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Abstract. Highly efficient encryption and authentication of short mes-
sages is an essential requirement for enabling security in constrained sce-
narios such as the CAN FD in automotive systems (max. message size
64 bytes), massive IoT, critical communication domains of 5G, and Nar-
rowband IoT, to mention a few. In addition, one of the NIST lightweight
cryptography project requirements is that AEAD schemes shall be “op-
timized to be efficient for short messages (e.g., as short as 8 bytes)”.
In this work we introduce and formalize a novel primitive in symmetric
cryptography called forkcipher. A forkcipher is a keyed primitive expand-
ing a fixed-lenght input to a fixed-length output. We define its security
as indistinguishability under a chosen ciphertext attack (for n-bit inputs
to 2n-bit outputs). We give a generic construction validation via the new
iterate-fork-iterate design paradigm.
We then propose ForkSkinny as a concrete forkcipher instance with a
public tweak and based on SKINNY: a tweakable lightweight cipher fol-
lowing the TWEAKEY framework. We conduct extensive cryptanalysis
of ForkSkinny against classical and structure-specific attacks.
We demonstrate the applicability of forkciphers by designing three new
provably-secure nonce-based AEAD modes which offer performance and
security tradeoffs and are optimized for efficiency of very short mes-
sages. Considering a reference block size of 16 bytes, and ignoring possible
hardware optimizations, our new AEAD schemes beat the best SKINNY-
based AEAD modes. More generally, we show forkciphers are suited
for lightweight applications dealing with predominantly short messages,
while at the same time allowing handling arbitrary messages sizes.
Furthermore, our hardware implementation results show that when we
exploit the inherent parallelism of ForkSkinny we achieve the best perfor-
mance when directly compared with the most efficient mode instantiated
with SKINNY.

Keywords: Authenticated encryption, new primitive, forkcipher, ForkSkinny,
lightweight cryptography, short messages.
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1 Introduction

Authenticated encryption (AE) aims at achieving the two fundamental security
goals of symmetric-key cryptography: confidentiality (privacy) and integrity (to-
gether with authentication). Historically, these two goals were achieved by the
generic composition of an encryption scheme (for confidentiality) and a message
authentication code (MAC) [23]. For instance, old versions of major security
protocols such as TLS, SSH and IPsec included variants of generic composi-
tion, namely MAC-then-Encrypt, Encrypt-and-MAC and Encrypt-then-MAC
schemes, respectively. But it turned out that this approach is neither the most
efficient (as it needs processing the whole message twice) nor the most robust to
security and implementation issues [22,43,44]; rather it is easy for practitioners
to get it wrong even when using the best known method among the three, i.e.
Encrypt-then-MAC, following standards [41].

The notion of AE as a primitive in its own right—integrating encryption and
authentication by exposing a single abstract interface— was put forth by Bellare
and Rogaway [25] and independently by Katz and Yung [34] in 2000. It was fur-
ther enhanced by Rogaway [46] to authenticated encryption with associated data
(AEAD). Being able to process associated data (AD) is now a default require-
ment for any authenticated encryption scheme; hence we use AE and AEAD
interchangeably. After nearly two decades of research and standardization activ-
ities, recently fostered by the CAESAR competition (2014–2018) [26], we now
have a rich set of general-purpose AEAD schemes, some already standardized
(e.g. GCM and CCM) and some expected to be adopted by new applications and
standards (e.g. the CAESAR finalists Ascon [30], ACORN [53], AEGIS-128 [55],
OCB [36], COLM [9], Deoxys II [32], and MORUS [54]).

This progress may lead to the belief that the AEAD problem is “solved”. How-
ever, as evidenced by the ECRYPT-CSA report in 2017 [14], several critical
ongoing “Challenges in Authenticated Encryption” still need research efforts
stretching years into the future. Thus, it is interesting to investigate to what
extent CAESAR has resulted in solutions to these problems.

Our Target Challenge. Among the four categories of challenges—security, in-
terface, performance, mistakes and malice—reported by the ECRYPT-CSA [14],
we aim at delving into the performance regarding authenticated encryption of
very short messages. General-purpose AEAD schemes are usually optimized
for handling (moderately) long messages, and often incur some initialization
and/or finalization cost that is amortized when the message is long. To quote
the ECRYPT-CSA report: “The performance target is wrong · · · Another in-
creasingly common scenario is that an authenticated cipher is applied to many
small messages · · · The challenge here is to minimize overhead.”

Therefore, designing efficient AEAD for short messages is an important objec-
tive as also evidenced by NIST’s first call for submissions (May 14, 2018) for
lightweight cryptography [42], where it is stressed as a design requirement that
lightweight AEAD submissions shall be “optimized to be efficient for short mes-
sages (e.g., as short as 8 bytes)”.
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Plenty of Use Cases. The need for high-performance and low-latency pro-
cessing of short messages is identified as an essential requirement in a multitude
of security and safety critical use cases in various domains. Examples are Se-
cure On board Communication (SecOC) in automotive systems [6], handling of
short data bursts in critical communication and massive IoT domains of 5G [1],
and Narrowband IoT (NB-IoT) [2, 5] systems. For example, the new CAN FD
standard (ISO 11898-1) for vehicle bus technology [3,4], which is expected to be
implemented in most cars by 2020, allows for a payload up to 64 bytes. In NB-IoT
standards [2,5] the maximum transport block size (TBS) is 680 bits in downlink
and 1000 bits in uplink (the minimum TBS size is 16 bits in both cases). Low
energy protocols also come with stringent requirements on the maximum packet
size: the Bluetooth, SigFox, LoraWan and ZigBee protocols allow for maximum
sizes of 47, 12, 51-255 (51 bytes for slowest data rate, 255 for the fastest), and
84 bytes packet sizes, respectively. In use cases with tight requirements on delay
and latency, the typical packet sizes should be small as large packets occupy a
link for more time, causing more delays to subsequent packets and increasing
latency. Furthermore, in applications such as smart parking lots the data to be
sent is just one bit (“free” or “occupied”), so a minimum allowed TBS size of
2 bytes (16 bits) would suit the application. Even more, most medical implant
devices, such as pacemakers, permit the exchange of messages of length at most
16 bytes between the device programmer and the device.

Our Goal. Our main objective is to construct secure, modular (provably secure)
AEAD schemes that excel in efficiency over previous modular AEAD construc-
tions at processing very short inputs, while also being able to process longer
inputs, albeit somewhat less efficiently. We insist that our AEAD schemes ought
to be able to securely process inputs of arbitrary lengths to be fairly comparable
to other general-purpose (long message centric) schemes, and to be qualified as a
full-fledged variable-input-length AEAD scheme according to the requirements
in NIST’s call for lightweight cryptography primitives.
Towards this goal, we take an approach that can be seen as a parallel to the shift
from generic composition to dedicated AEAD designs, but on the level of the
primitive. We rethink the way a low level fixed-input-length (FIL) primitive is
designed, and how variable-input-length (VIL) AEAD schemes are constructed
from such a new primitive.

The Gap between the Primitives and AEAD. Our first observation is that
there is a large gap between the high level security goal to be achieved by the VIL
AEAD schemes and the security properties that the underlying FIL primitives
can provide. Modular AEAD designs typically confine the AE security to the
mode of operation only; the lower-level primitives, such as (tweakable) block
ciphers, cryptographic permutations and compression functions, are never meant
to possess any AE-like features, and in particular they are never expanding as
needed to ensure ciphertext integrity in AEAD. Hence, a VIL AEAD scheme Π
designed as a mode of operation for an FIL primitive F plays two roles: not only
does it extend the domain of the FIL primitive but it also transforms and boosts
the security property of the primitive to match the AEAD security notion. A
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natural question then arises, whether by explicitly decoupling these two AEAD
roles we can have more efficient designs and more transparent security proofs.

The first, most obvious approach to resolving the latter question is to remove the
security gap between the mode and its primitive altogether, i.e., to start from a
FIL primitive F which itself is a secure FIL AEAD. This way a VIL AEAD mode
will only have one role: a property-preserving domain extender for the primitive
F. Property-preserving domain extension is a well-studied and popular design
paradigm for other primitives such as hash functions [11,24,45].

Informally speaking, the best possible security that a FIL AEAD scheme with a
fixed ciphertext expansion (stretch) can achieve is to be indistinguishable from
a tweakable random injective function, i.e., to be a tweakable pseudorandom
injection (PRI) [31, 48]. But starting directly with a FIL tweakable PRI, we
did not achieve a desirable solution in our quest for the most efficient AEAD
design for short messages.6 It seems that, interestingly, narrowing the security
gap between the mode and its primitive, but not removing the gap entirely, is
what helps us achieve our ultimate goal.

