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Abstract. In this paper, we present new adaptively secure identity-
based encryption (IBE) schemes. One of the distinguishing properties of
the schemes is that it achieves shorter public parameters than previous
schemes. Both of our schemes follow the general framework presented
in the recent IBE scheme of Yamada (Eurocrypt 2016), employed with
novel techniques tailored to meet the underlying algebraic structure to
overcome the difficulties arising in our specific setting. Specifically, we
obtain the following:

- Our first scheme is proven secure under the ring learning with errors
(RLWE) assumption and achieves the best asymptotic space efficiency
among existing schemes from the same assumption. The main technical
contribution is in our new security proof that exploits the ring struc-
ture in a crucial way. Our technique allows us to greatly weaken the
underlying hardness assumption (e.g., we assume the hardness of RLWE
with a fixed polynomial approximation factor whereas Yamada’s scheme
requires a super-polynomial approximation factor) while improving the
overall efficiency.

- Our second IBE scheme is constructed on bilinear maps and is secure
under the 3-computational bilinear Diffie-Hellman exponent assump-
tion. This is the first IBE scheme based on the hardness of a compu-
tational/search problem, rather than a decisional problem such as DDH
and DLIN on bilinear maps with sub-linear public parameter size.

1 Introduction

Background. Identity-based encryption (IBE) is a generalization of public key
encryption (PKE) where the public key of a user can be any arbitrary string
such as an e-mail address. The concept of IBE was first proposed by Shamir
[Sha85] in 1984, but it took nearly two decades for the first realizations of IBE
[SOK00,BF01,Coc01] to appear. Since then, the construction of IBE has been one
of the central topics in cryptography. Nowadays, we have constructions of IBEs
from assumptions on bilinear maps [BF01,BB04a,BB04b,Wat05,Gen06, Wat09],



the quadratic residue assumption [Coc01,BGHO07], and from the learning with
error (LWE) assumption [GPV08,CHKP10,ABB10] whose hardness is implied
by the worst case reductions to certain lattice problems [Reg05].

One of the most standard security definitions for IBE is the adaptive security,
or often called full security. While it is not quite hard to obtain the adaptive
security for an IBE in the random oracle model [BF01,Coc01,GPV08], the re-
alization in the standard model is much harder. Roughly speaking, currently
there are two general techniques in achieving adaptive security in the standard
model: the partitioning technique [BB04b,Wat05] and the dual system encryp-
tion methodology [Wat09,LW10]. The latter is very attractive, because it allows
us to construct very efficient IBE schemes [CW13,JR13] and even more ad-
vanced cryptosystems such as attribute-based encryptions [LOS*10] with adap-
tive security. However, it inherently relies on decisional assumptions on bilinear
maps (e.g., SXDH and DLIN) and cannot be extended to the proofs based on
computational assumptions on bilinear maps (e.g., computational bilinear Diffie-
Hellman (CBDH) assumption) or assumptions on lattices. On the other hand,
the application of the former technique is wider. We can construct adaptively
secure IBE from the CBDH assumption (by the straightforward combination of
the Goldreich-Levin bit [GL89] and Waters IBE [Wat05]) and from the LWE
assumption [CHKP10,ABB10,Boy10]. However, IBE schemes constructed from
the former approach typically requires larger parameters due to the use of the
Waters’ hash [Wat05] or the admissible hash [BB04b,CHKP10].

Very recently, Yamada [Yam16] constructed IBE schemes from lattices based
on the partitioning technique with novel ideas that are different from the Waters’
hash or the admissible hash. His schemes achieve asymptotically shorter public
parameters than previous works. One of the drawbacks of the schemes is that
they require super-polynomial size modulus for LWE. As a result, their cipher-
texts are longer than those of previous works by a rather large super-constant
factor. In addition, they have to assume the hardness of the LWE problem for
all polynomial (i.e., O(n°) for all ¢ € N) or the more aggressive super-polynomial
approximation factor. Though their assumption is plausible, it is much stronger
than those used in the previous works where the hardness of the LWE problem
for some fized polynomial approximation factor (i.e., O(n¢) for some ¢ € N) is
assumed. Furthermore, since he used fully homomorphic computations of trap-
doors [BGG™14], a technique unique to the lattice setting, it is a highly non-
trivial task to construct analogous schemes in other settings such as bilinear
maps.

Our Contribution. In this paper, we focus on the constructions of adaptively
secure IBE in these settings where dual system encryption methodology is un-
available. In particular, we propose IBE schemes with shorter public parameters
from ring/ideal lattices and from a certain computational assumption (rather
than a decisional assumption) on bilinear groups, by extending and adding twists
to the techniques of [Yam16]. Specifically, we obtain the following results. See
Table 1 and 2 for the overview.



— We propose an anonymous and adaptively secure IBE scheme from the
ring LWE (RLWE) assumption with fized polynomial approximation factors,
which is further reduced to certain worst case problems on ideal lattices. Note
that simply instantiating Yamada’s scheme using ideal lattices® will still re-
quire the RLWE assumption for all polynomial approximation factors, which
is a much stronger assumption than what we use. As for the efficiency, the
size of the public parameters, private keys, and ciphertexts in our scheme
are O(nk'/%logn), O(nlogn), and O(nlogn), respectively. Here, n is the
dimension of the ring elements, « is the length of the identities, and d is a
flexible constant that can be set arbitrary, but will affect the reduction cost
exponentially. We note that all of them achieve the best efficiency among
the other adaptively secure IBE from the RLWE assumption in an asymp-
totic sense. Compared to the ring version of Yamada’s scheme, we managed
to reduce the poly-logarithmic factors contained in the public parameters,
private keys, and ciphertexts.

— We propose a (non anonymous and) adaptively secure IBE scheme from the
3-computational bilinear Diffie-Hellman exponent (3-CBDHE) assumption.
The 3-CBDHE assumption is a weaker variant of the n-decisional bilinear
Diffie-Hellman exponent (n-DBDHE) assumption [BBG05,BGW05,BH0S].
The former seems to be much a weaker assumption than the latter in two
aspects. First, the former is a computational assumption whereas the latter
is a decisional assumption. Second, the former is not a parameterized as-
sumption, in the sense that the size of the problem instance only depends on
the security parameter. As for the efficiency, the public parameters, private
keys, and ciphertexts in our scheme require O(1/k) group elements. Here, x
is the length of the identities. This is the first adaptively secure IBE scheme
from a computational assumption on bilinear groups with public parameters
consisting of sub-linear number of group elements in the length of the iden-
tities. However, we note that the sizes of the ciphertexts and private keys of
our scheme are larger than the previous schemes.

We emphasize that our result for the lattice based construction cannot be ob-
tained through the simple switch to the ring setting in Yamada’s scheme. Their
proof will still require a super-polynomial-size modulus to work, whereas our new
technique allows for a polynomial-size modulus. In addition, the security proof
of our scheme requires new ideas that did not appear in [Yam16]. It exploits
the commutative properties of the underlying ring elements in an essential way,
involves a more generalized partitioning argument, and a careful analysis of the
Gaussian error. Refer Sec. 2 for the technical overview. We note that the public
parameter of our second scheme could be further reduced to O(x!/?) assuming
the d+ 1-CBDHE assumption. However, it would come at the cost of even longer
ciphertexts and complicated description of the scheme. This is beyond the scope
of our work. We finally remark that the reduction costs for both of our schemes

3 Note that he does not describe nor mention the ring variant of the scheme. However,
we can convert his scheme into a ring variant in a straightforward manner as is the
case in most previous works [CHKP10,ABB10,Boy10].



are inadmissible as was in the case of [Yam16]. In fact, the reduction loss for the
first scheme is worse than [Yam16]. Improving them is left as an open problem.

Related Works. One way to reduce the size of the public parameters in Waters’
hash and its analogue is to use Naccache’s approach [Nac07,SRB12]. However,
with this approach, we are only allowed to reduce the size of public parameters up
to logarithmic factor. Ducas et al. [DLP14] constructed efficient IBE over NTRU
lattices in the random oracle model. Gentry [Gen06] proposed adaptively secure
IBE with compact parameters from a parameterized (or g-type) assumption on
bilinear maps. Galindo [Gall0] and Chen et al. [CCZ11] proposed selectively
secure CCA-secure IBE schemes from the CBDH assumption.

Note on Recent Works. Here, we mention two important recent related works.

Apon et al. [AFL16] proposed an adaptively secure IBE scheme from lat-
tices whose parameters are very compact, using collision resistant hash function
with output-length k = w(log A). Here, A is the security parameter. While their
scheme is more efficient than our scheme, we clarify that they implicitly assume
exponential security on the collision resistant hash function, which is a stronger
assumption than what we use. To demonstrate this, let us set k = log2 A. If there
is no better attack than the birthday attack against the hash function, no PPT
adversary can find a collision with more than negligible probability. On the other
hand, the existence of even a sub-exponential time attack would compromise the
security of the IBE. For example, assume that there exists an attack that finds
a collision in time 2V*. Then, the collision for the hash can be found in linear
time in \, since 2V% = 208X — )\,

In their very recent work, Zhang et al. [ZCZ16] constructed an IBE scheme
with poly-logarithmic public parameters. While their scheme achieves better
asymptotic space efficiency than our scheme, their scheme is @-bounded, in
the sense that the security of the scheme is not guaranteed any more if the
adversary obtains more than ) private keys. This restriction cannot be removed
by just making @ super-polynomial, because the running time of the encryption
algorithm in their scheme is at least linear in ). We note that our scheme is
secure against an unbounded collusion.

