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Abstract. In a recent work, Kim and Barbulescu had extended the
tower number field sieve algorithm to obtain improved asymptotic com-
plexities in the medium prime case for the discrete logarithm problem
on Fpn where n is not a prime power. Their method does not work when
n is a composite prime power. For this case, we obtain new asymptotic
complexities, e.g., Lpn(1/3, (64/9)1/3) (resp. Lpn(1/3, 1.88) for the mul-
tiple number field variation) when n is composite and a power of 2; the
previously best known complexity for this case is Lpn(1/3, (96/9)1/3)
(resp. Lpn(1/3, 2.12)). These complexities may have consequences to the
selection of key sizes for pairing based cryptography. The new complex-
ities are achieved through a general polynomial selection method. This
method, which we call Algorithm-C, extends a previous polynomial selec-
tion method proposed at Eurocrypt 2016 to the tower number field case.
As special cases, it is possible to obtain the generalised Joux-Lercier and
the Conjugation method of polynomial selection proposed at Eurocrypt
2015 and the extension of these methods to the tower number field sce-
nario by Kim and Barbulescu. A thorough analysis of the new algorithm
is carried out in both concrete and asymptotic terms.

1 Introduction

The discrete logarithm problem (DLP) over the multiplicative group of a finite
field is a basic problem in cryptography. Two general approaches are known for
tackling the DLP on such groups. These are the function field sieve (FFS) [1, 2,
12, 14] algorithm and the number field sieve (NFS) [8, 13, 15] algorithm.

Let p be a prime, n ≥ 1 be an integer and Q = pn. Suppose that p = LQ(a, cp)
where

LQ(a, cp) = exp
(
(cp + o(1))(lnQ)a(ln lnQ)1−a

)
.

Depending on the value of a, fields FQ are classified into the following types: small
characteristic, if a ≤ 1/3; medium characteristic, if 1/3 < a < 2/3; boundary, if
a = 2/3; and large characteristic, if a > 2/3.

For fields of small characteristic, there has been tremendous progress in the
FFS algorithm leading to a quasi-polynomial time algorithm [4]. Based on the



FFS algorithms given in [11, 4], a record computation of discrete log in the binary
extension field F29234 was reported by Granger et al [9]. Applications of the FFS
algorithm to the medium prime case have been reported in [14, 10, 19].

For medium to large characteristic finite fields, the NFS algorithm is gener-
ally considered to be the state-of-the-art. NFS was initially proposed for solving
the factoring problem. Its application to DLP was first proposed by Gordon [8]
for prime order fields. Application to composite order fields was shown by Schi-
rokauer [21]. Important improvements to the NFS for prime order fields was
given by Joux and Lercier [13].

A major step in the application of NFS was by Joux, Lercier, Smart and
Vercauteren [15] who showed that the NFS algorithm is applicable to all finite
fields. When the prime p is of a special form, Joux and Pierrot [16] showed
the application of the special number field sieve algorithm to obtain improved
complexity.

The NFS algorithm proceeds by constructing two polynomials f(x) and g(x)
over the integers which have a common factor ϕ(x) of degree n modulo p. The
polynomial ϕ(x) defines the field Fpn while the polynomials f(x) and g(x) define
two number fields. The efficiency of the NFS algorithm is crucially dependent
on the properties of the polynomials f(x) and g(x) used to construct the num-
ber fields. Consequently, polynomial selection is an important step in the NFS
algorithm and is an active area of research.

There has been a recent spurt of interest in the study of the NFS algorithm
for DLP in finite fields. The work [3] by Barbulescu et al. extends a previous
method [13] for polynomial selection and also presents a new method. The ex-
tension of [13] is called the generalised Joux-Lercier (GJL) method while the
new method proposed in [3] is called the Conjugation method. The paper also
provides a comprehensive comparison of the trade-offs in the complexity of the
NFS algorithm offered by the various polynomial selection methods.

The NFS based algorithm has been extended to multiple number field sieve
algorithm (MNFS). The work [6] showed the application of the MNFS to medium
to high characteristic finite fields. More recently, Pierrot [18] proposed MNFS
variants of the GJL and the Conjugation methods. Sarkar and Singh proposed [20]
a new polynomial selection method which subsumes both the GJL and the Con-
jugation methods. Using this method, the asymptotic complexity of both the
NFS and the MNFS were worked out in [20].

The minimum asymptotic complexities using the NFS algorithm of Bar-
bulescu et al. [3] can be written as LQ(1/3, (c/9)1/3) where c = 96 for the
medium characteristic case; c = 48 for the boundary case and c = 64 for the
large characteristic case. The multiple number field sieve algorithm [18] improves
these complexities. Further, the minimum complexities are achievable for a cer-
tain value of cp. The analysis in [20] improves the asymptotic complexity of the
boundary case for a range of values of cp.

When the extension degree n is composite, the finite field Fpn can be repre-
sented as a tower of fields. The idea of using this in the context of DLP is due



to Schirokauer [21]. This variant is called the tower number field sieve (TNFS)
algorithm.

At Asiacrypt 2015, Barbulescu et al., [5] presented a detailed analysis of
the tower number field sieve (TNFS) variant. In a recent paper, Kim and Bar-
bulescu [17] extended the TNFS algorithm and applied previous polynomial
selection methods to the TNFS, the multiple TNFS (MTNFS) and the special
TNFS variants. These were respectively called the exTNFS, MexTNFS and the
SexTNFS algorithms. The polynomial selection methods considered in [17] in-
clude the methods from Joux-Lercier-Smart-Vercauteren [15], the GJL and the
Conjugation methods from [3] and the polynomial selection method from [20].

Consequences to the medium prime case. An important achievement of
the work by Kim and Barbulescu [17] is to improve the asymptotic complexity
of the medium prime case when n is not a prime power. In this case, they show
that the complexity LQ(1/3, (48/9)1/3) is achievable. Further, if p is of a special
form, then the complexity of LQ(1/3, (32/9)1/3) is achievable. The condition n
is not a prime power is equivalent to saying that n can be written as ηκ with
gcd(η, κ) = 1. How restrictive is the condition gcd(η, κ) = 1?

One way of removing this restriction is to embed Fpn into Fpnm with
gcd(n,m) = 1 and compute discrete logarithms in Fpnm . Let Q = pn and Q′ =
pnm. The complexity of the NFS algorithm in FQ′ can be written as LQ′(1/3, µ)
where µ is a constant. Note that LQ′(1/3, µ) is LQ(1/3, µm1/3) (ignoring small
terms). The best complexity obtained by Kim and Barbulescu is µ = (48/9)1/3.
So, the best complexity achieved for solving DLP in Fpn by embedding into Fpnm
is LQ(1/3, ν) where ν = (48m/9)1/3.

