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Abstract. We study the problem of constructing a block-cipher on a
“possibly-strange” set S using a block-cipher on a larger set T . Such
constructions are useful in format-preserving encryption, where for ex-
ample the set S might contain “valid 9-digit social security numbers”
while T might be the set of 30-bit strings. Previous work has solved this
problem using a technique called cycle walking, first formally analyzed
by Black and Rogaway. Assuming the size of S is a constant fraction
of the size of T , cycle walking allows one to encipher a point x ∈ S by
applying the block-cipher on T a small expected number of times and
O(N) times in the worst case, where N = |T |, without any degradation
in security. We introduce an alternative to cycle walking that we call
reverse cycle walking, which lowers the worst-case number of times we
must apply the block-cipher on T from O(N) to O(logN). Additionally,
when the underlying block-cipher on T is secure against q = (1 − ε)N
adversarial queries, we show that applying reverse cycle walking gives
us a cipher on S secure even if the adversary is allowed to query all of
the domain points. Such fully secure ciphers have been the the target of
numerous recent papers.

Keywords: format-preserving encryption, small-domain block ciphers,
Markov chains

1 Introduction

Suppose we have sets S and T , with S a subset of T . Typically, in this paper,
the larger set T will be {0, . . . , 2n − 1} for some integer n, while the smaller set
S will be an arbitrary set for which we only assume we know how to efficiently
test membership. The central problem we study in this paper is, given a cipher
with domain T , how can we construct a cipher with domain S.

Format-Preserving Encryption. The above problem arises when construct-
ing format preserving encryption (FPE) [1, 2, 5] schemes for encrypting credit
cards numbers, social security numbers, and other relatively short data objects.
Suppose we have a customer database containing millions of US social security
numbers (SSNs). SSNs are 9 decimal digit numbers with numerous additional
restrictions (e.g., the first three digits may not be 666). Now suppose we later
decide we need to encrypt the SSNs. One approach would be to use a standard
block cipher like AES, representing the SSN as a 30-bit number and then padding



with 0s before encrypting. The resulting ciphertext, however, would have a sig-
nificantly different format from the original, unencrypted numbers. This could
in turn require significant changes to the customer database, as well as to the
hardware and software that process the SSNs. For this reason, it is desirable to
have format-preserving encryption schemes, in which ciphertexts have the same
format as plaintexts. A FPE scheme for SSNs would thus have ciphertexts that
are 9 decimal digit numbers with the same restrictions as unencrypted SSNs.

Cycle Walking. A number of recent works [4, 12, 17–19] describe efficient,
provably secure small-domain block ciphers for enciphering either bitstrings or,
in most cases, points in the more general domain {0, . . . , N − 1}. This is already
sufficient for many FPE applications. However, if the desired domain for a par-
ticular FPE application is not as simple as bitstrings of some length or integers
up to N , then these ciphers alone are not sufficient. If we only assume that we
can efficiently test membership in our target domain set S,1 then one approach
to the problem is to find a cipher on a larger set T and transform it into a cipher
on the smaller set S. In the case of valid SSNs, for example, we might let the
larger set T be 30-bit strings, since 109 < 230 and we have many block ciphers
that can encipher 30-bit strings. The canonical way to transform a cipher on
the more general set T into a cipher on a subset S while maintaining the same
level of security is to use cycle walking. Cycle walking is a folklore technique first
formally analyzed by Black and Rogaway [4] that works as follows. Suppose π
is a permutation with domain T and we wish to use it to map a point x ∈ S to
another point in S. We first compute π(x) and test if the result is in S. If so,
we map point x to π(x). If the result is not in S, we apply π again, comput-
ing π(π(x)) and again testing whether or not the result is in S. We repeat this
process until we get a point in S. Let CWπ denote this cycle walking algorithm.
Black and Rogaway showed that cycle walking maintains the security of π, and
in particular showed that if cycle walking is applied to a CCA-secure cipher,
then the resulting cipher is also CCA-secure.

If we are unlucky, we may have to apply π numerous times before finally
reaching a point in S.2 In fact, if we consider the worst-case running time of
cycle walking, we might have to evaluate the permutation Θ(N) times. Yet, the
expected running time is much better; if the size of S is at least half the size of
T and if π is a randomly-chosen permutation on T , then the expected number
of times CWπ will need to evaluate π on a particular point is at most 2.

1 If a set has an efficient way to rank and unrank elements, then instead one can
apply the rank algorithm and then a cipher on {0, . . . , |S| − 1}. This is the case, for
example, with regular languages described by a DFA [1]. For other languages, and
even for regular languages described by a regular expression, the situation is more
complicated. See [15, 16] for more details. Nevertheless, in the current paper we are
concerned with more general sets where only testing set membership is assumed to
be efficient.

2 We are guaranteed to eventually land back in the set S, since permutations are made
up of cycles and, if we don’t hit another point in S first, we will cycle back around
to the same point we started with.
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It will be helpful to also examine the cycle structure of CWπ compared to π.
Let S and T be as they were defined above, and let π again be a permutation
on the larger set T . Recall that permutations are made up of disjoint cycles, so
our chosen permutation π is made up of disjoint cycles each with points from T .
Suppose that one of these cycles is (t1 s1 s2 s3 t2 s4 s5 t3 t4), where the s points
are all from S and the t points are from T \ S. Now consider what happens
when CWπ(s3) is evaluated. Notice that π(s3) = t2, so we need to evaluate
π(π(s3)) = s4. Thus, CWπ(s3) = s4. In terms of the cycle structure, evaluating
CWπ(s3) corresponds to walking to the right in the cycle from s3 until we hit
another point in S. Similarly, CWπ(s5) = s1, which we can see since walking to
the right from s5 brings us to t3, t4, t1 (after looping around to the front), and
then finally s1. We can thus determine the cycle structure of CWπ simply by
erasing the t points from all of the cycles in π, meaning the cycle above becomes
(s1 s2 s3 s4 s5).

A Closer Look at Expected Time. The small expected running time of
cycle walking makes it an attractive option in practice for FPE. Yet, from a
theoretical perspective, the fact that we do not know how to build permutations
for arbitrary sets with worst-case running time better than Θ(N) is unsatisfying.

Finding alternative algorithms that do not run in expected time is not just
an important theoretical question. From a practical perspective, in addition to
the unpredictability of execution times potentially bothering practitioners, there
is the danger that expected-time cryptographic algorithms can leak timing in-
formation that can be exploited by an adversary in an attack. Starting with the
work of Kocher [13], there have been numerous examples of how such timing
information can lead to subtle and damaging attacks on cryptographic proto-
cols. Thus, generally, it would seem preferable to have cryptographic algorithms
whose running time does not vary across different inputs.

Somewhat counter to this, Bellare, Ristenpart, Rogaway, and Stegers [1] an-
alyzed the potential negative effects of the timing information leaked by cycle
walking and concluded that the leakage is not damaging. Yet, their result is in
a specific model where the adversary has access to the ciphertexts in addition
to the number of cycle walking steps needed, which they call the cycle length.3

This, however, does not preclude the possibility of other scenarios in which this
timing information could be useful. As one simple example, suppose an adver-
sary observes the time it takes to encipher and later learns the corresponding
plaintext. If, at a later point, the adversary again observes the time it takes
to encipher a point then this timing information can reveal whether or not the
same point was enciphered without the adversary ever needing to observe any
ciphertexts. Depending on the specific scenario and application, this information
could be damaging.