Contribution 1: Forkcipher – a New Symmetric Primitive. We introduce
a novel primitive—a tweakable forkcipher—that yields efficient AEAD designs
for short messages. A tweakable forkcipher is nearly, but not exactly, a FIL AE
primitive; “nearly” because it produces expanded ciphertexts with a non-trivial
redundancy, and not exactly because it has no integrity-checking mechanisms.7

When keyed and tweaked, we show how a forkcipher maps an n-bit input block
M to an output C of 2n bits. Intuitively, this is equivalent to evaluating two in-
dependent tweakable permutations on M but with an amortized computational
cost (see Figure 1 for an illustration of the forkcipher’s high-level structure). We
give a strict formalization of the security of such a forkcipher. Our new notion
of pseudorandom tweakable forked permutation captures the game of indistin-
guishability of a n-bit to 2n-bits forkcipher from a pair of random permutations
in the context of chosen ciphertext attacks.

Contribution 2: Instantiating a Forkcipher. We give an efficient instance of
the tweakable forkcipher and name it ForkSkinny. It is based on the lightweight
tweakable block cipher SKINNY [18]. Building ForkSkinny on an existing block
cipher enables us to rely on the cryptanalysis results behind SKINNY [12, 13, 49,
51,56,57], and in addition, helps us provide systematic analysis for the necessary
forkcipher alterations. We also inherit the cipher’s efficiency features and obtain
a natural and consistent metric for comparison of the forkcipher performance
with that of its underlying block cipher.

SKINNY comes with multiple optimization tradeoffs in area, throughput, power,
efficiency and software performance in lightweight applications. Additionally,
SKINNY also provides a number of choices for its block size and tweak size which

6 See the discussion section in full version [10].
7 We demonstrate that when used in a minimalistic mode of operation, a secure tweak-

able forkcipher yields a miniature FIL AEAD scheme which achieves tweakable PRI
security.
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we incorporate naturally into ForkSkinny. We have performed cryptanalyses of
ForkSkinny against differential, linear, algebraic, impossible differential, MITM,
integral attacks and boomerang attacks. We have taken the security analysis of
ForkAES [17] into account to ensure that the same type of attacks is not possible
against ForkSkinny.

To obtain ForkSkinny, we apply our newly proposed iterate-fork-iterate(IFI)
paradigm: when encrypting a block M of n bits with a secret key and a tweak
(public), we first transform M into M ′ using rinit SKINNY rounds together with
the tweakey schedule. Then, we fork the encryption process by applying two par-
allel paths (left and right) each comprising r SKINNY rounds. Along left path the
state of the cipher is processed using tweakey schedule of SKINNY, thus producing
the same ciphertext as SKINNY. Along the right path the state is processed with a
tweakey schedule which differs from that of the left path at each round. The IFI
design strategy also provides a scope of parallelizing the implementation of the
design. The IFI paradigm is conceptually easy, and supports the transference of
security and performance results based on the underlying tweakable cipher. We
also provide arguments for the generic security of the IFI construction paradigm
assuming that the building blocks are behaving as secure pseudorandom permu-
tations. Our generic result is indicative of the forkcipher structural soundness
(but does not directly imply security, because a real forkcipher is never built
from a secure pseudorandom permutation). While a forkcipher inherits some of
the side-channel security features of its underlying structure, the fully-fledged
side-channel security of forkciphers is out of the scope of this paper.

Contribution 3: New AEAD Modes. In our work we follow the well-established
modular AE design approach for arbitrary long data in the provable security
framework. There is no general consensus in the cryptographic community if
AEAD schemes can claim higher merits for being modular and provably secure
or not. For instance, 3 out of 7 CAESAR [26] finalists, namely ACORN, AEGIS
and MORUS are monolithic designs and do not follow the provable security
paradigms. Nonetheless, we trust and follow in the modular and provable se-
curity methodology for its well-known security benefits [20, 47]. Moreover, the
class of provably secure AEAD designs includes all currently standardized AEAD
schemes, as well as the majority of CAESAR finalists. We also emphasize that,
by defining the forkcipher as a new fully-fledged primitive and building modes
on top in a provable way, we clearly differentiate ourselves from the “prove-then-
prune” design approaches.

Regarding the state of the art in AE designs, it appears that aiming for
a provably secure AEAD mode that achieves the best performance for both
long and short message scenarios is an ambitious goal. Instead, we design high-
performance AEAD modes for very short inputs whilst maintaining the function-
ality and security for long ones. All our three modes, PAEF, SAEF and RPAEF
can be further implemented very efficiently when instantiated with ForkSkinny.

Our first scheme PAEF (Parallel AEAD from a forkcipher) makes ` calls to
a forkcipher to process a message of ` blocks. PAEF is fully parallelizable and
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thus can leverage parallel computation. We prove its optimal security: n bit
confidentiality and n-bit authenticity (for an n-bit block input).

Our second scheme RPAEF (Reduced Parallel AEAD from a forkcipher) is also
fully parallelizable, but in contrast to PAEF only uses the left forkcipher path
for the first (`− 1) blocks, and the full (left and right) forkcipher evaluation for
the final block (first block for the single block-message). When instantiated with
ForkSkinny, RPAEF computes the equivalent of (`−1) calls to SKINNY and 1 call
to ForkSkinny. This general mode optimization, as compared to PAEF, comes
at the cost of restrictive use of large tweaks (as large as 256 bits) and increased
HW area footprint. Similarly to PAEF, we prove that RPAEF achieves optimal
quantitative security.

Our third scheme SAEF (Sequential AEAD from a forkcipher) encrypts each
block “on-the-fly” in a sequential manner (and hence is not parallelizable). SAEF
lends itself well to low-overhead implementations (as it does not store the nonce
and the block counter) but its security is birthday-bounded in the block size
(n/2-bit confidentiality and authenticity for n-bit block).

Contribution 4: Hardware Performance and Comparisons. PAEF and
SAEF need an equivalent of about 1 and 1.6 SKINNY evaluation per block of AD
and message, respectively (both encryption and decryption). RPAEF reduces
further the computational cost for all but the last message blocks to an equiva-
lent of 1 SKINNY evaluation. When compared directly with block cipher modes
instantiated with SKINNY with a fixed tweak (to facilitate the comparison), such
as the standardized GCM [40], CCM [52], and OCB [37], we outperform those
significantly for predominantly short data sizes of up to four blocks. We achieve
a performance gain in the range of (10 − 50)% for data ranging from 4 blocks
down to 1 block, respectively. The additional overhead for all block-cipher-based
modes is incurred by at least two additional cipher calls: one for subkey/mask
generation and one for tag computation.

We provide a hardware comparison (in Section 7, Table 10) of our three
modes (with different ForkSkinny variants) with Sk-AEAD. The Sk-AEAD is the
tweakable cipher mode TAE [38], which is same as ΘCB [37], instantiated with
Skinny-AEAD M1/M2, M5/M6 [19]. We compare on the bases of block size,
nonce, and tag sizes variants. Based on the round-based implementations all
of our three modes perform faster (in terms of cycles) for short data (up to 3
blocks) with about the same area. RPAEF beats its competitor for all message
sizes at the cost of a area increase of about 20% (for only one of its variants). We
further optimize the performances by exploiting the in-built parallelism (//) in
the ForkSkinny primitive and obtain superior performance results. Namely, for
messages up to three 128-bit blocks, the speed-up of PAEF and SAEF (both
parallel (//)) ranges from 25% to 50%, where the advantage is largest for the
single-block messages. Most importantly, the RPEAF, PAEF, and SAEF(//) in-
stances result in fewer cycles than the ΘCB variants for all message sizes at
a small cost in area increase. However, the relative advantage of the latter in-
stances is more explicit for short messages; as it diminishes asymptotically with
the message blocks. For message sizes up to 8 bytes, which is emphasized by
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NIST [42], the Paef-ForkSkinny-64-192 instances are more than 58% faster
with also a considerably smaller implementation size.

Related work. An AE design which bears similarities with our forkcipher idea
is Manticore [8] (the CS scheme). They use the middle state of a block cipher
to evaluate a polynomial hash function for authentication purposes. Yet, for
a single block, Manticore needs 2 calls to the block cipher (compared to ≈1.6
SKINNY calls in ForkSkinny), thus failing to realize optimal efficiency for very short
messages. The CS design, which has been shown insecure [50] (and fixed with
an extra block cipher call), necessitates a direct cryptanalysis on the level of an
AE scheme, which is a much more daunting task than dedicated cryptanalysis
of a compact primitive. In [15], Avanzi proposes a somewhat similar design
approach which splits an intermediate state to process them seperately. More
concretely, it uses a nonce addition either prior to the encryption or in the middle
of the encryption rounds, specifically at the splitting phase. Yet, the fundamental
difference with our design is that we use a different framework (TWEAKEY [33])
which considers the nonce and key together and injects a transformation of those
throughout the forkcipher rounds. Moreover, it seems impossible to describe the
latter designs ( [8], [15]) as neither primitives nor modes with clearly defined
security goals, whereas our approach aims the opposite.