Since m ≥ 2, ν ≥ (96/9)1/3. For p = LQ(a, cp) with 1/3 < a < 2/3, the
complexity of NFS for directly solving DLP in Fpn is LQ(1/3, (96/9)1/3). So, we
see that trying to solve DLP in Fpn by embedding into a larger field increases
the complexity. This motivates the problem of finding a variant of NFS for
fields Fpn where n is a composite prime-power with complexity LQ(1/3, ν) with
ν < (96/9)1/3.

Our Contributions

This paper makes two contributions.
The first contribution is to present a general polynomial selection method

which we call Algorithm-C. The polynomial selection method of [20] can be
obtained as a special case and so, in turn, the GJL and the Conjugation methods
are also obtained as special cases. Further, the exTNFS variants of the GJL and
the Conjugation methods are also obtained as special cases of Algorithm-C.

One important feature of Algorithm-C is that both prime-power and non
prime-power n can be covered. For the medium prime case, we have the following
consequences.

1. For non prime-power n, the minimum complexity achievable is that obtained
by Kim and Barbulescu [17]. The analysis, however, reveals improvement



over the complexities achieved by Kim and Barbulescu in certain ranges of
the relevant parameters.

2. For composite prime-power n, the complexities achieved by the new poly-
nomial selection method are currently the best known. For some small val-
ues of n, the minimum achievable complexities using the exTNFS and the
MexTNFS algorithms are shown in Table 1. For n = 4, 8, 9 and 16 the new
complexities may have consequences to choosing the key sizes for pairing
based cryptography.

Table 1. Improved minimum complexities LQ(1/3, c) for some composite prime-power
n. The entries in the table are the various values of c in different cases.

NFS MNFS

n new [3] new [18]

2i, i ≥ 2 (64/9)1/3 ≈ 1.92 (96/9)1/3 ≈ 2.2 1.88 2.12

9 (112/15)1/3 ≈ 1.95 (96/9)1/3 ≈ 2.2 1.92 2.12

25 (880/117)1/3 ≈ 1.96 (96/9)1/3 ≈ 2.2 1.94 2.12

2 The Set-Up of the Tower Number Field Sieve
Algorithm

The target is to compute discrete logarithm in the field Fpn where n is composite.
Suppose that n = ηκ is a non-trivial factorisation of n. We do not necessarily
require gcd(η, κ) = 1.

Let h(z) be a monic polynomial of degree η which is irreducible over both Z
and Fp. Let R = Z[z]/(h(z)). Also, note that Fpη = Fp[z]/(h(z)).

Let f(x) and g(x) be polynomials in R[x] whose leading coefficients are from
Z. The other coefficients of f and g are polynomials in z of degrees at most η−1.
In particular, f and g can be viewed as bi-variate polynomials in x and z with
coefficients in Z. The following properties are required.

1. Both f(x) and g(x) are irreducible over R.
2. Over Fpη , f(x) and g(x) have a common factor ϕ(x) of degree κ.

The field Fpn is realised as Fpη [x]/(ϕ(x)) = (R/pR)[x]/(ϕ(x)).
Let Kf and Kg be the number fields associated with the polynomials f

and g respectively. The above set-up provides two different decompositions of a
homomorphism from R[x] to Fpn . One of these goes through R[x]/(f(x)) and
the other goes through R[x]/(g(x)).

With this set-up, it is possible to set up a factor base and perform the three
main steps (relation collection, linear algebra and descent) of the NFS algorithm.
For details we refer to [5, 17]. In this work, we will need only the following facts.



1. The factor base consists of B elements for some value B which determines
the overall complexity of the algorithm.

2. A polynomial φ(x) ∈ R[x] generates a relation if both the norms N(φ, f)
and N(φ, g) are B-smooth, where

N(φ, f) := Resz(Resx(φ(x), f(x)), h(z));

N(φ, g) := Resz(Resx(φ(x), g(x)), h(z)).

In this work, we describe a method to choose h(z), f(x), g(x) and ϕ(x) such that
the above norms are suitably bounded. Consequences to the complexity of the
NFS algorithm are analysed.

2.1 Bounds on Resultants

Let f(z, x) be a bivariate polynomial with integer coefficients where fi,j is the
coefficient of xizj . Then

‖f‖∞ = max|fi,j |.

We summarise bounds on resultants of univariate and bivariate polynomials
given in [7].

Univariate polynomials: Let a(u) and b(u) be two polynomials with integer
coefficients. From [7], we have

|Resu(a(u), b(u))|
≤ (deg(a) + 1)deg(b)/2(deg(b) + 1)deg(a)/2‖a‖deg(b)∞ × ‖b‖deg(a)∞ . (1)

Bivariate polynomials: Let a(u, v) and b(u, v) be two polynomials with integer
coefficients. Let c(u) = Resv(a(u, v), b(u, v)). Then

‖c‖∞
≤ (degv(a) + degv(b))! (max(degu(a),degu(b)) + 1)degv(a)+degv(b)+1

×‖a‖degv(b)∞ × ‖b‖degv(a)∞ . (2)

The bounds given by (1) and (2) combine to provide bounds on N(φ, f).
Let φ(x, z) and f(x, z) be two polynomials and

ρ(z) = Resx(φ(x, z), f(x, z)).

Further, suppose degxφ ≤ t − 1 and degzφ ≤ η − 1. For ‖φ‖∞ = E2/(tη), the
number of possible φ(x, z)’s is E2. Assuming that t, η,degxf and degzf are small
in comparison to E, using (2) we have

‖ρ‖∞ = O
(
E2degx(f)/(tη) · ‖f‖t−1∞

)
.

Suppose h(z) is a polynomial of degree η with ‖h‖∞ = H. Let

Γ = Resz (Resx(φ(x), f(x)), h(z)) .



Assuming that H = O(logQ), using (1) we have

|Γ| = O
(
‖ρ‖η∞ · ‖h‖deg(ρ)∞

)
=
(
E2degxf/t · ‖f‖η(t−1)∞

)1+o(1)
.

Note that in the TNFS set-up described above N(φ, f) = Γ.

Sieving polynomials: Sieving is done using polynomials φ(x) ∈ R[x] of degrees
at most t − 1 with ‖φ‖∞ = E2/ηt. Then the number of sieving polynomials is
E2.

3 Using the LLL Algorithm for Polynomial Selection

The work [3] provides two methods for selecting polynomials for the classical
NFS algorithm. These are called the generalised Joux-Lercier (GJL) and the
Conjugation method. The GJL method is based on an earlier method due to
Joux and Lercier [13] and uses the LLL algorithm to select polynomials.

The GJL matrix: Given a vector a = [a0, . . . , an−1] ∈ Fnp and r ≥ n, define
an (r + 1)× (r + 1) matrix in the following manner.

p
. . .

. . .

p
a0 a1 · · · an−1 1

. . .
. . .

. . .

a0 a1 · · · an−1 1


(3)

We extend the idea of the GJL to work for tower fields. In the TNFS set-up,
Q = pn where n = ηκ. Recall that h(z) is a monic irreducible polynomial of
degree η over the integers and R = Z[z]/(h(z)).