Reverse Cycle Walking. We now describe our main result: an alternative
to cycle walking with substantially better worst-case running time that does not

3 Specifically, they show that in a PRP security game the adversary gets no benefit
from learning the cycle length in addition to the ciphertext on an encryption query.
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(9 4 6 5 1 0) (3 2 7 8)

⇓
(�9 4 6 �5 �1 0) (�3 2 �7 8)

⇓
(4 6 0) (2 8)

(9 4 6 5 1 0) (3 2 7 8)

⇓
(�9 4 6 �5 �1 0) (�3 2 �7 8)

⇓
(4 6) (0) (2) (8)

Fig. 1. Example of how one round of reverse 2-cycle walking differs from regular cycle
walking. In this example, T = {0, . . . , 9} and S are the even numbers in T . Left: the
effect regular cycle walking has on the cycle structure of the permutation. Right: the
effect of one round of reverse 2-cycle walking on the cycle structure.

vary based on the input. Towards this, a first attempt might be to try to apply
cycle walking, but somehow “cut-off” the algorithm if it is taking too long, since
often with an expected-time algorithm one can simply stop the algorithm early
and possibly introduce a small error. Unfortunately, it is not clear how to make
this approach work. If we are evaluating CWπ(x) and walking through a long
sequence of points in T \ S, we cannot just cut off the algorithm because we
need to construct a permutation, and thus require a unique point in S to map
x to. Because of this difficulty, we introduce an alternative to cycle walking we
call reverse cycle walking.

Let S, T , and π be as they are defined above, and suppose again π has a
cycle (t1 s1 s2 s3 t2 s4 s5 t3 t4). As in traditional cycle walking, under reverse
cycle walking s1 is mapped to s2 and s2 is mapped to s3. Where reverse cycle
walking differs from traditional cycle walking is when a point in S is mapped
outside of S; this is the case for s3, which is mapped under π outside of S to
t2. To determine where s3 should be mapped to, reverse cycle walking walks in
the reverse direction, to the left, until a point outside of S is encountered; the
last point encountered that is in S will be where s3 is mapped. So in the case
of the current cycle, if we wish to know where s3 will be mapped, we walk to
the left to s2 and then finally to s1. Since walking to the left any farther would
result in a point outside of S, reverse cycle walking stops here and maps s3 to
s1. Similarly, s5 would be mapped to s4. The cycle structure that results from
applying reverse cycle walking is thus (s1 s2 s3)(s4 s5).

Notice that reverse cycle walking, as just described, will still have poor worst-
case running time and considerably better expected running time, much like tra-
ditional cycle walking. The main advantage now, though, is that we can consider
variants of reverse cycle walking that “cut-off” the algorithm early and signif-
icantly reduce the worst-case running time. Specifically, when reverse t-cycle
walking is applied to permutation π, any sequence of at most t points from S
that appear consecutively in a cycle of π sandwiched between points from T \ S
will become a cycle. Any points in S that do not have this property are simply
mapped to themselves.
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For the rest of the paper, we focus on perhaps the simplest version of this
idea, reverse 2-cycle walking. If π has in some cycle (. . . t s s′ t′ . . .), meaning
two consecutive points from S sandwiched between points from T \ S, then
under reverse 2-cycle walking (denoted RCWπ) (s s′) becomes a cycle, meaning
RCWπ(s) = s′ and RCWπ(s′) = s. When reverse 2-cycle walking is applied to
our example above where π has cycle (t1 s1 s2 s3 t2 s4 s5 t3 t4), the resulting
permutation will have cycles (s1)(s2)(s3)(s4 s5). Notice that because s1, s2,
and s3 represented more than two consecutive points from S, they were simply
mapped to themselves. On the other hand, s4 and s5 were two consecutive points
from S sandwiched between points outside of S, so they are swapped. (For
technical reasons, as we will see later in the paper, we will additionally flip a
coin to see if these points are actually swapped or not.) The code of the reverse
2-cycle walking transformation can be found in Fig. 2 in Sect. 3. (Note that
the transformation is an involution.) Another example illustrating how reverse
2-cycle walking compares to traditional cycle walking can be seen in Fig. 1.

Worst-Case Running Time of Reverse 2-Cycle Walking. In our sce-
nario above, even if π is a random permutation on T , RCWπ will clearly not
be close to a random permutation on S; many points are mapped to themselves
(i.e., RCWπ(x) = x). Thus, with reverse 2-cycle walking, we need to repeat the
procedure for multiple rounds with independently chosen permutations π. The
question then becomes how many rounds of RCW are needed before the resulting
permutation on S is close to random.

To answer this question, we show that when π is a randomly chosen permu-
tation on T and when the size of S is a constant fraction of the size of T , then
reverse 2-cycle walking yields a matching exchange process (MEP), first defined
and analyzed by Czumaj and Kutylowski [10]. A MEP proceeds in rounds to mix
N points, where in each round a random matching of some size is chosen and
then a coin is flipped for each pair in the matching to decide whether its points
should be swapped. Notice that this is exactly how multiple rounds of reverse
2-cycle walking proceed: in any given round, each point in S is either randomly
paired with another point in S, or it is mapped to itself and is not part of the
matching for that round.

To analyze MEPs, Czumaj and Kutylowski used non-Markovian delayed path
coupling, an extension of the well-known path coupling technique [6] in the area
of Markov chains, to show that a matching exchange process will mix N points
in O(logN) rounds. Since we show reverse 2-cycle walking yields a MEP, directly
applying their result gives us a way to construct an almost-random permutation
on an arbitrary set with worst-case running time Θ(t(N) · logN), where t(N)
is the time it takes to apply permutation π on T . Recall that with traditional
cycle walking, we get worst-case running time Θ(t(N) · N), so our result is a
significant improvement.

Since an asymptotic result is of limited practical value in the setting where
cycle walking seems most useful, that of small-domain encryption for FPE, we
also give concrete bounds relating the number or rounds of reverse 2-cycle walk-
ing to the CCA-advantage of an adversary attacking the encryption scheme.
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Unfortunately, because the Czumaj and Kutylowski paper targeted asymptotic
results, their proof does not give explicit constants. To overcome this difficulty,
we give new proofs of two key lemmas from CK’s proof in order to minimize the
constants for our setting where N is perhaps 230.

Full Security from Reverse 2-Cycle Walking. Fully secure block ci-
phers, which are block ciphers that look like random permutations even to an
adversary querying all N domain points, have been the target of many recent
papers [11, 17, 19] on small-domain encryption. While all of these recent results
are based on a recursive shuffling technique from [9], we instead take a different
approach and show that reverse 2-cycle walking can be used to achieve full se-
curity. In particular, we show that in certain situations we can take a cipher on
a larger set T that is not fully secure and apply reverse 2-cycle walking to get a
fully secure cipher on the smaller set S.