It is worth mentioning that the recent permutation based construction Far-
falle [27] also has superficially similar design structure. For example, in Farfalle
with a fixed input length message it is possible to produce two or more fixed
length outputs. However, the design strategy of ForkSkinny and Farfalle are dif-
ferent in two aspects: 1. ForkSkinny follows an iterative design strategy (with
round keys, round constants etc.), while Farfalle is a permutation based de-
sign, and 2. ForkSkinny has an explicit tweak input which is processed using the
tweakey framework.

2 Preliminaries

All strings are binary strings. The set of all strings of length n (for a positive
integer n) is denoted {0, 1}n. We let {0, 1}≤n =

⋃n
i=0{0, 1}n. We denote by

Perm(n) the set of all permutations of {0, 1}n. We denote by Func(m,n) the set
of all functions with domain {0, 1}m and range {0, 1}n, and we let Inj(m)n ⊂
Func(m)n denote the set of all injective functions with the same signature.

For a string X of ` bits, we let X[i] denote the ith bit of X for i = 0, . . . , `−1
(starting from the left) and X[i . . . j] = X[i]‖X[i + 1]‖ . . . ‖X[j] for 0 ≤ i <
j < `. We let left`(X) = X[0 . . . (` − 1)] denote the ` leftmost bits of X and
rightr(X) = X[(|X| − r) . . . (|X| − 1)] the r rightmost bits of X, such that
X = leftχ(X)‖right|X|−χ(X) for any 0 ≤ χ ≤ |X|. Given a (possibly implicit)

positive integer n and an X ∈ {0, 1}∗, we let denote X‖10n−(|X| mod n)−1 for
simplicity. Given an implicit block length n, we let pad10(X) = X‖10∗ return
X if |X| ≡ 0 (mod n) and X‖10∗ otherwise.

Given a string X and an integer n, we let X1, . . . , Xx, X∗
n←− X denote

partitioning X into n-bit blocks, such that |Xi| = n for i = 1, . . . , x, 0 ≤ |X∗| ≤ n
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and X = X1‖ . . . ‖Xx‖X∗, so x = max(0, bX/nc − 1). We let |X|n = dX/ne. We
let (M ′,M∗) = msplitn(M) (as in message split) denote a splitting of a string
M ∈ {0, 1}∗ into two parts M ′‖M∗ = M , such that |M∗| ≡ |M | (mod n) and
0 ≤ |M∗| ≤ n, where |M∗| = 0 if and only if |M | = 0. We let (C ′, C∗, T ) =
csplitn(C) (as in ciphertext split) denote splitting a string C of at least n bits
into three parts C ′‖C∗‖T = C, such that |C∗| = n, |T | ≡ |C| (mod n), and 0 ≤
|T | ≤ n, where |T | = 0 if and only if |C| = n. Finally, we let C ′1, . . . , C

′
m, C∗, T ←

csplit-bn(C) (as in csplit to blocks) denote the result of csplitn(C) followed by
partitioning of C ′ into |C ′|n blocks of n bits, such that C ′ = C ′1‖ . . . ‖C ′m.

The symbol ⊥ denotes an error signal, or an undefined value. We denote
by X ←$ X sampling an element X from a finite set X following the uniform
distribution.

3 Forkcipher

We formalize the syntax and security goals of a forkcipher. Informally, a forkci-
pher is a symmetric primitive that takes as input a fixed-length block M of n
bits with a secret key K and possibly a public tweak T , and expands it to an
output block of fixed length greater than n bits.

In this article we formalize and instantiate the forkcipher as a tweakable
keyed function which maps an n-bit input M to a 2n-bit output block C0‖C1.
We additionally require that the input M is computable from either of the two
output blocks C0 or C1. Also, given one half of the output C0, the other half C1

should be reconstructible from it, and vice versa. These are the basic properties
imposed in the syntax of our n-bit to 2n-bit forkcipher.

When used with a random key, the ideal forkcipher implements a pair of
independent random permutations π0 and π1 for every tweak T , namely C0 =
π0(M) and C1 = π1(M). We define a secure forkcipher to be computationally
indistiguishable from such an idealized object - a tweak-indexed collection of
pairs of random permutations.

A trivial forkcipher. It may be clear at this point that the security notion
towards which we are headed can be achieved with two instances of a secure
tweakable block cipher that are used in parallel. One could thus instantiate a
forkcipher by a secure tweakable block cipher used with two independent keys
(or a tweak-space separation mechanism).

The main novelty in a forkcipher is that it provides the same security as a pair
of tweakable block ciphers at a reduced cost. Yet this reduction of complexity
has nothing to do with the security goals and syntax; these only model the kind
of object a forkcipher inevitably is, and which security properties it aspires to
achieve.
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Fig. 1: Forkcipher encryption (two leftmost): the output selector s outputs both output
blocks C0, C1 if s = b, the “left” ciphertext block C0 if s = 0 (if s = b then C1).
Forkcipher decryption (three rightmost): the first indicator b = 0 denotes the left
ciphertext block is input (b = 1 when right). The second output selector s = i when
the ciphertext is inverted to block M (middle); s = b when both blocks M,C′ are
output; and s = o when the other ciphertext block C′ is output.

3.1 Syntax

A forkcipher is a pair of deterministic algorithms, the encryption8 algorithm:

F : {0, 1}k × T × {0, 1}n × {0, 1, b} → {0, 1}n ∪ {0, 1}n × {0, 1}n

and the inversion algorithm:

F−1{0, 1}k × T × {0, 1}n × {0, 1} × {i, o, b} → {0, 1}n ∪ {0, 1}n × {0, 1}n.

The encryption algorithm takes a key K, a tweak T ∈ T , a plaintext block M and
an output selector s, and outputs the “left” n-bit ciphertext block C0 if s = 0, the
“right” n-bit ciphertext block C1 if s = 1, and a both blocks C0, C1 if s = b. We
write F(K,T,M, s) = FK(T,M, s) = FT

K(M, s) = FT,s
K (M) interchangeably. The

decryption algorithm takes a key K, a tweak T, a ciphertext block C (left/right
half of output block), an indicator b of whether this is the left or the right
ciphertext block and an output selector s, and outputs the plaintext (or inverse)
block M if s = i, the other ciphertext block C ′ if s = o, and both blocks M,C ′

if s = b. We write F−1(K,T,M, b, s) = F−1K(T,M, b, s) = F−1
T
K(M, b, s) =

FT,b,s
K (M) interchangeably. We call k, n and T the keysize, blocksize and tweak

space of F, respectively.
A tweakable forkcipher F meets the correctness condition, if for every K ∈

{0, 1}k,T ∈ T ,M ∈ {0, 1}n and β ∈ {0, 1} all of the following conditions are
met:

1. F−1(K,T,F(K,T,M, β), β, i) = M
2. F−1(K,T,F(K,T,M, β), β, o) = F(K,T,M, β ⊕ 1)
3. (F(K,T,M, 0),F(K,T,M, 1)) = F(K,T,M, b)
4.
(
F−1(K,T, C, β, i),F−1(K,T, C, β, o)

)
= F−1(K,T, C, β, b)

In other words, for each pair of key and tweak, the forkcipher applies two inde-
pendent permutations to the input to produce the two output blocks. We focus
on a specific form of T only: when T = {0, 1}t for some positive t.

8 We again conflate the label for the primitive with the label of the encryption algo-
rithm.
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The formalization we just gave faithfully models how a forkcipher is used to
realize its full potential. As explained in the discussion section of the full ver-
sion [10], the most suitable FIL expanding cipher to construct modes of operation
is a forkcipher, which implements two parallel tweakable permutations. Such a
primitive can be formalized with a simpler syntax and equivalent functionality,
such as by fixing the selector to b in both the algorithms (one could discard an
unneeded output block). Yet, such a syntax would not align well with the way
a forkcipher is used (for example in Section 6): our syntax of choice allows the
user of a forkcipher to precisely select what gets computed, to do so more effi-
ciently when both output blocks are needed, and without wasting computations
if only one output block is required. This will become clear upon inspection of
ForkSkinny in Section 4.

3.2 Security Definition

We define the security of forkciphers by indistiguishability from the closest, most
natural idealized version of the primitive, a pseudorandom tweakable forked
permutation, with the help of security games in Figure 2. A forked permutation
is a pair of oracles, that make use of two permutations, s.t. the two permutations
are always used with the same preimage, no matter if the query is made in the
forward or the backward direction.

An adversary A that aims at breaking a tweakable forkcipher F plays the
games prtfp-real and prtfp-ideal. We define the advantage of A at distin-
guishing F from a pair of random tweakable permutations in a chosen ciphertext
attack as

Advprtfp
F (A) = Pr[Aprtfp-realF ⇒ 1]− Pr[Aprtfp-idealF ⇒ 1].

