together. There
is a magic fact here that though the adversary has iterated 4·215/|T[ksd, prefix]|
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= 4 · 215/99
.
= 1324 times and there are 99 ISDs to be xored and checked the

consistency with z′ in each iteration in Algorithm 3, the number of hit values

stored in the list L is much less than 215

22 = 8192 with a high existence probability
of the correct candidate being in L, as can be seen from Table 3. All these facts
can be well explained through the following Theorem 1 and are illustrated in
Example 1.

Theorem 1. ([16]) Let b be the number of all the values that can be hit and
a = c · 2n

|D| · |T | · Pdivs, then after one invocation of the refined self-contained

method, the expectation of the final number r of hitting values in the candidates
list is

E[r] =

a∑
r=1

(
b
r

)
· r! ·

{
a
r

}
· r

ba
, (1)

where
{
a
r

}
is the Stirling number of the second kind,

(
b
r

)
is the binomial coefficient

and r! is the factorial.

Example 1. Let c = 4, from Eq.(1), the mathematical expectation of the list

size can be calculated as E[r] =
∑a
r=1

(br)·r!·{ar}·r
ba

.
= 212.96

.
= 7963, where l = 2,

n = 15, b = 215

22 = 8192, a = 4 · 2
15

|T | · |T | · Pdivs = 4 · 215 · Pdivs = 217 · 0.234848 =

30782. Here Pdivs = 0.234848 is the diversified probability of the selected pre-
computation table T[ksd, prefix] defined in Definition 8 in section 4.3. ut

4.5 Distilling Phase: Enhancing the Existence Probability of the
Correct Candidate

In the real online attack, the adversary usually wants to have a candidate list
of smaller size, while at the same time still containing the correct restricted
internal state with a reasonably good probability. That is, we want to efficiently
filter out the wrong candidates of the involved restricted internal state got from
Algorithm 3. Note that due to the partition of the full internal state, now we
cannot run A5/1 from the involved partial state forwards and backwards to
check the consistency with the available keystream. This is the motivation of the
distilling phase in this section, i.e., we need an efficient wrong-candidate filter
without knowing the full internal state. For consistency with the work in [16],
we follow the conventional notations and descriptions in this domain hereafter.

Algorithm 4 The Distilling Procedure 1: Intersection [16]

Parameters: L = (L1, . . . , Lβ): β candidate lists of
the targeted partial state from Algorithm 3

1: for i = 1 to β − 1 do
2: Li+1 ← Li ∩ Li+1

To improve the hitting rate of the correct restricted internal state while keep-
ing a smaller list size, we continuously modify the involved candidate lists got
from Algorithm 3 by set intersection and union, depicted in Algorithm 4 and
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5, respectively. Note that the candidates in list L are generated randomly in
Algorithm 3 with the following property: the correct one has an existence prob-
ability determined by the constant c, which is usually higher than the random
wrong ones, which appear in the list randomly. Some candidate of the restricted
internal state may be hit several times by xoring different ISD ∆x with different
values of x in Algorithm 3.

Example 2. Let x = 111000010111110 be the correct restricted internal state,
where the leftmost bit is x0 and the rightmost bit x14. It is observed that x is
hit 30 times in one invocation of Algorithm 3 with the following ISDs: (x5,−),
(x3, x4), (x5,−), (x5, x13), (x3, x4), (x1, x7), (x7, x11), (x1, x7), (x1, x9), (x2, x7),
(x2, x5), (x2, x7), (x2, x6), (x6, x8), (x5, x14), (x4, x8), (x6, x8), (x7, x12), (x1, x9),
(x7, x11), (x5, x14), (x5, x13), (x7, −), (x0, x5), (x5, x10), (x1, x14), (x1, x9), (x2,
x6), (x4, x8), (x3, x14). ut
Thus, it is natural to intersect the resultant lists from different independent
invokes of Algorithm 3 to reduce the number of candidates, while still containing
the correct one with a reasonable probability. During the intersection process,
many wrong candidates can be removed from the list. Algorithm 4 depicts this
distilling process. As proved in [16], the expected number of candidates after

β − 1 steps of intersection can be estimated by |L1| · (E[r]
b )β−1, where |L1| is

the number of candidates in the first generated list L1, b and E[r] are defined
and listed in Theorem 1. We have found in practical experiments that β = 6 is a
good choice for the reduction purpose when attacking A5/1, with an appropriate
choice of the following parameter γ in Algorithm 5 at the same time.