To help explain this result in more detail, suppose we wish to construct a
fully secure block cipher Efull with domain {0, . . . , N − 1} and further suppose
we have another block cipher Epart with a larger domain {0, . . . , 2N − 1} and
which is indistinguishable from a random permutation as long as the adversary
only queries half the domain points. (Swap or Not [12] would be an example of
such a cipher, which we call partially secure.) Notice that Epart, with domain
size 2N , will be secure against N queries, which is the same quantity of queries
we want Efull to be secure against. But how should Efull use Epart to encipher
points in {0, . . . , N−1}? To encipher a point x ∈ {0, . . . , N−1}, we could simply
apply Epart to x. But since Epart has a larger domain, Epart(x) might not be in
{0, . . . , N − 1}. Czumaj [7] recently considered something similar and suggested
using Epart to shuffle all of the points {0, . . . , 2N − 1} and then “remove” the
points outside of {0, . . . , N − 1}. Unfortunately, it’s not clear how to efficiently
implement this “remove” step.

Another idea might be to use traditional cycle walking to always make sure we
can map a point x ∈ {0, . . . , N−1} back into the same set. Unfortunately, proving
this secure appears difficult, since in a reduction each of the N adversarial queries
made while attacking Efull could result in many queries to Epart. Thus, in the
reduction, our adversary attacking Epart would likely need to query nearly all
points in {0, . . . , 2N − 1}, many more queries than Epart is assumed secure
against.

Instead, we propose using reverse 2-cycle walking. Using our set names from
earlier in the introduction, let S = {0, . . . , N − 1} and let T = {0, . . . , 2N − 1}.
Let Epart be a block cipher with domain T . Then reverse 2-cycle walking has
the following key property: if we evaluate Epart on every point x ∈ S, then this
gives us enough information to determine RCWEpart

(x) for every x ∈ S. In other
words, we never need to evaluate Epart on any point outside of {0, . . . , N − 1}.
This property allows the reduction to go through, giving us a fully secure cipher.
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2 Preliminaries

Notation. For any set X , let Perms(X ) be the set of all permutations π : X →
X . For sets X and Y, let Funs(X ,Y) be the set of all functions f : X → Y. For
set X , let x←$ X denote choosing x uniformly at random from X .

Mixing Time. The time a Markov chain M takes to converge to its stationary
distribution µ is measured in terms of the distance between µ and Pt, the distri-
bution at time t. Let Pt(x, y) be the t-step transition probability and Ω be the
state space. The mixing time of M is τM(ε) = min{t : ||Pt′ − µ|| ≤ ε,∀t′ ≥ t},
where ||Pt−µ|| = maxx∈Ω

1
2

∑
y∈Ω |Pt(x, y)−µ(y)| is the total variation distance

at time t.

Block Ciphers and Their Security. A block cipher is a family of functions
E : K×M→M, with K a finite set called the key space andM a finite set called
the domain or message space. For every K ∈ K, the function EK(·) = E(K, ·)
is a permutation. Let E−1 : K ×M →M be the inverse block cipher. We will
typically let N denote |M|, the number of elements in the domain. Thus, when
M = {0, 1}n, N = 2n.

We will consider block cipher security against chosen-ciphertext attack (CCA),
often referred to as strong-PRP security. Given block cipher E : K ×M →M
and adversary A, the cca-advantage of A against E is defined to be

Advcca
E (A) = P

(
AE(K,·),E−1(K,·) ⇒ 1

)
−P

(
Aπ(·),π−1(·) ⇒ 1

)
,

where the first probability is over the choice of K and the coins of A, and the
second probability is over the choice of π from Perms(M) and the coins of A. In
words, the adversary A tries to determine which “world” he is in, where he is
either in a world where he is given access to the block cipher and its inverse, or
in a world where he is given access to a random permutation and its inverse. If
an adversary A is given oracle access to an algorithm O and its inverse O−1, we
will sometimes write A±O(·) as shorthand for AO(·),O−1(·).

Pseudorandom Functions. Let F : K × X → Y be a family of functions
with key space K. The prf-advantage of an adversary A against F is defined to
be Advprf

F (A) = P
(
AF (K,·) ⇒ 1

)
− P

(
Aρ(·) ⇒ 1

)
, where the first probability

is over the choice of key K and the coins of A, and the second probability is
over the choice of ρ from Funs(X ,Y) and the coins of A. In words, the adversary
tries to determine through oracle queries whether it is interacting with the keyed
function F or a random function chosen from all functions from X to Y.

Cycle Walking. This paper focuses on the problem of using permutations on
a set T to build a permutation on a smaller set S ⊆ T . Specifically, we will be
interested in the scenario where NS = |S| is a constant fraction of NT = |T |
(e.g., 2 · NS = NT ). Black and Rogaway [3] analyzed a folklore technique for
this called cycle walking, or cycling. Given a permutation π on T , let the cycle
walking transformation of π with target set S be function CWπ : S → S defined
as follows
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Algorithm CWπ(x):
do
x← π(x)

while (x 6∈ S)
Return x

In words, cycle walking continues to apply permutation π until it finally gets a
point in set S. Cycle walking can also be applied to block ciphers. Notationally,
if E : K×T → T is a block-cipher on T , then we will let Ē : K×S → S be the
block cipher that, on input K and x, computes CWEK

(x).
A key fact about cycle walking, argued by Black and Rogaway, is that if π

is a random permutation on T , then CWπ will be a random permutation on S.
While this is an information-theoretic result, Black and Rogaway also briefly
argued it can be used to show the cycle walking transformation preserves cca
security as well, which we formalize as follows:

Lemma 1 (Black-Rogaway). Let S ⊆ T be such that |S| ≥ (1/2)|T | and let
let E : K × T → T be a block cipher on T , and Ē : K × S → S the block-
cipher resulting from applying cycle walking to E with target set S. Let A be an
adversary making q queries, then

Advcca
Ē (A) ≤ Advcca

E (B)

where adversary B makes at most an expected 2q queries.

As we explained in the introduction, cycle walking has small expected running
time, but it has significantly worse worst-case running time. Additionally, the
theorem above bounds the advantage of an adversary against Ē by the advantage
of an adversary that makes and expected number of oracle queries.