Let ϕ(x) ∈ R[x] be a monic polynomial of degree k. We can write

ϕ(x) = xk + ϕk−1(z)xk−1 + · · ·+ ϕ1(z)x+ ϕ0(z),

where each
ϕi(z) = ϕi,0 + ϕi,1z + · · ·+ ϕi,η−1z

η−1

is a polynomial of degree less than η with the coefficients ϕi,j in Z.
Let λ be an integer such deg(ϕi) ≤ λ − 1 for i = 0, . . . , k. The possible

values of λ are 1, . . . , η. The quantity λ will be a parameter of the polynomial
selection algorithm and the asymptotic complexity. Though in theory λ can take
any value in the range 1, . . . , η, in practice the values of λ which can be achieved



are 1 and η. Later we will consider these values of λ in more details. Note that
the condition η = 1 reduces to the classical NFS and in this case λ is necessarily
1.

The polynomial ϕi(z) can be uniquely encoded by the vector
ϕi = (ϕi,0, . . . , ϕi,λ−1) and the polynomial ϕ(x) is uniquely encoded by the
vector

ϕ = (ϕ0,0, . . . , ϕ0,λ−1, . . . , ϕk−1,0, . . . , ϕk−1,λ−1) (4)

which is the concatenation of the vectors ϕ0, . . . ,ϕk−1.
We introduce some matrix notation.

1. diagi(p): the i× i diagonal matrix having all the diagonal entries to be p.
2. 0i,j : the i× j matrix all of whose entries are 0.
3. For a vector a, let shifti(a) be the vector (0, . . . , 0︸ ︷︷ ︸

i

,a).

Given the polynomial ϕ(x) and an integer r ≥ k, we define a lower triangular
matrix Mϕ,r as follows:

Mϕ,r =



diagλk(p)
ϕ 1

0λ−1,1+λk diagλ−1(p)
shiftλ(ϕ) 1

0λ−1,1+λ(k+1) diagλ−1(p)
shift2λ(ϕ) 1

. . .
. . .

0λ−1,1+λ(r−1) diagλ−1(p)
shift(r−k)λ(ϕ) 1


(rλ+1)×(rλ+1)

(5)

Note that for λ = 1, the matrix given by (5) becomes identical to the matrix
given by (3).

Apply the LLL algorithm to Mϕ,r and let the first row of the resulting LLL-
reduced matrix be written as

[ψ0,0, . . . , ψ0,λ−1, ψ1,0, . . . , ψ1,λ−1, . . . , ψr−1,0, . . . , ψr−1,λ−1, ψr].

This vector is taken to represent a polynomial ψ(x) ∈ R[x] of degree r where

ψ(x) = ψ0(z) + ψ1(z)x+ · · ·+ ψr−1(z)xr−1 + ψrx
r;

ψi(z) = ψi,0 + ψi,1z + · · ·+ ψi,λ−1z
λ−1.

We denote ψ(x) as

ψ(x) = LLL(Mϕ,r). (6)

The number of rows of Mϕ,r which are constructed from ϕ is r− k+ 1. Each
of these rows contribute 1 as the diagnal entry. All the other rows contribute p



as the diagonal entry and there are rλ+ 1− (r−k+ 1) = r(λ−1) +k such rows.
Since Mϕ,r is a lower triangular matrix, its determinant is the product of its
diagonal entries which is equal to pr(λ−1)+k. Since the matrix has rλ + 1 rows,
each entry of the first row of the matrix formed by applying LLL to Mϕ,r is at
most

p
r(λ−1)+k
rλ+1 .

So, each ψi,j and also ψr is at most this value. Consequently,

‖ψ‖∞ = p
r(λ−1)+k
rλ+1 = Q

1
n ·
r(λ−1)+k
rλ+1 = Qε/n (7)

where

ε =
r(λ− 1) + k

rλ+ 1
. (8)

Note that for k ≤ r, ε < 1. The quantity ε will be another parameter in the
asymptotic analysis.

4 A New Polynomial Selection Method for TNFS

Algorithm C describes the polynomial selection method for TNFS. It extends
Algorithm-A in [20] to the setting of tower fields.

In Algorithm-C, there is only one loop. It is possible to rewrite the algorithm
with a nested loop structure. Such a description will have an outer loop which
will construct suitable A1(x), A2(x) and ψ(x). For each such (A1(x), A2(x), ψ(x))
the inner loop will try to find suitable C0(x) and C1(x) such that the required
conditions on f(x), g(x) and ϕ(x) are satisfied. This approach would have been
necessary if it had been difficult to find the required polynomials. As things
stand, however, the current description of Algorithm-C finds the required poly-
nomials within a few trials. So, we did not implement the more complex nested
version.

The following result states the basic properties of Algorithm C.

Proposition 1. The outputs f(x), g(x) and ϕ(x) of Algorithm C satisfy the
following.

1. deg(f) = d(r + 1); deg(g) = rd and deg(ϕ) = κ;
2. over Fpn , both f(x) and g(x) have ϕ(x) as a factor;
3. ‖f‖∞ = O(ln(p)) and ‖g‖∞ = O(Qε/n).

Consequently, if φ is a sieving polynomial, then

N(φ, f) = E2d(r+1)/t × LQ(2/3, o(1)); (9)

N(φ, g) = E2dr/t ×Q(t−1)ε/κ × LQ(2/3, o(1)); (10)

N(φ, f)×N(φ, g) = E(2d(2r+1))/t ×Q(t−1)ε/κLQ(2/3, o(1)). (11)

We note the following points.



Algorithm: C: Polynomial selection for TNFS.

Input: p, n = ηκ, d (a factor of κ), r ≥ κ/d and λ ∈ {1, η}.
Output: f(x), g(x) and ϕ(x).

Let k = κ/d;
Let R = Z[z]/(h(z));
Let Fpη = Fp[z]/(h(z));
repeat

Randomly choose a monic polynomial A1(x) ∈ R[x] having the following
properties:
degA1(x) = r + 1;
A1(x) is irreducible over Q[z]/(h(z)) and hence over R;
A1(x) has coefficient polynomials of size O(ln(p));
over Fpη , A1(x) has an irreducible factor A2(x) of degree k such that

all the coefficient polynomials of A2(x) have degrees at most λ− 1.

Randomly choose monic polynomials C0(x) and C1(x) with small integer
coefficients such that degC0(x) = d and degC1(x) < d.
Define

f(x) = Resy (A1(y), C0(x) + y C1(x)) ;

ϕ(x) = Resy (A2(y), C0(x) + y C1(x)) mod p;

ψ(x) = LLL(MA2,r);

g(x) = Resy (ψ(y), C0(x) + y C1(x)) .

until f(x) and g(x) are irreducible over Q[z]/(h(z)) (and hence over R) and
ϕ(x) is irreducible over Fpη = Fp[z]/(h(z)).

return f(x), g(x) and ϕ(x).