On the other hand, we have also observed in the experiments that for a single
invoking of Algorithm 3, there is some missing probability of the event that the
correct partial state is not in the candidate list. If such an event happens, we may
miss the correct partial state through the intersection process. This fact indicates
that we should take some action to remedy such a situation and the existence
probability of the correct restricted internal state in this case. The following
Algorithm 5 resolves this problem by the set union operation. Precisely, after
getting some intersected lists, we adopt Algorithm 5 to generate a candidate
list for the considered restricted internal state. The union operation can well
mitigate the influence of the missing event in Algorithm 3, i.e., as long as the
correct restricted internal state survives in one of the γ lists obtained from
Algorithm 4, it will be in the final list after Algorithm 5. Once Algorithm 5
is executed, we can get a candidate list for the n-bit restricted internal state
associated with the l-bit keystream prefix.

Algorithm 5 The distilling procedure 2: Union [16]

Parameters: U = (U1, . . . , Uγ): γ lists
obtained from Algorithm 4

1: for i = 1 to γ − 1 do
2: Ui+1 ← Ui ∪ Ui+1

Further, it is also proved in [16] that after the preparation of γ resultant lists
from Algorithm 4, the expected number of candidates |Fi+1| after i steps of
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union can be recursively derived as

|Fi+1| = |Fi|+ |Ui+1| −
|Ui+1|∑
j=0

(|Fi|
j

)
·
(|Fi+1|−|Fi|
|Ui+1|−j

)(|Fi+1|
|Ui+1|

) · j , 1 ≤ i ≤ γ − 1, (2)

where Fi is the resultant list after i − 1 steps of union. Eq.(2) is derived from
the fact that |Fi+1| = |Fi|+ |Ui+1| − |Fi ∩Ui+1| and the |Fi ∩Ui+1| term follows
the hypergeometric distribution. Finally, the following corollary provides the
existence probability of the correct restricted internal state after Algorithm 5.

Corollary 2. Let PrAlg5 be the probability that the correct restricted internal
state will exist in the final list generated by Algorithm 5, we have PrAlg5 =
1 − (1 − (p1)β)γ , where p1 is the existence probability of the correct restricted
internal state in Table 3.

Proof. It suffices to consider the opposite event that the correct restricted inter-
nal state does not exist after Algorithm 5, which means that it does not exist
in any of the γ lists, each going through β − 1 intersections. This completes the
proof. ut

In order to have a good existence probability of the correct restricted internal
state with a smaller size of candidate list, we have tried β = {2, 3, 4, 5, 6, 7, 8, 9}
and γ = {2, 3, 4, 5} in the experiments to identify the optimal parameter config-
uration for attacking A5/1. Here we only present some of the simulation results
in Table 4.

Table 4. Some results for different parameter configurations with c = 4

γ β |U | Prob.

2 3 8065 0.9940
2 4 7989 0.9927
2 5 7934 0.9912
2 6 7835 0.9903

From this table, the configuration that β = 6 and γ = 2 is selected to be
used in our attack against A5/1. The success probability can be calculated as
PrAlg5 = 1 − (1 − 0.9835β)γ = 0.9909 according to Corollary 2, which is quite
close to the result 0.9903 obtained from practical experiments, while the expected
list size should be 212.95 in theory according to the Eq.(2), which is also very
close to the simulation result 7835

.
= 212.94. The following Lemma is the basis

of our non-randomness observation after Algorithm 5.

Lemma 2. (Chebyshev’s Inequality) Let X be a random variable with the finite
expected value µ and finite non-zero variance σ2. Then for any real number
k > 0, we have Pr(|X − µ| ≥ kσ) ≤ 1

k2 and only the case k > 1 is useful.
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Based on Chebyshev’s Inequality, we have the following statements on the non-
randomness observation of the resultant candidate list after Algorithm 5.

Theorem 2. Let β = 6 and γ = 2 in Algorithm 4 and 5, if c = 4, ksd = 0x3,
and d = 2 for a 2-bit keystream prefix, then the candidates list generated after
Algorithm 5 has an averaged size of 7835 with the existence probability 0.9903
for the correct candidate being in the list, which is a non-random case.

Proof. Here we follow the classic way of distinguishing two distributions in theory
to show the non-randomness. Below we will investigate the distribution in the
pure random case and that obtained in our attack respectively.

For a specified 2-bit keystream prefix, the candidate space has a size of 215

22 =
213 = 8192 in the pure random case. The probability that a candidate 15-bit
restricted internal state will generate the specified keystream prefix is p = 1

4 and
q = 1 − p = 3

4 otherwise. We regard the list size as a sum of random variables
which follow the binomial distribution with the corresponding parameters in
each case and approximate it with the normal distribution. Then the standard
deviation in the pure random case is σ =

√
213 · p · q ≈ 39.19. Further, the

expectation of the list size in the pure random case with the existence probability
0.9903 should be µunion = 213 · 0.9903 ≈ 8113.