3 Reverse 2-Cycle Walking

We now detail the reverse 2-cycle walking algorithm. Again, for sets S ⊆ T , let
NS = |S|, NT = |T |, and assume NS is a constant fraction of NT ; c ·NS = NT
(e.g., 2 · NS = NT ). Suppose we have permutation π : T → T with π−1 its
inverse. Also suppose we have a function B : S → {0, 1}. The reverse 2-cycle
walking transformation is a function RCWπ,B : S → S defined in Fig. 2.4

To understand the algorithm it is helpful to consider the cycle structure of
RCWπ,B (a permutation on S) as compared to π. In RCWπ,B, points in S are
mapped to themselves unless they are contained in a cycle (in π) where exactly

4 It should be noted that the pseudocode in Fig. 2 is written for ease of understanding
and, if implemented exactly as written, could leak timing information about the
input. An actual implementation would use standard techniques to ensure each path
through the code results in the same number of operations. Additionally, if the
underlying cipher π has different timings in the forward and backward directions,
then both π(y) and π−1(z) would need to be computed regardless of the input
point x.
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Algorithm RCWπ,B(x):
u← ⊥ ; v ← ⊥
y ← π(x) ; z ← π−1(x)
if y ∈ S and z 6∈ S and π(y) 6∈ S:
u← x ; v ← y
b← B(u)
if b = 1 return v else return u

else if y 6∈ S and z ∈ S and π−1(z) 6∈ S:
u← z ; v ← x
b← B(u)
if b = 1 return u else return v

else
return x

Fig. 2. The Reverse 2-Cycle Walking Algorithm

two points in S are surrounded by points in T − S. For example, if π contains
the cycle (s1s2t1t2s3s4t4s5) where the si’s are in S and the ti’s are in T − S,
then the resulting permutation on S will contain the cycles (s1)(s2)(s3s4)(s5).
Note that for simplicity of analysis, if π contains the cycle (s1s2) then the result-
ing permutation will contain the cycles (s1)(s2), whereas (s1s2t1) will result in
(s1s2). Additionally, the function B has the effect of only including each 2-cycle
in the final permutation on S with probability 1/2. This is currently necessary
for our analysis but we believe with further work this function can be removed.

When π and B are clear from context, we will sometimes write just RCW(x).
Note that each point x is either mapped to itself (i.e., RCW(x) = x), or is part
of a 2-cycle (i.e., there is a y 6= x s.t. RCW(x) = y and RCW(y) = x). Notice
also that the algorithm is its own inverse (an involution).

Given permutations π1, π2, . . . , πk all on T , and functions B1, . . . ,Bk from
S to {0, 1}, we denote by RCWk

(π1,...,πk),(B1,...,Bk) the composition RCWπ1,B1
◦

. . . ◦ RCWπk,Bk
. When the permutations πi and functions Bi are clear from the

context, we will often write RCWk. The inverse of RCWk will simply apply the
rounds in reverse order, since the RCW algorithm above is its own inverse.

The rest of the paper focuses on the security of the reverse 2-cycle walking
transformation. The next section gives an information theoretic result, bounding
the mixing time of the Markov chain that results from applying a number of
rounds of reverse 2-cycle walking where in each round we use a randomly chosen
underlying permutation πi and function Bi. In Sect. 5, we analyze the cca security
of reverse 2-cycle walking when the underlying permutations on T are cca-secure
and the round functions are implemented with a pseudorandom function. Finally,
in Sect. 6, we show that reverse 2-cycle walking can be used to build fully secure
block ciphers.
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4 Bounding the Mixing Time

Here, we focus on how many rounds of reverse 2-cycle walking are needed before
the resulting permutation on S is “close” to random. We consider the ideal case
where at each round the underlying permutation πi and function Bi are cho-
sen uniformly at random and bound the mixing time of the underlying Markov
chain. To do this, we use a technique called delayed path coupling, introduced
by Czumaj and Kutylowski [10] to analyze what they call a matching exchange
protocol. They are interested in studying a class of Markov chains for sampling
permutations of N points where at each step a number κ is chosen according
to some distribution, then a matching of size κ is chosen uniformly from all
matchings of size κ, and finally the points corresponding to each pair in the
matching are each independently swapped (or not) with probability 1/2. As-
suming the expected size of the matching at each step is Θ(N) they show that
after Θ(log(N)) steps the variation distance is O(1/N). If you consider the effect
of the RCW algorithm on all elements in NS , a single step of the algorithm is
equivalent to selecting a matching Mi on NS (since we only consider 2-cycles)
according to some distribution and then swapping each pair in the matching with
probability 1/2. Claim 1, which we prove below, implies that RCW is a matching

exchange protocol with E [κ ] ≤ (c−1)2NS

c3 , where c = NT /NS . Given this, we can
apply Czumaj and Kutylowski’s results directly to bound the variation distance.
Specifically, their result implies that there exist constants k1, k2 such that for
k = k1 log(NS), ||νrcwk − µs|| ≤ k2

NS
where νrcwk is the distribution after k steps

of the RCW algorithm and µs is the uniform distribution on permutations of
the elements in NS . However, their result does not explicitly compute the con-
stants. Although we use many of the general ideas from their proof we not only
give explicit constants but we provide new proofs of two key lemmas in order to
provide a bound that is reasonable in our context and customized for the RCW
algorithm. Despite these changes, we believe this is just a starting point and a
further reduction of the constants is possible. We begin by providing an overview
of the approach and then give a detailed proof focusing on our modifications.
For additional information on the Markov chain analysis techniques used in this
section please see [14,20].

We will first show that the Markov chain that results from repeatedly apply-
ing RCW is ergodic and it’s stationary distribution is the uniform distribution.
In a single step of the RCW algorithm there is a non-zero probability that we
select any single transposition (i.e., (si, sj)(s1)(s2) . . .). It is well known that
transpositions (swapping any two elements) connect the set of all permutations
(see e.g., [14]) and thus RCW connects Perms(S) (the set of all permutations on
S). Additionally, RCW is aperiodic since there is a non-zero probability that no
changes are made and thus ergodic. It is also relatively straightforward to see that
RCW is symmetric (i.e., for all pairs of permutations (x, y), P(x, y) = P(y, x),
where P(x, y) is the probability of moving from x to y in one step of RCW).
Combining these implies that the stationary distribution of RCW is the uniform
distribution as desired (see e.g., [14]).
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In order to bound the mixing time of the matching exchange process, Czumaj
and Kutylowski use a technique they call delayed path coupling which is an
extension of coupling and path coupling, both well-known techniques in the
Markov chain community. A coupling of a Markov chain M with state space Ω
is a joint Markov process on Ω × Ω such that the marginals each agree with
M and, once the two coordinates coalesce, they move in unison. The coupling
time (or expected time until the two coordinates coalesce) can be used to upper
bound the mixing time. Path coupling, introduced by Bubley and Dyer, simplifies
this approach by considering only a subset U of the joint state space Ω × Ω
of a coupling [6]. By considering an appropriate metric ∆ on Ω, proving that
the two marginal chains, if in a joint configuration in subset U, get no farther
away in expectation after one iteration is sufficient to give a polynomial bound
on the mixing time. For our argument we will define the distance between two
configurations ∆(X,Y ) as the minimum number of transpositions (swapping two
points) needed to go from X to Y and U as the set of all pairs of configurations
that differ by a single transposition ∆(X,Y ) = 1. Using this definition of U it is
relatively straightforward to use path coupling to show that the mixing time is
O(NS logNS). However for our application this bound is not sufficient and we
require more complex techniques.

In delayed path coupling we consider the change in distance between two
processes over more than just a single step. We bound the change in distance over
t = Θ(log(NS)) steps and use a non-Markovian coupling, allowing us to delay
the coupling decisions based on future events. We will use the following delayed
path coupling theorem due to Czumaj, Kanarek, Kutylowski and Lorys [8]. Let
M be an ergodic Markov chain with statespace Ω (not necessarily Perms(S))
and mixing time τM(ε) as defined in Sect. 2.