1. If η = 1, then λ must be 1 and we obtain Algorithm-A of [20]. As has been
noted in [20], Algorithm-A generalises and also subsumes the GJL and the
Conjugation methods for polynomial selection for the classical NFS given
in [3].

2. If η > 1 and λ = 1, then ϕ(x) produced by Algorithm-C has coefficients in
Fp and is of degree κ. For such a ϕ(x) to be irreducible over Fpη it is required
that gcd(η, κ) = 1.

3. TNFS variants of the GJL and the Conjugation methods were described
in [17]. These can be seen as special cases of Algorithm-C: Suppose η > 1
and λ = 1; if k = κ, then we obtain the TNFS variant of the GJL algorithm;
and if r = k = 1, then we obtain the TNFS variant of the Conjugation
method.

4. The case λ = η > 1 has not been considered earlier. For this case, Algorithm-
C allows ϕ(x) to have coefficients in Fpn . As a result, for irreducibility of ϕ(x),
the condition gcd(η, κ) = 1 is no longer required. Later we show that this
case leads to new asymptotic complexity when n is a composite prime-power.



5. Algorithm-C has the condition λ ∈ {1, η}. It is possible to generalise the
condition to λ ∈ {1, . . . , η}. However, as mentioned earlier, the case 1 < λ <
η is difficult to achieve in practice and so we do not consider this case.

5 Non-Asymptotic Analysis and Examples

In Table 2, we compare the expressions for norm bounds for the various algo-
rithms. As has already been mentioned in [20], the NFS-GJL and the NFS-Conj
methods can be seen as special cases of NFS-A: for the former choose d = 1
while for the latter, choose d = n and r = k = 1. We explain that NFS-A,
exTNFS-GJL and exTNFS-Conj can be seen as special cases of exTNFS-C.

1. Choose η = λ = 1 in exTNFS-C to obtain NFS-A.
2. Choose η > 1, λ = 1 and d = 1 in exTNFS-C to obtain exNFS-GJL.
3. Choose η > 1, λ = 1, d = κ and r = k in exTNFS-C to obtain exNFS-

Conj. Choosing η > 1, λ = 1, d = κ and r > k in exTNFS-C provides a
generalisation of exNFS-Conj.

We note that NFS-JLSV1 cannot be derived as a special case of NFS-A and
similarly, exTNFS-JLSV1 cannot be derived as a special case of exTNFS-C.

The exTNFS-JLSV1, exTNFS-GJL and exTNFS-Conj algorithms are appli-
cable only for non-prime power n. These algorithms cannot be applied when n
is a composite prime-power. In Table 3, we compare concrete norm bounds for
n = 4, 8 and 9 for NFS-JLSV1, NFS-GJL, NFS-Conj, NFS-A with exTNFS-C.
This shows that new trade-offs are achievable with exTNFS-C. In Table 4, we
compare concrete norm bounds for n = 6 and 12. This shows that exTNFS-GJL
and exTNFS-Conj can be seen as special cases of exTNFS-C; also, by choosing
r > k, new trade-offs are achievable.

5.1 Plots of Norm Bounds

In Figure 1, we provide plots of norm bound for various finite fields of composite
prime power extension degree. It is clear from the plots that for composite prime
power extension degree, Algorithm-C provides the lowest norm bound. Note that
we have used the estimates of Q-E pairs given in the Table 2 of the paper [3]
for plotting the norm bounds.

Plots of norm bound for extension degrees 12 and 24 are given in the Figure 2.
Note that for these extension degrees, two types of towers are possible; one for
which gcd(η, κ) = 1, and the other for which gcd(η, κ) 6= 1. Let us denote by
Algorithm-B, the special case of Algorithm-C where λ = 1 and so gcd(η, κ) = 1.
Plots for Algorithm-B are shown separately in Figures 2. It is interesting to note
that, in the certain range of finite fields, the minimum norm bound achieved by
Algorithm-C is lower than the minimum norm bound achieved by Algorithm-B,
i.e., it is not necessarily the best to choose gcd(η, κ) = 1. While this appears in
the concrete comparison, it is not captured by the asymptotic analysis.



Table 2. Parameterised efficiency estimates for NFS obtained from the different poly-
nomial selection methods.

Method norms product conditions

NFS-JLSV1 [15] E
4n
t Q

t−1
n

NFS-GJL [3] E
2(2r+1)

t Q
t−1
r+1 r ≥ n

NFS-Conj [3] E
6n
t Q

t−1
2n

NFS-A [20] E
2d(2r+1)

t Q
t−1

d(r+1) d|n, r ≥ n/d

exTNFS-JLSV1 [17] E
4κ
t Q

t−1
κ n = ηκ, gcd(η, κ) = 1, η small

exTNFS-GJL [17] E
2(2r+1)

t Q
t−1
r+1 n = ηκ, gcd(η, κ) = 1, η small, r ≥ κ

exTNFS-Conj [17] E
6κ
t Q

t−1
2κ n = ηκ, gcd(η, κ) = 1, η small

exTNFS-C E
2d(2r+1)

t Q
(t−1)(r(λ−1)+k)

κ(rλ+1)

n = ηκ, k = κ/d, r ≥ k;
NFS: η = λ = 1;
exTNFS (gcd(η, κ) = 1): η > 1, λ = 1;
exTNFS: η = λ.

(a) Polynomials for Fp4 (b) Polynomials for Fp8

(c) Polynomials for Fp9 (d) Polynomials for Fp16

Fig. 1. Product of norms for various polynomial selection methods

5.2 Examples for Non Prime-Power n

We provide concrete examples for the following settings.

– n = 6 with (η, κ) = (2, 3) or (3, 2): Example 1 below.



Table 3. Comparison of norm bounds for composite prime-power n with t = 2.

FQ method norm bound

Fp4

NFS-JLSV1 E8Q
1
4

NFS-GJL (r = n) E9Q
1
5

NFS-Conj E12Q
1
8

NFS-A (d = 2, r = n/d) E10Q
1
6

exTNFS-C (η = λ = 2, κ = 2, d = 1, r = k = κ) E5Q
2
5

exTNFS-C (η = λ = 2, κ = 2, d = 2, r = k = 1) E6Q
1
3

Fp8

NFS-JLSV1 E16Q
1
8

NFS-GJL (r = n) E17Q
1
9

NFS-Conj E24Q
1
16

NFS-A (d = 2, r = n/d) E18Q
1
10

NFS-A (d = 4, r = n/d) E20Q
1
12

exTNFS-C (η = λ = 2, κ = 4, d = 1, r = k = κ) E9Q
2
9

exTNFS-C (η = λ = 2, κ = 4, d = 2, r = k = 2) E10Q
1
5

exTNFS-C (η = λ = 2, κ = 4, d = 4, r = k = 4) E12Q
1
6

Fp9

NFS-JLSV1 E18Q
1
9

NFS-GJL (r = n) E19Q
1
10

NFS-Conj E27Q
1
18

NFS-A (d = 3, r = n/d) E21Q
1
12

exTNFS-C (η = λ = 3, κ = 3, d = 1, r = k = κ) E7Q
3
10

exTNFS-C (η = λ = 3, κ = 3, d = 3, r = k = 1) E9Q
1
4

– n = 12 with (η, κ) = (3, 4): Example 2 below.