2 Overview of Our Techniques

2.1 Construction from Ring and Ideal Lattices

The Yamada IBE. We briefly review the Yamada IBE [Yam16], for our pro-
posed IBE scheme follows the framework of theirs and overcomes some of the
major problems posed by their construction. Their construction follows the gen-
eral framework of constructing lattice-based IBE schemes that associates to
each identity ID the matrix [A[H(ID)] € Z;**™. In previous IBE constructions
[ABB10,CHKP10], the function H(ID) was computed by using the rather long
# public matrices {B;};c[+], where k£ = O(n) is the length of the identities. The
main technical contribution of the Yamada IBE was in reducing the size of the
public matrices to k'/¢ for any constant d and hence reducing the size of the



public parameters by incorporating a primitive called fully homomorphic trap-
door functions. Hereafter, we consider the case d = 2 for simplicity. In detail,
they used an injective map S : {0,1}* — 2[0%l4 that maps an identity to a
subset of the set [¢] x [¢] where £ = [x'/?], and computed the function H(ID) as

HID)=Bo+ > Bi;-G '(By) 1)
(i,5)€S(ID)

where the number of public matrices By, {Biyj}(iyj)e[Q]X[g] are now reduced to
O(Hl/ 2). Here, G is a special gadget matrix whose trapdoor is publicly known
[MP12] and G~ is viewed as a deterministic function rather than a matrix, that
maps a matrix V € Zg*™ to a matrix U € {0,1}"*"™ such that G- U = V
mod gq.

During the security proof, the reduction algorithm first prepares random
integers o, {yi7j}(i7j)€[2]><[g] € Zq from certain domains whose size grows linear
in the number of key extraction query @ of the adversary. Then after sampling
Ro, {Rij}icp2),jepg € Z™*™ with small spectral norm, the reduction algorithm
prepares the public parameters as

By = ARy + 4G, B;; =AR;; +y4,;G

for (¢, ) € [2] x [¢]. Then during the security reduction the hash value for identity
ID Eq.(1) is computed as

H(ID) = (ARo + %G) + > (AR +11,G)- G '(By)

(¢,7)€S(ID)
= (AR +5G) + Z (AR ;G (B2;) + y1,B2;)
(¢,7)€S(ID)
= (ARO + yoG) + Z (ARLiG_l(BQJ) + y17i(AR2,j + yz,jG))
(z,7)€S(ID)
= (AR +%G) + Z (ARG '(B2;) + A(y1,;Ro ;) + y1,i2,,G)
(i,4)€S(ID)
= A (Ro + > (R1,iG71(B2,j) + yl,iR2,j)> + (yo + > yl,iy2,j> G
(i,4)€5(ID) (i,5)€S(ID)
:=Ryp, which is “small” :=Fy (ID)
= ARp +Fy(ID)G. (2)

Observe that we implicitly relied on the fact that A and y; ; commutes. There-
fore, the reduction algorithm is able to sample a secret key for ID using the
trapdoor of G if and only if F, (ID) # 0 mod ¢. Hence, the simulation succeeds
when the adversary queries on secret keys for ID satisfying Fy (ID) # 0 mod ¢,
and queries for a challenge ciphertext for ID* satisfying Fy (ID*) = 0 mod ¢ in
which case the reduction algorithm can embed its LWE challenge.

Overview of the Construction and Security Proof. The major drawback of
the Yamada IBE is that they require the modulus size ¢ to be super-polynomial.



This stems from the fact that the size of yo,v;; € Z,; must grow linearly in
the number of adversarial key extraction query @ for the security proof to be
meaningful, i.e., Pry[Fy (ID*) = 0AFy(ID1) # OA---AFy(IDg) # 0] is noticeable
in n. However, since the size of the G-trapdoor Rp used during simulation
grows proportionally to the size of y1; (check above Eq.(2) to see how Rip
was created), thereby growing proportional to @ = poly(n), we need to set the
modulus size ¢ to be at least super-polynomial in n for the trapdoor to operate
properly. Therefore, if we try to restrict ourselves to a polynomial sized modulus
q, it seems the best we can achieve is a scheme where we have to set a bound
on the number of adversarial key extraction queries before instantiation, i.e., a
Q-bounded scheme.

In our work, we combine several ideas in a novel way to circumvent the
above seemingly inevitable problem. The first idea is to extend the elements
Y0,Yij € Zq to matrices Yo,Y;; € Zy*" so that instead of increasing the
size of the element y € Z,, we can “pack” small elements in the entries of the
matrix Y € Zg*". Namely, since the matrix has n? entries, if the number of key
extraction query is @@ = n° for some constant ¢, we can always set up the matrix
so that ¢ of the entries are packed by elements of size O(n). Since there are n?
entries in total, this allows us to pack the matrix with small entries (e.g., O(n))
for arbitrary @ = poly(n) without the need of increasing the modulus size g.
However, this simple idea alone does not work, since during the security proof
to obtain Eq.(2), we crucially relied on the fact that A and y; ; commutes. For
our idea to work we need the two matrices A and Y, ; to commute, however, in
general this does not hold.

To overcome this problem, we introduce our second idea of using the ring
structure of ideal lattices. Concretely, we use the special polynomial ring R =
Z[X]/(X™ 4+ 1) to construct our scheme for n a power of 2. The construction
itself is exactly the same as the ring analogue of the Yamada IBE, however, our
new security proof relies crucially on the underlying ring structure. In detail, the
reduction algorithm prepares the public parameters as

bo = aRy +yog, bi;=aR;;+y. ;g

for (i,7) € [2] x [¢], where a, by, b; ; € R’;, Re R’;Xk, Yo, Yi,; € Rq and g € R’;
is the ring analogue of the G-trapdoor. Observe that y,¥; ; are now elements
in R, instead of Z,. Although this y is not quite a matrix, this is actually more
than enough for us to use the packing technique described above. This can be
seen by first noticing the natural isomorphism between R, = Zp induced by
the coefficient embedding and viewing y € R, as a vector in Zy. Since y has
n entries when viewed as vectors, it can support up to n™ queries by packing
each entry with small elements of size O(n). Furthermore, the second part of the
problem addressed above is naturally resolved, since now that we are working
in a ring we get the commutativity of a and y; ; for free. This key role in the
commutativity for rings is somewhat reminiscent to the signature scheme of
[DM14]. We note that the technique used by [Alp15] (which has also been used
in [Xagl3]) to extend the results of [DM14] to matrices seems to be inapplicable



in our setting. This is because in our setting we need to commute the LWE
challenge matrix A instead of the gadget matrix G whose associating trapdoor
is known. To summarize, by incorporating our second idea, we obtain the ring
variant of Eq.(2) and the trapdoor operates as specified. We note that one might
be tempted to pack the entries of y with constant size elements, since 2" is still
exponential in n and hence Q(n) < 2". However, the security proof relies heavily
on the fact that the density (i.e., the number of entries that are packed) of y
is bounded by some constant. Therefore, we must choose the size of the packed
elements with care to make the overall scheme secure.

The final idea is carefully crafting a properly distributed challenge cipher-
text. To be precise, the main issue is in the difficulty of creating a ciphertext that
has errors that are properly distributed. This problem of generating a properly
distributed challenge ciphertext was addressed in [Yam16] as well, however, they
used the standard technique called the “smudging” or “noise flooding” technique
which came at the cost of making the modulus size ¢ super-polynomial in n. This
was not a problem for them, since as we pointed out earlier, their scheme in-
herently needed a super-polynomial sized modulus to work. However, this tactic
is inapplicable to our setting since we want to restrict ourselves to the poly-
nomial sized modulus. To overcome this we devise a way to carefully craft the
error term; a technique reminiscent of [GPV08,ACPS09]. First, assume we have
F(ID*) = 0 for the challenge identity ID* and thus H(ID) = AR p-. Note that
for ease of understanding we explain the technique in the matrix form instead
of the ring form. To prove security, we have to embed the LWE challenge A and
v into the challenge ciphertext, where v = sA + x or v a random vector. One
natural way is to set

X1 =X, Xz =XRip- 3)
and compute the challenge ciphertext as
S[A[H(ID")] + [x1x2] = [v[vRip+].

However, one can not simply use the standard generalized leftover hash lemma
for lattices presented in [ABB10]; a technique often used in proving such forms.
This is because Ryp+ is not uniformly sampled as in the case of [ABB10], but
instead highly correlated to the values of y, {y; ;} used during the simulation.
Alternatively, we present a noise rerandomization technique and add a small
extra noise to Eq.(3) and statistically hide Rjp. Namely, we sample noises e;
and ey from a particular Gaussian distribution with variance computed from
Rp+ and set

X1 =X+ e, Xy=xRppr—+es.