On the other side, in our attack against A5/1 after Algorithm 5, the averaged
list size is µ′union = 7835 with the existence probability 0.9903. Then according
to the Chebyshev’s inequality in Lemma 2, we can compute the coefficient k as

k =
|µunion − µ′union|

σ
≈ 8113− 7835

39.19
≈ 7.09.

Thus, we can conclude that the resultant list size in our attack is non-random
with a probability greater than 99%. This completes the proof. ut

This non-random phenomenon is the basis of our new attack against A5/1. Note
that the probability in theory 0.9909 and empirical rate 0.9903 from Table 4 are
very close to each other, we have chosen to use the ’worse’ value 0.9903 in the
proof of Theorem 2 to demonstrate the strong validity of our attack.

4.6 Merging Phase: Restoring the CP Part of the Internal State

Now we show how to restore the CP part of the full internal state through the
merging phase in Algorithm 1. The main difference between A5/1 and the target
Grain v1 in [16] is that A5/1 executes according to the specified irregular clocking
mechanism in a stop/go manner, while Grain v1 runs regularly. Though it is
commonly believed that the irregular clocking mechanism improves the security
of the primitive by introducing certain implicit non-linearity, we have found in
the mounted fast near collision attack that the stop/go irregular clocking in
A5/1 actually facilitates the list merging procedure in the attack. Let us first
introduce a notion that is used in our attack.

18



Definition 9. According to the stop/go clocking rule in A5/1, the intersection
set of the two partial states at the time instants t and t+1 is called the check-state
in the merging phase.

From the irregular clocking rule in A5/1, the check-state in the merging phase
has the following property.

Proposition 1. The check-state in the merging phase has a cardinality of 9 if
all the three registers are clocked once and has a cardinality of 11 if two registers
are clocked once and one register stops at the corresponding time instant.

Proof. There are 8 possible values for the three clock control bits, R1[8], R2[10]
and R3[10]. It suffices to check the 8 cases one-by-one to conclude that only when
the three bits take the value pattern (0, 0, 0) or (1, 1, 1), there will be 9 bits in
the check-state as if all the registers are clocked regularly; otherwise there is one
register unchanged which will offer 5 bits, while each of the two clocked registers
will offer 3 bits. This completes the proof. ut

Example 3. Let 111011011010010 be the starting restricted internal state, where
the leftmost bit is x0 and the rightmost bit is x14. From Figure 3, consider the
following state transmission chain 111011011010010 → 111010010000000 →
010010010100101 → 010110111100101 → 110100101010001 to see the valid-
ity of the statements in Proposition 1. For example, when 111010010000000

→ 010010010100101, R2 stops with the clock control pattern 010, thus the 5-
bit state 11010 in R2 remains unchanged. ut

Note that the event that not all the three registers move simultaneously happens
with a probability of 0.75, in which case two more overlapping bits are gained
for free from Proposition 1. This implies that in most cases, the check-state in
the merging phase has an reduction effect which is unexpected from the crypt-
analyst’s point of view. Based on the check-state, we have Algorithm 6 for the
merging phase, whose basic idea is to combine the candidates which are coinci-
dent on the identified check-state according to the clock control bits, and finally
derive the candidates for the CP part.

Algorithm 6 Merging the lists from Algorithm 5 to restore CP

Parameters: Lzizi+1···zi+m−1 : one list from Algorithm 5
Lzi+1zi+2···zi+m : the other list to be merged
Lzizi+1···zi+m−1zi+m : the resultant list

1: Find the clock control bits set J between the two lists
2: for each value pattern in J do
3: Form the subgroup of Lzi···zi+m−1 according to the pattern
4: Sort the subgroup according to the check-state values
5: for each value pattern in J do
6: Form the subgroup of Lzi+1···zi+m according to the pattern
7: Sort the subgroup according to the check-state values
8: for each pattern in J do
9: for each value pattern of the corresponding check-state do
10: Merge each pair of elements and save the result into Lzi···zi+m
11: Output: Lzizi+1···zi+m−1zi+m
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Algorithm 6 actually split the first list Lzi···zi+m−1
into many sublists accord-

ing to the value pattern of the clock control bits and the value of the corre-
sponding check-state under each clock control pattern. Similarly, the second list
Lzi+1···zi+m will be regrouped into sublists according to the value of the over-
lapping bits determined by each pattern of clock control bits. Then, select an
element from each sublist with the same check-state pattern under the same
clock control pattern to form a candidate of the merged state.