In both cases, η > 1 and so the obtained examples cannot be generated by
Algorithm-A. Since gcd(η, κ) = 1, we have taken λ = 1 and we provide both
examples which can and cannot be generated by the TNFS variant of the Con-
jugation method from [17].

Example 1. Let p be the 201-bit prime given below

p = 1606938044258990275541962092341162602522202993782792835301611 (12)

and n = 6.



Table 4. Comparison of norm bounds for non prime-power n with t = 2.

FQ method norm bound

Fp6

NFS-JLSV1 E12Q
1
6

NFS-GJL (r = n) E13Q
1
7

NFS-Conj E18Q
1
12

NFS-A (d = 2, r = n/d) E14Q
1
8

exTNFS-JLSV1 (η = 2, κ = 3) E6Q
1
3

exTNFS-GJL (η = 2, r = κ = 3) E7Q
1
4

exTNFS-Conj (η = 2, κ = 3) E9Q
1
6

exTNFS-C (η = 2, λ = 1, d = 1, r = k = κ = 3) E7Q
1
4

exTNFS-C (η = 2, λ = 1, d = 3, κ = 3, r = k = 1) E9Q
1
6

exTNFS-C (η = 2, λ = 1, d = 3, κ = 3, k = 1, r = 2) E15Q
1
9

Fp12

NFS-JLSV1 E24Q
1
12

NFS-GJL (r = n) E25Q
1
13

NFS-Conj E36Q
1
24

NFS-A (d = 2, r = n/d) E26Q
1
14

exTNFS-JLSV1 (η = 3, κ = 4) E8Q
1
4

exTNFS-GJL (η = 3, r = κ = 4) E9Q
1
5

exTNFS-Conj (η = 3, κ = 4) E12Q
1
8

exTNFS-C (η = 3, λ = 1, d = 1, r = k = κ = 4) E9Q
1
5

exTNFS-C (η = 3, λ = 1, d = 4, κ = 4, r = k = 1) E12Q
1
8

exTNFS-C (η = 3, λ = 1, d = 4, κ = 4, k = 1, r = 2) E20Q
1
12

Case 1: Let (η, κ) = (2, 3) so we can take λ = 1. Choose d = κ, and so k =
κ/d = 1. Taking r = k, we get the following polynomials.

h(z) = z2 + 14 z + 20

f(x) = x6 + 5x5 + 6x4 + 18x3 + 73x2 + 52x+ 20

g(x) = 516378785784706099560748701401x3 + 1874354673374387667869084608560x2

+459276162276102007999766811670x+ 1683194203609950937495174411516

φ(x) = x3 + 4370464675316262929768958368698673612607491294431378655895x2

+13111394025948788789306875106096020837822473883294135967675x

+8740929350632525859537916737397347225214982588862757311786

Clearly, the above polynomials represents the polynomials generated by Conju-
gation method and we have ‖g‖∞ ≈ 2101.



(a) Polynomials for Fp12

(b) Polynomials for Fp24

Fig. 2. Product of norms for various polynomial selection methods. Note that
algorithm-B is the algorithm-C with gcd(η, κ) = 1.

If we choose r = k + 1 i.e., r = 2, we get the following polynomials.

h(z) = z2 + z + 20

f(x) = x9 + 14x8 + 74x7 + 183x6 + 200x5 − 32x4 − 375x3 − 232x2 − 48x− 1



g(x) = 46647198736133019425x6 + 530869201059776791498x5 + 2094297655062561189093x4

+ 3465328474724235168588x3 + 2717008192279799547052x2

+ 1322043132032704860464x+ 290748395825577445032

φ(x) = x3 + 315444052193803149917391335705534526435873425227915090402562x2

+ 1261776208775212599669565342822138105743493700911660361610232x

+ 315444052193803149917391335705534526435873425227915090402559

We note that ‖g‖∞ ≈ 272. Thus taking r > k, gives us the polynomials which
are not obtained by Conjugation method.

Case 2: Let (η, κ) = (3, 2). Taking d = κ and r = 1, we get the following
polynomials.

h(z) = z3 + z2 + 15 z + 7

f(x) = x4 − x3 − 2x2 − 7x− 3

g(x) = 717175561486984577278242843019x2 + 2189435313197775056442946543188x

+2906610874684759633721189386207

φ(x) = x2 + 131396875851816610915684123600060137654000542337369130402554x

+131396875851816610915684123600060137654000542337369130402555

Note that ‖g‖∞ ≈ 2102. If we take d = κ and r = 2, we get the following set of
polynomials where ‖g‖∞ ≈ 269.

h(z) = z3 + z2 + 15 z + 7

f(x) = x6 − 4x5 − 53x4 − 147x3 − 188x2 − 157x− 92

g(x) = 15087279002722300985x4 + 124616743720753879934x3 + 451785460058994237397x2

+ 749764394939964245000x+ 567202989572349792620

φ(x) = x2 + 459743211307624787973091830151418256356779099860453048165628x

+1379229633922874363919275490454254769070337299581359144496879

Example 2. Consider p given by (12) and n = 12. Take η = 3, so we have κ = 4.
Since gcd(η, κ) = 1, we can take λ = 1. For d = 4 and r = 1, we get the following
set of polynomials.

h(z) = z3 + 4 z2 + z + 10

f(x) = x8 − 76x7 − 2425x6 − 18502x5 − 29145x4 − 27738x3 − 19029x2 − 5470x− 899

g(x) = 671675518400038868509761185847x4 + 9229254771349687453155139482193x3

+26443212483689677462178491316111x2 + 10373268895295520528776837441409x

+12363161023892249178889813706137

φ(x) = x4 + 646864792711457069399567439420493376414881652645022449494547x3

+1021416876665447593884133690181094257197328168116350116415450x2

+667312667750761865313480451840635053444883928304549026363993x

+40895750078609591827826024840283354060004551319053153738907



Note that ‖g‖∞ ≈ 2105. If we take d = 2 and r = 2, we get the following set of
polynomials.

h(z) = z3 + 9 z2 + 16 z + 6

f(x) = x6 − 31x5 − 1368x4 − 12769x3 − 25114x2 + 80676x+ 46152

g(x) = −3110542872966491216142377505541399497324x4

−54264461590446758438380470085644010261628x3

−314785140535769975569807658242015173572525x2

−494316435479518971993478541468803889032252x

+1282345843739963030376594369830360797777868

φ(x) = x4 + 1116388795346251464070007744580761572151679553868796347306938x3

+244260557761228308164124096832151544783881431251339247716776x2

+1431585169281315380026562186279392445746733001920060626360960x

+32011873619053829538406325963389282580742061899867342029365

Note that ‖g‖∞ ≈ 2140.