Theorem 1 (Czumaj, et al.). Let ∆ be a metric defined on Ω × Ω which
takes values in {0, . . . , D}, let U = {(X,Y ) ∈ Ω × Ω : ∆(X,Y ) = 1} and let
δ be a positive integer. Let (Xt, Yt)t∈N be a coupling for M, such that for every
(Xtδ, Ytδ) ∈ U it holds that E

[
∆(X(t+1)δ, Y(t+1)δ)

]
≤ β for some real β < 1.

Then,

τM(ε) ≤ δ ·
⌈

ln(D ∗ ε−1)

lnβ−1

⌉
.

Czumaj and Kutylowski’s use the distance metric ∆ defined above (the minimum
number of transpositions) and define a coupling (Xt, Yt)

T
t=0 where ∆(X0, Y0) = 1

(i.e., X0 and Y0 differ by a single transposition). They show that using their
coupling, E [∆(XT , YT ) ] ≤ 1/N, for T = Θ(logN) which is sufficient to show
the mixing time is O(log(N)). We will use the same coupling to analyze the RCW
algorithm and provide a brief overview here for completeness. Full details can
be found in their paper [10]. Note that for ease of explanation, the matchings
described here are the matchings actually applied at each step (i.e., the Bi’s are
already incorporated into the description of the matchings). Let M1,M2, . . .MT

be the matchings defined by the coupling for the process X and N1, N2, . . . NT be
the matchings for Y, so that applying these matchings at each step results in the
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coupling (Xt, Yt)
T
t=0. We begin by choosing the permutations and corresponding

matchings for X at each step, M1,M2, . . .MT , according to the distribution
given by the RCW algorithm thus ensuring that the marginals of X agree with
the RCW algorithm. Next using the matchings chosen for X we will carefully
select the matchings for Y, N1, N2, . . . NT to ensure that by the end of T steps
the two processes will have coupled with probability 1 − 1/NS . Without loss
of generality, assume that X0 and Y0 differ only by a transposition of points
x and y (recall that ∆(X0, Y0) = 1). If the matching M1 contains the pair (or
edge) (x, y) then if we apply the same matching minus this pair to Y0 then after
one step, the process has coupled (e.g. ∆(X1, Y1) = 0). However the probability
that a matching contains this pair is only Θ(1/NS) and thus not sufficient to
obtain the bound we desire. In order to overcome this Czumaj and Kutylowski
observe that if (x,w) and (y, z) are pairs in the matching M1 then if we let
N1 = M1 − (x,w) − (y, z) + (x, z) + (y, w) then X1 and Y1 differ by a (x, y)
transposition. Conversely if we let N1 = M1 then X1 and Y1 differ by a (w, z)
transposition. Given this, if M2 contains either (x, y) or (w, z) then we can
choose N1, N2 so that N3 = M3 and the process has coupled. As Czumaj and
Kutylowski do, we will call (x, y) and (w, z) good pairs and let GPt denote the
set of good pairs at step t. The general idea behind the argument is to show that
at every step the number of good pairs increases by a constant factor and thus
after Θ(logNS) steps the number of good pairs is Ω(NS). Given this, with high
probability in another Θ(logNS) steps one of the matchings Mt will contain a
good pair and thus we can define corresponding matchings for Y so that the
process couples. We formally define a good pair as follows.

Definition 1 (Czumaj, Kutylowski). Without loss of generality, assume X0

and Y0 differ by a (x, y) transposition and let GP0 = {(x, y)}. For each (x, y) ∈
GPt−1:

1. If neither x or y is part of the matching Mt then (x, y) ∈ GPt.
2. If (x,w) ∈Mt and y is not part of Mt then (w, y) ∈ GPt.
3. If (y, w) ∈Mt and x is not part of Mt then (w, x) ∈ GPt.
4. If (x,w), (y, z) ∈ Mt then if neither w or z are part of pairs in GPt then

(w, z) ∈ GPt and (x, y) ∈ GPt. Otherwise (w, z) ∈ GPt.

Using this strategy, Czumaj and Kutylowski formally give a coupling so that if
a pair (x, y) is a good pair at time t and Mt contains (x, y) then XT = YT . We
use this coupling exactly and rely on their proof to show that it is indeed a valid
coupling and the marginal distributions of X and Y agree with those given by
RCW. Given this coupling, it remains to show that after a time t1 the number
of good pairs is large enough so that in the next t2 steps one of the t2 matchings
will contain a good pair. We deviate from Czumaj and Kutylowski’s approach
in this analysis.

We begin by showing that after t1 = Θ(logNS) steps the probability that
there are less than NS/9 good pairs is at most .5N−2

S . Next, we show that after
an additional t2 = Θ(logNS) steps the probability that none of the matchings
during those additional t2 steps includes a good pair is at most .5N−2

S . Combining
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these shows that using the given coupling, after t1 + t2 steps, with probability
at most N−2

S , the two processes remain at distance 1 and otherwise they are
at distance 0. Thus, E

[
∆(X(t+1)δ, Y(t+1)δ)

]
≤ N−2

S for δ = t1 + t2. Given this
we can now apply the delayed path coupling theorem. Since ∆ is the minimum
number of transpositions to move from one configuration to another, D (the
maximum distance between two configurations) is at most NS . This is due to
the fact that by using a single transposition per point we can put each point in
it’s new location. Combining these and the delayed path coupling theorem gives
the following bound on the mixing time.

Theorem 2. For T ≥ max
(

40 ln(2N2
S), 10 ln(NS/9)

ln(1+.3(c−1)4/c6)

)
+

36c3 ln(2N2
S)

(c−1)2 and

NS ≥ 210, the mixing time τ of the RCW algorithm satisfies

τ(ε) ≤ T ·
⌈

ln(NS/ε)

lnN2
S

⌉
.

When ε = 1/NS the bound simplifies to τ(1/NS) ≤ T = Θ(ln(NS))

A straightforward manipulation of the bound on the mixing time gives us the
following bound on the variation distance that will be useful in the remainder
of the paper. Notice again that as long as the number of rounds of the RCW
algorithm is at least T = Θ(ln(NS)), the variation distance is less than 1/NS .

Corollary 1. Let T = max
(

40 ln(2N2
S), 10 ln(NS/9)

ln(1+.3(c−1)4/c6)

)
+

36c3 ln(2N2
S)

(c−1)2 and

NS ≥ 210, then

||νrcwr − µs|| ≤ N1−2r/T
S ,

where νrcwr is the distribution after r rounds of the RCW algorithm and µs is
the uniform distribution on permutations of the elements in S.

Our theorem does not explicitly condition on E[κ] = Θ(NS) as in Czumaj
and Kutylowski [10]. Instead our theorem applies only to the RCW algorithm and
relies on more specific statements about the chain. For example, a key step in our
analysis is to show that at each step of the RCW algorithm a particular point is
part of a 2-cycle with constant probability (which implies that E[κ] = Θ(NS)).
Let cx be the probability that point x is part of a 2-cycle. We prove the following
claim.

Claim 1

cx =
(NS − 1) · (NT −NS)2

NT · (NT − 1) · (NT − 2)
≥ (c− 1)2

c3
.

where the probability is over the choice of π and c = NT /NS .

