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Abstract. Quantifying the side channel security of implementations has
been a significant research question for several years in academia but also
among real world side channel practitioners. As part of security evalua-
tions, efficient key rank estimation algorithms were devised, which in con-
trast to analyses based on subkey recovery, give a holistic picture of the
security level after a side channel attack. However, it has been observed
that outcomes of rank estimations show a huge spread in precisely the
range of key ranks where enumeration could lead to key recovery. These
observations raise the question whether this is because of insufficient
rank estimation procedures, or, if this is an inherent property of the key
rank. Furthermore, if this was inherent, how could key rank outcomes
be translated into practically meaningful figures, suitable to analysing
the risk that real world side channel attacks pose? This paper is a di-
rect response to these questions. We experimentally identify the key rank
distribution and show that it is independent of different distinguishers
and signal-to-noise ratios. Then we offer a theoretical explanation for the
observed key rank distribution and determine how many samples thereof
are required for a robust estimation of some key parameters. We discuss
how this can be naturally integrated into real world side channel evalu-
ation practices. We conclude our research by connecting non-parametric
order statistics, in particular percentiles, in a practically meaningful way
with business goals.

1 Introduction

To assess the outcome of an attack, researchers traditionally sought to determine
the attack’s success rate (SR). Standaert et al. [20] provided a formal definition
for the SR and hypothesised that there is a link between attack outcomes (the
success rate, assuming a single targeted intermediate value) and the leakage
(measured in information theoretic terms in the same intermediate value). Fur-
ther research aimed at characterising the SR, e.g. [18,21], or finding alternative
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ways to predict differential power analysis (DPA) outcomes, e.g. [8]. These con-
tributions brought much needed clarity about some aspects of the (interactions)
between target functions and leakage models, but (necessarily) had to restrict
themselves to considering attack outcomes for a single subkey only.

In practice however, the effort to reveal the entire secret key is the concern
of most primacy: given a number of traces, and a computational budget for key
enumeration, what is the likelihood to reveal the secret key? This question can
be answered both by a generalised SR (which is closely connected to the key
guessing entropy (GE, see [20]), this line of research has recently been developed
further by Duc et al. [6].) or by computing the rank of the secret key. Conse-
quently, fast methods to compute the rank of the secret key have become a hot
topic [2,3,10,14,25,24].

It is noteworthy that the first computationally efficient and accurate key es-
timation algorithm originated from an evaluation lab [10]. Their interest in the
topic explains itself easily: assuming a sufficiently accurate method to estimate
the true rank of the secret key, decisive leakage evaluations could be performed.
However, the existing research brought to light an (unexpected) difficulty along
the way: even though the aforementioned previous works sought to minimise the
estimation error in key rank algorithms, the derived key ranks show a huge spread
in exactly the range of ranks where enumeration is of practical importance. This
opens up the question whether these ranks actually give meaningful informa-
tion? And if so how would key rank computations be integrated in standardised
security evaluations? The potential implication of these recent research results
have prompted JHAS (JIL Hardware-related Attacks Subgroup, this industry
led group essentially defines Common Criteria security evaluation practises for
smart card products) to set up a specific working group that deals with the topic.

Our research offers answers to these questions: after introducing some back-
ground (Sect.2) we improve the key rank algorithm of Martin et al. [14] to
produce the (to date) most precise key ranking algorithm (Sect. 3). Using this
high-precision ranking algorithm, we focus on the properties of the key rank dis-
tribution: we begin with an experimental exploration of the key rank, which we
accompany and strengthen by a theoretical analysis. Then, drawing from care-
fully designed simulations, we justify some general observations about the key
rank such as the independence of side channel distinguisher and trace character-
istics. We evaluate statistical metrics for the purpose of quantifying the risk from
side-channel attacks through an “evaluation through rank estimation” approach
and relate it to (potential) business goals.

2 Side-channel evaluations and key rank

This section covers some basic notation related to differential power analysis
(DPA) style attacks on modern blockciphers, as well as surveying the recent
works on computing fast and accurate estimates for the key rank.

We use a bold type face to denote multi-dimensional variables. A key k
can be partitioned into m (independent) subkeys, which we denote as k =
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(k0, . . . , km−1). We assume that all subkeys are of the same size (which holds
in most scenarios in practice) and that each subkey can take one of n possible
values. As an example, for AES-128 typically the 128-bit key is subdivided in
m = 16 subkeys of a byte (n = 256) each. The key to be recovered by the DPA
attack is called the secret key and is denoted sk = (sk0, . . . , skm−1).

2.1 Standard DPA model

In this paper we consider a standard DPA scenario as in Mangard et al. [13],
which implies the attacks are single order and univariate. (Note that in higher
order attacks the univariate targets still fit a standard DPA attack). An attacker
hasN power measurements or traces Ti corresponding to encryptions ofN known
plaintexts xi ∈ X , i = 1, . . . , N and wishes to recover the secret key sk.

For each subkey (j = 0, . . . ,m−1) we assume that each trace Ti is condensed
to a single point of interest Pi,j and that this value Pi,j decomposes additively
as Pi,j = Pexp +Pnoise. Here Pexp, called the signal, is a deterministic function of
the value of the subkey skj and the relevant input xi, whereas Pnoise, called the
noise, is drawn at random according to some distribution that does not depend
on any of the input values (including the secret key sk). The signal-to-noise ratio
(SNR) is then defined as the ratio of the variance in the signal (when ranging
over secret keys and plaintexts) divided by the variance in the noise:1

SNR =
V ar(Pexp)

V ar(Pnoise).

The SNR is used to quantify the amount of leakage within a given measurement:
the higher the SNR, the more information within the trace that can be exploited.

