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Abstract. Smooth projective hashing has proven to be an extremely
useful primitive, in particular when used in conjunction with commit-
ments to provide implicit decommitment. This has lead to applications
proven secure in the UC framework, even in presence of an adversary
which can do adaptive corruptions, like for example Password Authenti-
cated Key Exchange (PAKE), and 1-out-of-m Oblivious Transfer (OT).
However such solutions still lack in efficiency, since they heavily scale on
the underlying message length.
Structure-preserving cryptography aims at providing elegant and efficient
schemes based on classical assumptions and standard group operations
on group elements. Recent trend focuses on constructions of structure-
preserving signatures, which require message, signature and verification
keys to lie in the base group, while the verification equations only consist
of pairing-product equations. Classical constructions of Smooth Projec-
tive Hash Function suffer from the same limitation as classical signatures:
at least one part of the computation (messages for signature, witnesses
for SPHF) is a scalar.
In this work, we introduce and instantiate the concept of Structure-
Preserving Smooth Projective Hash Function, and give as applications
more efficient instantiations for one-round PAKE and three-round OT,
and information retrieval thanks to Anonymous Credentials, all UC-
secure against adaptive adversaries.
Keywords. Smooth Projective Hash Functions, Structure Preserving,
Oblivious Transfer, Password Authenticated Key Exchange, UC Frame-
work, Credentials.

1 Introduction

Smooth Projective Hash Functions (SPHF) were introduced by Cramer and
Shoup [30] as a means to design chosen-ciphertext-secure public-key encryption
schemes. These hash functions are defined such as their value can be computed
in two different ways if the input belongs to a particular subset (the language),
either using a private hashing key or a public projection key along with a private
witness ensuring that the input belongs to the language.

In addition to providing a more intuitive abstraction for their original public-
key encryption scheme in [29], the notion of SPHF also enables new efficient
instantiations of their scheme under different complexity assumptions such as
DLin, or more generally k −MDDH. Due to its usefulness, the notion of SPHF



was later extended to several interactive contexts. One of the most classical
applications is to combine them with commitments in order to provide implicit
decommitments.

Commitment schemes have become a central tool used in cryptographic pro-
tocols. These two-party primitives (between a committer and a receiver) are
divided into two phases. First, in the commit phase, the committer gives the
receiver an analogue of a sealed envelope containing a value m, while later in
the opening phase, the committer reveals m in such a way that the receiver can
verify whether it was indeed m that was contained in the envelope. In many
applications, for example password-based authenticated key-exchange, in which
the committed value is a password, one wants the opening to be implicit, which
means that the committer does not really open its commitment, but rather con-
vinces the receiver that it actually committed to the value it pretended to.

An additional difficulty arises when one wants to prove the protocols in the
universal composability framework proposed in [22]. Skipping the details, when
the protocol uses commitments, this usually forces those commitments to be
simultaneously extractable (meaning that a simulator can recover the committed
value m thanks to a trapdoor) and equivocable (meaning that a simulator can
open a commitment to a value m′ different from the committed value m thanks
to a trapdoor), which is quite a difficult goal to achieve.

Using SPHF with commitments to achieve an implicit decommitment, the
language is usually defined on group elements, with projection keys being group
elements, and witnesses being scalars. While in several applications, this has
already lead to efficient constructions, the fact that witnesses have to be scalars
(and in particular in case of commitments, the randomness used to commit) leads
to drastic restrictions when trying to build protocols secure against adaptive
corruptions in the UC framework.

This is the classical paradigm of protocol design, where generic primitives
used in a modular approach lead to a simple design but quite inefficient con-
structions, while when trying to move to ad-hoc constructions, the conceptual
simplicity is lost and even though efficiency might be gained, a proper secu-
rity proof gets trickier. Following the same kind of reasoning, [5] introduced
the concept of structure-preserving signatures in order to take the best of both
worlds. There has been an ongoing series of work surrounding this notion, for in-
stance [3,4,6–8]. This has shown that structure-preserving cryptography indeed
provides the tools needed to have simultaneously simple and efficient protocols.