In our attack, we first generate 4 candidate lists1, Lz0z1 , Lz1z2 , Lz2z3 , Lz3z4 ,
for the corresponding restricted internal states of the 5-bit keystream prefix
z = (z0, z1, z2, z3, z4), after that we run Algorithm 6 to merge the involved
restricted internal states. The merged candidate list for the CP part of the
internal state is used as the starting point for the following retrieval of the RP
part in a guess-and-determine like manner. In our experiments, each list Lzizi+1

for 0 ≤ i ≤ 3 contains around 7835 candidates on average, thus storing the four
lists costs about 7835·15·4

210·8 ≈ 58 KB. The whole list merging process is depicted in
Figure 4.

0 1
Lz z 1 2

Lz z 2 3
Lz z

3 4
Lz z

0 1 2
Lz z z 1 2 3

Lz z z 2 3 4
Lz z z

1 2 3 4
Lz z z z0 1 2 3

Lz z z z

0 1 2 3 4
Lz z z z z

Fig. 4. The list merging process.

Precisely, in order to take the full advantage of the list size reduction during
the merging process in Figure 4, we adopt the merging routine as follows: let the
input lists be denoted by Lz0z1 , Lz1z2 , Lz2z3 , Lz3z4 . We first merge every two con-
secutive candidate lists, and get the new candidate lists Lz0z1z2 , Lz1z2z3 , Lz2z3z4 .
Now the consecutive lists will have more overlapping state bits, and can further
reduce the memory complexity to a large extent. We repeat the similar proce-
dure to get Lz0z1z2z3 and Lz1z2z3z4 . Finally, we merge the last two candidate lists
to get the final list for the CP part of the internal state.

Before running the merging procedure, we have already generated 4 candidate
lists in the online phase from the 5-bit keystream prefix. The expected size of

1 Other choices are also possible, e.g., we can get the first 6 keystream bits to launch
the attack. For simplicity of description, we take the first 5 keystream bits here.
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the check-state between two consecutive lists at the most upper level in Figure
4 is 9 · 14 + 11 · 34 = 10.5 bits. The averaged size of the input list is 7835, so it
takes about

4 · 8 · 7835 + 3 · 212.3733 · 221

Ω
≈ 228.3

cipher ticks to fulfill the merging procedure, where Ω = 26.66 is the number
of CPU-cycles to generate 1 bit keystream in A5/1. The detailed computation
process of Ω is presented in section 5. The expected number of merged candi-
dates is 216.6, each candidate can be stored in 5 bytes at most, so the memory
requirement is 218.92 bytes, approximately 486 KB. Note that we usually need
to store 2 lists in memory when merging, thus the total memory cost is around
1 MB.

Note that we can recover the correct merged partial internal state if and
only if the two candidate lists contain the correct candidate associated with
their keystream prefixes. Taking into account the tree-like merging procedure in
Figure 4, the probability that the correct CP part will survive in the resultant list
is Prmerge = (0.9903)η = 0.9618 where η = 4 is the number of the candidate lists
Lzizi+1 . In other words, if we carry out the attack d 1

Prmerge
e ≈ 2 times, we are

expected to find the actual CP part of the internal state from the resultant list.
In our experiments, we have found that the probability p1 defined in Corollary
2 is not stable sometimes, thus we multiply d 1

Prmerge
e by a small constant λ = 4

to recover the actual CP with a high probability.

Remarks. From the A5/1 specification and Figure 3, for an i-bit keystream
prefix with i ≥ 2, the associated restricted internal state is of size 15 + 6(i− 2)
bits. That is, for a 2-bit keystream prefix, the restricted internal state has 15
bits; for a 3-bit keystream prefix, the restricted internal state has 15 + 6 = 21
bits; for a 4-bit keystream prefix, the restricted internal state has 21 + 6 = 27
bits and for a 5-bit keystream prefix, the restricted internal state has 27+6 = 33
bits. So far, we have already obtained a candidate list of the restricted internal
state of 33 bits associated with the first 5 keystream bits (z0, z1, z2, z3, z4) in
a probabilistic way. This is accomplished by independently treat with the 4
overlapping 2-bit keystream prefixes (zi, zi+1) for i = 0, 1, 2, 3. Precisely, for each
keystream prefix, we derive the corresponding candidate list by the method in
section 4.4 and 4.5. By carefully choosing the attack parameters β and γ, we can
guarantee that the corresponding correct restricted internal state for (zi, zi+1) is
indeed in the candidate list with a reasonably good probability. Then we combine
these 4 candidate lists together by the merging procedure in section 4.6 based
on the randomness and independence assumptions to have the larger partial
internal state corresponding to the first 5 keystream bits. Once the 4 correct
restricted internal states, corresponding to the 4 keystream prefixes (zi, zi+1)
for i = 0, 1, 2, 3, are restored successfully in each case, the merging procedure
will definitely retrieve the correct union larger state corresponding to the first 5
keystream bits with probability 1, in which process the merging operation will
also massacre lots of candidates when the two adjacent restricted internal states
have a number of overlapping bits.
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4.7 Restoring the RP Part of the Internal State