A distinguisher Dj against the jth subkey takes as input the vector of con-
densed traces and corresponding plaintexts (Pi,j , xi)i=1,...,N and outputs a dis-
tinguishing vector Dj ∈ Rn, which assigns a score for each possible hypothesis
of the subkey under consideration. Without loss of generality, we will assume
that the higher the score for a subkey hypothesis kj , the more likely the distin-
guisher deems that secret key equals kj . The distinguisher D on the complete
key, simply runs the subkey distinguishers Dj for each subkey and outputs a list
of distinguishing vectors D ∈ Rn×m (namely a distinguishing vector for each
subkey).

2.2 Key rank

The result of a side channel attack is a set of distinguishing vectors, which hold
the information about subkeys (when studied individually) and the entire key

1 Strictly speaking the SNR is defined relative to a subkey and should be indexed by
j; however when we later refer to the SNR it will be the same for all subkeys. This
is a simplifying assumption we make for our simulated data. It may not hold (nor
do we require it to) on real devices.

3



(when studied jointly). To judge the potency of an attack, we need suitable
metrics to express how well the distinguishing vectors enable key recovery.

Even though the ultimate goal is full key recovery, historically the emphasis
has been on subkey recovery. The only relevant information in a subkey dis-
tinguishing vector Dj is the order it induces on possible subkey hypothesis, as
a clever adversary would test the subkeys in order of likelihood (ignoring for a
moment how one would test an individual subkey). The only information needed
to identify the true subkey skj in this ordering is its distinguishing score dskj ,j ,
leading to the following definition of subkey rank.

Definition 1 (Subkey rank). Given the distinguishing vector Dj, and the
distinguishing score dskj ,j for subkey skj, count the number of subkeys with score

strictly larger than dskj ,j. We denote this rankj
skj (Dj).

Extending subkey rank to a full key is based on the assumption that the
distinguishing scores for individual subkeys can be added to give a meaning-
ful score for the full score. For instance, given the distinguishing table D =
(D0, . . . ,Dm−1) for the entire key, the score of secret key sk is computed as

W =
∑m−1

j=0 dskj ,j (where the notation dskj ,j identifies the score corresponding

to skj in the distinguishing vector Dj). In this case the actual values in the
(subkey) distinguishing vectors becomes relevant.

Definition 2 (Key rank). Given the distinguishing table D, and the score W
of the secret key sk, count the number of keys with score strictly larger than W .
This is denoted ranksk(D).

Remark 1. If multiple keys have the same score as the secret key, we assume that
the latter is ranked first. This gives a conservative rank for a given distinguishing
vector, as it will be the earliest an adversary would enumerate the key. For
distinguishers that don’t actually distinguish that well (e.g. because they do not
exploit any leakage) this can lead to key ranks that significantly underestimate
the remaining effort to recover the full key.

The key rank ranksk(D) of a single secret key given a specific distinguishing
table is not particularly interesting on its own. To say something meaningful,
we will consider the key rank as a random variable that is the outcome of the
experiment in Fig. 1. Here a random key, random plaintexts, and (implicitly)
random noise in the measurements Ti are chosen, as a result of which the output
of the experiment is a random variable. We will denote this random variable
keyrankD(N), which highlights the dependency on the number of traces N and
the distinguisher D being used; obviously the experiment depends on the primi-
tive under attack, and how it leaks, as well. The random variable keyrankj

D(N)

denotes the rank of the jth subkey (that is, the experiment returns rankj
skj (Dj)

instead).

Definition 3 (Success rate). The success rate of a distinguisher D as a func-
tion of the number of traces N is defined as SRD(N) = Pr[keyrankD(N) = 0],
where the random variable keyrankD(N) is defined by Fig. 1.
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experiment KeyrankD(N):

sk
$←− K

x1, . . . , xN
$←− X

For each xi capture trace Ti leading to points
of interest Pi,j

For each subkey: Dj ← Dj((Pi,j , xi)i=1,...,N )
D← {Dj}mj=1

return ranksk(D)

Fig. 1. The key rank experiment leading to random variable keyrankD(N).

The success rate, or first-order success rate, captures how frequently the
secret key sk is deemed (among) the most likely by the distinguisher. Given
that the score for a full key is computed as the sum of its constituent subkey
scores, a full key is deemed the most likely if, and only if, all its constituent
subkeys are the most likely. Thus, when focusing on success rate, it suffices to
look at the (first-order) subkey success rate.

Unfortunately, judging a distinguisher by its success rate only ignores key
recovery attacks that include key enumeration as part of their strategy. One
could look at higher-order success rates, where for the M -th order key recovery,
the M highest ranked key guesses are tested using a known plaintext–ciphertext
pair, though this raises the question for which M (and for realistic but large
M , say M = 250 computing the M -th order success rate is a challenge on its
own). Instead, we suggest to maintain the notion of keyrankD(N) as a random
variable and we will investigate its distribution as a whole. This allows us to
identify those properties of the distribution crucial to a holistic assessment of
the potency of a side channel attack.

Remark 2. While the random variable keyrankD(N) is defined over the random-
ness of key, plaintexts, and the noise in the measurement, we emphasize that it
is really the latter that matters. Indeed, one could equally consider key rank in
a (non-adaptive) chosen plaintext setting and later on we will make the assump-
tion that the randomness of the key is irrelevant (namely that conditioning the
random variable keyrankD(N) on the key sk makes no difference). This does
mean that if the leakage is noise-free, looking at key rank as a random variable
is not that meaningful anymore. Instead, the leakage will allow an adversary to
determine a set (containing sk) of most likely keys it considers equiprobable; the
relevant metric in this case is the size of this set, not the rank as we defined it
(which will default to 0).