1.1 Related Work

Smooth Projective Hash Functions (SPHF) were introduced by Cramer
and Shoup [30] and have been widely used since then, for instance for password-
authenticated key exchange (PAKE) [2, 14, 35, 43, 44], or oblivious transfer (OT)
[1, 28, 41], and a classification was introduced separating SPHF into three main
kinds, KV-SPHF,CS-SPHF,GL-SPHF depending on how the projection keys are
generated and when, the former allowing one-round protocols, while the latter
have more efficient communication costs (see Section 2.2).
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Password-Authenticated Key Exchange (PAKE) protocols were proposed
in 1992 by Bellovin and Merritt [12] where authentication is done using a sim-
ple password, possibly drawn from a small entropy space subject to exhaustive
search. Since then, many schemes have been proposed and studied. SPHF have
been extensively used, starting with the work of Gennaro and Lindell [35] which
generalized an earlier construction by Katz, Ostrovsky, and Yung [42], and fol-
lowed by several other works [2, 24]. More recently, a variant of SPHF proposed
by Katz and Vaikuntanathan even allowed the construction of one-round PAKE
schemes [14, 44]. The most efficient PAKE scheme so far (using completely dif-
ferent techniques) is the recent Asiacrypt paper [40].

The first ideal functionality for PAKE protocols in the UC framework [22,25]
was proposed by Canetti et al. [24], who showed how a simple variant of the
Gennaro-Lindell methodology [35] could lead to a secure protocol. Though quite
efficient, their protocol was not known to be secure against adaptive adversaries,
that are capable of corrupting players at any time, and learn their internal states.
The first ones to propose an adaptively secure PAKE in the UC framework were
Barak et al. [10] using general techniques from multi-party computation. Though
conceptually simple, their solution results in quite inefficient schemes.

Recent adaptively secure PAKE were proposed by Abdalla et al. [1, 2], fol-
lowing the Gennaro-Lindell methodology with variation of the Canetti-Fischlin
commitment [23]. However their communication size is growing in the size of the
passwords, which is leaking information about an upper-bound on the password
used in each exchange.

Oblivious Transfer (OT) was introduced in 1981 by Rabin [51] as a way to
allow a receiver to get exactly one out of k messages sent by another party, the
sender. In these schemes, the receiver should be oblivious to the other values,
and the sender should be oblivious to which value was received. Since then,
several instantiations and optimizations of such protocols have appeared in the
literature, including proposals in the UC framework [26,48].

More recently, new instantiations have been proposed, trying to reach round-
optimality [38], or low communication costs [50]. The 1-out-of-2 OT scheme by
Choi et al. [28] based on the DDH assumption seems to be the most efficient
one among those that are secure against adaptive corruptions in the CRS model
with erasures. But it does not scale to 1-out-of-m OT, for m > 2. [1,17] proposed
a generic construction of 1-out-of-m OT secure against adaptive corruptions in
the CRS model, however the commitment was still growing in the logarithm of
the database length. While this is not so much a security issue for OT as this
length is supposed to be fixed at the start of the protocol, this is however a weak
spot for the efficiency of the final construction.

1.2 Our contributions
Similarly to structure-preserving signatures requiring the message, the signature,
and the public keys to be group elements, we propose in this paper the notion
of structure-preserving Smooth Projective Hash Functions (SP-SPHF), where
both words, witnesses and projection keys are group elements, and hash and
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projective hash computations are doable with simple pairing-product equations
in the context of bilinear groups.

This allows, for example, to build Smooth Projective Hash Functions that
implicitly demonstrate the knowledge of a Groth Sahai Proof (serving as a wit-
ness).

We show how to transform every previously known pairing-less construction
of SPHF to fit this methodology, and then propose several applications in which
storing a group element as a witness allows to avoid the drastic restrictions that
arise when building protocols secure against adaptive corruptions in the UC
framework with a scalar as witness. Asking the witness to be a group element
enables us to gain more freedom in the simulation (the discrete logarithm of this
element and / or real extraction from a commitment). For instance, the simulator
can always commit honestly to a random message, since it only needs to modify
its witness in the equivocation phase. Furthermore, it allows to avoid bit-per-bit
construction. Such design carries similarity with the publicly verifiable MACs
from [45], where the pairing operation allows to relax the verification procedure.

A work from Jutla and Roy has appeared on eprint [39] considering a parallel
between QA-NIZK and SPHF: Independently from ours, they define a transfor-
mation from one to another. Their transformation can then be extended to view
QA-NIZK as a special case of SP-SPHF, and so be encompassed by our frame-
work.

As an example, we show that the UC-commitment from [34] (while not fitting
with the methodology of traditional SPHF from [1]), is compatible with SP-
SPHF and can be used to build UC protocols. As a side contribution, we first
generalize this commitment from DLin to the k −MDDH assumption from [33].
The combination of this commitment and the associated SP-SPHF then enables
us to give three interesting applications.