3.3 Iterate-Fork-Iterate

One approach to build a forkcipher from an existing iterated tweakable cipher
is by applying our novel iterate-fork-iterate(IFI) paradigm. Following the IFI, in
encryption a fixed length message block M is transformed via a fixed number
of rounds or iterations of a tweakable cipher to M ′. Then, M ′ is forked and
two copies of the internal state are created, which are iterated to produce C0

and C1. Two of the main objectives of designing forkcipher in the IFI paradigm
are (partial) transference of security results and maintaining forkcipher security
without increasing the original cipher key size. In order to rule out that the
IFI design succumbs to generic attacks (i.e., attacks that treat the primitive
as a blackbox), we carry out a provable generic analysis. This result indicates
structural soundness in the sense that no additional exploitable weakness are
introduced, but does not directly imply security of IFI forkciphers, because a
real forkcipher never uses a number of rounds in the partial iteration that is a
secure pseudorandom permutation.
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Game prtfp-realF

K ←$ {0, 1}k
b← AEnc,Dec

return b

Oracle Enc(T,M, s)
return F(K,T,M, s)

Oracle Dec(T, C, β, s)
return F−1(K,T, C, β, s)

Game prtfp-idealF

for T ∈ T do πT,0, πT,1 ←$ Perm(n)
b← AEnc,Dec

return b

Oracle Enc(T,M, s)
if s = 0 then return πT,0(M)
if s = 1 then return πT,1(M)
if s = b then return πT,0(M),
πT,1(M)

Oracle Dec(T, C, β, s)
if s = i then return π−1

T,β(C)

if s = o then return πT,(β⊕1)(π
−1
T,β(C))

if s = b then return π−1
T,β(C),

πT,(β⊕1)(π
−1
T,β(C))

Fig. 2: Games prtfp-real and prtfp-ideal defining the security of a (strong) forkci-
pher.

IFI Generic Validation. We show that a IFI forkcipher is a structurally
sound construction as long as the three components: three tweak-indexed col-
lections of permutations are ideal tweak permutations in the full version of
the paper. Fix the block length n and the tweak length t. Formally, for three
tweakable random permutations p, p0, p1 (i.e. p = (pT ←$ Perm(n))T∈{0,1}t
is a collection of independent uniform elements of Perm(n) indexed by the
elements of T ∈ {0, 1}t, and similar applies for p0 and p1), the forkcipher
F = IFI[p, p0, p1] is defined by FT,b(M) = pT,0(pT(M)), pT,1(pT(M)), and by

F−1
T,b,b

(C) = p−1T (p−1T,b(C)), pT,b⊕1(p−1T,b(C)) (the rest follows from the correct-
ness). We note that the three tweakable random permutations act as a key for
IFI[p, p0, p1] and we omit them for the sake of simplicity. In the full version [10],
we prove the indistinguishability of the IFI construction from a single forked
random permutation in the information-theoretic setting.

Our IFI instantiation. IFI is motivated by the most popular design strategy
for block cipher design - iterative or round-based structure where the round
functions are typically identical, up to round keys and constants. In forkcipher,
after an initial number of rounds rinit two copies of the internal state are processed
with different tweakeys. The number of rounds after the forking step, r0 (left)
and r1 (right), are determined from the cryptanalytic assurances of the IFI block
cipher instantiation. The block cipher round functions instantiate the forkcipher
round functions (both before and after forking), again up to constants and round
key addition. The single (secret) key SK security of both (left and right) forward

FT,0, FT,1 and inverse F−1
T,0,i

(resp. F−1
T,1,i

) forkcipher transformations, and
the related-key (RK) security of FT,1 follow easily from the underlying security
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of the block cipher. We further perform the SK and RK analysis for FT,0 and

the reconstruction F−1
T,0,o

(resp. F−1
T,1,o

) transformations.
In our instantiation, r0 = r1 as a direct consequence of the IFI design ap-

proach. Suppose, in the SK model FT,0 is secure using rinit+r0 number of rounds.
Such FT,0 can be instantiated using any existing (secure) off-the-shelf tweakable
block cipher, which is the approach taken here. Then, having rinit + r1 rounds,
where r1 < r0, for FT,1 will obviously weaken the security of the forkcipher.
This is true, assuming that we apply the same round function in both fork-
ing branches. In this article we choose a tweakable SPN-based block cipher to
construct a forkcipher.

4 ForkSkinny

We design the forkcipher ForkSkinny using the recently published lightweight
tweakable block cipher SKINNY [18]. As detailed in Table 1, we propose several
instances, with various block and tweakey sizes, in order to fit the different use
cases. For simplifying the notation, in the rest of this section we will denote the
transformations Cb ← ForkSkinnyT,bK (M) as ForkSkinnyb, where b = 0 or 1 and

the corresponding inverse transformations ForkSkinny−1
T,b,i

K as ForkSkinny−1b .

4.1 Specification

RF RF

TKS TKS

M

K‖T

RF RF

TKS TKS

BC

C1

Tw

RF RF

TKS TKS

C0

Tw

Fig. 3: ForkSkinny encryption with selector s = b. A plaintext M , a key K and a tweak
T (blue) are used to compute a ciphertext C = C0‖C1 (red) of twice the size of the
plaintext. RF is a single round function of SKINNY (with modified round constant),
TKS is round tweakey update function [18], and BC is a branch constant that we
introduce.

Overall Structure. We illustrate our design in Fig. 3 for ForkSkinny-128-192.
This version takes a 128-bit plaintext M , a 64-bit tweak T and a 128-bit secret
key K as input, and outputs two 128-bit ciphertext blocks C0 and C1 (i.e.,
ForkSkinny(K,T,M, b) = C0, C1). The first rinit= 21 rounds of ForkSkinny are
almost identical to the one of SKINNY and only differ in the value of the constant
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added to the internal state. After that, the encryption is forked, which means
that two copies of the internal state are further modified with different sets of
tweakeys. For reasons that we detail below, a constant denoted by BC (Branch
Constant) is added to the internal state used to compute C1, right after forking.
Then, ForkSkinny0 iterates r0 = 27 rounds and ForkSkinny1 iterates r1 = 27
rounds. As illustrated in Figure 3, after forking, the tweakeys for the round
functions of ForkSkinny0 are computed from the tweakey state obtained after rinit
rounds, while the tweakeys for the round functions of ForkSkinny1 are derived
from the tweakey state at the end of rinit + r0 rounds (denoted by Tw). Figure 4
details the ForkSkinny construction, where Enc-Skinnyr(·, ·) denotes the SKINNY

encryption using r round functions taking as input a plaintext or state together
with a tweakey. Similarly, Dec-Skinnyr(·, ·) denotes the corresponding decryption
algorithm using r rounds.

1: function ForkSkinnyEnc(M,K, T, s)
2: tk ← K||T
3: L ← Enc-Skinnyrinit(M, tk)
4: if s = 0 or s = b then
5: C0← Enc-Skinnyr0(L,TKSrinit(tk))
6: end if
7: if s = 1 or s = b then
8: tk′ ← TKSrinit+r0(tk)
9: C1 ← Enc-Skinnyr1(L ⊕
BC, tk′)

10: end if
11: if s = 0 return C0

12: if s = 1 return C1

13: if s = b return C0, C1

14: end function

1: function ForkSkinnyDec(C,K, T, b, s)
2: tk ← K||T
3: tk′ ← TKSrinit(tk)
4: if b = 0 then
5: L ← Dec-Skinnyr0(C, tk′)
6: else if b = 1 then
7: tk′′ ← TKSr0(tk′)
8: L ← Dec-Skinnyr1(Cb, tk

′′) ⊕
BC

9: end if
10: if s = i or s = b then
11: M ← Dec-Skinnyrinit(L, tk)
12: end if
13: if s = o or s = b then
14: if b = 0 then tk′← TKSr0(tk′)
15: C′ ← Enc-Skinnyrb⊕1

(L, tk′)
16: end if
17: if s = i return M
18: if s = o return C′

19: if s = b return M,C′

20: end function

Fig. 4: ForkSkinny encryption and decryption algorithms. Here TKS denotes the round
tweakey scheduling function of SKINNY. TKSr depicts r rounds of TKS.

Round function. As stated previously, the round function used in ForkSkinny
is derived from the one of SKINNY and can be described as:

Ri = Mixcolumn ◦ Addconstant ◦ Addroundtweakey ◦ Shiftrow ◦ Subcell
where Subcell, Shiftrow and Mixcolumn are identical to the ones of SKINNY.
The Addroundtweakey function and the tweakey schedule are also left unchanged.
Note that in ForkSkinny more tweakeys than in SKINNY are produced since we
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have rinit + r0 + r1 rounds. To keep the content short, we leave the details of
these operations to full version [10] of this article.