5.3 Examples for Composite Prime-Power n

Example 3. Consider again the prime p given by the equation (12). Let n = 4.
Take η = 2, so we have κ = 2 and gcd(η, κ) 6= 1. For d = 2 and r = 1, we get
the following set of polynomials.

h(z) = z2 + 3 z + 9

f(x) = x4 − 63x3 + (z−2252)x2 + (26 z−16788)x+ 169 z − 4547

g(x) = 1383414878882125995926103183619409643753x2 + (−12055618797162796264

473546996019291321934 z + 14012672311131936989090775878360513129145)x

−156723044363116351438156110948250787185142 z − 64083108396303246416

666280265568245909149

φ(x) = x2 + (798416622337500091381910575158288554062555186688024078635466 z

+785830490896857795429628245104444589150795878935080690250345)x

+737787824833559534713064923010775587679999464247556010451392 z

+574168116105209687333394632310804043827128463459291961444641

Note that ‖g‖∞ ≈ 2137.

Example 4. Consider n = 8 and p as given by the equation (12). Take η = 2, so
we have κ = 4 and gcd(η, κ) 6= 1. For d = 2 and r = 2, we get the following set



of polynomials.

h(z) = z2 + 5 z + 1

f(x) = x6 − 12x5 − 34x4 + (−z+555)x3 + (−21 z+2768)x2 + (−147 z+9405)x

+(−343 z+23477)

g(x) = −854222881267358737695287657076641386620058484405x4

+(467414345978337995266367841532280454475021913634 z

−1878475973524618534396011193885090526793115658979)x3

+(3248230356563661967038490496701146071676382792940 z

−19355129191104729581101186589804682604098474268847)x2

+(1070862123949157988233922008249401828342277305930 z

−20761869164169319401391385643744079935947739470833)x

+8655868066594601909115589364961851171185700663912 z

−100078545728007341155285556202587502786725328926840

φ(x) = x4 + (219112197525249939489021148723396195060526757240452305599911 z

+232195459756277207668290744189666458139902433390551341656528)x3

+(594916073500040823788294024401624746100803972996113795081168 z

+1491733188035767138269714863651199530197565717202128281224736)x2

+(368670618173749485914803951629408734838837634364966781557695 z

+432633999913395482830349485439642501997391862510211315077671)x

+377149149105267014252611707616265415027056683736547273647776 z

+1541864260749309457110332874518502663676542578712339437212985

Note that ‖g‖∞ ≈ 2167. If we take d = 4 and r = 1, we get the following
polynomials.

h(z) = z2 + 12 z + 7

f(x) = x8 − 33x7 + (z−732)x6 + (14 z−3424)x5 + (57 z−2627)x4 + (68 z−5218)x3

+(100 z−3524)x2 + (48 z−2940)x+ (36 z−1764)

g(x) = −8459635622214131881453154771645357881453x4 + (279295371920032891418561

2401694261426806 z − 75589030561045575141735230547349874103523)x3 + (1955

0676034402302399299286811859829987642 z − 46258053500428493420510179894369

30074575)x2 + (11171814876801315656742449606777045707224 z − 485670535777

58344123346279040038759970502)x+ 16757722315201973485113674410165568560

836 z−47471673499995120540659954245122066311394



φ(x) = x4 + (565475204609949271152307636708128312016958684733798907353217 z + 11

84756784924463459634744713698224486003358229093291131584098)x3 + (744450

343751664346982229272274572979074304805571006680869297 z + 258607273176292

839733402534181758389412492634739073744580569)x2 + (654962774180806809067

268454491350645545631745152402794111257 z + 1525151051179873287455054670110

572738969026928807578855733140)x+ 178975139141715075829921635566444667057

346120837207773516080 z + 6807885325108196556406199128246965059313373994285

75448298096

Note that ‖g‖∞ ≈ 2136.

Example 5. Consider n = 9 and p as given by the equation (12). Take η = 3, so
we have κ = 3. For d = 1 and r = 3, we get the following set of polynomials.

h(z) = z3 + z2 + 18 z + 15

f(x) = x4 − 6x3 − 211x2 − 1187x+ z−2034

g(x) = 26981402912709485347737825847046497279699330705965517x3

+(−145287218523022264703232833237431484597080807921826676 z2

+50411393983336265694242961439957876885464685858782189 z

+206881479896404787521252534650020897293982167689590409)x2

+(−562799080702299135013029013687164984984908940586595961 z2

+349365561960939643979968647853372949952345188547313416 z

−23877234432621396396578679238125394048073361562258711)x

+1285779122778936362366127131791594871482581595497499229 z2

+687713620758567056387946957984845559129643558060874123 z

−830129381763336761947236727036816628661146469569955030

φ(x) = x3 + (669339476643413131528050298510860109656533927528567342123649 z2

+1552664467516964209731788191787357794434681140723383971203939 z

+943932691068840507491372697519702885049901068217108999449340)x2

+(1191853923360225777848944386877957883516261096877478017413866 z2

+421341580961908534729044227924897299449513889433708503340901 z

+235622039392351511019273446915854970293312748291080468943554)x

+209551211497370380856126797068962682591000324511877123851147 z2

+1000724369592593057730299648522737075992111849892300346453870 z

+1059974783679948959817423948843794374202743207017793637420370

Note that ‖g‖∞ ≈ 2180.



6 Asymptotic Complexity Analysis for the Medium
Prime Case

For 1/3 < a ≤ 2/3, write

p = LQ(a, cp), where cp =
1

n

(
lnQ

ln lnQ

)1−a

and so n =
1

cp

(
lnQ

ln lnQ

)1−a

.(13)

For each cp, the runtime of the NFS algorithm is the same for the family of finite
fields Fpn where p is given by (13).

Recall that n = ηκ, k = κ/d, r ≥ k and ε is given by (8). Suppose that η can
be written as

η = cη

(
lnQ

ln lnQ

)2/3−a

. (14)

The boundary case arises when a = 2/3 and in this case η = cη. If further, we
have η = 1, then cη is also 1.

From n = ηκ, we get

κ =
1

cθ

(
lnQ

ln lnQ

)1/3

where (15)

cθ = cpcη.

So, given Q and κ, the value of cθ is fixed. We recall the following.

1. The number of polynomials to be considered for sieving is E2, so the cost of
relation collection step is O(E2).

2. The factor base is of size B and hence cost of linear algebra step is O(B2).

Let

B = LQ(1/3, cb). (16)

Set

E = B (17)

so that asymptotically, the cost of relation collection step is same as the cost of
linear algebra step.