Adaptively secure 1-out-of-m Oblivious Transfer. First, we provide a con-
struction of a three-round UC-secure 1-out-of-m OT. Assuming reliable erasures
and a single global CRS, we show in Section 5 that our instantiation is UC-secure
against adaptive adversaries. Besides having a lesser number of rounds than most
recent existing OT schemes with similar security levels, our resulting protocol
also has a better communication complexity than the best known solutions so
far [1,28] (see Table 1 for a comparison). For ease of readability, we emphasize in
this table the SXDH communication cost1, which is simply k-MDDH for k = 1.
Our protocol is “nearly optimal” in the sense that it is still linear in the number
of lines m, but the constant in front of m is 1.

One-round adaptively secure PAKE. Then, we provide an instantiation of
a one-round UC-secure PAKE under any k − MDDH assumption. Once again,
we show in Section 6 that the UC-security holds against adaptive adversaries,
assuming reliable erasures and a single global CRS. Contrarily to most existing

1 Our OT and PAKE protocols are described in k-MDDH but one directly obtains the
SXDH versions by simply letting k = 1 in the commitment presented in Section 4.2
(see the paper full version [15] for details).
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Table 1. Comparison with existing UC-secure OT schemes

Flow Communication Complexity Assumption 1-out-of

[28] 4 26 G + 7 Zp DDH 2
[1] 3 (m+ 8 logm)×G1 + logm×G2 + 1× Zp SXDH m
This paper 3 (k + 3)×G1 + (2 + (3 + k)m+ k(k + 1))×G2 k −MDDH m

+m× Zp
This paper 3 4×G1 + 12×G2 + 2× Zp SXDH m

one-round adaptively secure PAKE, we show that our scheme enjoys a much
better communication complexity while not leaking information about the length
of the password used (see Table 2 for a comparison, in particular for the SXDH
version). Only [40] achieves a slightly better complexity as ours, but only for
SXDH, while ours easily extends to k−MDDH. Furthermore, our construction is
an extension to SP-SPHF of well-known classical constructions based on SPHF,
which makes it simpler to understand. We omit [17] from the following table, as
its contribution is to widen the construction to non-pairing based hypotheses.

Anonymous Credential-Based Message Transmission. Typical credential
use involves three main parties. Users need to interact with some authorities to
obtain their credentials (assumed to be a set of attributes validated / signed),
and then prove to a server that a subpart of their attributes verifies an expect
policy. We present a constant-size, round-optimal protocol that allow to use a
Credential to retrieve a message without revealing the Anonymous Credentials
in a UC secure way, by simply building on the technique proposed earlier in the
paper.

Table 2. Comparison with existing UC-secure PAKE schemes where |password| = m

Adaptive One-round Communication complexity Assumption

[2] yes no 2× (2m+ 22mK)×G + OTS DDH
[44] no yes ≈ 2× 70×G DLIN
[14] no yes 2× 6×G1 + 2× 5×G2 SXDH
[1] yes yes 2× 10m×G1 + 2×m×G2 SXDH
[40] yes yes 4×G1 + 4×G2 SXDH
this paper yes yes 2× (k + 3)×G1 k-MDDH

+2× (k + 3 + k(k + 1))×G2

this paper yes yes 2× 4×G1 + 2× 5×G2 SXDH
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2 Definitions

2.1 Notations

If x ∈ Sn, then |x| denotes the length n of the vector, and by default vectors are
assumed to be column vectors. Further, x $← S denotes the process of sampling
an element x from the set S uniformly at random.

2.2 Primitives

Encryption. An encryption scheme C is described through four algorithms
(Setup,KeyGen,Encrypt,Decrypt), defined formally in Appendix A.1.

Commitments. We refer the reader to [1] for formal definitions and results
but we give here an informal overview to help the unfamiliar reader with the
following. A non-interactive labelled commitment scheme C is defined by three
algorithms:
– SetupCom(1K) takes as input the security parameter K and outputs the global

parameters, passed through the CRS ρ to all other algorithms;
– Com`(x) takes as input a label ` and a message x, and outputs a pair (C, δ),

where C is the commitment of x for the label `, and δ is the correspond-
ing opening data (a.k.a. decommitment information). This is a probabilistic
algorithm.

– VerCom`(C, x, δ) takes as input a commitment C, a label `, a message x, and
the opening data δ and outputs 1 (true) if δ is a valid opening data for C, x
and `. It always outputs 0 (false) on x = ⊥.
The basic properties required for commitments are correctness (for all cor-

rectly generated CRS ρ, all commitments and opening data honestly generated
pass the verification VerCom test), the hiding property (the commitment does
not leak any information about the committed value) and the binding property
(no adversary can open a commitment in two different ways). More complex
properties (equivocability and extractability) are required by the UC framework
and described in Appendix A.2 for lack of space.