2.3 Theoretical characterization of the key rank distribution

When comparing DPA distinguishers, it is customary to assume a specific leak-
age model (e.g. the Hamming weight of some intermediate value with Gaussian
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noise added). When the subkey distinguishing vector is considered as a random
variable (cf. Fig. 1), its distribution is known [18]: it takes the shape of a multi-
variate normal distribution. Using order statistics, this leads to a characterization
of the subkey rank distribution. This distribution is not particularly insightful
in its algebraic form, but it can be numerically evaluated in time proportional
to the n (the size of the subkey space). However, extending this characterization
into one for the full rank is not possible as the subkey rank distribution does
not uniquely determine the full key rank distribution. One could attempt to use
order statistics directly on the full key distinguishing table. However, even if
this were possible, the resulting formulae are likely unwieldy in their algebraic
form; moreover, numerical evaluation would this time be proportional in nm (i.e.
the size of the full key space) which will be infeasible for any cryptosystem of
relevance. This renders a full theoretical derivation of the key rank distribution
moot. Instead, let us concentrate on typical statistics used to describe distribu-
tions, starting with the expected value, or the guessing entropy. Later we will
hypothesise a candidate distribution.

Guessing entropy. First defined by Massey [15], the guessing entropy captures
the expected number of guesses (with an optimum strategy) to correctly guess
the value of a random variable (in our scenario the secret key). This can be
linked to the key rank by observing that the key rank is the number of guesses
an optimal adversary would take to guess the secret key. Standaert et al. [20]
first made this connection. We use the definition as given by Rivain [18].

Definition 4 (Subkey guessing entropy). The subkey guessing entropy is
defined as the expected value of the subkey rank, namely

GEj
D(N) = E(keyrankj

D(N)) .

A key observation is that the guessing entropy is the expected value of the
distribution of the subkey rank. Rivain found that the distribution of a distin-
guishing vector tends to a multivariate Gaussian [18], but the general distribution
of the subkey rank itself has not been thoroughly explored.

Extending the guessing entropy metric into the context of a full key is
simple—we now are required to find the expected value of the key rank.

Definition 5 (Key guessing entropy). The key guessing entropy is defined
as:

GED(N) = E(keyrankD(N)) .

Ranking entropy. In this work we consider adversaries that would employ key
enumeration as part of their attack strategy. This raises the question of how best
to consider the relative strength of two adversaries that have different sized key
enumeration budgets. Most differential attacks are chosen plaintext attacks, and
thus the cost of checking the validity of a single key hypothesis is almost zero—a
single call to an encryption or decryption. Thus, as in classical cryptanalysis, it
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is perhaps more useful to compare enumeration budgets in terms of orders of
magnitude, i.e. consider the logarithm of (a function of) the key rank outcomes.

Recall that the guessing entropy GED(N) is defined as E(keyrankD(N))
To consider the orders of magnitude in relation to the guessing entropy, the
obvious approach would be to consider log(GED(N)) = log(E(keyrankD(N))).
We will later show that this approach is not satisfactory. For that reason, we
introduce here an alternative, which we call the ranking entropy. The ranking
entropy is defined as the expectation of the logarithm of the rank, that is it
equals E(R), where R = log(keyrankD(N)) (for brevity, we will henceforth refer
to keyrankD(N) simply by R). Note that taking logarithms and expectation do
not commute, so in general the ranking entropy will not equal the log of the
guessing entropy.

Calculating either the guessing entropy or the ranking entropy directly ap-
pears to be a hard problem. Instead, for this and other statistics we will resort to
sampling from the distribution by repeatedly running the experiment of Fig. 1
instead. This requires an algorithm to calculate the key rank.

2.4 Key rank estimation

We want to understand the distributional properties of the key rank for different
distinguishers and leakage scenarios. A key tool for our empirical investigation is
an efficient and highly accurate rank estimation algorithm. Finding the rank of a
subkey is trivial after sorting the distinguishing vector. Unfortunately, for the full
key this approach no longer works as sorting the complete distinguishing vector
for the full key is at least as expensive as exhaustive search on the full key. For
instance, in case of a typical attack on AES, the distinguishing table consists of 16
distinguishing vectors of dimension 256 each. A naive (but accurate) algorithm
would be to compute the product distribution (i.e. list all combinations of all
subkeys) in order to compute the rank of the secret key.

There have been a host of more advanced key rank estimation algorithms
that return either an interval containing the actual rank or a point estimate of
the rank. When comparing such algorithms, both the efficiency and the accuracy
are relevant. Accuracy is measured in bits, where b bits of accuracy means that
if an algorithm says the key has rank 2x, the actual rank is in the range 2x±b.
Below we give a brief overview of existing key rank estimation algorithms.2

Veyrat-Charvillon et al. [24] proposed the first non-trivial key rank algo-
rithm. They represent the distinguishing scores in a multi-dimensional space,
where each dimension represents an individual distinguishing vector (sorted in
descending order). This space can naturally be divided into two parts; those
keys with rank higher than the target key and those with a rank lower. Using
the property that the ‘frontier’ between these two halves is convex, the rank of
the key can be estimated to within 10 bits by repeatedly pruning the space.

2 A small technical caveat: we do not make a distinction between worst-case accuracy
and the more fuzzy typical-case accuracy.
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Glowacz et al. [10] construct an efficient rank algorithm based on the convo-
lution of histograms. They utilise the property that if H1 is a histogram of S1
and H2 is a histogram of S2 then the convolution of H1 and H2 is a suitable
approximation of S1 + S2 = {x1 + x2|x1 ∈ S1, x2 ∈ S2}. By representing the
distinguishing vectors as histograms and using this property they are able to
estimate the rank of the key to within one bit of accuracy.

Duc et al. [6] propose a similar solution to that of Glowacz et al. [10]. They
repeatedly ‘merge’ each set of data in (similar to the histogram convolution)
and then down-sample the resulting data (this can be seen as the binning step
in creating histograms). Additionally, they down-sample to a fixed number of
samples after each ‘merge’, instead of just on the original data. While Duc et
al. do not explicitly give a bound on the estimation error, the additional down-
sampling implies it will be worse than that of Glowacz et al.’s algorithm.

Bernstein et al. [2] propose two key rank algorithms. The first adds a post-
processing phase to the algorithm by Veyrat-Charvillon et al. [24], which tightens
the accuracy to 5 bits. The second algorithm uses techniques similar to counting
all y-smooth numbers less than x. By having an accuracy parameter they are
able to get the bound arbitrarily tight, at the expense of runtime.