Thus the challenge ciphertext is created as above by further adding the new
noise terms. Although the general idea of this technique has been around since
[Reg05,GPVO08] and has been used in contexts elsewhere, as far as we know, we
believe this is a nice application for rerandomizing the noise without the need
of adding a huge (super-polynomial sized) noise.



An Additional Idea. Working in the ring setting introduces some subtle yet
crucial obstacles, which we did not have to address before. Namely, for ¢ a
prime and n a power of 2, the domain R, = Z[X]/(q, X" + 1) we work in is
no longer a field as in the case of Z,. Additionally, if we use a modulus ¢ such
that ¢ = 1 mod 2n as in [LPR10,LPR13], the ring R, completely splits into
n fields. In such a ring, each field only contains ¢ = poly(n) elements so the
Schwartz-Zippel lemma during our security proof can not be applied. We get
around this by using a modulus ¢ such that ¢ = 3 mod 8 where it is known
to split into only two fields. Then, since each field now contains ¢"/? elements
and R, acts roughly as a field, we are able to apply our proof techniques. As
for the purpose of completeness, we prove the hardness of LWE over such rings
by the straightforward combination of previous results. We finally note that we
also obtain a nice regularity lemma over such rings which helps us attain better
parameters for the scheme.

We also employ some ideas to further optimize the sizes of the public pa-
rameters, secret keys and ciphertexts. Namely, we use the (ring version of the)
G-trapdoor where the base is set as n" for some positive constant 7. We use
n= i for our concrete parameter selection. By incorporating this idea, we can
further reduce the size of the parameters by a factor of logn. However, this
comes at the cost of making the scheme less efficient, since the function G=1(-)
has a slower running time for a larger base.

2.2 Construction from Bilinear Maps

Here, we explain our IBE scheme from bilinear maps. We start with a slightly
modified version of Waters IBE [Wat05] and gradually modify it to obtain our
scheme. Let us consider a group G with prime order p whose generator is g. The
group is equipped with a efficiently computable bilinear map e : G x G — Gr.
The public parameters of the scheme contains rather long x + 3 group elements
{9 Yicjo.n)y 9% ¢?, and a randomness rand € {0, 1}|GT‘ that is used to derive
the Goldreich-Levin hardcore bit function GL : {0,1}/¢7l x {0,1}I®7l — {0,1}.
The form of the ciphertexts and private keys in the scheme are as follows:

C = (957 g™ GL (e(g”, g%)*, rand) @ M ) , skip = (9“5 gmhiD) g )

where M € {0,1} is the message to be encrypted, and s and r are random ele-
ments in Z, that are picked during the encryption and key generation algorithms,
respectively.

Here, H : {0,1}* — Z, is defined as H(ID) = wo + >_jp,_; w; where ID; is
the i-th bit of ID. The reason why we use the hardcore bit function is to base
the security of the scheme on the computational bilinear Diffie-Hellman (CBDH)
assumption, rather than the stronger decisional bilinear Diffie-Hellman (DBDH)
assumption which was used to prove the security of the original Waters IBE.

Next, we try to reduce the size of the public parameters using the idea of
the Yamada IBE. A natural way to do this would be to introduce the injective



map S : {0,1}* — 2% with ¢ = [k'/?], change the public parameters to be
9", 19" }(i.)e2]x ¢, and modify the function H as

H(lD) = Wo + Z ’IULZ'UIQJ'.
(i,j)€S(ID)

Through this change, we can reduce the size of the public parameters from
O(k) group elements to O(y/k), just in as [Yam16]. However, we come across
an immediate problem: We cannot efficiently compute ¢g°"(®) from the public
parameters! A straightforward solution to this problem is to put “helper” terms
{g**#"2.3 } into the public parameters. However, this makes the size of the public
parameters large again.

Our solution to this problem is to rely on the Boneh-Boyen technique [BB04a]
to compute something similar to the problematic term. Namely, we compute

gsH(ID)+Zjes(|D) ijlj, { gfj }jG[e] (4)

instead of computing only ¢*H(P). Here, {fj} are additional randomness intro-
duced by the encryption algorithm. Accordingly, we change the form of the
ciphertexts and private keys of our scheme as follows:

C= (g% g M Escntires, (g5, GL(e(g” ") rand) O M ),
Sk|D = < gaﬁ . gTH(ID); g_Tu {gTWZ.j }]G[e] ) . (5)

Note that although the size of the public parameters is smaller than the origi-
nal scheme, the sizes of the ciphertexts and private keys are larger due to the
additional terms. We now show that one can efficiently compute the ciphertext.
In particular, we show that it is possible to generate the terms in Eq.(4). To see
this, let us introduce the variables {¢;} such that

th = tj — S Z Wi, . (6)

ie€{i€[1,0]|(3,5)€S(ID)}

Then, we have

SH(lD) + Z gij,j

JEl]

= SH(|D) + Z w2, j tj -8 Z W1,;
J€le] ie€{i€[1,0]|(,5)€S(ID)}

= sH(ID) + Z wa jt; — s Z Z W1,W2,j
JEl] Jelg \ie{ie[1,4|(i,5)€S(ID)}

= swo +;M+ Z wa jt; — & W2,
+7)€S(ID) Jel +7)€S(ID)
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= SWo + ’LUQJ‘tj. (7)
Jjele

Since Eq.(6) and (7) are linear in wy, w; ;, it can be seen that the terms in Eq.(4)
can be computed efficiently, as desired.

By substituting #; in Eq.(5) with the right-hand side of Eq.(4), we obtain
our final scheme. As for the security, we can prove the adaptive security of the
scheme from the 3-computational bilinear Diffie-Hellman exponent (3-CBDHE)
assumption. We need to rely on this stronger assumption than the standard
CBDH assumption, because of the different algebraic structure incorporated by
the modified Waters IBE.

3 Preliminaries

Due to the space limitation, most of the proofs for the lemmas presented in this
paper are omitted. For the full proof refer to our full version.

Notations. We use non-italic bold lowercase letters (e.g., v) for vectors with
entries in R and italic bold lowercase letters (e.g., v) for vectors with entries
in rings or number fields. We view vectors in the row form stated otherwise.
Matrices are denoted by uppercase bold letters analogously. For a vector v € R™,
denote ||v]|, as the L,-norm, where p = 2 is the standard Euclidean norm. For
a matrix R € R™*™, denote ||R|/gs as the longest column of the Gram-Schmidt
orthogonalization of R and denote s1(R) as the largest singular value (spectral
norm). We denote [-|-] (resp. [-;-]) as the horizontal (resp. vertical) concatenation
of vectors and matrices. We denote [a, b] as the set {a,a+1,...,b—1,b} for any
integers a, b € N satisfying a < b, and for simplicity write [b] for the special case
a = 1. For a (quotient) polynomial ring R over Z, we denote [—b,b|lg C R as
the set of elements in R with all coefficients in the interval [—b,b]. Statistical
distance between two random variables X and Y with support {2 is defined as
AX;Y) =13 o |Pr[X =s] — Pr[Y = s]|. A function f: N — R is said to
be negligible, if for all ¢, there exists Ag such that f(A\) < 1/A¢ for all A > Ao.
We denote by negl(\) a negligible function in .

3.1 Identity-Based Encryption

We use the standard syntax of IBE [BF01]. We briefly recall the security notion
of IBEs and refer the exact definition to the full version. In our paper, we define
two security notions: adaptive security and adaptively-anonymous security. The
former adaptive security is the standard notion for IBEs as in [Wat05]. The
latter adaptively-anonymous security is a notion that additionally requires the
ciphertext to be indistinguishable from random. The term anonymous captures
the fact the the ciphertext does not reveal the identity for which it was sent to.
Furthermore, we use two random variables coin and coin in {0, 1} for defining the
security for IBEs. coin refers to the random value chosen by the challenger at the
beginning of the security game and coin refers to the random value outputted by
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the adversary at the end of the game. We provide a general statement concerning
coin and coin in Sec. 3.4.

3.2 Lattices and Gaussian Distributions

An n-dimensional (full rank) lattice A C R” is the set of all integer linear combi-
nations of some set of n linearly independent basis vectors B = {by,...,b,} C
R™ A= {Zie[n] 2z;b;|z € Z"}. For positive integers ¢,n, m, a matrix A € Z7*™
and a vector u € Zy, the m-dimensional “shifted” integer lattice is defined as
AL (A) = {z € Z™|AzT = uT mod ¢}. We simply write A-(A) in case u = 0.

For s > 0, the n-dimensional Gaussian function p; : R™ — (0, 1] is defined
as ps(x) = exp(—ml|x|3/s?). The (spherical) continuous Gaussian distribution
D, over R" is the distribution with density function proportional to ps. When
the dimension n is not clear from context, we explicitly write it as D}. More
generally, for any matrix B € R"*™  denote Dg as the distribution of xB”
where x is distributed as D7*. A well known fact is that for any two matrices
B, B, the sum of an independent sample from Dy, and Dg, is distributed as
D¢ where C = (B,BT 4+ B,BI)/2.