Smooth Projective Hash Functions. SPHF were introduced by Cramer and
Shoup [30] for constructing encryption schemes. A projective hashing family is
a family of hash functions that can be evaluated in two ways: using the (secret)
hashing key, one can compute the function on every point in its domain, whereas
using the (public) projected key one can only compute the function on a special
subset of its domain. Such a family is deemed smooth if the value of the hash
function on any point outside the special subset is independent of the projected
key. The notion of SPHF has already found numerous applications in various
contexts in cryptography (e.g. [2, 19,35,41]).
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Definition 1 (Smooth Projective Hashing System). A Smooth Projective
Hash Function over a language L ⊂ X, is defined by five algorithms (Setup,
HashKG,ProjKG,Hash,ProjHash):
– Setup(1K) generates the global parameters param of the scheme, and the de-

scription of an NP language L
– HashKG(L, param), outputs a hashing key hk for the language L;
– ProjKG(hk, (L, param),W ), derives the projection key hp, using the hashing

key hk,
– Hash(hk, (L, param),W ), outputs a hash value v, thanks to the hashing key

hk, and W ,
– ProjHash(hp, (L, param),W,w), outputs the hash value v′, thanks to hp and

the witness w that W ∈ L.
In the following, we consider L as a hard-partitioned subset of X, i.e. it

is computationally hard to distinguish a random element in L from a random
element in X \ L.

A Smooth Projective Hash Function SPHF should satisfy the following prop-
erties:
– Correctness: Let W ∈ L and w a witness of this membership. Then, for all

hashing keys hk and associated projection keys hp we have

Hash(hk, (L, param),W ) = ProjHash(hp, (L, param),W,w).

– Smoothness: For all W ∈ X \ L the following distributions are statistically
indistinguishable:

∆0 =

(L, param,W, hp, v)
param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W ),
v = Hash(hk, (L, param),W ) ∈ G


∆1 =

{
(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),

hp = ProjKG(hk, (L, param),W ), v
$← G

}
.

A third property called Pseudo-Randomness, is implied by the Smoothness
on Hard Subset membership languages. If W ∈ L, then without a witness of
membership the two previous distributions should remain computationally indis-
tinguishable: for any adversary A within reasonable time the following advantage
is negligible

AdvprSPHF,A(K) = |Pr∆1
[A(L, param,W, hp, v) = 1]− Pr∆0

[A(L, param,W, hp, v) = 1]|
In [14], the authors introduced a new notation for SPHF: for a language L,

there exist a function Γ and a family of functions Θ, such that u ∈ L, if and only
if, Θ(u) is a linear combination λ of the rows of Γ (u). We furthermore require
that a user, who knows a witness of the membership u ∈ L, can efficiently
compute the linear combination λ. The SPHF can now then be described as:
– HashKG(L, param), outputs a hashing key hk = α for the language L,
– ProjKG(hk, (L, param),u), derives the projection key hp = γ(u),
– Hash(hk, (L, param),u), outputs a hash value H = Θ(u)�α,
– ProjHash(hp, (L, param),u,λ), outputs the hash value H ′ = λ� γ(u).
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In the special case where hp = γ(u) = γ, we speak about KV-SPHF when the
projection key can be given before seeing the word u, and of CS-SPHF, when the
projection key while independent of the word is given after seeing it. (In reference
to [30, 44] where those kinds of SPHF were first use). We give in Section 3.3 an
example of KV-SPHF for Cramer-Shoup encryption, both in classical and new
notations.

We will need a third property for our one-round PAKE protocol. This prop-
erty, called strong pseudo-randomness in [14], is recalled in Appendix A.3 for
lack of space.

2.3 Building Blocks

Decisional Diffie-Hellman (DDH) The Decisional Diffie-Hellman hypothesis
says that in a multiplicative group (p,G, g) when we are given (gλ, gµ, gψ) for
unknown random λ, µ, ψ

$← Zp, it is hard to decide whether ψ = λ× µ.

Pairing groups. Let GGen be a probabilistic polynomial time (PPT) algorithm
that on input 1K returns a description G = (p,G1,G2,GT , e, g1, g2) of asymmetric
pairing groups where G1, G2, GT are cyclic groups of order p for a K-bit prime
p, g1 and g2 are generators of G1 and G2, respectively, and e : G1 × G2 is an
efficiently computable (non-degenerated) bilinear map. Define gT := e(g1, g2),
which is a generator in GT .