The only change we made in the round function of ForkSkinny stands in the
AddConstants step. Instead of using 6 bit round constants (generated with an
LFSR), we use 7 bit ones. This change was required to avoid adding the same
round constant to different rounds, as 6 bit round constants only provides 64
different values while some of our instances require a number of iterations higher
than that. These 7 bit round constants may be chosen randomly and fixed. In
our implementation we use an affine 7 bit LFSR to generate the round constant.
The update function is defined as:

(rc6||rc5|| . . . ||rc0)→ (rc5||rc4|| . . . ||rc0||rc6 ⊕ rc5 ⊕ 1)

The 7 bits are initialized to 0 and updated before using in the round function.
The bits from the LFSR are used exactly the same way as in Skinny. The 4× 4
array 

c0 0 0 0
c1 0 0 0
c2 0 0 0
0 0 0 0


is constructed depending on the size of the internal state, where c2 = 0x2 and

(c0, c1) = (rc3||rc2||rc1||rc0, 0||rc6||rc5||rc4) when each cell is 4 bits

(c0, c1) = (0||0||0||0||rc3||rc2||rc1||rc0, 0||0||0||0||0||rc6||rc5||rc4) when each cell is 8 bits.

Branch Constant. We introduce constants to be added right after the forking
point. When each cell is made of 4 bits we add BC4, and when each cell is a
byte we add BC8, where:

BC4 =


1 2 4 9

3 6 d a

5 b 7 f

e c 8 1

 BC8 =


01 02 04 08

10 20 41 82

05 0a 14 28

51 a2 44 88

 .

This addition is made right after forking, to the right branch leading to C1. Note
that these constants are generated by clocking LFSRs, given by: (x3||x2||x1||x0)→
(x2||x1||x0||x3⊕x2), and initialised with x0 = 1, x1 = x2 = x3 = 0 for BC4, and
with the LFSR (x7||x6||x5||x4||x3||x2||x1||x0)→ (x6||x5||x4||x3||x2||x1||x0||x7 ⊕
x5), again initialised with x0 = 1 and all the other bits equal to 0 for BC8.

This introduction is necessary to avoid that two SubCells steps cancel each
others when looking at the sequence of operations relating C0 and C1 in the
reconstruction scenario.

Variants. Other sets of parameters can be chosen. We propose some variants
in Table 1. Note that their exact number of rounds (that are the parameters
r0 = r1 and rinit), were determined from the security analysis of the cipher, de-
tailed below.
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4.2 Design Rationale

Using SKINNY. A forkcipher in IFI paradigm can be instantiated in various
ways. We build our forkcipher design reusing the iterative structure of the SPN-
based lightweight tweakable block cipher SKINNY. SPNs are very well-researched
and allow to apply existing cryptanalysis techniques to the security analysis
of our forkcipher. A large number of cryptanalytic results [12, 13, 49, 51, 56, 57]
have further been published against round reduced SKINNY showing that the full
version of the cipher have comfortable security margins. Unlike other lightweight
block ciphers, such as Midori [16], PRINCE [29], the SKINNY design is constructed
following the TWEAKEY framework, and in addition supports a number of
choices for the tweak size; an important aspect for the choice of SKINNY for
our design. SKINNY is good for lightweight applications on both hardware and
software platforms. We also assume that the target application platform does
not have AES instruction set available, hence avoiding AES based instantiation.

ForkSkinny Components. In ForkSkinny we have introduced features which
aim to serve the forkcipher construction characteristics and security require-
ments. The 7 bit LFSR introduced in Addconstant avoids the repetition of
round constants that could have possibly lead to slide attack -like cryptanaly-
ses. The Branch Constant added after forking ensures that in the reconstruction
scenario the two non-linear layers positionned around the forking point do not
cancel each other. Finally, the required round tweakeys are computed by extend-
ing the key schedule of SKINNY by the necessary number of rounds. We chose
this particular way of computing the extra tweakeys due to its simplicity, ability
to maximally reuse components of SKINNY, and because it was among the most
conservative options security-wise.

5 Security Analysis

For most attacks (for instance differential and linear cryptanalysis), the results
devised on SKINNY give sufficient arguments to show the resistance of ForkSkinny.
First, the series of operations leading M to C0 correspond exactly to one en-
cryption with SKINNY (up to the round constants) so the existing results transfer

Primitive block tweak tweakey rinit r0 r1

ForkSkinny-64-192 64 64 192 17 23 23
ForkSkinny-128-192 128 64 192 21 27 27
ForkSkinny-128-256 128 128 256 21 27 27
ForkSkinny-128-288 128 160 288 25 31 31
ForkSkinny-128-384 128 256 384 25 31 31

Table 1: The ForkSkinny primitives with their internal parameters for round numbers
rinit, r0 and r1 and their corresponding external parameters of block and tweakey sizes
(in bits) for fixed 128 bit keys.
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easily in this case. Then, when looking at the relation between M and C1 we
have a version of SKINNY with different round constants and a different tweak
after rinit rounds. One way to give security arguments here is to look at what
happens in the first rinit rounds and independently, in the next r1 rounds to
have a (pessimistic) estimation (for instance of the number of active Sboxes). A
similar technique can be applied to study the reconstruction path. In both cases,
the very large security margins9 of SKINNY imply that ForkSkinny appears out
of reach of the attacks we considered.

Our full security analysis is detailed in the full version [10] of this article. It
covers truncated, impossible differential, boomerang, meet-in-the-middle, inte-
gral and algebraic attacks. We particularly stress that the boomerang type attack
which was shown against ForkAES [17], is not applicable to ForkSkinny. This is
due to two reasons: first, the number of rounds after the forking step protects
against such attacks by making the boomerang path of very low probability. Sec-
ond, the branch constant introduced in the right branch protects against such
attacks by making the state of two branches different immediately after forking.
Note that the attack in [17] against (9 out of 10 rounds) ForkAES in fact uses
the property for which there is no difference between the states after forking.

We detail below our analysis of differential and linear attacks.

5.1 Detail of the Evaluation of Differential and Linear Attacks

Arguments in favor of the resistance of ForkSkinny to differential [28] and lin-
ear [39] cryptanalysis can easily be deduced from the available analysis on
SKINNY. First, we refer to the bounds on the number of active Sboxes provided
in the SKINNY specification document (recalled in the full version [10]). These
bounds were later refined, and for instance Abdelkhalek et al. [7] showed that
in the single key scenario there are no differential characteristics of probability
higher than 2−128 for 14 rounds or more of SKINNY-128.

The previous results transfer to the case where we look at a trail covering
the path from the input message up to C0. Due to the change in the tweakey
schedule we expect different bounds in the related-tweakey for the path from
the input message up to C1. A rough estimate of the minimal number of active
Sboxes on this trail can be obtained by summing the bound on rinit rounds and
the bound on r1 rounds. For instance for ForkSkinny-128-192 (in TK2 model), 21
rounds activate at least 59 Sboxes. If we consider that the branch starting from
the forking point is independent and can start from any internal state difference
and tweakey difference (this is the very pessimistic case), only 8 rounds after
forking are necessary to go below the characteristic probability of 2−128.

The last case that needs to be evaluated is the reconstruction path scenario.
An estimate can be computed following the same idea as before: the number of
active Sboxes can be upper bounded by the bound obtained by summing the one
for r0 rounds and the one for r1 rounds. If we consider that r0 = r1 as for our
concrete instances, we obtain that 16 rounds are required to get more than 64

9 At the time of writing, the best attacks on SKINNY cover at most 55% of the cipher.
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active Sboxes. For ForkSkinny-128-192, 30 rounds are required to get more than
64 active Sboxes.

With respect to the parameters we chose, these (optimistic for the attacker)
evaluations make us believe that differential attacks pose no threat to our pro-
posal.

Similar arguments lead to the same conclusion for linear attacks. Also, we
refer to the FSE 2017 paper [35] by Kranz et al. that looks at the linear hull
of a tweakable block cipher and shows that the addition of a tweak does not
introduce new linear characteristics, so that no additional precaution should be
taken in comparison to a key-only cipher.

6 Tweakable Forkcipher Modes

We demonstrate the applicability of forkciphers by designing provably secure
AEAD modes of operation for a tweakable forkcipher. Our AEAD schemes are
designed such that (1) they are able to process strings of arbitrary length but
(2) they are most efficient for data whose total number of blocks (in AD and
message) is small, e.g. below four.

We define three forkcipher, nonce-based AEAD modes of operation: PAEF,
SAEF and RPAEF. The first mode is fully parallelizable and (quantitatively)
optimally secure in the nonce respecting model. The second mode SAEF sequen-
tially encrypts “on-the-fly”, has birthday-bounded security, and lends itself to
low-overhead implementations. The third mode RPAEF is derived from the first
one; it only uses both output blocks of a forkcipher in the final call, allowing
to further reduce computational cost even for longer messages. The improved
efficiency comes at the price of an n-bit larger tweak, and thus increased HW
area footprint.

A small AE primitive. While a secure forkcipher does not directly capture
integrity, we show in Section 6.9 that a secure forkcipher can be used as an
AEAD scheme with fixed length messages and AD in the natural way, provably
delivering strong AE security guarantees.