Martin et al. [14] propose a key rank algorithm based on the pseudo-polynomial
time algorithm for the knapsack problem. After mapping the distinguishing
scores to integer weights (such that larger distinguishing scores give smaller
integers), they are able to efficiently count the number of keys with a weight
less than the target key which directly corresponds to the rank of the key. Vary-
ing the size of the resulting integers allows them to make a trade-off between
accuracy and runtime.

All-but-one of these algorithms are essentially interval estimates of the key
rank; the only exception being the algorithm by Martin et al., which provides
a point estimate. Clearly all works emphasised the need of an accurate rank
estimation to ensure that the resulting key ranks are practically meaningful.
In some of these papers, as well as in related work on key enumeration [25],
some observations were made about the seemingly large variation of the key
rank. Poussier et al. [16] compared a number of the interval-based algorithms
to determine to what extent this variation was due to the algorithm being used
(despite the researchers’ best efforts to improve the accuracy of their algorithms,
estimation introduces an error and with it variation). Our interest is not in the
‘algorithmic’ noise, but rather in the intrinsic distributional properties of the
key rank itself.

For our empirical investigation into the key rank distribution, we opted for
Martin et al.’s approach, as we found that it provides the best efficiency/accuracy
tradeoff (it gives better accuracy than the algorithm by Glowacz et al. and is
more efficient than the second algorithm by Bernstein et al.).

2.5 Summary statistics

To be able to explore the characteristics of the key rank distribution further, we
must sample from R and estimate it—samples for R are calculated by apply-
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ing the logarithm to each sample from R. A first concern is to try to find the
most appropriate estimators for the expected values of R and R. However, these
random variables have characteristics other than their mean (e.g. variance). To
explore these, additional summary statistics—measures of location and spread—
are necessary and we review the potential choices in the following.

Estimates of the mean To compute the ranking entropy and the log of the
guessing entropy (Sect. 2.3) we must estimate E(R) and E(R). The arithmetic
(or sample) mean of N samples x1, x2, . . . , xN is x̄ = (x1 + x2 + . . . + xN )/N .
The law of large numbers states that the arithmetic mean over a large number
of trials should be close to the expected value, and thus is the correct estimator
for E(R).

When orders of magnitude are of concern, the arithmetic mean may not be
suitable—consider a hypothetical scenario in which a DPA attack is evaluated
1024 times. In 1023 of the occasions, the rank of the key is 1, and in the one
remaining occasion the rank of the key is 232. The arithmetic mean in this case
is (just over) 222, which clearly misrepresents the strength of the attack. In this
case, the geometric mean of N samples x1, x2, . . . , xN may be more appropriate.
It is defined as:

x̃ =

(
N∏
i=1

xi

) 1
N

The logarithm of the geometric mean of R is the arithmetic mean taken on
R (log R̄ = R̃). Consequently, the geometric mean is a suitable estimator for
the ranking entropy E(R). With reference to our prior ‘extreme example’ the
geometric mean would deliver a rank of (just over) 1—a better judgement on an
adversary’s “order of magnitude” ability.

Standard deviation The estimated standard deviation

ŝX =

√√√√ 1

N

N∑
i=1

(xi − x̄)2

captures the degree of variation in a distribution. From the side-channel evalua-
tion perspective, this will be of concern—if the standard deviation of R is large,
then the adversary has a higher probability of being “lucky” (or “unlucky”). A
similar geometric standard deviation exists, such that the geometric standard
deviation of R is equivalent to the arithmetic standard deviation of R.

Order statistics An alternative, non-parametric set of order statistics are the
estimated percentiles of the distribution. The P -th percentile is the smallest
value in an ordered sample such that P percent of the data set is less than or
equal to that value. More formally, the index i in the ordered list of N samples
is

i =

⌈
P

100
N

⌉
,
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with the P -th percentile taken to be sample xi.

The median (or 50th percentile) is a non-parametric measure of central ten-
dency. In the case of our previous hypothetical scenario, the arithmetic mean was
222, despite 99.9% of the ranks being 1. In the same scenario, the median would
report 1, a much more representative value for the strength of the adversary.
The median (and percentiles in general) have already seen use as descriptive
statistics in the context of key rankings in Veyrat-Charvillion et al. [23].

Finally, the minimum and maximum values observed within a sample may be
important. In the side-channel context, these essentially correspond to estimates
for the best and worst case scenario for the adversary (and vice-versa for the
evaluator). The minimum value could also be associated with an indication of
the min-entropy of the distribution (although we leave this as an avenue for
future exploration).

The order of a set of samples from R is invariant under logarithms, and
thus the minimum, maximum and percentile values from R can be computed by
taking the logarithm of the values for the equivalent samples from R.

3 Accurate estimation of the rank distribution

The ability to characterise the distribution of R hinges on whether a sufficiently
accurate estimation of an individual rank can be achieved. As previously estab-
lished, the rank estimation algorithm of Martin et al. (hereafter, “KRE”) is the
optimal choice from the candidate set of algorithms for our experiments.

3.1 KRE improvements

The KRE algorithm can be seen as having two components or steps: the first is
a lossy conversation from floating point distinguishing scores to integer weights,
and the second is an accurate counting method.

For the first step, the KRE algorithm takes a precision parameter, which
is a number of bits p. Each of the distinguishing scores produced by a side-
channel attack are then converted to positive integers of size at most 2p. A
typical side-channel attack produces floating-point distinguishing scores which,
assuming the use of a modern CPU, are highly likely to be computed using
64-bit floating point arithmetic. Thus for any p < 64, the conversion from raw
distinguishing scores to integer values is lossy, and can theoretically ‘collide’ two
different distinguishing scores together into the same integer value, losing some
of the information produced by the side-channel attack.