The point x is part of a potential 2-cycle when the algorithm RCW is applied
to x and u and v are set; this happens in either the “if” of “else if” blocks of
the RCW algorithm given in Sect. 3. The bit b then determines whether or not
x and the point it gets paired with actually become part of a 2-cycle. To prove
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the claim, we need to consider how u and v can be set in the algorithm. There
are two cases, corresponding to the “if” and “else if” blocks of the algorithm.
First consider the “if” case. We need to determine the probability that π(x) ∈
S ∧ π−1(x) 6∈ S ∧ π(π(x)) 6∈ S and B(x) = 1 for a randomly chosen permutation
π on T and B from S to {0, 1}. There are NS − 1 choices for π(x) (the minus
one is since we don’t want x mapped to itself), NT − NS choices for π−1(x),
and NT −NS choices for π(π(x)). This fixes three mappings, so there are then
(NT − 3)! choices for how to map the remaining points. Thus, the probability
we end up in the “if” case is

.5(NS − 1) · (NT −NS)2(NT − 3)!

NT !
=

(NS − 1) · (NT −NS)2

NT · (NT − 1) · (NT − 2)
.

The argument for the “else if” case is almost identical, and gives the same
probability. We lower bound the probability as follows.

P (Xi = 1) =
(NS − 1) · (NT −NS) · (NT −NS)

NT · (NT − 1) · (NT − 2)
≥ (c− 1)2

c3
,

where NT = cNS . Note that using linearity of expectations over all points in
NS , this claim implies that the expected number of 2-cycles is ((c− 1)2/c3)NS .

Next, we prove the following lemma which shows that after t1 steps there are
linear number of good pairs.

Lemma 2. Let |GPt| be the number of good pairs at step t, NS ≥ 210and t1 =
max(40 ln(2N2

S), 10 ln(NS/9)/ ln(1 + .3(c− 1)4/c6) then

P (|GPt1 | < NS/9) ≤ .5N−2
S .

Proof. We start with one good pair at t = 1 and then at each step of the
algorithm we say that a good pair (x, y) splits if it creates a second good pair
(this corresponds to the last case of Definition 1). We begin with bounding the
probability that a good pair splits in the RCW algorithm. First, we assume that
there are less than NS/9 good pairs (if there are more than we’re done). Since
we have assumed that there are less than NS/9 good pairs, there are at most
2NS/9 points in good pairs and at least NS − 2NS/9 = (7/9)NS points not in
good pairs. Good pair (x, y) splits when x and y are both matched to points
that are not already in good pairs of which there are at least (7/9)NS . Using
this we can now extend the proof of Claim 1 to show the following where cp is
the probability that a particular good pair splits:

cp ≥
( 7

9 )2(c− 1)4(1− 2−8)

c6
.

Let (x, y) be a good pair. We want to lower bound that probability that point
x and y are both part of potential 2-cycles (x,w) and (y, z) where w and z
are not in good pairs. Since we are now interested in two points being part of
potential 2-cycles, there are 4 different cases; the first case corresponds to u and
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v begin set for both x and y in the “if” block of the RCW algorithm. We need
to determine the probability that π(x) ∈ (S −GP ) ∧ π−1(x) 6∈ S ∧ π(π(x)) 6∈ S
and that π(y) ∈ (S −GP ) ∧ π−1(y) 6∈ S ∧ π(π(y)) 6∈ S and B(x) = B(y) = 1 for
a randomly chosen permutation π on T and B from S to {0, 1}. Since there are
at least (7/9)NS points not in good pairs, there are (7/9)NS choices for π(x),
NT − NS choices for π−1(x), and NT − NS choices for π(π(x)). Given these
mappings, there are (7/9)NS − 1 choices for π(y) (the minus one accounts for
π(x) which is already mapped to a point in S − GP ), NT − NS − 1 choices
for π−1(y), and NT − NS − 1 choices for π(π(y)). This fixes six mappings, so
there are then (NT −6)! choices for how to map the remaining points. Thus, the
probability x and y are both mapped to points in S that are not in good pairs
in the “if” block of the algorithm is

.25
(7/9)NS · (NT −NS)2 · ((7/9)NS − 1) · (NT −NS − 1)2

NT · (NT − 1) · (NT − 2) · (NT − 3) · (NT − 4) · (NT − 5)
.

As in Claim 1, the argument for the other three cases is almost identical, and
gives the same probability.We lower bound the probability as follows.

cp ≥
( 7

9NS)( 7
9NS − 1)(NT −NS)2(NT −NS − 1)2

NT (NT − 1)(NT − 2)(NT − 3)(NT − 4)(NT − 5)
≥

( 7
9 )2(c− 1)4(1− 2−8)

c6
,

where NT = cNS and NS ≥ 210. Note that the restriction NS ≥ 210 could easily
be loosened at the expense of a small constant factor in the bound.

By linearity of expectations, if we have |GPt| good pairs at step t, then the
expected number of good pairs at step t + 1 is E [ |GPt+1| ] = |GPt| + cp|GPt|.
Let Gt = (|GPt+1| − |GPt|)/|GPt| be the fraction of good pairs that split be-
tween time t and t + 1 (the growth rate). Thus, we have that E [Gt ] = cp.
Next, define an indicator random variable Zt that is 1 if Gt ≥ E [Gt ]/2 =

cp/2 and 0 otherwise. Thus if
∑t1
t=0 Zt ≥

lnn/9
ln(1+cp/2) then |GPt1 | is at least

(1 + cp/2)(lnNS/9)/ ln(1+cp/2) = NS/9. This is due to the fact that each times
Zt is one |GPt| increases at least by a factor of 1 + cp/2.

Next, we will show that for t1 = max(40 ln(2N2
S), 10 lnNS/9

ln(1+cp/2) ),

P

(
t1∑
t=0

Zt <
lnNS/9

ln(1 + cp/2)

)
< .5N−2

S

which implies P (|GPt1 | < NS/9) ≤ .5N−2
S . First, using Markov’s inequality we

will show that P (Zt = 0) = P (Gt ≤ E [Gt ]/2) ≤ 4/5. Let A = 3E [Gt ] − Gt,
then P (Gt ≤ E [Gt ]/2) = P (A ≥ (3− 1/2)E [Gt ] = 2.5E [Gt ]) . By linearity
of expectations, E [A ] = E [ 3E [Gt ]−Gt ] = 2E [Gt ]. Thus P (Zt = 0) =
P (A ≥ 2.5E [Gt ]) ≤ E [A ]/2.5E [Gt ] = 4/5. Next, we note that the Zi’s are
not independent since the probability Zi is 1 is determined by the number of
good pairs. However, since we are assuming there are always at most NS/9 good
pairs, this process is stochastically lower bounded by a process with independent
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variables X1, . . . Xt1 where each variable Xi is 1 with probability 1/5 and 0 with
probability 4/5. In the actual process, especially toward the beginning the Zi’s
are much more likely to be 1 because there are substantially fewer than NS/9
good pairs. However throughout the process the probability is always at least 1/5.
Next, we will apply the Chernoff bound P (X < E [X ]/2) < exp(−E [X ]/8)
with X =

∑t1
t=0Xt and t1 = max(40 ln(2N2

S), 10(lnNS/9)/ ln(1 + cp/2)). Our
choice of t1 implies that E [X ] ≥ (1/5)40 ln(2N2

S) = 8 ln(2N2
S). Therefore,

P (X < E [X ]/2) < exp(−E [X ]/8) <= exp(−8 ln(2N2
S)/8) = .5N−2

S .