6.1 Syntax and Security of AEAD

Our modes following the AEAD syntax proposed by Rogaway [46]. A nonce-
based AEAD scheme is a triplet Π = (K, E ,D). The key space K is a finite set.
The deterministic encryption algorithm E : K×N ×A×M→ C maps a secret
key K, a nonce N , an associated data A and a message M to a ciphertext C =
E(K,N,A,M). The nonce, AD and message domains are all subsets of {0, 1}∗.
The deterministic decryption algorithm D : K × N × A × C → M∪ {⊥} takes
a tuple (K,N,A,C) and either returns a mesage M ∈ M, or a distinguished
symbol ⊥ to indicate an authentication error.

We require that for every M ∈ M, we have {0, 1}|M | ⊆ M (i.e. for any
integer m, either all or no strings of length m belong to M) and that for all
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K,N,A,M ∈ K×N ×A×M we have |E(K,N,A,M)| = |M |+ τ for some non-
negative integer τ called the stretch of Π. For correctness of Π, we require that
for all K,N,A,M ∈ K×N ×A×M we have M = D(K,N,A, E(K,N,A,M)).
We let EK(N,A,M) = E(K,N,A,M) and DK(N,A,M) = D(K,N,A,M).

We follow Rogaway’s two-requirement definition of AE security. A chosen
plaintext attack of an adversary A against the confidentiality of a nonce-based
AE scheme Π is captured with the help of the security games priv-real and
priv-real. In both games, the adversary can make arbitrary chosen plaintext
queries to a blackbox encryption oracle, such that each query must have a unique
nonce, and such that the queries are replied with the scheme Π using a random
secret key (real), or with independent uniform strings of the same length (ideal).
The goal of A is to distinguish the two games. We define the advantage of A
in breaking the confidentiality of Π as Advpriv

Π (A) = Pr[Apriv-realΠ ⇒ 1] −
Pr[Apriv-idealΠ ⇒ 1].

A chosen ciphertext attack against the integrity of Π is captured with the
game auth, in which an adversary can make nonce-respecting chosen plaintext
and arbitrary chosen ciphertext queries to a black-box instance of Π with the
goal of finding a forgery: a tuple that decrypts correctly but is not trivially
knwn from the encryption queries. We define the advantage of A in breaking
the integrity of Π as Advpriv

Π (A) = Pr[AauthΠ forges] where “A forges” denotes
a decryption query that returns a value 6= ⊥. (For convenience, the games are
included in full version of this article.)

6.2 Parallel AE from a Forkcipher

The nonce-based AEAD scheme PAEF (“Parallel AE from a Forkcipher”) is
parameterized by a forkcipher F (Section 3) with T = {0, 1}t for a positive
t. It is further parameterized by a nonce length 0 < ν ≤ t − 4. An instance
PAEF[F, ν] = (K, E ,D) has K = {0, 1}k and the encryption (Figure 6) and
decryption algorithms are defined in Figure 5. Its nonce space is N = {0, 1}ν ,

and its message and AD space are respectively M = {0, 1}≤n·(2(t−ν−3)−1), and

A = {0, 1}≤n·(2(t−ν−3)−1) (i.e., AD and message can have at most 2(t−ν−3) − 1
blocks). The ciphertext expansion of PAEF[F, ν] is n bits.

In an encryption query, AD and message are partitioned into blocks of n bits.
Each block is processed with one call to F using a tweak that is composed of: 1)
the nonce; 2) a three-bit flag f0‖f1‖f2; 3) a (t− ν − 3)-bit encoding of the block
index (unique for both AD and message). The nonce-length is a parameter that
allows to make a trade-off between the maximal message length and maximal
number of queries with the same key. The bit f0 = 1 iff the final block of message
is being processed, f1 = 1 iff a block of message is being processed, and f2 = 1 iff
the final block of the current input (depending on f1) is processed and the block
is incomplete. The ciphertext blocks are the “left” output blocks of F applied to
message blocks, and the right “right” output blocks are xor-summed with the
AD output blocks, and the result xored to the final ciphertext block.

The decryption proceeds similarly as the encryption, except that “right”
output blocks of the message blocks are reconstructed from ciphertext blocks
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(using the reconstruction algorithm) to recompute the tag, which is then checked.

6.3 Security of PAEF

We state the formal claim about the nonce-based AE security of PAEF in The-
orem 1.

Theorem 1. Let F be a tweakable forkcipher with T = {0, 1}t, and let 0 < ν ≤
t−4. Then for any nonce-respecting adversary A whose queries lie in the proper
domains of the encryption and decryption algorithms and who makes at most qv
decryption queries, we have

Advpriv
PAEF[F,ν](A) ≤ Advprtfp

F (B) and Advauth
PAEF[F,ν](A) ≤ Advprfp

F (C)+ qv · 2n

(2n − 1)2

for some adversaries B and C who make at most twice as many queries in
total as is the total number of blocks in all encryption, respectively all encryption
and decryption queries made by A, and who run in time given by the running
time of A plus an overhead that is linear in the total number of blocks in all A’s
queries.

Proof (sketch). The full proof appears in the full version of the paper [10]. For
both confidentiality and authenticity, we first replace F with a pair of indepen-
dent random tweakable permutations. Using a standard hybrid argument we
have that Advpriv

PAEF[F,ν](A) ≤ Advprtfp
F (B) + Advpriv

PAEF[(π0,π1),ν]
(A), and also

that Advauth
PAEF[F,ν](A) ≤ Advprtfp

F (C) + Advpriv
PAEF[(π0,π1),ν]

(A).

For confidentiality, it is easy to see that in a nonce-respecting attack, every
ciphertext block, and each tag is processed using a unique tweak-permutation
combination, and all are uniformly distributed. Thus Advpriv

PAEF[(π0,π1),ν]
(A) = 0.

For authenticity, we analyse the probability of forgery for an adversary A′ that
makes a single decryption query against PAEF[(π0, π1), ν] by the means of a case
analysis, and then use a result of Bellare et al. [21] to obtain Advauth

PAEF[(π0,π1),ν](A) ≤
qv ·Advauth

PAEF[(π0,π1),ν](A
′).

6.4 Sequential AE from a Forkcipher

SAEF (as in “Sequential AE from a Forkcipher,” pronounce as “safe”) is a nonce-
based AEAD scheme parameterized by a tweakable forkcipher F (as defined in
Section 3) with T = {0, 1}t for a positive t ≤ n. An instance SAEF[F] = (K, E ,D)
has a key space K = {0, 1}k, nonce spaceN = {0, 1}t−4, and the AD and message
spaces are both {0, 1}∗ (although the maximal AD/message length influences the
security). The ciphertext expansion of SAEF[F] is n bits. The encryption and
decryption algorithms are defined in Figure 7 and the encryption algorithm is
illustrated in Figure 8.

In an encryption query, first AD and then message are processed in blocks
of n bits. Each block is processed with exactly one call to F, using a tweak
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1: function E(K,N,A,M)
2: A1, . . . , Aa, A∗

n←− A
3: M1, . . . ,Mm,M∗

n←−M
4: S ← 0n; c← (t− ν − 3)
5: for i← 1 to a do
6: �T← N‖000‖〈i〉c
7: ◦T← N‖000‖〈i〉c‖0n
8: S ← S ⊕ FT,0

K (Ai)
9: end for

10: if |A∗| = n then
11: �T← N‖001‖〈a+ 1〉c
12: ◦T← N‖001‖〈a+ 1〉c‖0n
13: S ← S ⊕ FT,0

K (A∗)
14: else if |A∗| > 0 or |M | = 0

then
15: �T← N‖011‖〈a+ 1〉c
16: ◦T← N‖011‖〈a+ 1〉c‖0n
17: S ← S ⊕ FT,0

K (A∗‖10∗)
18: end if . Do nothing if

A = ε,M 6= ε
19: for i← 1 to m do
20: �T← N‖100‖〈i〉c
21: �Ci, S′ ← FT,b

K (Mi)
22: �S ← S ⊕ S′
23: ◦T← N‖100‖〈i〉c‖0n
24: ◦Ci ← FT,0

K (Mi)
25: ◦S ← S ⊕Mi

26: end for
27: if |M∗| = n then
28: �T← N‖101‖〈m+ 1〉c
29: ◦T← N‖101‖〈m+ 1〉c‖S
30: else if |M∗| > 0 then
31: �T← N‖111‖〈m+ 1〉c
32: ◦T← N‖111‖〈m+ 1〉c‖S
33: else
34: return S
35: end if
36: C∗, T ← FT,b

K (pad10(M∗))
37: �C∗ ← C∗ ⊕ S
38: return

C1‖ . . . ‖Cm‖C∗‖left|M∗|(T )
39: end function

1: function D(K,N,A,C)
2: A1, . . . , Aa, A∗

n←− A
3: C1, . . . , Cm, C∗, T ←

csplit-bn(C)
4: S ← 0n; c← (t− ν − 3)
5: for i← 1 to a do
6: �T← N‖000‖〈i〉c
7: ◦T← N‖000‖〈i〉c‖0n
8: S ← S ⊕ FT,0

K (Ai)
9: end for

10: if |A∗| = n then
11: �T← N‖001‖〈a+ 1〉c
12: ◦T← N‖001‖〈a+ 1〉c‖0n
13: S ← S ⊕ FT,0