The runtime of KRE is effectively exponential in p; for the same set of dis-
tinguishing vectors, ranking at precision p+ 1 will take approximately twice as
long as ranking at precision p. Using a variety of algorithmic and implementation
improvements, we were able to accommodate a large increase in the precision
retained by the algorithm. These improvements enabled us to perform rank cal-
culations approximately 16 times faster than the previous work, allowing us to
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run experiments at a precision of up to p = 23 in the order of 1-2 minutes
(depending on the ‘true’ rank being estimated).

These improvements included a modification to the first step (the “Map-
ToWeight” function as described in [14]). We applied a linear shift to the integer
weights such that the subkey with the smallest distinguishing score has an inte-
ger weight of 1, and thus typically lowers the integer weight of the correct key
(which affects the run-time linearly). In addition to some optimisations at the
level of the implementation, we also modified the recurrence relation to avoid
all calls to the “left child” function. With these modifications, we were able to
push our implementation to retain up to 23 bits of precision. Full details can be
found in Appendix A.

3.2 KRE precision

To provide a sanity check of how many bits of precision suffice for computing
an ‘exact’ rank (similarly to the brief evaluation in [14]), we simulated a large
number of DPA attacks and used the key rank estimation algorithm to estimate
the rank of each attack using 8 to 23 bits of precision. Table 1 and Figure 2
illustrate the average error between our best guess at the true key rank (which
is obtained by taking the estimate at 23 bits) and the rank estimates at each
level of precision. Each additional bit of precision used in the rank estimation
algorithm can only increase accuracy (increasing the number of bits by one
approximately doubles the weight of the target key; this will reduce the number
of collisions when converting the distinguishing scores to integers and can not
introduce new collisions).

As can be observed in the figure and table, the average error rapidly decreases
between 8 and 14 bits of estimation precision. From 17 bits of precision onwards,
the average error is within 3 decimal places, dropping as low as 4 decimal places
at 20 bits of precision, and with each additional bit approximately halving the
average error. Given our available computational budget for all our experiments,
we selected 20 to be the precision used for the KRE algorithm. This allows us to
both very accurately estimate ranks and to run a large amount of experiments.

Precision Av. error (bits) Precision Av. error (bits) Precision Av. error (bits)

8 0.302619 13 0.010231 18 0.000330
9 0.158402 14 0.005343 19 0.000154
10 0.082911 15 0.002756 20 0.000074
11 0.041216 16 0.001473 21 0.000033
12 0.020488 17 0.000641 22 0.000015

Table 1. The average error, in bits, for increasing increments of precision used in the
rank estimation algorithm. Average taken using 1091 DPA attacks with ranks spread
across the range 20 to 2128, using the geometric mean.
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Fig. 2. (Left) Average error, in bits, from a ‘true’ rank taken to be the estimate as
evaluated by the rank precision algorithm using 23 bits of precision. Rank estimates
were evaluated using 8 to 22 bits of precision. Repeated DPA attacks were simulated
using a random SNR, and placed into buckets if the estimated rank at 23 bits of pre-
cision was within 1 bit of 216, 232, . . . , 2128. (Right) the same data, with the logarithm
of the log-ranks applied.

4 Initial exploratory study

Now we have shown that we can estimate values from R with a high degree of
accuracy, we shift focus to exploring its distribution.

4.1 Visualising the key rank distribution

As a first step we proceed to visualise the distribution of repeated key rank
experiments at various depths. Histograms are an ideal tool for doing this; we
hence run simulated experiments, using correlation power analysis (CPA, see [5])
as a distinguisher for attacking simulated Hamming-weight leakage with additive
Gaussian noise with a low SNR of 2−7.

Figure 3 plots histograms of samples from R across a range of different aver-
age rank values. In the middle range of rank values, the distribution appears to
be appreciably normally distributed. However, we can observe non-normal be-
haviour at either end of the possible rank values, as can be seen in the top-left and
bottom-right histograms. The bottom-right exhibits a much higher frequency of
attacks of rank 0, producing a small additional peak at the left-tail of the dis-
tribution. Similarly, when the average rank is close to the maximum of 2128, the
distribution is no longer symmetric, but is also without the additional peak. A
review of statistical literature suggests that distributions that are ‘clipped’ in
this way are defined as truncated distributions [9].

The x-axis of the histograms is log-scale: if the distribution of the logarithm
of the ranks was indeed normal, then the distribution of the rank values them-
selves would be a log-normal distribution. The large skewness of a log-normal
distribution would support our hypothesis that the arithmetic mean is not a
suitable average, and rather the geometric mean is better suited. Our prediction

12



Average rank 2120

0 50 100
0

50
Average rank 2112

0 50 100
0

20

40

Average rank 296

0 50 100
0

50
Average rank 280

0 50 100
0

50

Average rank 264

0 50 100
0

20

40
Average rank 248

0 50 100
0

50

Estimated rank (log2)

Average rank 232

0 50 100
0

20

40

Estimated rank (log2)

Average rank 216

0 50 100
0

20

40

Fig. 3. Histograms for attacks with a (geometric) mean rank close to one of several
values. Here the leakage is simulated Hamming-weight with Gaussian noise at an SNR
of 2−7, with the attacker using CPA as a distinguisher.

of a log-normal distribution is supported by the central limit theorem, which
implies that the product of positive random variables produces a log-normal
distribution.

Given this information we conjecture that we have a delta-log-normal [1] dis-
tribution with truncation [9]. A delta-log-normal distribution is a distribution on
a random variable X such that X is assigned value 0 with probability θ and fol-
lows the log-normal distribution with probability 1−θ. In this particular context
the value of θ would directly correspond to the success rate of an adversary for
full key recovery (without enumeration). The log-normal distribution could then
be parameterised separately using standard methods. Truncation corresponds to
when a random variable can not be assigned a value passed a certain threshold.
It is clear that the rank can only be assigned a value between 0 and 2128 − 1,
and thus must be truncated.