We have already derived the CP part of the internal state in A5/1 after the
merging phase, the RP part will be retrieved in this section. We decided to take
a dynamic guess-and-determine like method to restore the RP part, similar to
the approach in [9]. The difference is that in [9], all the possibilities of the guessed
part of the internal state are tried, while now we have already obtained some
subset of the CP part in the internal state without trying all the possibilities,
which will reduce the overall complexity to a large extent.

Let S(t) be the internal state of A5/1 at time t, then the state recovered
after the merging phase is a subset of S(100), while S(101) is the targeted
state. Since the clock control taps have already been recovered, it is easy to
get S(101) by clocking S(100) one step forwards. As analyzed in [9]2, the state-
transition function of A5/1 is not one-to-one and there are less than or equal to
5 · 261 ≈ 263.32 reachable internal states for S(101). Thus, we take 63.32 instead
of 64 to analyze the complexity after one step forwards, and the unreachable
states can be easily distinguished by a set of linear equations.
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Fig. 5. The CP and RP parts of the internal state.

Our attack have exploited 5 keystream bits with η = 4 so far, as shown in
section 4.6. Due to the irregular clocking rule in A5/1, each register moves 3

4 of
the time, which means that each register is expected to clock 5× 3

4 ≈ 4 times after
the merging phase. From each 2-bit keystream prefix, we can recover 15 bits of
the corresponding restricted internal state, of which 11 bits are overlapped by the
next restricted internal state with a probability of 3

4 , and 9 bits are overlapped
with a probability of 1

4 . Hence, there are around 15 + 3 · 6 = 33 known bits
after the merging phase, and the total entropy of the full internal state will be
reduced to 63.32− 33 = 30.32 bits on average, which is depicted in Figure 5.

2 Though the clock control taps defined in [9] are different from here, this issue does not
have any effect on the analysis of the state-transition properties under the condition
that min(ct1, ct2, ct3) ≥ 2.
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The dynamic guess-and-determine attack is as follows. Note that in Fig.1 and
Fig.5, the three registers are shifted towards the left direction and the newest
feedback bits are injected into the state at the rightmost cells. The adversary
could first guess y bits in each register from the first unknown clock control tap
on to the right direction. One can thus obtain 3y linearly independent equations
for the unknown bits in S(101) if y is a small integer, e.g., y = 4 as shown in the
register R1 in Fig.5 whose rightmost 4 cells are unknown. As in [9], the adversary
can get one linear equation for free due to the fact that S(101) is the targeted
state and A5/1 first makes the stop/go clocking when producing the keystream
bit. Corresponding to the directly guessed 3y clock control tap bits, there will
be some number of linear equations obtained from the generated keystream bits
for the adversary. Since on average each register clocks 3 times in 4 steps, the y
guessed bits in each register can determine about 4y

3 values of the clocking control
taps in the register under consideration. Thus, the attacker can obtain around
1 + 4y

3 additional linear equations derived from the keystream bits on S(101).
When y = 4, each equation contains at least two new unknown bits that never
appeared before, and these additional equations will be linearly independent to
each other accordingly. The additional equations are linearly independent to the
above 3y equations if and only if there is at least one bit not guessed in each
of them. This is true when y is a small integer, e.g., y = 4. On the other side,
if there are indeed some linear equations linearly dependent on the 3y single
variable equations, these equations can be used as the linear consistency test
of the guesses. Now there are around 3y + 1 + 4y

3 = 18.33 linearly independent
equations on average, and there are around τ = 30.32 − y = 12 unknown bits
which can be uniformly averaged among the three registers. Since there are
some number of candidates left for the CP part when we only exploit the first
5 keystream bits, we need some very efficient procedure for the recovery of RP
part. To fulfill this task, we then build a tree structure in the same manner
as in [9] to derive the unknown bits dynamically and sequentially. Precisely,
this tree structure sequentially record all the possibilities for the next coming
bits consistent with the linear equations derived from the keystream bits. In each
node of the tree, we store the next 3 clock taps of the three registers, representing
the clocking which are consistent with the 1 + 4y