For a n-dimensional lattice A and a vector in u € R™, the discrete Gaussian
distribution Dj 44 s over the coset A+u is defined as Dp 1y s(X) = ps(x)/ps(A+
u) for all x € A+u. We also define the discrete Gaussian distribution Df\ofrf‘i,r over
a (quotient) polynomial ring R in X over R. The discrete Gaussian distribution
Dj\"j‘cfw is the distribution of a = Z?:_Ol ;X" € R where the coefficient vector
[, ..., an—1] € R™ is sampled from the discrete Gaussian distribution Dp 4y, .
This definition naturally extends to vectors @ € RF in case of nk-dimensional
lattices.

The following lemma on noise rerandomization plays an important role in
the security proof of our scheme when creating a properly distributed challenge
ciphertext. This allows us to simulate the challenge ciphertext without resorting
to the noise flooding technique as in [Yam16]. Namely, during simulation we set
£ =2m, V = [I,,|]Rip] and b + x as the LWE challenge (note that we view the
LWE challenge in a slightly different way than usual).

Lemma 1 (Noise Rerandomization). Let g, ¢, m be positive integers and r a
positive real satisfying r > max{w(v/logm),w(v/1og?)}. Let b € Z7* be arbitrary
and x chosen from Dzm .. Then for any V € Z™** and positive real o > s1(V),
there exists a PPT algorithm ReRand(V,b+x,r,0) that outputs b’ = bV +x’' €
Zg where x' is distributed statistically close to Dyt 5,

3.3 Rings and Ideal Lattices

We try to provide a minimum exposition of rings and ideal lattices to keep
it self-contained. For further detail see the full version or refer to other works
[LPR10,LPR13].

Preparation. Let n be a power of 2 and set m = 2n. Define the ring R =
Z[X]/ (@ (X)), where @,,(X) = X™ + 1 is the mth cyclotomic polynomial. For
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an integer ¢, denote R, as R/qR = Z[X]/(q, P (X)). By viewing the elements
in R as n — 1 degree polynomials in Z[X], we can consider a natural coefficient
embedding of R onto the integer lattice Z™. Namely, we define the coefficient
embedding ¢ : R — Z™ that maps a = Z?;Ol a; X" € R to [ag,aq,...,00 1] €
Z". We extend the coeflicient embedding naturally to vectors and matrices. On
the other hand, we can also identify R as the subring of anti-circulant matrices in
Z™*"™ by viewing each ring element a € R as a linear transformation r — a-r of R.
Concretely, we define the ring homomorphism rot : R — Z™*™ that sends a € R
to a matrix in Z"*" such that the i-th row is ¢(a - X1 mod &,,(X)) € Z".
Note that the first row of rot(a) is ¢(a). Similarly to above, the definition of the
map rot naturally extends to vectors and matrices.

Norms in R. We define the Euclidean length for an element a € R and a vector
v € R* by identifying R with Z™ through the coefficient embedding.* Therefore,
when we say a vector v in R* is “short”, we mean that ||¢(v)|2 is small. We also
define the largest singular value of a matrix R € R**! by identifying the ring
R with Z"*™ through the map rot.” Namely, s1(R) := max|,,—1|z - rot(R)]|z.
Note that this definition allows us to consider singular values of an element in
R as well.

Properties for Elements in R. As with matrices with entries in R, we have
similar singular value bounds for matrices with elements in R. Namely, we can
bound the singular value of a random matrix chosen from [—b, b]3*". Recall that
an element of [—b, b] g is an element in R with all of its coefficients in the interval

[—b,b].

Lemma 2 ([DM15], Special case of Fact 1). Let b be a positive integer and
R be a s x t matriz chosen uniformly at random from [—b, b]j}z”. Then, there
exists a universal constant C(~ 1/v/2m) such that

Pr[si(R) > C -by/n- (/s + VvVt +w(y/logn))] = negl(n)

We note that similarly to matrices with entries in R, we have s;(R1Rs) <
s1(Ry)s1(Ry) for all Ry, Ry € RF*F which follows from the fact that rot is
a ring homomorphism. Furthermore, it also holds when R, is replaced by an
element a in R.

Regularity Lemma. The former Lemma shows that there exists a quotient
ring R, = R/(q, P (X)) that acts roughly as a field, or in other words, R, has
exponentially many invertible elements. The latter Lemma is a ring analogue of
the standard lattice regularity lemma.

Lemma 3. Let q be a prime such that ¢ = 3 mod 8 and n be a power of 2.
Then, ®2,(X) = X" + 1 splits as X™ + 1 = t1ta mod q for two irreducible

4 We could have identified the Euclidean length by the canonical embedding as done
in other works. However, for our special case where n is power of 2, the lengths are
equivalent up to a factor of \/n.

5 For the special case where n is a power of 2, s1(R) defined by the coefficient and
canonical embeddings are both equivalent to the one defined by the map rot.
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polynomials t, = X2 4y X4 — 1 and ty = X2 — uX4 — 1 in Zy|X]
where u* = —2 mod q. Furthermore, all x € Ry satisfying ||¢(x)||2 < \/q are
invertible, i.e., v € Ry.

Lemma 4 (Regularity Lemma). Let n be a power of 2, q be a prime larger
than 4n such that ¢ = 3 mod 8, and £, k', k,p be positive integers satisfying
LE >1,k>2, p< %\/q/n. Define the family of hash functions H = {ha(x) :
[—p, pl% — Rf;,}, where ha(x) = Az for A € R’;le, T € R’;Xl. Then, H is

a universal hash family. Furthermore, for A < R’(;/Xk and X & [—p, p}%”, we

have

. />< e qk, '
A(A,AX) 5 (A UR;™ ) < - (W) :

Ring Learning with Errors. The ring LWE problem was introduced by
Lyubashevsky et al. [LPR10]. They showed that solving it on the average is
as hard as (quantumly) solving several standard problems on ideal lattices in
the worst case.

Definition 1 (RLWE). For positive integers n = n(\), k = k(n), a prime
integer ¢ = g(n) > 2, an error distribution x = x(n) over Ry, and an PPT
algorithm A, an advantage for the RLWE problem RLWE,, ;. 4 of A is defined
as follows:

AV TR = PrlA({(as, 00 }Ey) — 1] = PrlA({(ai, ais + )} ) — 1]]

where ai, ..., a5, v1,. .., U, S & Ry andeq,..., e & x. We say that RLWE, ,q.x

assumption holds if AdviLWE"”“’“‘X is negligible for all PPT A.

Theorem 1. Let o be a positive real, m be a power of 2, £ be an integer,
D, (X) = X™ 4+ 1 be the mth cyclotomic polynomial where m = 2n, and R =
Z[X])(®,,(X)). Let ¢ =3 mod 8 be a (polynomial size) prime such that there is
another primep =1 mod m satisfyingp < q < 2p and ag > n3/2k1/4w(10g9/4 n).
Then, there is a probabilistic polynomial-time quantum reduction from O(y/n/a)-
approzimate SIVP (or SVP) to RLWE,, k4. with x = D%’ff;q.

The proof is obtained by a straightforward combination of previous results
[LPR10,LS15]. Due to the Linnik’s theorem and Dirichlet’s theorem on arith-
metic progressions, we have that there are sufficiently many primes p and ¢
satisfying the assumption of the theorem.

Trapdoors for Rings. Define the gadget matrix g, = [1[b|---[b¥ ~1|0] € RE,
where b is a positive integer and k > k' = [log, ¢|. When k = k' and b = 2,
this corresponds to the matrix representation of the gadget matrix G € Z;’X”k
often used in the literatures by properly rearranging the rows and columns of
rot(gz). The following algorithms are simple modification of traditional lattice
based algorithms.
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Lemma 5. Let n be a power of 2, q be a prime larger than 4n such that ¢ =
3 mod 8, and b,p be a positive integer satisfying p < %\/q/n. Furthermore,
define log,(+) := logy(-). Then, there exist polynomial time algorithms with the
properties below:

— TrapGen(1",1% q,p) — (a,T,) ([MP12], Lemma 5.3): a randomized algo-
rithm that, when k > 2log, q, outputs a vector a € R]qC and a matrix T, €
REXE “where rot(a®)T € Z7*"* is a full-rank matriz and rot(Ty) € Z"F*"*
is a basis for A*(rot(a®)T) such that a is negl(n)-close to uniform and
[rot(Ta)lles = O(bp - \/nlog, q).%

— Sampleleft(a, b, u, T, 0) — e ([CHKP10]): a randomized algorithm that,
given vectors a,b € RF where rot(a™)T rot(b”)T € Z2*"* are full-rank, an
element u € Ry, a matriz Ty, € RF** such that rot(Ty) € Z™*"k is a basis
for At (rot(a™)T), and a Gaussian parameter o > ||rot(Ty)| gs - w(v/Iognk),
outputs a vector e € R?* sampled from a distribution which is negl(n)-close to

Df/:\oj;ff)([rot(aT)T‘rOt(bT)T])7o_, i.e., la|ble? = u and ¢(e) € Z*"* is distributed

according to DAé(u)([rot(aT)Tlrot(bT)T])’o-~
- SampleRight(a, gy, R, y, u, Ty, ,0) — e where b = aR+yg, ([ABB10]): a ran-
domized algorithm that, given vectors a, g, € RS such that rot(a™)T rot(gy)”
€ ZZX”k are full-rank matrices, elements y € Ry,u € Ry, a matriz R €
RF>¥k - q matriz Ty, € R** such that rot(Ty,,) € Z™*"™ is a basis for
At (rot(gy)), and a Gaussian parameter o > s1(R)-||rot(Ty, )| cs-w(v/1og nk),
outputs a vector e € R2* sampled from a distribution which is negl(n)-close to

D;:\o;ii)([rot(aT)T\rot(bT)T]),o’ i.e., [alble? = u and ¢(e) € Z*"* is distributed

according to DAj).(u)([rot(aT)Tert(bT)T])7o..