Whilst further research into this characterisation is a promising next-step,
for the purposes of this work we instead pursue two questions of immediate
importance: firstly, whether this shape and scale of distribution is consistent
across the various contributory factors influencing the outcomes of side-channel
attacks, and secondly whether the non-parametric order statistics outlined in

13



Sect. 2.5 can be used as a simple and efficient method for extracting meaningful
conclusions without making any assumptions about the underlying distribution.

4.2 Is an accurate rank distribution estimation viable?

Before further exploration of the candidacy of the summary statistics outlined in
Sect. 2.5, we devised an experiment to determine how many repeat experiments
are necessary to reliably estimate them. We kept the leakage model and SNR,
as well as the distinguisher used by the adversary, constant but used randomly
generated plaintexts, keys and Gaussian noise. We assumed a CPA attack us-
ing the Hamming-weight power model, and the leakage was simulated on the
AES SubBytes target function, using the Hamming-weight leakage function and
Gaussian noise. In the experiment, each statistic was estimated using increasing
amounts of repeat experiments on simulated data.

The results in Fig. 4 exhibit the behaviour of the statistics. The maximum
key rank values unsurprisingly exhibit the most variability—for key ranks above
80 we observe that the estimated values ‘jump’ at 50, 100, and 200 repeats where
they stabilise. The other key ranks, hence those in the ranges were enumeration
is within practical reach behave much more stable—from 25 repeats on they
produce stable estimates, from 100 repeat experiments onwards the estimates
have converged to the true value. The intuition behind the geometric mean
being a sensible choice is sound, producing a line that is almost identical to that
of the median, as expected under the assumption of a log-normal distribution.
In fact, for all the experiments we pursued in this study, the geometric mean and
median were nearly identical, and for simplicity we do not display it in future
graphs. The unsuitability of the arithmetic mean (given orders of magnitude are
a concern) is clear and consequently from here onwards we no longer calculate
it.

Resampling methods. In the previous experiment, which was based on simu-
lations, we were able to efficiently sample independent and mutually exclusive
sets of key rank data. In practice this might not be possible as a single, large
data-set might be available only. This situation is not uncommon and methods
such as bootstrapping, jackknifing and k-fold cross validation are well under-
stood [22,4,11] and therefore get employed in a variety of contexts. An important
guideline though, irrespective of which resampling approach one chooses, is to
pay attention to randomly selecting subsamples to avoid introducing a bias.

5 Characterising rank distributions

To understand whether the properties observed in the exploratory studies of
Sect. 4 are common (or specific to the combination of distinguisher, leakage
model and SNR), and to further explore characteristics of the distribution of R,
we perform further simulated DPA attacks and vary the interesting parameters.
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Fig. 4. Estimated summary statistics using increasing amounts of DPA attacks. Each
DPA attack used a CPA-HW distinguisher on simulated AES SubBytes leakage using
the Hamming-weight power model and Gaussian noise of an SNR 2−3.

5.1 SNR and measurement counts

The starting point of our simulated experiments was to consider whether both
the measurement SNR and the quantity of trace measurements available affects
the rank distribution. These two variables are clearly dependent; a very low SNR
can be overcome by using more measurements, and at high SNR levels a success-
ful attack can be created using fewer trace measurements. As a consequence we
devised a set of experiments for which the rank distribution can be analysed as
both these variables change. We assumed an ‘optimal’ adversary operating un-
der commonly considered leakage conditions—namely, Hamming-weight leakage
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on the AES SubBytes operation with additive Gaussian noise, and where the
adversary launches a CPA attack using the Hamming-weight as a power model.

We simulated data under a variety of SNRs, beginning with a low-noise sce-
nario of SNR 2−1, up to a high-noise scenario with SNR 2−7. For each unique
SNR, we simulated DPA attacks using increasing amounts of traces, beginning
with a quantity for which the rank was approximately 2128, and increasing the
number of traces until the vast majority of attacks produced a rank of 0. For
each unique number of traces, we ran 1000 repeat attacks, and for each repeat
generated the keys, plaintexts and additive noise at random.

Figure 5 visualises the summary statistics for attacks under the SNRs 2−7,
2−5 and 2−3. The general trends appear similar to those observed in our real
world example. The variance observed is of most interest, both in terms of its
magnitude and its consistency across multiple pairs of SNR and trace quantities.

Three main observations can be made:

1. The distribution appears to be at its widest in the middle range of ranks
(e.g when the rank is between 240 and 280), and variance minimises for very
poor attacks (rank ≈ 2128) and very good attacks (rank ≈ 20).

2. The maximum variance appears to be very large, with the difference between
(for example) the 10th and 90th percentiles being in the order of up to 40
bits in some cases.

3. The exact level of SNR does not appear to affect the variance or shape of
the distribution in any independent way—assuming the same distinguisher
is used, at any given SNR, given sufficient traces to establish an average rank
of x, the dispersion of the distribution will be very similar to that produced
by attacks at any other SNR that have an average rank close to x.

To confirm these three intuitions, we plotted the estimated geometric stan-
dard deviation against the (geometric) mean rank (or equivalently the arithmetic
mean and standard deviation of samples from R). The results can be seen in
Fig. 6, where each line corresponds to results obtained for seven different SNRs.
The shape and magnitude of each line very closely match, indicating that the
behaviour is indeed consistent across all SNRs. The curves peak at an average
rank of approximately 264, suggesting that it is the ‘true’ rank of the attack that
affects the variance, and not any characteristic of the leakage noise or quantity
of data available (for a fixed key rank).

These three characteristics in tandem present an unfortunate problem for
an evaluator and for the viability of the guessing entropy as a stand-alone met-
ric. Not only is the variance very large, and thus an adversary may with non-
negligible probability produce an attack far out-performing the average attack,
but also the variance is largest in the range of key ranks that are of most interest
to an evaluator. There is a threshold at which an adversary may be considered
unrealistic (e.g we might be confident that an adversary can enumerate 254 keys,
but not 257), and unfortunately the distribution has the most variance here.
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Fig. 5. (Left) Estimated ranks after 1,000 DPA attacks at SNRs 2−7, 2−5 and 2−3, using
Hamming-weight CPA targeting simulated leakage on the AES SubBytes operation.
(Right) Equivalent box-plots for using the same data as on the left. The central line in
each box is the median, the box defines the inter-quartile range, the whiskers cover all
samples not considered to be outlier values, and outliers are plotted individually.