Let π = Ψ(Γ, B) be the probability that a random positive integer which is at
most Γ is B-smooth. Let Γ = LQ(z, ζ) and B = LQ(b, cb). Using the L-notation
version of the Canfield-Erdös-Pomerance theorem,

(Ψ(Γ, B))
−1

= LQ

(
z − b, (z − b) ζ

cb

)
. (18)

Following the usual convention, we assume that the same smoothness probability
π holds for the event that a random sieving polynomial φ(x) is smooth over the
factor base.



Since the total number of polynomials considered for sieving is E2, the num-
ber of relations obtained after sieving is E2π. For the linear algebra step to be
successful, we need E2π = B and so

π−1 = B. (19)

Obtaining π−1 from (18) and setting it to be equal to B allows solving for cb.
Balancing the costs of the sieving and the linear algebra phases leads to the
runtime of the NFS algorithm to be B2 = LQ(b, 2cb). So, to determine the
runtime, we need to determine cb.

Lemma 1. Let n = ηκ and κ = kd for positive integers η, k and d. For a fixed
value of t, using the expressions for p and E (= B) given by (13) and (16) and
η = cη(lnQ/ln lnQ)2/3−a, we obtain the following.

E
2
t d(2r+1) = LQ

(
2/3, 2cb(2r+1)

cθkt

)
;

Q
(t−1)ε
κ = LQ (2/3, (t− 1)cθε) ;

}
(20)

where ε is given by the equation (8).

Theorem 1. Let n = ηκ; κ = kd; r ≥ k; t ≥ 2; p = LQ(a, cp) with 1/3 <
a ≤ 2/3; and η = cη(lnQ/ln lnQ)2/3−a. It is possible to ensure that the runtime
of the NFS algorithm with polynomials chosen by Algorithm B is LQ(1/3, 2cb)
where

cb =
2(2r + 1)

6cθkt
+

√(
2r + 1

3cθkt

)2

+
(t− 1)cθε

3
. (21)

Proof. The product of the norms given by (20) is

Γ = LQ

(
2

3
,

2cb(2r + 1)

cθkt
+ (t− 1)cθε

)
.

Then π−1 given by (18) is

LQ

(
1

3
,

1

3

(
2(2r + 1)

cθkt
+

(t− 1)cθε

cb

))
.

From the condition π−1 = B, we get

cb =
1

3

(
2(2r + 1)

cθkt
+

(t− 1)cθε

cb

)
. (22)

Solving the quadratic for cb and choosing the positive root gives

cb =
2(2r + 1)

6cθkt
+

√(
2r + 1

3cθkt

)2

+
(t− 1)cθε

3
.

ut



We wish to minimise the value of cb with respect to cθ. To do this, we differen-
tiate (21) with respect to cθ and set to 0 to obtain the following equation which
has to be solved for cθ.

0 =
−2(2r + 1)

6ktc2θ
+

1

2

((
2r + 1

3cθkt

)2

+
(t− 1)cθε

3

)−1/2(
−2(2r + 1)2

9k2t2c3θ
+

(t− 1)ε

3

)
This can be seen as a quadratic in c3θ which can be solved using standard algebraic
manipulations to obtain

c3θ = 8

(
2r + 1

3kt

)2

· 3

(t− 1)ε
.

Taking cube roots on both sides gives the value of cθ. Substituting this value of
cθ in (21) we obtain

2cb =

(
64(2r + 1)(t− 1)ε

9kt

)1/3

=

(
64(2r + 1)(t− 1)

9kt
· r(λ− 1) + k

rλ+ 1

)1/3

.(23)

The expression on the right hand side of (23) clearly increases as t increases. So,
to minimise 2cb, we should choose the minimum value of t which is t = 2. With
t = 2, the right hand side of (23) becomes(

32(2r + 1)

9k
· r(λ− 1) + k

rλ+ 1

)1/3

(24)

We consider several cases:

Case λ = 1: The right hand side of (24) becomes(
32(2r + 1)

9(r + 1)

)
which takes the minimum value of (48/9)1/3 for r = 1. This can arise in the
following ways.

1. η = 1, a = 2/3: This corresponds to the boundary case and the minimum
complexity of (48/9)1/3 has already been reported in [3].

2. η > 1, 1/3 < a < 2/3: Again, the minimum complexity of (48/9)1/3 for this
case has already been reported in [17]. Note that since λ = 1 and η > 1, this
case requires gcd(η, κ) = 1 and hence applies to non prime-power values of
n.

In both the above cases, the minimum complexity is not achievable for all values
of cθ. The minimum achievable values of 2cb as cθ varies depends on the values
of r, k and t. This is shown in Figure 3 by the plot of 2cb against cθ where cb
is given by (21). This plot extends a similar plot provided in [20] for the case
η = 1.



Case λ = η > 1: For a fixed k, increasing r leads to increase in the value of (24)
which shows that this expression is minimised for the minimum value of r which
is r = k. Setting r = k, and using λ = η, (24) becomes(

32(2k + 1)

9
· η

kη + 1

)1/3

. (25)

The expression given by (25) decreases as k increases and so the minimum is
achieved for the maximum value of k which is k = κ implying that d = 1. Using
k = κ in (25) we obtain the minimum possible value of 2cb in this case to be(

32(2κ+ 1)

9
· η

κη + 1

)1/3

=

(
32(2n+ η)

9(n+ 1)

)1/3

. (26)

We consider composite prime-power values of n. Suppose that n can be written
as n = ηi for some prime η and some i > 1.

1. If η = 2, then the minimum possible value of 2cb for the case λ = η = 2 is
(64/9)1/3 ≈ 1.92 for all n = 2i. In particular, this case covers n = 4, 8, 16.

2. If η = 3 and n = 9, then the minimum possible value of 2cb for the case
λ = η = 3 is (112/15)1/3 ≈ 1.95.

3. If η = 5 and n = 25, then the minimum possible value of 2cb for the case
λ = η = 5 is (880/117)1/3 ≈ 1.96.

The above covers the small composite prime-power values of n and the minimum
value of 2cb that can be achieved in each case. Note that similar to the case of
λ = 1, this minimum is achieved at a particular value of cθ. The more general
picture of the variation in complexity is given by 2cb where the expression for
cb is given by (21). Figure 3 shows the plots of 2cb (minimised over t, k and r)
against cθ for different values of λ.

7 Multiple Number Field Sieve Variant

In the multiple number field sieve (MNFS) algorithm, several number fields are
considered. These number fields are generated by the irreducible polynomials in
R[x], having a common irreducible factor over Fpη . There are two variants of
MNFS algorithm. We discuss the second variant of MNFS only where the image
of φ(x) needs to be smooth in the first number field and at least one of the other
V number fields.