3 linear equations. As a result
of the action of the majority function, there are 8 types of nodes, two of which
have 8 possible successors and six of which have 4 possible successors. Thus, each
node has 3

4 · 4 + 1
4 · 8 = 5 children in the tree on average. When checked with the

corresponding linear equations, this number can be reduced to 5· 12 = 2.5. Hence,
to retrieve the τ unknown bits, the length of the tree should be 4

3 ·
τ
3 on average,

and we have to check 2.5
4
3 ·
τ
3 ≈ 27.22 possibilities on average, instead of 2τ ≈ 212

possibilities under the independence assumption of the supercritical branching
process, analyzed in the Appendix of [9]. In summary, the initial state S(100)
can be restored with a low complexity as shown above, the same as the state
S(101). Once we get the candidates of the full state, we can run A5/1 forwards
for some ticks to check the consistency with the available keystream to decide
whether the recovered state is correct or not.
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5 Experimental Results

To check the validity and the actual performance of our attack, we have imple-
mented the crucial steps of the suggested attack on a single core of a PC, running
with Windows 7, Intel 3.4 GHz CPU and 16 GB RAM. In general, the exper-
imental results verified the correctness of the crucial steps in the new method,
and matched the theoretical prediction of each procedure quite well.

Since we take cipher ticks as the complexity unit in complexity analysis, we
have first determined the constant Ω used in our attack. The source code of
A5/1 for testing is a modification of a pedagogical implementation in [6]. We
found that the average time to generate 1-bit keystream for A5/1 is 2.97 · 10−8

seconds. Thus, one cipher tick of the A5/1 stream cipher accounts for Ω =
2.97 · 10−8 · 3.4 · 109

.
= 26.66 CPU cycles.

Since the basis of a fast near collision attack is the randomness, we use
the RC4 stream cipher with a 128-bit secret key by discarding the first 8192
keystream words as the random source in our experiments. We adopted a random
seed key dependent on the system time when invoking RC4, thus could assure
that we have used random different sources among different calls3.

To see the correctness of the suggested attack, there are essentially two points
to check and verify. The first one is to assure that the correct restricted internal
state associated with a 2-bit keystream prefix is indeed included in the candidates
list generated by Algorithm 3 in section 4.4. The other is to assure that with
the suggested attack parameters, the attack will indeed behave as predicted in
theory, which actually means that the 4 correct restricted internal states are
simultaneously included in Lz0z1 , Lz1z2 , Lz2z3 and Lz3z4 , respectively.

To check the first statement, following the analysis in section 4.3, we have
prepared the small differential tables indexed by (ksd, d) = (0x3, 2) with all the
possible ISDs in the pre-processing phase, requiring 198 bytes memory. Each
pre-computed table is sorted according to the occurring probabilities of each

involved ISD, which takes about P = (2·24·215·121+24·99·log2 99)
Ω ≈ 220.26 cipher

ticks.

Then in the online phase, we have tried all the 99 ISDs in the pre-computed

table c· 2
n

|T | = 4· 2
15

99

.
= 1324 times to make sure that the generated list contains the

correct restricted internal state under consideration, so it takes
4· 21599 ·99

Ω ≈ 210.34

cipher ticks for n = 215 and |T| = 99. Then we enhance the existence probability
of the correct restricted internal state by intersecting β = 6 candidate lists
and unifying γ = 2 such resultant lists, as suggested in Algorithm 4 and 5. The
complexity of the intersection operation in Algorithm 4 is 212.93 cipher ticks, and
the union operation takes about 213.93 cipher ticks. Next, we could check whether
the correct restricted internal states are indeed contained in the corresponding
candidate lists generated by Algorithm 3. Precisely, we just set a flag value 1

3 The seed key in our c implementation is derived from the system time via some arith-
metic operations such as modulo addition. We have also tried AES as the random
source and obtained almost the same results as the RC4 case.
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when the check is successful, and expect to see 4 consecutive 1,1,1,1 when
running the above steps a few times. In the experiments, we indeed saw the
expected pattern 1,1,1,1 after running the routine a few times. Thus, we have
verified the essential point for verifying the correctness of the suggested attack.
This fact, together with the following merging step, also explained the surprising
phenomenon that we actually restored around 33 internal state bits from only 5
keystream bits in a probabilistic way.