- ([MP12]:) Let k > [log, q|. There exists a publicly known matriz Tg, such
that rot(Ty,) € Z™>"* is a basis for the lattice A*(rot(gy)) and ||rot(Ty, )cs
< Vb2 + 1. Furthermore, there exists a deterministic polynomial time algo-
rithm g, ' which takes input u € R’; and outputs R = g, *(u) such that

R ¢ [-b,b)%** and gy R = u.

Note that we abuse the notation g, ! by viewing it as a function rather than a
vector. Namely, for any u € R’; there are many choices for R € R¥** such that
goR = u, and g, '(u) is a function that deterministically outputs a particular
short matrix from the possible candidates. Since we have s1(R) < b-nk for any
R € [, %% s1(g, * (u)) < bnk holds for arbitrary u € RE.

Homomorphic Computation. Let d be a natural number. We introduce the
function PubEvaly : (R’;)d — R’; as in [Yaml16], which takes a set of vectors
bi,by,..., by € Rfj as inputs and outputs a vector in R’q“. This function will be

5 We combine several lemmas from [MP12] and the regularity lemma (Lemma 4)
to show correctness of TrapGen. See the full version for further detail. Further, the
unusual lattice A* (rot(a™)7) is used only to be consistent with the other algorithms.
Namely, we could have instead defined the trapdoor for the lattice A*(rot(a)).

7 We have rot(g{)” = rot(gs) since all the entries of g; are integers.
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used to hash identities to R’; in our lattice-based IBE construction. The function
is defined recursively as follows:

PubEvaly(by,. .., by) = {bl » ifd=1

b - g, (PubEvaId,l(bg, el bd)) if d> 2.
Lemma 6. Let yy,...,yq be elements in R, a,by,...,byg be vectors in R’; and
Ry, ..., R, be matrices in R¥** such that b; = aR; + y;gy for i € [d]. Further-
more, we assume that s1(R;) < B,||é(yi)|l1 < fori € [d]. Then, there exists
an efficient algorithm TrapEval; that takes Ry, ..., Ra, y1,...,yd as inputs and
outputs R’ € RF** such that

PubEvalg(by,...,bg) = aR' +y1 - yagy € RE

and s1(R') < B8 + Bonk(25-51).

3.4 Other Facts

Lemma 7 (Expansion of Coefficients). Let ¢1,cq, By, By € N. Let also u =
up + ur X + e, 1 X € Rand v = vg + 01X + -0 1 X271 € R be
ring elements. We further assume that ¢y + c2 < n and ||¢p(u)|lec < B1 and
lo(v)]|oo < Ba. Then we have ||¢p(uv)||eo < min{eci, ez} - B1Ba.

The following Lemma addresses a general statement for bounding the suc-
cess probability of an adversary engaging with the security game of IBE. In
more detail, when the partitioning technique is used to prove security, the guess
returned by the adversary is correlated with the key extraction queries it has
made. Therefore, we need to argue with care to obtain a meaningful bound on
the success probability that holds for arbitrary key extraction queries.

Lemma 8 (Implicit in [BR09,Yam16]). Let us consider an IBE scheme
and an adversary A that breaks adaptive security (adaptively-anonymous se-
curity) with advantage €. Let us also consider a map v that maps a sequence
of identities to a value in [0,1]. We consider the following experiment. We
first execute the security game for A. Let ID* be the challenge identity and
ID1,...,IDg be the identities for which key extraction queries were made. We
denote ID = (ID*, D4, ...,1Dq). At the end of the game, we set coin’ € {0,1} as
coin’ = coin with probability y(ID) and coin’ < {0, 1} with probability 1 — (ID).
Then, the following holds.

1 max — /min
Pr(coin’ = coin] — = | > Ypin - € — Jmax — "Ymin

2 2
where Ymin (T€SP. Ymax) @S the mazimum (resp. minimum) of v(ID) taken over
all possible TD.
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Injective map. Let d and x be some integers. Furthermore, let £ be ¢ = [k/4].
Then, an element of [1,x] can be written as an element of [1,¢]¢ using some
canonical map. Furthermore, it is also possible to write a subset of [1,k] as a
subset of [1,/]? by naturally extending the canonical map. By identifying a bit
string in {0,1}" with a subset of [1, ] (for example, by regarding the former as
the indicator vector of a subset of [1, k]), we can define an efficiently computable
injective map S that maps a bit string ID € {0,1}* to a subset S(ID) of [1,¢]<.

3.5 Core Lemma for Our Partitioning

We make a general statement concerning the partitioning technique for IBEs,
which we use during the security analysis for both our lattice and bilinear map
based constructions. Namely, we use the following Lemma in order to argue
that the probability of the hash value for identities corresponding to the key
extraction queries being invertible and the hash value for the challenge identity
being zero is non-negligible.

Lemma 9. Let v, u,d,Q > 1 be any integers. Let @ be a ring and (2q,..., 12,
be a set of fields equipped with homomorphisms mj : & — (2; for j € [v]. Assume
that the map IT defined as IT : & 3 y — (m1(y),...,m(y)) € 21 X -+ x {2,
is an isomorphism. Let Sy and S1 be subsets of @ with finite cardinality. Let
us consider a set of multivariate polynomials f;(Y1,...,Y,) € ®[Y1,...,Y,] for
i € [0,Q] We further assume the following properties:

1. The map m; is injective on Sy for all j € [v].

2. We have 7;(fo) —m;(fi) is a non-zero polynomial with degree d for all i € [Q)]
and j € [v]. Here m; is extended to m; : $[X]| — 2;[X] in a natural way.

8. We have So 2 Uscpo,q{—fi(y1, - yu)lyt, -+ yu € S1}-

Then, for yo < Sy and y1,. .. Yu &Sy, we have
(e L
|50l |51 |So

where we denote

7=yP§,[yo+fo(y’)=0 A Yo+ fily) €@ A A yo+ foly') € 7,
0,

y' = (y1,...,yu), and &* = 71025 x - x 2%).

4 Construction from RLWE

In this section, we show our IBE scheme from the RLWE assumption. Let d be
a (flexible) constant number. In addition, let the identity space of the scheme be
ID = {0,1}" for some x € N and the message space be {0,1}" C R.® For our

8 Note that we regard m as an elements in R via ¢~ : Z" — R (the inversion of
coefficient embedding).
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construction, we consider an efficiently computable injective map S that maps
an identity ID € {0,1}" to a subset S(ID) of [1,£]?, where £ = [£'/¢]. Such a map
can be constructed easily as we explained in Sec. 3.4. Let n := n(}), b := b(n),
p = p(n), m:=2n, k:=k(n), g:=q(n), £ :=4L(n), a:=aln), o« :=d(n), and
o := o(n) be parameters that are specified later. Let also @,,(X) = X™ + 1 be
the mth cyclotomic polynomial and R = Z[X]/(®,,(X)).

Setup(1*) : On input 1%, it first runs (a,T,) & TrapGen(17,1*, ¢, p) to obtain
a € R and T, € R¥** Tt also picks u & Ry, bo, b; j ¢~ RF for (i, j) € [d]x[/]
and outputs

mpk = (@, bo, {bi;} (i )elaxg,w) and msk = Tg.
In the following, we use a deterministic function H : 7D — R’; defined as
H(ID) = by + > PubEvalg(b1j, b2y bay,) € RE.
(J1-57a)€S(ID)
KeyGen(mpk, msk, ID) : Tt first computes H(ID) and picks e € R?* such that
[a/H(ID)] - " =u
using SamplelLeft(a,H(ID),u, Tq,0) — e. It returns skip = e.

Encrypt(mpk, ID, M) : To encrypt a message M € {0,1}" C R, it first picks

$ $ ff $ o\ K .
s < Rg, mo < D750 T1, T2 (D%’,F,a/) . Then it computes

co =su+xzo+ |q/2] - M, ¢1 = slalH(ID)] + [z1]z2].