K (A∗)
14: else if |A∗| > 0 or |T | = 0

then
15: �T← N‖011‖〈a+ 1〉c
16: ◦T← N‖011‖〈a+ 1〉c‖0n
17: S ← S ⊕ FT,0

K (A∗‖10∗)
18: end if . Do nothing if

A = ε,M 6= ε
19: for i← 1 to m do
20: �T← N‖100‖〈i〉c
21: �Mi, S

′ ← F−1T,0,b
K (Ci)

22: �S ← S ⊕ S′
23: ◦T← N‖100‖〈i〉c‖0n

24: ◦Mi ← F−1T,0,i
K (Ci)

25: ◦S ← S ⊕Mi

26: end for
27: if |T | = n then
28: �T← N‖101|〈m+ 1〉c
29: ◦T← N‖101|〈m+ 1〉c‖S
30: else if |T | > 0 then
31: �T← N‖111‖〈m+ 1〉c
32: ◦T← N‖111‖〈m+ 1〉c‖S
33: else
34: if C∗ 6= S then return ⊥
35: return ε
36: end if
37: �C∗ ← C∗ ⊕ S
38: M∗, T

′ ← F−1T,0,b
K (C∗ ⊕ S)

39: T ′ ← left|T |(T
′); P ←

rightn−|T |(M∗)
40: if T ′ 6= T return ⊥
41: if P 6= leftn−|T |(10n−1) return
⊥

42: return
M1‖ . . . ‖Mm‖left|T |(M∗)

43: end function

Fig. 5: The PAEF[F, ν] (unmarked lines and �-marked lines) and the RPAEF[F, ν] (un-
marked lines and ◦-marked lines) AEAD schemes. Here 〈i〉` is the cannonical encoding
of an integer i as an `-bit string.



Title Suppressed Due to Excessive Length 21

Fig. 6: The encryption algorithm of PAEF[F] mode. The picture illustrates the pro-
cessing of AD when length of AD is a multiple of n (top left) and when the length of
AD is not a multiple of n (top right), and the processing of the message when length
of the message is a multiple of n (bottom left) and when the length of message is not
a multiple of n (bottom right). The white hatching denotes that an output block is
not computed.

that is composed of: (1) the nonce followed by a 1-bit in the initial F call, and
the string 0τ−3 otherwise, (2) three-bit flag f . The binary flag f takes different
values for processing of different types of blocks in the encryption algorithm.
The values f = {000, 010, 011, 110, 111, 001, 100, 101} indicate the processing of
respectively: non-final AD block; final complete AD block; final incomplete AD
block; final complete AD block to produce tag; final incomplete AD block to
produce tag; non-final message block; final complete message block; and final
incomplete message block.

One output block of every F call is used as a whitening mask for the following
F call, masking either the input (in AD processing) or both the input and the
output (in message processing) of this subsequent call. The initial F call in the
query is unmasked. The tag is the last “right” output of F produced in the
query. The decryption proceeds similarly to the encryption, except that the
plaintext blocks and the right-hand outputs of F in the message processing part
are computed with the inverse F algorithm.

6.5 Security of SAEF

We state the formal claim about the nonce-based AE security of SAEF in The-
orem 2.

Theorem 2. Let F be a tweakable forkcipher with T = {0, 1}τ . Then for any
nonce-respecting adversary A whose makes at most q encryption queries, at most
qv decryption queries such that the total number of forkcipher calls induced by
all the queries is at most σ, with σ ≤ 2n/2, we have

Advpriv
SAEF[F](A) ≤Advprtfp

F (B) + 2 · (σ − q)2

2n
,

Advauth
SAEF[F](A) ≤Advprtfp

F (C) +
(σ − q + 1)2

2n
+
σ(σ − q)

2n
+
qv(q + 2)

2n
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1: function E(K,N,A,M)
2: A1, . . . , Aa, A∗

n←− A
3: M1, . . . ,Mm,M∗

n←−M
4: noM← 0
5: if |M | = 0 then noM← 1
6: ∆← 0n; T← N‖0τ−4−ν‖1
7: for i← 1 to a do
8: T← T‖000
9: ∆← FT,0

K (Ai ⊕∆)
10: T← 0τ−3

11: end for
12: if |A∗| = n then
13: T← T‖noM‖10
14: ∆← FT,0

K (A∗ ⊕∆)
15: T← 0τ−3

16: else if |A∗| > 0 or |M | = 0
then

17: T← T‖noM‖11
18: ∆← FT,0

K ((A∗‖10∗)⊕∆)
19: T← 0τ−3

20: end if . Do nothing if
A = ε,M 6= ε

21: for i← 1 to m do
22: T← T‖001
23: Ci,∆ ← FT,b

K (Mi ⊕ ∆) ⊕
(∆, 0n)

24: T← 0τ−3

25: end for
26: if |M∗| = n then
27: T← T‖100
28: else if |M∗| > 0 then
29: T← T‖101
30: else
31: return ∆
32: end if
33: C∗, T ← FT,b

K (pad10(M∗)⊕∆)⊕
(∆‖0n)

34: return
C1‖ . . . ‖Cm‖C∗‖left|M∗|(T )

35: end function

1: function D(K,N,A,C)
2: A1, . . . , Aa, A∗

n←− A
3: C1, . . . , Cm, C∗, T ← csplit-bnC
4: noM← 0
5: if |C| = n then noM← 1
6: ∆← 0n; T← N‖0τ−4−ν‖1
7: for i← 1 to a do
8: T← T‖000
9: ∆← FT,0

K (Ai ⊕∆)
10: T← 0τ−3

11: end for
12: if |A∗| = n then
13: T← T‖noM‖10
14: ∆← FT,0

K (A∗ ⊕∆)
15: T← 0τ−3

16: else if |A∗| > 0 or |T | = 0
then

17: T← T‖noM‖11
18: ∆← FT,0

K ((A∗‖10∗)⊕∆)
19: T← 0τ−3

20: end if . Do nothing if
A = ε,M 6= ε

21: for i← 1 to m do
22: T← T‖001

23: Mi,∆← F−1T,0,b
K (Ci ⊕∆)⊕

(∆, 0n)
24: T← 0τ−3

25: end for
26: if |T | = n then
27: T← T‖100
28: else if |T | > 0 then
29: T← T‖101
30: else
31: if C∗ 6= ∆ then return ⊥
32: return ε
33: end if
34: M∗, T

′ ← F−1T,0,b
K (C∗ ⊕ ∆) ⊕

(∆, 0n)
35: T ′ ← left|T |(T

′); P ←
rightn−|T |(M∗)

36: if T ′ 6= T return ⊥
37: if P 6= leftn−|T |(10n−1) return
⊥

38: return
M1‖ . . . ‖Mm‖left|T |(M∗)

39: end function

Fig. 7: The SAEF[F] AEAD scheme.
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Fig. 8: The encryption algorithm of SAEF[F] mode. The bit noM = 1 iff |M | = 0. The
picture illustrates the processing of AD when length of AD is a multiple of n (top left)
and when the length of AD is not a multiple of n (top right), and the processing of
the message when length of the message is a multiple of n (bottom left) and when the
length of message is not a multiple of n (bottom right). The white hatching denotes
that an output block is not computed.

for some adversaries B and C who make at most 2σ queries, and who run in
time given by the running time of A plus γ · σ for some constant γ.

Proof (sketch). The full proof appears in the full version of the paper [10]. As
with PAEF, we first replace F with a pair of independent random tweakable
permutations, resulting in a similar birthday gap.

For confidentiality, we further replace tweakable permutations by random
“tweakable” functions, further increasing the bound by 2 · (σ − q)2/2n+1 due to
an RP-RF switch. Unless there is a non-trivial collision of inputs to f0 and f1,
confidentiality of SAEF[(f0, f1), ν] is perfect. With such a collision appearing
with a probability no greater than 2 · (σ − q)2/2n+1, we obtain the bound.

In the proof of integrity, we replace certain random permutations (indexed
by a specific subset of tweaks) of the underlying tweakable permutations by
tweakable functions with the same signature, increasing the bound by (σ − q +
1)2/2n+1 due to an RP-RF switch. We then define a variant of the auth game
(call it auth′), which prevents A to win if an primitive input collision occurs
in any of the encryption queries. The transition to the new game increases the
bound by σ(σ − q)/2n. Finally, (using the result of Bellare as for PAEF), we
bound the probability of a successful forgery in auth′ with help of a case analysis
by 2 · qv/(2n − 1).