Note that with the correct restricted internal states being in the candidate
lists, the merging procedure will preserve them, thus the correct union partial
state with probability 1. Precisely, we could merge the restored restricted internal
states to get the CP part of the internal state from the 4 unified lists from Lz0z1 to
Lz3z4 . The preparation for the merging procedure takes about T1 = 22 · 213.93 .

=
215.93 cipher ticks. Further, we adopt the list merging process depicted in Figure
4 to restore the CP part of the internal state, whose time complexity is reduced
to T2 = 228.3 cipher ticks with approximately 1 MB memory, as discussed in
section 4.6.

Next, the RP part of the internal state is restored by the dynamic guess-and-
determine attack in section 4.7, which needs 229.16 cipher ticks on average, which
can be seen from the following deductions. First, the complexity of solving the 3y
linear equations is at most 212 when y = 4, and the subsequent steps take 28.22

cipher ticks. The total complexity of the guess-and-determine attack is 212+8.22

Ω =
213.56 cipher ticks. The averaged number of trials to find the correct S(101)
is reduced to 212.56 cipher ticks. Note that there are about 216.6 candidates
resultant from the merged CP state, so the complexity of the RP recovery is
finally increased to T3 = 216.6 · 212.56 = 229.16 cipher ticks. The complexity of
our attack is T1 + T2 + T3 = 215.93 + 228.3 + 229.16 ≈ 229.79 cipher ticks. Since
we choose λ = 4 to stabilize the success probability, the total complexity of our
attack increase to 231.79 cipher ticks.

We have run the above attack routines many times with different keys and
frame numbers generated randomly, and the experimental results are always con-
sistent with the theoretical analysis. One run of our attack is as follows. We use
RC4 to generate the key 0xeab64598b32b32c4 and the frame number 0x3efd4c,
respectively. The produced keystream frame is 0x4a01e459770cdf81af52e70706
a4c0 for one direction communication and 0xdefc02c7d0697294be821ae0f7adc

0 for the other direction. The first 64 keystream bits are 0x4a01e459770cdf81,
where the first keystream bit z0 is at the most significant bit position of a byte
and z7 is at the least significant bit position. Then we have z0z1z2z3z4 = 01001.
When one l = 2-bit keystream prefix zizi+1 (0 ≤ i ≤ 3) is used in our at-
tack, it takes around more than one second to generate the pre-computed tables
so far, stored in 198 bytes in RAM. Once constructed, these pre-computation
tables can be used when the key or the frame numbers have changed. In the
online phase, with the determined parameters ksd=0x3, c = 4, β = 6 and
γ = 2, we could mount our attack step-by-step as presented above. The av-
erage size of the generated candidate list is 7835, while the theoretical size
is 7880

.
= 212.95, which seems to imply that the practical implementation is
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more efficient to restore the correct restricted internal state than predicted in
theory. We then ran the merging routine to restore the CP, which takes ten-
s of seconds for the current non-optimized C implementation. The 4 correc-
t restricted internal state 01 ↼ 111000111010000, 10 ↼ 000010000011010,
00 ↼ 010011010001111 and 01 ↼ 011011111101010 were simultaneously re-
stored at the first invocation, which means that after the merging phase, the cor-
rect CP state 111000111010000011010001111111010 would be recovered with
probability 1. Finally, we retrieve the full internal state following the steps in
Section 4.7. To improve the success probability, we set λ = 4 to retrieve the
correct target internal state with a high probability. Note that the current im-
plementation results are from the non-optimized code, and we think the attack
can actually find the correct internal state, thus the secret key in a few seconds
after future optimizations. The C language codes for verifying the validity of our
attack are available via https://github.com/martinzhangbin.

We end this section by the comparison with other best known TMD attacks
on A5/1, shown in Table 5. This table clearly shows the advantage of the new
attack. Note that the (conditional) correlation attacks in [1, 7, 12] need much
more keystream frames than our attack, though no long-term storage and no
preprocessing are required.

Table 5. Comparison with the previous best known TMD attacks on A5/1

Attack Data Memory Pre-comp. Online time Success rate

Nohl’s Attack [13] 8 frames 1.7 TB −weeks 10 seconds 87%
TMD Attack [11] 8 frames 1.968 TB 110days 9 seconds 81%

BB Attack [5] 214.67 frames 146 GB > 5 years 1 second −
KP Attack [2] 4 frames 17.6 TB > 2300 years 5 minutes > 60%

Our Attack < 1 frame 1 MB 220.26 ticks 231.79 ticks ≈ 99%

Note that the pre-computation phase of the Biased Birthday (BB) attack in [5]
was extensively sampled rather than completely executed, i.e., there are non-trivial
cases that the online time needed to find the correct internal state is much more
than the claimed time.
KP means known plaintext.