Finally, it outputs the ciphertext C' = (co,¢1) € Rq x R2¥.

Decrypt(mpk, skip, C) : To decrypt a ciphertext C = (¢, ¢1) using a private key
skip = e, it computes ([(2/q) - ¢(co — c1e”)] mod 2) = m. Here, the round-
ing function |-] is applied componentwise.

4.1 Correctness and Parameter Selection.

The following lemma addresses the correctness of the scheme.

Lemma 10 (Correctness). Assume aqw(y/Iogn)+ vVnka'ow(y/lognk) < q/5
holds with over whelming probability. Then the above scheme has negligible de-
cryption error.

Parameter selection. We refer the precise requirements for the parameter
selection to the full version. One concrete selection for the parameters is as
follows:

k=8d+12, q=n*"3, b=p=ni,
5
2

d

oc=n%w(logn), «a=n"2"

1

fowlog?n)™t, o =n !

d+ -w(log% n) 1,

where d is a (flexible) constant which may be set very small (e.g., d = 2 or
3) in a typical setting and the length x of the identities ID is set as n. This
specific instantiation is denoted as the Type 2 IBE scheme in Sec. 6. Table 1.
Furthermore, the other concrete instantiation provided only in the full version,
where we set b =2 and k = O(logn), is denoted as the Type 1 IBE scheme.
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4.2 Security Proof for the Scheme

The following theorem addresses the security of the scheme. The proof proceeds
in a similar manner as in [Yam16], but we incorporate several novel ideas as we
explained in Sec. 2.

Theorem 2. The above IBE scheme is adaptively-anonymous secure assuming
RLWE,, 114 pestt 1S hard, where the ciphertext space is C = Rq X ng,
KA+1,q, D57

Proof. Let A be a PPT adversary that breaks the adaptively-anonymous security
of the scheme. In addition, let € = ¢(n) and Q@ = Q(n) be its advantage and the
upper bound of the number of key extraction queries, respectively.

Since A is PPT and ) and n are polynomially related (namely, n = O(\°) for
some constant 0), there exists a constant number ¢; € N such that 4(dQ + 1) <
n for all n that are sufficiently large. Similarly, since A breaks the security of
the scheme, there exists co € N such that 2e > n~¢ holds for infinitely many n.
By setting ¢ = ¢1 + co, we have that

€

1
< nf _ > —
4d@Q < n° for allm € N and @0+ 1) = e

for infinitely many n € N.  (8)
In the proof, we will assume d(c — 1) < n. Since both ¢ and d are constant
numbers, this holds for sufficiently large n.
We show the security of the scheme via the following games. In each game,
a value coin’ € {0,1} is defined. While it is set coin’ = coin in the first game,
these values might be different in the later games. In the following, we define X;
to be the event that coin’ = coin.

Gameg : This is the real security game. In the challenge phase, the challenge
ciphertext is set as C* = (co, c1) & Ry Rik if coin = 1. Otherwise, it is set
as C* « Encrypt(mpk, ID, M), where M is the message chosen by A. At the
end of the game, A outputs a guess coin for coin. Finally, the challenger sets
coin’ = coin. By definition, we have

— 1

Pr[coin = coin] — 2‘ =€

1
PI'[X()] — 2‘ =

1
Pr[coin’ = coin] — 2' =

Game; : For integers tg,t; € Z such that tg < ¢; and positive integer ¢ € N, let
us denote [to,t1]r,c as

c—1
[to, t1]R,c == { > aix
=0

In words, [to,t1]r,. denotes the set of polynomials of degree less then ¢ — 1
with all of its coefficients in the interval [to, ¢1]. Note that ¢ is the constant
defined in Eq.(8). In this game, we change Gamey so that the challenger
performs the following additional step at the end of the game. First, the

challenger picks y = (yo, {¥:,j}(i,5)e[d,q)) as

a; € [to,t1] for all 4 € [0,¢ — 1] } CR.

yo & [—k(cn)?, —1R,(c=1)d+1 and vij & [L,n)Re 9)
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for (4, ) € [d] x [¢]. Recall & is the length of the identities. We then define a
function Fy : ZD — R, as follows:

Fy(ID) = yo + Z Yy Y-
(415---,4a)€S(ID)

Then the challenger checks whether the following condition holds:
Fy(ID*) =0 A Fyu(IDy) € Ry N -+ N Fy(IDg) € Ry, (10)

where ID* is the challenge identity, and ID1, ..., D¢ are identities for which
A has made key extraction queries. If it does not hold, the challenger ignores
the output coin of A, and sets coin’ & {0,1}. In this case, we say that the
challenger aborts. If condition (10) holds, the challenger sets coin’ = coin.
As we will show in Lemma 11, we have

1 1 e dQ
Prix] = 2' (rednd)(e=1)d+1 (2 - nc) :

So as not to interrupt the proof of Theorem 2, we intentionally skip the proof
for the time being.

Gamey : In this game, we change the way by and b; ; are chosen. At the beginning
of the game, the challenger picks Ry, R; j <& [—p, p|%* for (i,5) € [d] x [(].
It also picks y as in Game;. Then, a, by, and b; ; are defined as

Y

by = aRy + yogs, b,j =aR,;; + vy 9, (11)

for (i,7) € [d] x [€]. The rest of the game is the same as in Game;.
Now, we bound |Pr[X3] — Pr[X}]|. By Lemma 4, the distributions

(a,aRo + yogs, {aRi; + vijg9v}i.je@xg) and (a,bo, {bi;}i)eiaxia)

are negl(n)-close, where by, b; ; < R%. Thus, we have [Pr[X;] — Pr[X,]| =
negl(n).

Gamez Recall that in the previous game, the challenger aborts at the end of the
game if condition (10) is not satisfied. In this game, we change the game
so that the challenger aborts as soon as the abort condition becomes true.
Since this is only a conceptual change, we have Pr[X5] = Pr[Xs].

Before describing the next game, we define Rjp € R*** for an identity ID € ZD
as

Rp =Ry + Z TrapEvaly(R1 i, RajysYijis- - Ydje) (12)
(415+--,4a)€S(ID)

Note that by the definition of Ryp, H(ID), PubEval and TrapEval (Lemma 6) we
have

H(ID) = by + > PubEvalg(by j, b2 j,, - ., baj,)
(415+-234)ES(ID)
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=aRp + Fy(ID)gy. (13)

Since Ry, R; ; & [—p, p]’f%Xk, from Lemma 2 we have s1(Ry),s1(R;;) < B
with all but negligible probability where B = C"- py/n(vk +w(y/Togn)) for some
positive absolute constant C’. Furthermore, we have ||y; ;|1 < cn from Eq. (9).
Therefore by Lemma 6, we have

s1(Rip) < s1(Ro) + Z s1(TrapEvaly(Rj,, - RajusYi,j1s-- - > Ydju))
(j15---»4a)€S(ID)

d—1 _ 1
<B (1 + r(en)®t + /ﬁbnk(cnc)n_l>, (14)

for any ID € ZD with all but negligible probability.

Gamey In this game, we change the way the vector a is sampled. Namely,
Gamey challenger picks a < R’; instead of generating it with a trapdoor.
By Lemma 5, this makes only negligible difference. Furthermore, we also
change the way the key extraction queries are answered. When A makes a
key extraction query for an identity ID, the challenger first computes R)p as
in Eq.(12). It aborts if Fy,(ID) ¢ R; as in the previous game and runs

SampleRight(a, gy, Rip, Fy (ID),u, Ty,,0) — e,
otherwise. Note that in the previous game the private key was sampled as
SampleLeft(a,H(ID),u, Tq,0) — €.

By Eq.(14) and for our choice of o, the output distribution of SampleRight is

fF :
negl(n)-close to Df&;u)([rot(aT)T‘rot(H“D)T)T])’U. Furthermore, by the choice of

o, this distribution is negl(n)-close to the output distribution of SampleLeft.
Therefore, the above change alters the view of A only negligibly. Thus, we
have |Pr[X3] — Pr[X4]| = negl(n).

Game; : In this game, we change the way the challenge ciphertext is created
when coin = 0. Recall in the previous games when coin = 0, we created a
valid challenge ciphertext as in the real scheme. If coin = 0 and F,(ID*) =0
(i.e., if it does not abort), to create the challenge ciphertext Games challenger
first picks s & R, and = <& (D%%efgq)k and computes v = sa +x € RF. Tt
then runs the algorithm

/

e
ReRand <rot([Ik|R|D*]), o(v), aq, M) —ce Zg"k

from Lemma 1, where I, € R*** is the identity matrix of size k x k. Finally,
$

it picks zo < D%"Wﬁf& o and sets the challenge ciphertext as

C*=(co=vo+[q/2] M, 1 =¢"(c)) equng’ (15)
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where vy = su + ¢ and M is the message chosen by A. We claim that this
change alters the view of A only negligibly. To show this, observe that the
input to ReRand is rot ([Ix| Rip-]) € Z***"" and

$(v) = p(sa+x) = ¢(s)rot(a) + ¢() € Zy",

where ¢(x) is distributed as ¢(x) & Dynk o4 Therefore, by the property of
ReRand and our choice of v and o/, the output ¢ € Zi”k is

c= (¢(s)rot(a)) -rot ([Ix|Rip+]) + %'
= ¢(s) - rot([a[H(ID")]) + x’
= ¢(s[a|H(ID")]) + %/,

where the distribution of x’ is within negligible distance from x’ & Dyznk o
due to Lemma 1. Here, we use the fact that H(ID*) = aRp+ holds since
F,(ID*) = 0. It can be readily seen that the distribution of ¢; = ¢~!(c) in
Games is statistically close to that in Games. Therefore, we conclude that
|Pr[X4] — Pr[Xs]| = negl(n).