Methods for obtaining the collection of number fields for MNFS algorithm
have been mentioned in [18]. We adapt one of these methods to our setting. Note
that the Algorithm C produces two polynomials f(x) and g(x) of degrees d(r+1)
and dr respectively. The polynomial g(x) is defined as Resy(ψ(y), C0(x)+yC1(x))
where ψ(x) = LLL(MA2,r), i.e., ψ(x) is defined from the first row of the matrix
obtained after applying the LLL-algorithm to MA2,r. We use f(x) for construct-
ing the first number field. Let g1(x) = g(x) and g2(x) = Resy(ψ2(y), C0(x) +



Fig. 3. Complexity plots for the medium prime case using the exTNFS algorithm.

yC1(x)), where ψ2(x) is the polynomial defined from the second row of the matrix
MA2,r. For i = 3, . . . , V , we consider gi(x) = sig1(x) + tig2(x) where the coeffi-
cients si and ti are of the size of V 1/(2η). These gi(x) are used for constructing
the other V number fields.

Clearly the gi’s have degree dr. Asymptotically, we have ‖ψ2‖∞ = ‖ψ1‖∞ =
Q1/(d(r+1)). If we choose V = LQ(1/3), all the gi’s have their infinity norms
given by Proposition 1.

Let B and B′ be the bounds on the norms of the ideals which are in the
factor basis defined by f and each of gi’s respectively. So, the size of the entire
factor basis is B + V B′. We further use the following condition to balances the
factor basis.

B = V B′. (27)

With this condition, the size of the factor basis is B1+o(1) (see [17] for the role of
ECM based smoothness testing in this setting) and so asymptotically, the linear
algebra step takes time B2. Similar to the analysis of NFS variant, the number
of sieving polynomials is E2 and the coefficient polynomials of φ(x) can take
E2/t distinct values. Since we require that the cost of relation collection should
be same as the cost of linear algebra, we have E2 = B2 i.e., E = B.

As before, let π be the probability that a random sieving polynomial φ(x)
gives rise to a relation. Let π1 be the probability that φ(x) is smooth over the fac-
tor basis for the first number field and π2 be the probability that φ(x) is smooth



over at least one of the other V factor bases. Further, let Γ1 = Resx(f(x), φ(x))
be the bound on the norm corresponding to the first number field and Γ2 =
Resx(gi(x), φ(x)) be the bound on the norm for any of the other number fields.
Recall that Γ2 is determined only by the degree and the L∞-norm of gi(x) and
hence is the same for all gi(x)’s. Heuristically, we have

π1 = Ψ(Γ1, B);
π2 = VΨ(Γ2, B

′);
π = π1 × π2.

(28)

One relation is obtained in about π−1 trials and so total number of relations
obtained after sieving would be E2π and this should be equal to B for linear
algebra step to go through. Hence we have, as before, B = E = π−1.

The following choices of B and V are made.

E = B = LQ
(
1
3 , cb

)
;

V = LQ
(
1
3 , cv

)
; and so

B′ = B/V = LQ
(
1
3 , cb − cv

)
.

(29)

Theorem 2. Let n = ηκ; p = LQ(a, cp) with 1/3 < a < 2/3; and η =
cη(lnQ/ln lnQ)2/3−a. It is possible to ensure that the runtime of the MNFS
algorithm is LQ(1/3, 2cb) where

cb =
2r + 1

3cθkt
+

√
r(3r + 2)

9c2θk
2t2

+
(t− 1)cθε

3
. (30)

Proof. For a sieving polynomial φ,

Γ1 = N(φ, f) = E2d(r+1)/tLQ(2/3, o(1))

= LQ(2/3, (2cb(r + 1))/(cθkt));

π−11 = LQ(1/3, 2(r + 1)/(3cθkt));

Γ2 = N(φ, g) = E2dr/t ×Q(t−1)ε/κLQ(2/3, o(1)

= LQ(2/3, 2cbr/(cθkt) + (t− 1)cθε);

π−12 = LQ

(
1

3
,−cv +

1

3(cb − cv)

(
2cbr

cθkt
+ (t− 1)cθε

))
;

π−1 = LQ

(
1

3
,

2(r + 1)

3cθkt
− cv +

1

3(cb − cv)

(
2cbr

cθkt
+ (t− 1)cθε

))
;

From the condition π−1 = B, we obtain the following equation.

cb =
2(r + 1)

3cθkt
− cv +

1

3(cb − cv)

(
2cbr

cθkt
+ (t− 1)cθε

)
. (31)

Simplifying, we obtain

3cθkt(c
2
b − c2v) = 2(2r + 1)cb − 2(r + 1)cv + (t− 1)c2θεkt. (32)



We wish to find cv such that cb is minimised subject to the constraint (32). Using
the method of Lagrange multipliers, the partial derivative of (32) with respect
to cv gives

cv =
(r + 1)

3cθkt
.

Using this value of cv in (32) provides the following quadratic in cb.

(3cθkt)
2c2b − (6(2r + 1)cθkt)cb + (r + 1)2 − 3(t− 1)c3θk

2t2ε = 0.

Solving this and taking the positive square root, we obtain the expression for cb
given by (30). ut

Fig. 4. Complexity plots for the medium prime case using the MexTNFS algorithm.

To find the absolute minimum complexity, we need to minimise the expression
for cb given by (30) with respect to cθ. The standard way of doing this is to
differentiate with respect to cθ and set to 0 to find the value of cθ for which the
minimum value of cb is attained. Differentiating the right hand side of (30) with
respect to cθ and setting to 0 yields (after some simplifications) a quadratic in
c3θ which can be solved to obtain:

c3θ =
2

3εk2t2(t− 1)
·
(

4r2 + 9r + 1 +
√

7r2 + 16r + 1
)
. (33)



Substituting the value of cθ in (30) provides the expression for the corresponding
value of 2cb in terms of t, r, k and λ. For each value of λ, we wish to obtain the
minimum possible value of 2cb. This is achieved with t = 2 and r = k. The
actual value of r depends on the value of λ: for λ = 1 the minimum value of 2cb
is ≈ 1.71 and is achieved for r = 1; for λ = 2 the minimum value of 2cb is ≈ 1.88
and is achieved for r = 1; for λ = 3 the minimum value of 2cb is ≈ 1.92 and is
achieved for r = 4; for λ = 5 the minimum value of 2cb is ≈ 1.94 and is achieved
for r = 4.

The variation of 2cb with cθ is more complex. Figure 4 shows these plots for
various values of λ. From [17], the complexities for the medium characteristic
case, the large characteristic case and the best complexity for the boundary case
are respectively LQ(1/3, 2.12), LQ(1/3, 1.90) and LQ(1/3, 1.71). For composite
prime-power n, these are the previously known best known complexities for these
cases. To make the comparison of the new complexities easier, Figure 4 shows
the lines for 2.12, 1.90 and 1.71.

8 Conclusion

In this paper, we have presented a new polynomial selection method for exTNFS
algorithm. The new polynomial selection method subsumes GJL, Conjugation
and Sarkar-Singh polynomial selection methods. The exTNFS algorithm com-
bined with new polynomial selection method provides new asymptotic complex-
ities for the extension fields with composite prime power extension degrees.
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