5.2 Distinguishers and higher-order attacks

A second consideration is whether the choice of distinguisher used by the ad-
versary can change the characteristics of the rank distribution. Our previous
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standard deviation for attacks at the seven SNR values 2−7, . . . , 2−1. Each attack used
simulated Hamming-weight leakage with CPA used as the distinguisher.

experiments used CPA as the distinguisher, and so to compare, we launched
two additional types of attacks. Firstly, we tried reduced3 template attacks on
the simulated leakage. Secondly, we launched second-order attacks on a binary
masked implementation of AES: the leakage sample corresponding to the mask
value and the sample corresponding to the masked SubBytes operation were
combined using the ‘centre and multiply’ method (see e.g [17]), and then a stan-
dard Hamming-weight CPA was launched. To enable a direct comparison with
the standard CPA attacks, we ran the template attacks using data with an SNR
of 2−7. For the second order attack, we reduced the SNR to 2−3 to alleviate the
burden of having to use too many traces in the attack.
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Fig. 7. Estimated ranks after template and second-order attacks, using simulated leak-
age on the AES SubBytes operation.

3 Reduced in that we did not use multiple points or estimate a covariance matrix.
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Figure 7 shows the results of our attacks. Again, we observe consistent be-
haviour as seen previously; the shape and trend for the percentiles is remarkably
similar. We can observe one interesting discrepancy: the variance of the distri-
bution produced by the template attacks, whilst still very large in the middle
of the distribution and with a consistent shape, does appear to be smaller than
that produced by any attack using correlation as a distinguisher (including the
second-order attacks, which produce very similar rank variance to first-order
ones). The reason for this distinguisher-specific dependency is unclear, and we
leave this observation as an interesting starting-point for future research.

6 Embedding Rank Estimations into Real World Security
Evaluations

In the previous sections we provided conclusive evidence that the key rank is
random variable with inherently large variation. We showed that it is possible
to meaningfully characterise average behaviour and spread using repeat exper-
iments. A crucial questions remains though: how can this be integrated into
practical side channel evaluations? In this section we discuss two radically dif-
ferent propositions for a solution. The first proposition is to employ some recent
suggestions for short-cuts in evaluations; we find that these have limitations
which restrict their practical use. The second proposition is a practical re-use
of measurements for repeat experiments, which leads to practically meaningful
results.

6.1 Bounding the success rate of an adversary with enumeration

In some recent work, Duc et al. [6] provided some bounds that relate the mutual
information between a subkey and the leakage traces, as a function of the ad-
versary’s success rate, the number of shares (if used within a masking scheme)
and the number of traces used within a side channel attack. They also present a
construction relating the success rate, enumeration effort and number of traces
(for a fixed SNR and number of masks), in the best case for the adversary in an
extended version of their paper [7, Sect. 4.3c, eq 24, Alg. 2]. We can interpret
this as a lower bound on the key rank of the secret key at a given number of
messages, by looking when the success rate first becomes non-zero.

Using code supplied by the authors of [6], we were able to evaluate this success
rate bound in the context of idealised Hamming-weight information leakage. This
data is shown in Fig. 8, re-using the simulated Hamming-weight CPA attack data
under first-order and second-order attack conditions. As can be immediately
seen from the large margin between the SR bound and the estimated ranks,
this is a very loose bound—in the right hand graph, the SR bound is almost
on top of the x- and y-axes. This supports their intuition (hinted at in [6]) that
the theoretical bounds only tighten for a large number of masks, but cannot
realistically approximate the performance of an adversary in the single or zero
mask situation our work explores. Consequently this recent work, which hopes
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Fig. 8. Estimated key ranks compared to the success rate metric of Duc et al. [6] using
simulated first and second order CPA attacks on Hamming-weight leakage.

to ‘short-cut’ the effort in evaluations, seems too inaccurate for the kind of
implementations that are of immediate real world interest.

Using a different technique to Duc et al., but with the same intention to short-
cut evaluation efforts somewhat, Ye et al. argue for an algorithm that allows
to estimate the remaining effort of an adversary regarding enumeration and
simultaneously provides the optimal guessing strategy. They suggest that their
algorithm could be run once on a dataset. However, running their algorithm once
can only deliver a single interval estimate of the key rank: repeat experiments
would still produce a large variance which implies that any statement based on
a single run is insufficient to determine the spread.

6.2 Real world evaluation of a challenging target

We utilise an interesting real-world data set provided by Longo et al., which
initially appeared at CHES 2015 [12], to illustrate how to integrate key rank
into practical evaluations. We re-implemented and re-ran one of the attacks
described by Longo et al. at CHES 2015 [12]. They illustrated several standard
DPA attacks on a complex device, and we selected their most challenging one: an
attack on a hardware AES implementation, utilising EM measurements. We refer
the reader to the attack paper for full details, but note that we use an improved
attack strategy communicated to us after correspondence with the authors [12].

The available dataset consisted of approximately one million EM traces.
These were acquired in line of their ‘standard’ assessment approach for cryp-
tographic devices, which as some of the authors are from a well known expert
company, can be regarded as being in line with industry best practice: after ini-
tially identifying the source of the leakage, they gathered as many traces as they
could afford (given some allotted time budget) for a given unknown secret key.

In the previous section of this paper we highlight the fact that estimations
of key rank properties need repeat experiments. However, due to the EIS (Equal
Images under different Subkeys) property that typical block ciphers have [19],
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Fig. 9. Estimated key ranks after repeated DPA attacks on a set of 997,500 traces
acquired from a BeagleBone Black device running AES-128 in hardware.

it is not necessary to run these on different keys (since the results will be of
similar quality). Instead we can divide up any set of experiments into smaller
subset to run repeat experiments, which is how we proceed. To analyse the
distribution of R produced by the attacker4 we ran multiple DPA attacks using
increasing amounts of traces from the data set. Figure 9 plots the trends of the
minimum, maximum, various percentiles and geometric and arithmetic means for
the estimated ranks as the number of traces available to the attacker increases.