Again due to our choice of t1, E [X ] ≥ (1/5)10 lnNS/9
ln(1+cp/2) = 2 lnNS/9

ln(1+cp/2) . Com-

bining these gives the desired result,

P

(
X <

lnNS/9

ln(1 + cp/2)

)
< P (X < E [X ]/2) < .5N−2

S .

ut

Finally, we consider the matchings during the next t2 steps and show the
probability that none of them includes a good pair is at most .5N−2

S . We say
that a pair (x, y) is part of a potential matching if the RCW algorithm maps x
to y regardless of the value of B(x). Specifically, we prove the following lemma.

Lemma 3. Let t2 = 36c3 ln(2N2
S)/(c − 1)2 then conditioned on |GPt1 | ≥ n/9,

the probability that the next t2 potential matchings contain no edges from GPt1
is at most .5N−2

S .

Proof. First, consider a good pair (x, y). We claim that the probability that
x is mapped to y in one step of the RCW algorithm is 2 · (c − 1)2/(c3NS).
Again, there are two cases corresponding to the “if” and “else if” blocks of the
algorithm. Consider the “if” case, we need to determine the probability that
π(x) = y ∧ π−1(x) 6∈ S ∧ π(π(x)) 6∈ S. There is one choice for π(x), NT − NS
choices for π−1(x), and NT −NS choices for π(π(x)). This fixes three mappings,
resulting in (NT − 3)! choices for the remaining points. Thus, the probability x
is mapped to y in the “if” case is

(NT −NS)2 · (NT − 3)!

NT !
=

(NT −NS)2

NT · (NT − 1) · (NT − 2)
≤ (c− 1)2

c3NS
.

Again, the argument for the “else if” case is almost identical giving a factor of
two in the probability that x is mapped to y.

Let Ht be the number of edges in the potential matching at time t that
correspond to good pairs. There are at least NS/9 good pairs at time t1 and
each is in the potential matching with probability at least 2(c − 1)2/(c3NS).
Thus, by linearity of expectations, for t > t1 we have that

E [Ht ] ≥ (NS/9)(2(c− 1)2/(c3NS)) = 2(c− 1)2/(9c3).
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Since the potential matchings generated at each time step are independent we

can now use a Chernoff bound to show that P
(∑t1+t2

t=t1
Ht < 1

)
< .5N−2

S . Again,

we will use the following form of the Chernoff bound; P (X < E [X ]/2) <
exp(−E [X ]/8). If we let X =

∑t1+t2
t=t1

Ht where t2 = 36c3 ln(2N2
S)/(c − 1)2

then by linearity of expectations E [X ] =
∑t1+t2
t=t1

E [Ht ] ≥ t2 ·2(c−1)2/(9c3) =

8 ln(2N2
S). Applying the above Chernoff bound gives the following,

P

(
t1+t2∑
t=t1

Ht < 4 ln(2N2
S)

)
< exp(−8 ln(2N2

S)/8) = .5N−2
S

Thus, since P
(∑t1+t2

t=t1
Ht < 1

)
< P

(∑t1+t2
t=t1

Ht < 4 ln(2N2
S)
)
, we have that

P
(∑t1+t2

t=t1
Ht < 1

)
< .5N−2

S , as desired. ut

5 CCA Security

Let S ⊆ T with NS and NT their sizes, respectively. Let r be a positive integer
called the repetition number. Let E : KE×T → T be a block cipher with domain
T . Let F : KF × {1, . . . , r} × S → {0, 1} be a pseudorandom function family.

We use reverse 2-cycle walking to define a new block cipher Ẽ : K × S → S
as follows. The key space K is KrE × KF . Let Fi,K(·) = F (K, i, ·). Then Ẽ, on
input key K and point x, parses its key K as r block cipher keys K1, . . . ,Kr

and a PRF key K ′ and then computes

RCWr
(EK1

,...,EKr ),(F1,K′ ,...,Fr,K′ )
(x) .

The following theorem establishes the CCA security of block cipher Ẽ.

Theorem 3. Let E, F , and Ẽ be defined as above. Let A be an adversary at-
tacking Ẽ and making q queries. Then,

Advcca
Ẽ

(A) ≤ r ·Advcca
E (B) + Advprf

F (C) + Γ ,

with B making 3 · q queries, C making r · q queries, and Γ being the bound on
variation distance from Corollary 1 that depends on r.

Proof. We wish to bound the cca-advantage of an adversary A attacking Ẽ and
making at most q oracle queries. Thus we wish to bound

Advcca
Ẽ

(A) = P
(
A±Ẽ(K,·) ⇒ 1

)
−P

(
A±π(·) ⇒ 1

)
.

We will start with the left term above, where A is given access to oracles for
Ẽ and Ẽ−1, and gradually change the oracles until they are simply random
permutations on S, bounding each oracle change accordingly.

Recall that ±Ẽ(K, ·) is really just a more compact way of writing

±O1(·) = ±RCWr
(EK1

,...,EKr ),(F1,K′ ,...,Fr,K′ )
(·).

17



Our first oracle transition, from O1 to O2, replaces all of the block ciphers with
random permutations on the same domain T , turning the oracle into

±O2(·) = ±RCWr
(π1,...,πr),(F1,K′ ,...,Fr,K′ )

(·) ,

where each πi is a random permutation on T . We can bound the difference using
a hybrid argument and an adversary B attacking the cca security of E.

The adversary B is given an encryption algorithm and its inverse, which we
denote by OB and O−1

B . Adversary B first chooses a random index i ∈ {1, . . . , r}.
Next, B chooses i− 1 keys K1, . . . ,Ki−1 for block cipher E, and a PRF key K ′.
It then runs adversary A, simulating A’s oracle queries as follows.

On encryption query x from A, B first computes the mapping

x′ = RCWi−1
(EK1

,...,EKi−1
),(F1,K′ ,...,Fr,K′ )

(x) .

In words, B applies i − 1 rounds of the RCW algorithm with the keys B chose
earlier; let the result be x′. B then uses its oracles to determine how x′ should be
mapped in the ith step of RCW. Looking at the RCW algorithm in Sect. 3, we see
that to determine this B will need to query O(x′), O−1(x′), and one of O(O(x′))
and O−1(O−1(x′)) depending on the results of the first two queries. Thus, for
each encryption query A makes, B queries its own oracles three times, making
either two forward and one inverse or one forward and two inverse queries. After
B determines how x′ should be mapped at the ith step (call the result x′′), it
computes how x′′ should be mapped by steps i + 1 through r using the RCW
algorithm with random permutations. To simulate these permutations, B simply
uses tables.

B handles inverse queries from A similarly, except it computes RCWr in the
reverse direction, using the same tables for random permutations in steps i+ 1
through r, using its own oracles at step i, and using the keys it chose for steps
1 through i− 1.