Gameg In this game, we change the way the challenge ciphertext is created when
coin = 0. If coin = 0 and the abort condition is not satisfied, to create the
challenge ciphertext for identity ID* and message M, Gameg challenger first
picks vy ¢ Rg, v/ & RF and = & (Dt ¥, and runs

/

ReRand (rot([Ik|R|D*]),¢(v), aq, ;) —ce Zi"k, (16)
aq
where v = v’ + x. Then, the challenge ciphertext is set as in Eq.(15). As
we will show in Lemma 12, assuming RLWEn7k+17q7D%fr is hard, we have
|Pr[X5] — Pr[Xs]| = negl(n).
Game; In this game, we further change the way the challenge ciphertext is cre-
ated. When coin = 0 and the abort condition is not satisfied, the challenge
ciphertext for ID* is created as

C* = (co=wvo+[g/2] - M, e1 = [v/|v'Rip+] + [m1]z2] ) € Ry x R,

where vy & Ry, v/ & RE and @,z & (Deff -

We claim that this change alters the view of A only negligibly. This can be
seen by a similar argument to that we made in the step from Games to Gamey.
We first observe that in Gameg the input to ReRand is rot ([I|Rip+]) € Zph*2n*
and

p(v) = (v +x) = $(v') + p(x) € Z*, (17)

where ¢(x) is distributed as Dznr 4. Therefore, the output ¢ € Zﬁ"k of
ReRand is

c= ¢(’U/) -I“Ot([Ik|R|D*]) +x' = ¢([U’|’UIR|D*D + X/,
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where the distribution of x’ is within negligible distance from x’ < Dyznr o
due to Lemma 1. Hence, the distribution of ¢; = ¢~!(c) in Gameg is statisti-
cally close to that in Gamey. Therefore, we have |Pr[Xg] — Pr[X7]| = negl(n).
Gameg In this game, we change the way the key extraction queries are an-
swered. Instead of running SampleLeft or SampleRight, the (possibly inef-
ficient) challenger directly picks a secret key skip for identity ID as skip &

Df\ogji)([rot(aT)T\rot(H(lD)T)T])’U without using Ryp. Similarly to the change
from Games to Gamey, by the choice of o and Eq.(14), this alters the view
of A only negligibly. Therefore, we have |Pr[X7] — Pr[Xs]| = negl(n). Note
that this is only a conceptual game in order to get rid of any (negligible)
correlation between the secret key and Rjp so as not to interfere with the
statistical argument using Rjp~ in the following game.

Gameg In this game, we change the challenge ciphertext to be a random vec-
tor, regardless of whether coin = 0 or coin = 1. Namely, Gameg challenger

generates the challenge ciphertext C* = (¢g, ¢1) as
co & Ry, and c & ng.

We now proceed to bound |Pr[Xg] — Pr[Xy]|. Since Gameg and Gamey differ
only in the creation of the challenge ciphertext when coin = 0, we focus on
this case. First, it is easy to see that ¢y is uniformly random over R, in both
of Gameg and Gameg. Therefore, we only need to show that the distribution
of ¢1 in Gameg is negl(n)-close to the uniform distribution over R2*. To see
this, it suffices to show that [v'|v' Rip~] is distributed statistically close to the
uniform distribution over ng. First, observe that the following distributions
are negl(n)-close:

(a,aRy,v',v'Ry) ~ (a,a’,v',v") =~ (a,aRp, v, v"), (18)
where a,a’ & R’;, Ry, & [fp,p]l;;k, v v & R’;. It can be seen that the
first and the second distributions are negl(n)-close, by applying Lemma 4
for [a;v'] € R2** and Ry. It can also be seen that the second and the third
distributions are negl(n)-close, by applying the same lemma for a and Ry.

From the above, the following distributions are statistically close:
a,aRy,v',v'Rp+)

a,aRy,v',v' (Ry+ R|p+))
a,aRy,v',v" +v'Rjp.)

(
(

(
(

Q

a,aRy,v',v")

where a,a’ < RF, Ry & [—p, Pl vl v & R, and

I/D* = Z TrapEvald(Rlyjlv Ry - >yd,jd)'
(J1,---3a) €S(ID)

The second and the third distributions above are negl(n)-close by Eq.(18).
Note that we intentionally ignored all the aR; ; terms to keep the argument
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simple, since focusing on the aRy term is enough to prove randomness of
[v'|v' Rip+]. Therefore, we conclude that |Pr[Xg] — Pr[Xg]| = negl(n).

Analysis. From the above, we have

8

PrXo] - ;’ — [Pe[xy] - % + 3 (PrlXin] - PrlX.)
8

> [Pr[X,] — ;‘ —~ Z |Pr[X;11] — Pr[X)]|

1 e dQ
E (rednd)(e—Dd+T <2 - n“) — negl(n)

1 <e dQ

= poly(n) \2 ~ TLC) — negl(n) (19)

where the last equality follows from the facts that ¢ and d are constants and
k = poly(n). Since the challenge ciphertext is independent from the value of coin
in Gameg, we have Pr[Xg] = 1/2 and thus |Pr[Xg] — 1/2| = 0. Therefore, we
have that €/2 — dQ/n° is negligible. However, by Eq.(8),

€ dQ>dQ+1_@_1

2 n¢ ~  nc ne ne
holds for infinitely many n, which is a contradiction.

To complete the proof of Theorem 2, it remains to prove Lemma 11 and 12.

Lemma 11. For any PPT adversary A, we have

Pr[Xy] — ;‘ > (6 - dQ> .

(kednd)(e=Dd+1 \ 2 pe

Proof. For a sequence of identities ID = (ID*, 1Dy, ...,IDg) € IDH | we define
~(ID) as

7(ID) = Pr{Fy (ID*) = 0 A Fy(ID1) # 0 AFy(ID2) # 0 A+ AFy(IDg) # 0]

where the probability is taken over y = (yo, {¥i,j }(i,j)ejd.,¢)), Which is chosen as
specified in Game;. Then, it suffices to show

1 2d4Q 1
(rednd)(c=Dd+1 (1 Y ) < (D) < (rednd)(c=Dd+1 (20)

since by Lemma 8, this implies

1
PI'[Xl] — 2‘
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€ 2dQ 1 2d

> (chnd)(c—l)d+l <1 e ) o 2(,€Cdnd)(c—1)d+1 (1 o <1 e >)
1 2dQ dQ

= (rednd)(e=Dd+T (6 (1 T e ) B nc)

>_ L <6 _ dQ)

- (Hcdnd)(cfl)dJrl 2 ne

where the last inequality follows from Eq.(8). In the following, we will prove
Eq.(20) by applying Lemma 9. We set

v=2, p=dl =R,
Qj:Rq/<tj>, uei ZRq—>Rq/<tj>, for j € [2],
So = [—k(cn)?, —1R,(c=1)d+15 S1=[1,n]r.

where 7; is a natural homomorphism and ¢1,?, are elements in R, as defined
in Lemma 3. Therefore, the map IT : @ > y > (7m1(y), m2(y)) € 21 X {22 is an
isomorphism. We define f;({Y} j }(;.j1e(ax[g) for i € [0, Q] as

fi (Vg Gganetaxia) = > Yi Yoo Yay
(415---2d5)ES(ID;)

where we define IDg := ID*. Note that we have Fy,(ID;) = yo+fi ({i, }i.5)eld1x[e])-
We now check that the three conditions for Lemma 9 hold.

— We prove that 7; is injective on S for j € {1,2}. Assume for contradiction
that there are a1, as € S1 with a1 # ag and 7m;(a1) = mj(a2) © mj(a1 —az) =
0. We then have a; — a2 ¢ Rj. On the other hand, we have [|¢(a; — az)l]2 <
ven < /q. However, this contradicts Lemma 3.

— For i € [1,Q)], we have

fo({Yj}) — fi ({Yj40})

= > Yig Yoy, Yag, — > Yig Yoy Yag
(44.---+7) €S(ID*) (317, €S(ID;)

Since ID* # ID; and S is an injective map, we have S(ID*) # S(ID;). There-
fore, there exists (j7,...,73) € [¢]? such that (j,..., ;%) € S(ID*) A S(ID;),
where S(ID*)AS(ID;) denotes the symmetric difference of S(ID*) and S(ID;).
Thus, the above polynomial is a non-zero polynomial with degree d. Since
the coefficients of fy — f; are all in {—1,0,1} and 7;(£1) = %1, m;(fo — fi)
is a non-zero polynomial for j € {1,2} as well.