The first attack reporting full key recovery uses approximately 45,000 traces,
and we can immediately see from the graph that this should perhaps be consid-
ered a fortunate result for the attacker—at this number of traces, we observed
some attacks of rank up to ≈ 220. Also of interest is that the classical 80-bit
security margin is first broken somewhere between 10,000 and 20,000 traces,
and expected, considerable variance in the rank distribution, with a very large
margin between the minimum and maximum values observed. The line for the
arithmetic mean is again evidence that our intuition of computing statistics on
R is more meaningful—the line corresponding to the geometric mean (of R) is
very close to the median.

The power of percentiles Percentiles are particularly informative statistics
in the evaluation context. Recall that percentiles give the value below which a
specific percentage of observations (among the sampled observations) fall. We
can relate this to business goals such as having no more than a certain percentage
of devices be susceptible to a particular side channel adversary, as we show in
the example below.

4 The attack is a Hamming-distance correlation power analysis on the input and out-
put of the final round of encryption.
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Consider our evaluation of the real world data-set before: we sampled from
the rank distribution using repeated attacks for an increasing amount of traces.
Risk can be assessed using these key rank samples. As an example, assume that
the 10th percentile of the estimated rank distribution is 244 (in Fig. 9) —this
indicates that of all the devices of that type sold into a market, 10% would
succumb to a full key recovery attack by an adversary using around 23,000
traces and with 244 as an enumeration budget. An alternative but equivalent
interpretation would be that 90% of the devices are only vulnerable once the
adversary’s enumeration budget increases beyond 244 (at 23,000 traces). Instead
of phrasing attack scenarios around how many devices are vulnerable, one can
focus on a single devices but many adversaries. For instance, if a series of fixed
adversaries attacked the same device (using 23,000 traces and enumerating up
to 244 keys, then 10% would succeed).

These examples demonstrate that percentiles are a very efficient and simple
way to assess the spread of the rank distribution and report it in a meaningful
way in business terms. The use of different percentiles then allows the evaluator
to fine-tune these security margins.

7 Conclusion

One of our key findings is that the shape of the distribution of the key rank is
consistent ; these observations hold irrespective of the type of differential attack
used (with the small but interesting observation that template attacks seem
to produce key rank distributions with a slightly smaller variance than similar
correlation based attacks) and SNR. We thereby confirm that it has a large
variance in exactly the range in which the assumed enumeration capability of an
adversary transitions from realistic to unrealistic.

In our efforts to explore suitable statistical measures to capture the practi-
cally important key rank characteristics we observe that the guessing entropy,
defined as the expected value of the key rank, is not always meaningful. As an
average, the guessing entropy cannot quantify any of the very large amounts
of variance we observe. Consequently, additional metrics must be used, and a
natural step is to instead consider non-parametric order statistics, which brings
us to consider the usage of percentiles to connect side channel outcomes with
business goals.

We additionally observe that the rank distribution R follows some flavour of
a truncated delta-log-normal distribution. However, in practice we typically are
concerned with behaviour of adversaries in the log-domain (in R)—an evalua-
tor tends to be more interested in the magnitude of an adversary’s capabilities
and not the exact value. Whilst the logarithm of the guessing entropy can be
appropriately estimated using the geometric mean, it is perhaps easier to switch
to considering guessing entropy defined using the logarithm of the ranks, and
estimated using the arithmetic mean.

With regards to practical impacts, we observed that at least some repeat
experiments are necessary for stable estimates of the geometric mean, median
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and percentiles. Whilst this appears to incur an overhead at first glance in terms
of trace measurements, we explain that it is sound to simply ‘split’ any existing
data set into smaller subsets with which the repeat runs can be conducted.
Finally we show that caution is needed with regards to using short-cut formulas,
and end by illustrating an approach to evaluating the security of a real world
device using repeat rank experiments.
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A KRE optimisation

To allow the key rank algorithm of Martin et al. [14] to run with a precision of
up to 23 bits we had to include several implementation and algorithmic tricks
to bring down the runtime of the algorithm.

A.1 Distinguishing score to integer weight conversion

When the distinguishing scores are converted to integer weights they are done
in such a way that the largest distinguishing score results in value 2p. However
it is possible that this leads to scenarios where the distinguishing scores are
unnecessarily large—for example, if all the distinguishing scores have value 1 they
will end up with value 2p. To counter this we subtract the minimum integer score
from all scores to scale them back. This increases the efficiency of the algorithm
since the runtime is linear in the weight of the key.

A.2 Recurrence relation

One of the major changes to the algorithm was adjust the recurrence relation.
The first step was to use the ‘wide sort’ given in the original paper as it had
the smallest memory footprint. Using a three-dimensional coordinate system to
index the graph, the single loop over the graph was replaced with three for loops,
one for each integer in the representation. Using the combination of the wide
sort and the triple index system, it can be noted given (x, y, z), such that the left
child is not reject, it will always return (x, y+ 1, z). This can be used to remove
the majority of the memory copies and access by computing an entire partial
weight within a subkey at once without having to work at an index at a time.
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The other advantage of the triple index system is that it greatly reduces the
number of expensive operations required (such as mods) to calculate the child
nodes. The resulting algorithm is given in Figure A.2.

Algorithm KeyRank(m,n,W ):
for j from m− 1 down to 0 do

for w from 0 up to W − 1 do
for i from n− 1 down to 0 do
Rank[w]← Rank[w] +OldRank[RightChild(j, w, i)]

end for
end for
OldRank ← Rank

end for
return Rank[0]

Fig. 10. The resulting rank algorithm after adjusting the algorithm of Martin et al. [14]
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