6.6 Reduced Parallel AE from a Forkcipher

The nonce-based AEAD scheme RPAEF (“Reduced Parallel AE from a Forkci-
pher”) is a derivative of PAEF that only uses the left output block of the underly-
ing forkcipher for most of the message blocks. This allows for reducing the compu-
tational cost if the unevaluated fork can be switched off (as in ForkSkinny) at the
expense of increasing the required tweak size. It is parameterized by a forkcipher
F (Section 3) with T = {0, 1}t for a positive t ≥ n+5. It is further parameterized
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by a nonce length 0 < ν ≤ t− (n+ 4). An instance RPAEF[F, ν] = (K, E ,D) has
K = {0, 1}k and the encryption (Figure 9) and decryption algorithms are de-
fined in Figure 5. Its nonce space is N = {0, 1}ν , and its message and AD space

are respectively M = {0, 1}≤n·(2(t−(n+ν+3))−1), and A = {0, 1}≤n·(2(t−(n+ν+3))−1)

(i.e. AD and message can have at most 2(t−(n+ν+3)) − 1 blocks). The ciphertext
expansion of PAEF[F, ν] is n bits.

In an encryption query, AD and message are processed in blocks of n bits.
Each block is processed with one call to F using a tweak in which the first t
bits are the same as in PAEF and the remaining n bits are either equal to a
“checksum” of of all AD blocks and all-but-last message blocks, or to n zero
bits (all other F calls). For all message blocks except the last one, only the left
output block of F is used. The decryption proceeds similarly as the encryption,
except that putative message blocks are reconstructed from ciphertext blocks to
recompute the “checksum”.

Fig. 9: The encryption algorithm of RPAEF[F] mode. The picture illustrates the pro-
cessing of AD when length of AD is a multiple of n (top left) and when the length of
AD is not a multiple of n (top right), and the processing of the message when length
of the message is a multiple of n (bottom left) and when the length of message is not
a multiple of n (bottom right). The white hatching denotes that an output block is
not computed.

6.7 Security of RPAEF

Theorem 3. Let F be a tweakable forkcipher with T = {0, 1}t and t ≥ n + 5,
and let 0 < ν ≤ t− 4. Then for any nonce-respecting adversary A whose queries
lie in the proper domains of the encryption and decryption algorithms and who
makes at most qv decryption queries, we have

Advpriv
PAEF[F,ν](A) ≤ Advprtfp

F (B) and Advauth
PAEF[F,ν](A) ≤ Advprfp

F (C)+ 2 · qv
(2n − 1)

for some adversaries B and C who make at most twice as many queries in total
as is the total number of blocks in all encryption, respectively all encryption and
decryption queries made by A, and who run in time given by the running time of
A plus an overhead that is linear in the total number of blocks in all A’s queries.
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Proof (sketch). The full proof appears in the full version of the paper [10]. For
both confidentiality and authenticity, we first replace F with a pair of indepen-
dent random tweakable permutations, similarly as for PAEF.

For confidentiality, it is easy to see that, exactly as with PAEF, in a nonce-
respecting attack every ciphertext block and all tags are uniformly distributed.
We have Advpriv

PAEF[(π0,π1),ν]
(A) = 0.

For authenticity, we combine a case analysis and the same result of Bellare
et al. [21] as used for PAEF to obtain the bound.

6.8 Aggressive RPAEF instance.

We remark that when instantiated with ForkSkinny-128-384 (smaller tweakey
would not make sense due to RPAEF’s tweak size requirements), one of the three
128-bit tweakey schedule registers is effectively unused for all but last message
blocks (it holds the the 0n tweak component). Based on this observation, we
consider a further, more aggressive optimization of RPAEF, which consists in
lowering the numbers of applied rounds to those from ForkSkinny-128-256 for
all but last message blocks, and for all AD blocks. A thorough analysis of this
aggressive variant of ForkSkinny with a number of rounds adjusted to the effective
tweak size is left as an open question. We do note, however that every tweak will
only ever be used with a fixed number of rounds.

6.9 Deterministic MiniAE

In the introduction, we stated that a forkcipher is nearly, but not exactly, an AE
primitive: we clarify this statement in the full version of the paper [10]. In short:
it is easy to see that the syntax and security goals of a forkcipher, as proposed in
Section 3, capture neither AE functionality nor AE security goals. Yet, construct-
ing a secure PRI (with the same signature) from the forkcipher is trivial: just

set E(K,N,A,M) = F
N‖A,b
K (M) and D(K,N,A,C‖T ) = F−1

N‖A,0,i
K (C) iff T =

F−1
N‖A,0,o
K (C). We prove that when used in this minimalistic “mode” of opera-

tion, a secure forkcipher yields a miniature AE scheme for fixed-size messages,
which achieves PRI security [48].

7 Hardware Performance

Due to the independent branching of the data flow after the forking point,
ForkSkinny comes with inherent data-level parallelism that does not exist in nor-
mal (tweakable) blockciphers like SKINNY. We illustrate how round-based hard-
ware implementations amplify the performance boost of our forkcipher modes,
well beyond the reduction of blockcipher rounds as argued in Section 1. We give
a preliminary hardware implementation of all ForkSkinny variants in our three
modes of operation, and compare the results with Skinny-Aead [19] as the
most fairly comparable TBC mode of operation based on SKINNY.



26 Authors Suppressed Due to Excessive Length

Implementations. Figure 10 presents hardware synthesis results (ASIC) for
open cell library Nangate45nm in typical operating conditions. Messages as
small as 8 bytes (64 bits) are considered separately, for which we select M6 as
the most suitable Skinny-Aead family member. For processing 128-bit blocks,
concrete instances are partitioned based matching tweakey lengths. The hard-
ware area is partly based on synthesis results (i.e. the primitive) and partly
estimated (i.e. the mode). For details on implementation assumptions, area es-
timation methodology and synthesis flow, please refer to TO DO: Full version.

For Skinny-Aead, we resynthesize the publicly available SKINNY round-
based encryption implementations10. The ForkSkinny implementations are a mod-
ification thereof, with a second state register, branch constant logic and extended
round constant. We then go on to obtain parallel ForkSkinny implementations,
denoted (//), by adding an extra copy of the round function to compute both
branches simultaneously. We also implement the aggressive variant of RPAEF
with tuned-down number of SKINNY rounds (see Section 6.8).

Results Interpretation. When implementations exploit the available primitive-
level parallelism, the forkcipher performance boost is substantial. For instance,
for messages up to three 128-bit blocks, the speed-up of PAEF and SAEF (both
parallel (//)) ranges from 25% to 50%, where the advantage is largest for the
single-block messages. RPAEF shows similar numbers, with a 5%− 22% speed-
up for the “aggressive” version. Most notably, for parallel instances (//) the
forkcipher invocations are essentially equally fast as block cipher invocations,
which results in fewer cycles than Skinny-Aead for all message sizes. However,
this advantage diminishes asymptotically with the message size (cf. the general
column). For message sizes up to 8 bytes, emphasized by NIST [42], the Paef-
ForkSkinny-64-192 instances are more than 58% faster (40 vs. 96 cycles) at a
considerably smaller implementation size. Saef has the disadvantage of being a
serial mode but it has the smallest area (no block counter and nonce in tweak).

8 Conclusion

The idea of forkcipher opens up numerous interesting open question and research
directions. For a detailed discussion we refer to the full version of this article [10].
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Implementation
(round-based)

Area
[GE]

fmax

[MHz]

Nb. cycles for encrypting (a+m) 64-bit blocks
a = 0 a = 1

General
m=1 m=2 m=3 m=0 m=1 m=2

Sk-Aead M6 6288 1075 96 96 144 48 96 96 48(da
2
e+dm

2
e+1)

Paef-64-192 4205 1265 63 126 189 40 103 166 40(a+ 1.575m)
Paef-64-192 (//) 4811 1265 40 80 120 40 80 120 40(a+m)

Implementation
(round-based)

Area
[GE]

fmax

[MHz]

Nb. cycles for encrypting (a+m) 128-bit blocks
a = 0 a = 1

General (m≥1)
m=1 m=2 m=3 m=0 m=1 m=2

Sk-Aead M5 6778 1075 96 144 192 96 144 192 48(a+m+ 1)

Paef-128-256 7189 1053 75 150 225 48 123 198 48(a+ 1.562m)
Paef-128-256 (//) 8023 1042 48 96 144 48 96 144 48(a+m)
Saef-128-256 (//) 7064 1042 48 96 144 48 96 144 48(a+m)
Rpaef (aggr.) 8203 1052 87 135 183 48 135 183 48(a+m)+39

Sk-Aead M1-2 8210 1000 112 168 224 112 168 224 56(a+m+ 1)

Paef-128-288 7989 971 87 174 261 56 143 230 56(a+ 1.553m)
Paef-128-288 (//) 9308 962 56 112 168 56 112 168 56(a+m)
Rpaef (cons.) 8178 1052 87 143 199 56 143 199 56(a+m)+31

Fig. 10: Synthesis results and cycles for encrypting a blocks associated data
and m blocks message. Superior performance w.r.t. the baseline (Sk-Aead [19])
is indicated in bold. The area is a partly synthesized and partly estimated.
Rpaef (conservative) is RPAEF instantiated with ForkSkinny-128-384, and
Rpaef (aggressive) is described in Section 6.8.
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