— We prove So 2 {—fi({v;. }G.i)elax)yi,1, - -+ yae € S1} for all i € [0, Q.
By our assumption d(c — 1) < n and by regarding elements y; ;; as poly-
nomials in Z[X]/(X™ + 1) with degree ¢ — 1, we have f;({y;;}) are all
in [*,*| g d(c—1)4+1 Where * represents some integer. It then suffices to show

lo(fi ({55 Y Gnetaxia))lse < w(en)®. For any {y; j} el x[e, we have
lo(fil{yi.i Y neiaxia))lo
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=|¢ Z Y1,5,Y2,55 " Yd, 5 (21)
(443 €S(1D) -
= Z D(Y1,1Y2.55 Y 57,) (22)
(4.3 ) €S(ID)) .
< Z Hfﬁ(yl,j{ymg “Yd ) ‘OO (23)
(41--35)€S(IDy)
< K(Cﬂ)d (24)

where Eq.(21) follows from the definition, Eq.(22) holds because ¢~ is a
homomorphism, Eq.(23) is from the triangle inequality, and Eq.(24) is from
Lemma 7 and the fact that ||y; ;/||cc < n.

This completes the proof of Lemma 11.

Lemma 12. For any PPT adversary A, there exists another PPT adversary B
such that

RLWE
|Pr[X5] — Pr[Xe]| < Advg

coeff
n,k+1,q,DZnyaq

In particular, we have |Pr[X5] — Pr[X]| = negl(n) under the RLWE,, , ., , Deset
s 'q, " ag
assumption,.

We omit the proof here. It is a standard proof where we convert the adversary
distinguishing Games from Gameg into another adversary against the RLWE
assumption. This is accomplished by noticing that the trapdoor information for
a nor (secret) randomness used to create the ciphertext is no longer required to
simulate the challengers in Games; and Gameg.

5 Construction from Bilinear Maps

In the following, we present our IBE scheme from bilinear maps. Here, for sim-
plicity, we present the scheme with only single-bit message space. A variant of
our scheme that can deal with longer message space will appear in the full ver-
sion. Let the identity space of the scheme be ZD = {0,1}" for some x € N.
For our construction, we consider an efficiently computable injective map S that
maps an identity ID € {0,1}* to a subset S(ID) of [1,¢] x [1, £], where £ = [/K].
We would typically set x = O(\), and thus £ = O(v/)) in such a case. We also
use GL(K,rand) to denote the Goldreich-Levin hardcore bit [GL89] of K using
randomness rand. Recall that GL(K, rand) is the bitwise inner product between
K and rand.

Setup(1*) : On input 1%, it chooses an asymmetric bilinear group Gy, Gz, Gr
with efficiently computable map e : G; x Gy — Gp of prime order p =
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p(A). Let g and h be generators of G; and G respectively. It then picks
WO, W11y -+, WL W2 T,5 -, W20, 03 & Z, and rand & {0,1}C71, Tt finally
outputs

mpk = (g, Wy = ¢*°, {W1,; = g*“*? le, {Wa,; = g*>i le,ga, h?,rand) and
msk = (h, o, B, wo, W1,1, ..., Wi, Wa1,...,W2y)

In the following, we use a deterministic function H : ZD — Z, that is defined as
follows.

H(|D) = wo + Z wy ;W2 j € Zp.

(i,7)€S(ID)

KeyGen(mpk, msk, ID) : It first computes H(ID) using msk and picks r & Z,. It
then returns

Sle — ( A1 — hozﬁ-‘r’r-H(lD)7 AQ _ h—'r‘, {B] = RrW2.5 }ﬁ:l )

Encrypt(mpk, ID, M) : To encrypt a message M € {0, 1}, it picks s,t1,...,t, & Z,
and computes

Co=M®aGL(e(g™,h%)%, rand), Cy=g°, Co=W§- H W;Z,
Je(1.4]

—S

Dj — gtj . H Wl,i for JE€ [Lﬂ
ie{i€[1,€]|(4,5)€S(ID)}

Finally, it returns the ciphertext C' = (Cy, Cy, Co, {Dj}§:1)~
Decrypt(mpk, skip, C) : To decrypt a ciphertext C' = (Cy, C1, Ca, {Dj}§:1) using
a private key skip = (41, Aa, {Bj}§:1)7 it first computes

e(C1, A1) - e(Ca, A2) - [] e(Dy, By) = e(g,h)**”.
Je[1.]
Then it retrieves the message by Cy @ GL(e(g,h)**#,rand).
The correctness of the scheme will be shown by a simple calculation.

Definition 2 (3-Computational Bilinear Diffie-Hellman Exponent (3-
CBDHE) Assumption). We say that 3-CBDHE holds on (G1,G2,Gr) if

Pr[A(g, 9%, 9% 9" h, h® h™") — (g, h)*™ ]
is negligible for any PPT adversary A where g < G1, h < Ga, s,a < Z,.

The following theorem addresses the security of the scheme.

Theorem 3. The above IBE scheme is adaptively secure assuming the 3-CBDHE
assumption.
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6 Comparisons and Discussions

In this section, we compare our IBE schemes obtained in Sec. 4 and 5 with
previous schemes. Throughout this section, |mpk|, |C|, and |skip| denote the
sizes of the master public keys, ciphertexts, and private keys, respectively. We
denote by k the length of the identity, which corresponds to the output length
of the collision resistant hash if we choose to hash the bit string representing an
identity.

Ideal Lattice Based IBE. In Sec. 4. we proposed a new ideal lattice based
IBE scheme. By changing the base b of the g,-trapdoor, we obtain two types of
instantiation offering tradeoffs. Namely, by setting b = 2 we obtain the Type 1
IBE scheme presented in the full version and by setting b = ni we obtain the
Type 2 IBE scheme presented in Sec. 4.1. The Type 2 IBE allows for a more
compact size parameters compared to the Type 1 IBE, whereas the Type 1
IBE allows for a more efficient sampling procedure due to the smaller Gaussian
width. Note that the technique of changing the base b is applicable for other
existing IBE schemes as well, offering a similar tradeoff presented above. Both
of our schemes achieve the best efficiency among existing adaptively secure IBE
schemes assuming the fixed polynomial approximation of the RLWE problem.
This is illustrated in Table 1. We point out that the largest improvement from the
Yamada’s IBE is that we greatly weakened the underlying hardness assumption
while improving the overall efficiency of the scheme.

Table 1. Comparison of Lattice-Base IBEs in the Standard Model.

Schemes |mpk| |C|, |skip| 1A/S jurfr?;ti\ilVE Anonymous?
[CHKP10] O(nrlog®n) O(nrlog®n) Fixed poly(n) Yes
[ABB10]+[Boy10]* O(nklog®n)  O(nlog®n) Fixed poly(n) Yes
[Yam16]: Scheme 1 O(nn% log*n) O(nlog*n) n*® Yes
[Yam16]: Scheme 2 O(nn% log*n) O(nlog*n)  All poly(n) No
Ours: Sec. 4. Type 1. O(nmé log?n) O(nlogn) Fixed poly(n) Yes
Ours: Sec. 4. Type 2. O(nn% logn)  O(nlogn) Fixed poly(n) Yes

All parameters presented in the table are obtained by instantiating the schemes in
the ring setting. d € N is a flexible constant, which can be set to be any value. “1/a”
for LWE assumption refers to the underlying LWE assumption used in the security
reduction. “Fixed poly(n)” means that the corresponding scheme is proven secure
under the LWE assumption with 1/a being some fixed polynomial (e.g., n®). “All
poly(n)” mean that we have to assume the LWE assumption for all polynomial.

* In the security proof for the adaptively secure variant of IBE in [ABB10], we have

a restriction that ¢ > @. Namely, only bounded form of the security is proven.
This restriction is removed in the refined analysis due to Boyen [Boy10].

Bilinear Map Based IBE. Here, we compare our scheme in Sec. 5 with other
adaptively secure IBE schemes based on the hardness of computational/search
problems on bilinear maps in the standard model. To base the security of IBE
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schemes on such problems, we have to mask the message using the Goldreich-
Levin hardcore bit [GL89]. To the best of our knowledge, there are only two
IBE schemes that we can apply this modification: Waters IBE [Wat05] and
Naccache IBE [Nac07]. As shown in Table 2, our scheme achieves asymptotically
shorter master public key size than these schemes. We note that to compare the
efficiency, we count the number of group elements. However our method comes
at the cost of increasing the ciphertext and private key size and we further have
to rely on a stronger assumption than theirs.

Table 2. Comparison of IBE from Bilinear Maps in the Standard Model.

Schemes |mpk| |C|, |skip] Assumption
[Wat05] + Hardcore bit O(k) 2 CBDH
[Nac07] + Hardcore bit O(x/log())) = O(x/log(k)) 2 CBDH
Ours: Sec. 5 O(Vk) O(vk)  3-CBDHE
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