From the description of B, we can see that if B is given as oracles a real
block cipher and its inverse under some key, then B simulates for A the oracles
±RCWr

(EK1
,...,EKi−1

,EKi
,πi+1,...,πr), while if B is given as oracles a random per-

mutation and its inverse, it simulates for A oracles ±RCWr
(EK1

,...,EKi−1
,πi,...,πr).

Thus, it follows that

P
(
A±O1(·) ⇒ 1

)
−P

(
A±O2(·) ⇒ 1

)
≤ r ·Advcca

E (B) (1)

where B makes at most 3q oracle queries.

For our next oracle transition, from O2 to O3, we replace the PRF F : KF ×
{1, . . . , r}×S → {0, 1} with a truly random function ρ : {1, . . . , r}×S → {0, 1}.
Similar to how we defined Fi,K(·) = F (K, i, ·), we let ρi(·) = ρ(i, ·). Thus, our
oracle O3 becomes

±O3(·) = ±RCWr
(π1,...,πr),(ρ1,...,ρr)(·) .
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We can bound the change in advantage by the prf-advantage of an adversary
C. The adversary C, given access to an oracle that is either the real pseudo-
random function or a truly random function, runs A and simulates its oracles
by computing RCWr using tables and random sampling to simulate the random
permutations used by RCW, and using its own oracle to compute the bit b used
in each round. Since there are r rounds of RCW and A makes q queries, C will
make rq queries to its own oracle. Clearly, if C’s oracle is a real pseudorandom
function, it simulates O2 for A, while if C’s oracle is a truly random function it
simulates O3 for A. Thus,

P
(
A±O2(·) ⇒ 1

)
−P

(
A±O3(·) ⇒ 1

)
≤ Advprf

F (C) (2)

where C makes at most r · q oracle queries.
At this point, we have r rounds of RCW using only ideal components. For

our last oracle transition, O3 to O4, we replace RCW entirely with a random
permutation on S. Thus,

±O4(·) = ±π(·) .
We are now in the information theoretic setting, and the maximum advantage
of any adversary in distinguishing between RCWr with ideal components and
a random permutation on S is bounded in Corollary 1 in the previous section.
Thus,

P
(
A±O3(·) ⇒ 1

)
−P

(
A±O4(·) ⇒ 1

)
≤ Γ (3)

where Γ is the value the variation distance is bounded by in the Corollary.
We can thus bound the cca-advantage of A as follows:

Advcca
Ẽ

(A) ≤
(

P
(
A±O1(·) ⇒ 1

)
−P

(
A±O2(·) ⇒ 1

))
+

(
P
(
A±O2(·) ⇒ 1

)
−P

(
A±O3(·) ⇒ 1

))
+

(
P
(
A±O3(·) ⇒ 1

)
−P

(
A±O4(·) ⇒ 1

))
where recall that

O1 = RCWr
(EK1

,...,EKr ),(F1,K′ ,...,Fr,K′ )

O2 = RCWr
(π1,...,πr),(F1,K′ ,...,Fr,K′ )

O3 = RCWr
(π1,...,πr),(ρ1,...,ρr)

O4 = π

Substituting in equations (1), (2), and (3) gives the bound from the theorem
statement. ut
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6 Full Security via Reverse Cycle Walking

Let S = {0, . . . , N − 1} and T = {0, . . . , 2N − 1}. Thus, NT = |T | = 2N
and NS = |S| = N . Let r be a positive integer called the repetition number.
Let E : K × T → T be a block cipher on T and let E−1 be its inverse. Let
F : KF × {1, . . . , r} × S → S be a pseudorandom function family. Let Ẽ be
defined as it was in the previous section, using r rounds of RCW with E and F .
The following theorem states that if E is secure against cca adversaries making
N = (1/2)NT queries, then Ẽ is fully secure (i.e., secure against adversaries
making N = NS queries). In other words, the RCW construction allows us to
build a fully secure cipher out of a partially secure cipher on a larger set.

Theorem 4. Let S, T , E, F , and Ẽ be defined as above. Let A be a cca adver-
sary attacking Ẽ and making N = NS queries. Then

Advcca
Ẽ

(A) ≤ r ·Advcca
E (B) + Advprf

F (C) + Γ

where B makes N = (1/2)NT queries to its encryption oracle, C makes N · r
oracle queries, and Γ is the bound on variation distance from 1 that depends on
r.

Proof. The proof is identical to the proof of Theorem 3 except for how adversary
B answers oracle queries from A in the hybrid argument. As in the proof of
Theorem 3, we let

±O1(·) = ±RCWr
(EK1

,...,EKr ),(F1,K′ ,...,Fr,K′ )
(·) ,

and
±O2(·) = ±RCWr

(π1,...,πr),(F1,K′ ,...,Fr,K′ )
(·) .

We then use adversary B attacking E to argue that replacing A’s ±O1 oracles
with ±O2 has little effect.

Let B’s oracles be denoted by OB and O−1
B . As in the previous proof, B

begins by choosing a random index i ∈ {1, . . . , r}, then i− 1 keys K1, . . . ,Ki−1

for E and a PRF key K ′ for F .
This is where we encounter the major change from the adversary in the

previous proof. At this point, adversary B should query its own oracle OB on
all points x ∈ {0, . . . , N − 1}, recording the answers in a table. Specifically, B
sets T[x] = OB(x). B then runs A, answer its oracle queries as follows.

On encryption query x from A, B computes

x′ = RCWi−1
(EK1

,...,EKi−1
),(F1,K′ ,...,Fr,K′ )

(x) .

using the block cipher keys and the PRF key it chose earlier. To determine how
x′ should be mapped with the ith step of RCW, B now has to use the answers
it received from its oracle and stored in table T. Notice that B can evaluate the
boolean conditions in the “if” case of the RCW algorithm as follows: if T[x] ∈ S
and there is no z ∈ S s.t. T[z] = x and T[T[x]] 6∈ S. Similarly, B can evaluate the
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“else if” as follows: if T[x] 6∈ S and there does exist z ∈ S s.t. T[z] = x and there
does not exist w ∈ S s.t. T[w] = z. In other words, the table T contains enough
information to evaluate the RCW algorithm on any point in S.

After B computes how x′ is mapped in the ith RCW round, it uses tables
to simulate random permutations for rounds i + 1 through r, just as it did in
the proof of Theorem 3. Inverse queries from A are handled similarly to in that
proof, just with the ith round of RCW computed as above with table T.

The rest of the proof (i.e., bounding the change from using F to using a truly
random function) follows the exact steps as the proof in the previous section. ut

7 Open Questions

There are a number of interesting open questions surrounding reverse cycle walk-
ing. We analyzed the security of reverse 2-cycle walking, but we explained in the
introduction that the algorithm can be generalized to longer cycles. An inter-
esting question is whether reverse t-cycle walking, for t > 2, leads to better
bounds than we were able to prove here. Another interesting question is what is
the optimal worst-case running time for strong pseudorandom permutations on
general sets where only efficient membership testing is assumed. We were able
to show a worst case running time of Θ(t(N) logN), where t(N) is the time to
encipher a point in the larger set T . We conjecture that this is in fact optimal.
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