Remarks. Since our attack is a known plaintext attack, we need first capture
the first 64 keystream bits in 1 frame, which is always feasible in general in GSM
networks. As shown in section 7 of [1], each traffic channel between the handset
and the network is accompanied by a slower control channel, which is referred to
as the Slow Associated Control CHannel (SACCH). The mobile uses the SACCH
channel (on the uplink) to report its reception of adjacent cells. The network
uses this channel (on the downlink) to send (general) system messages to the
mobile, as well as to control the power and timing of the current conversation.
The contents of the downlink SACCH can be inferred by passive eavesdropping.
Besides, an attacker would still need to cope with the Frequency Hoping (FH)
used by GSM, of which the hopping sequence can be determined through a quick
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exhaustive search due to the fact that given n, GSM defines only 64n hopping
sequences (n cannot be large since the total number of frequencies in GSM is
only about 1000, of which only 124 belong to GSM 900).

6 Leveraging the Attack to Any GSM Network

For completeness, we leverage our attack on A5/1 to other algorithms used in
the GSM network in this section. It exploits the already detected flaw of the
GSM protocols that the same key is used in different encryption algorithms.
The key only depends on RAND in GSM, thus once we have restored the secret
key of A5/1 by our method with ease, we are able to use this key to encrypt or
decrypt for A5/3 or GPRS.

Precisely, the adversary can carry out a man-in-the-middle attack by imper-
sonating the base station to the victim and the customer to the base station. In
the initialization of a conversation, there is an authentication phase, which is a
basic challenge-response scheme between the mobile phone and the network. The
network sends a RAND to the attacker, who will transmit it to the victim then.
The victim computes the SRES and return it to the attacker. In GSM protocols,
the customer phone only reports the list of ciphers that it supports, while the
network chooses which encryption algorithm is to be used. Hence, the attacker
asks the victim to encrypt with A5/1 so that he could retrieve the key of A5/1 by
our attack to encrypt in the conversation of the base station. Then the attacker
returns the SRES computed by the victim to the base station, and the authenti-
cation is finished. When the base station asks the attacker to encrypt with A5/3
or GPRS, the attacker has already recovered the same secret key as used by
A5/1, and has the ability to encrypt or decrypt using the restored key. Due to
the fact that the authentication phase may not be initialized frequently, the key
recovered from the previous conversation may be used in future conversations
as well.

There is also a similar attack against GPRS, whose security is based on the
same mechanisms as of GSM except that it uses GPRS-RAND/GPRS-SRES in the
authentication and key agreement, and the GPRS cipher, referred to as GPRS-
A5 or GPRS Encryption Algorithm (GEA), is different from A5/1 or A5/2 and
is never made public so far. The attacker can take advantage of the symmetry
in the key agreement of GPRS and GSM by performing an active attack on the
customer phone via a fake base station. That is, he impersonates the network
and starts a radio session with the mobile phone victim that is protected by
A5/1. Accordingly, the resulting key is identical to the one that is used in GPRS
and the attacker can recover it using our attack on A5/1. This means that the
attacker can encrypt or decrypt the corresponding GPRS traffic successfully.

7 Conclusion

In this paper, we have proposed an entirely different cryptanalytic approach to
break the A5/1 stream cipher without the need of large rainbow tables and a
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huge pre-computation phase. We have taken the new viewpoint of the fast near
collision attack to restore the internal state of A5/1 in a divide-and-conquer man-
ner. Based on the refined self-contained method, we could efficiently recover the
restricted internal state of a given keystream prefix and merge several restored
partial states together according to the irregular clocking mechanism in A5/1.
Now the pre-computation becomes quite lightweight and cheap for individual
cryptanalysts. It is shown that the irregular stop/go mechanism in A5/1 does
not frustrate our attack as expected in the merging phase and we can reliably
find the initial internal state, thus the secret key of A5/1 from only 1 keystream
frame in 231.79 cipher ticks. The total storage of our attack is about 1 MB,
which is much less than all the previous best known TMD attacks. Due to the
fact that A5/3 and GPRS share the same key as A5/1 in GSM, our attack can
be converted into attacks against any GSM network eventually. It is well known
that the analysis of stream ciphers based on irregularly clocked shift registers is
a long standing problem in theory, our results shed some light on this issue and
open new possibilities to deal with irregularly clocked shift registers.
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