Matricial Notations. If A ∈ Z(k+1)×n
p is a matrix, then A ∈ Zk×np denotes the

upper matrix of A and A ∈ Z1×n
p denotes the last row of A. We use classical

notations from [36] for operations on vectors (. for the dot product and � for the
product component-wise). Concatenation of matrices having the same number
of lines will be denoted by A||B (where a||b + c should be implicitly parsed as
a||(b+ c)).

We use implicit representation of group elements as introduced in [33]. For
s ∈ {1, 2, T} and a ∈ Zp define [a]s = gas ∈ Gs as the implicit representation of
a in Gs (we use [a] = ga ∈ G if we consider a unique group). More generally, for
a matrix A = (aij) ∈ Zn×mp we define [A]s as the implicit representation of A
in Gs:

[A]s :=

ga11s ... ga1ms

gan1
s ... ganm

s

 ∈ Gn×ms

We will always use this implicit notation of elements in Gs, i.e., we let [a]s ∈
Gs be an element in Gs. Note that from [a]s ∈ Gs it is generally hard to compute
the value a (discrete logarithm problem in Gs). Further, from [b]T ∈ GT it is
hard to compute the value [b]1 ∈ G1 and [b]2 ∈ G2 (pairing inversion problem).
Obviously, given [a]s ∈ Gs and a scalar x ∈ Zp, one can efficiently compute
[ax]s ∈ Gs. Further, given [a]1, [b]2 one can efficiently compute [ab]T using the
pairing e. For a, b ∈ Zkp define e([a]1, [b]2) := [a>b]T ∈ GT .
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If a ∈ Zp, we define the (k + 1)-vector: ιs(a) := (1s, . . . , 1s, [a]s) (this notion
can be implicitly extended to vectors a ∈ Znp ), and the k + 1 by k + 1 matrix

ιT (a) :=

1 . . . 1
...
. . . 1

1 1 a

.

Assumptions. We recall the definition of the matrix Diffie-Hellman (MDDH)
assumption [33].

Definition 2 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distri-
bution if it outputs matrices in Z(k+1)×k

p of full rank k in polynomial time.

Without loss of generality, we assume the first k rows of A $← Dk form an in-
vertible matrix. The Dk-Matrix Diffie-Hellman problem is to distinguish the two
distributions ([A], [Aw]) and ([A], [u]) where A $← Dk, w $← Zkp and u $← Zk+1

p .

Definition 3 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let Dk
be a matrix distribution and s ∈ {1, 2, T}. We say that the Dk-Matrix Diffie-
Hellman (Dk-MDDH) Assumption holds relative to GGen in group Gs if for all
PPT adversaries D,

AdvDk,GGen(D) := |Pr[D(G, [A]s, [Aw]s) = 1]− Pr[D(G, [A]s, [u]s) = 1]|
= negl(λ),

where the probability is taken over G $← GGen(1λ), A $← Dk,w $← Zkp,u
$← Zk+1

p .

For each k ≥ 1, [33] specifies distributions Lk, Uk, . . . such that the corre-
sponding Dk-MDDH assumption is the k-Linear assumption, the k-uniform and
others. All assumptions are generically secure in bilinear groups and form a hier-
archy of increasingly weaker assumptions. The distributions are exemplified for
k = 2, where a1, . . . , a6

$← Zp.

L2 : A =

a1 0
0 a2
1 1

 U2 : A =

a1 a2a3 a4
a5 a6

 .

It was also shown in [33] that Uk-MDDH is implied by all other Dk-MDDH
assumptions. In the following, we write k −MDDH for Dk −MDDH.

Lemma 4 (Random self reducibility [33]). For any matrix distribution Dk,
Dk-MDDH is random self-reducible. In particular, for any m ≥ 1,

AdvDk,GGen(D) + 1
q−1 ≥ AdvmDk,GGen(D

′)

where AdvmDk,GGen(D
′) := Pr[D′(G, [A], [AW ]) ⇒ 1] − Pr[D′(G, [A], [U ]) ⇒ 1],

with G ← GGen(1λ), A $← Dk,W $← Zk×mp ,U
$← Z(k+1)×m

p .

Remark: It should be noted that L1,L2 are respectively the SXDH and DLin
assumptions that we recall below for completeness.

Definition 5 (Decisional Linear (DLin [20])). The Decisional Linear hypoth-
esis says that in a multiplicative group (p,G, g) when we are given (gλ, gµ, gαλ,

gβµ, gψ) for unknown random α, β, λ, µ
$← Zp, it is hard to decide whether

ψ = α+ β.
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Definition 6 (Symmetric External Diffie Hellman (SXDH [9])). This
variant of DDH, used mostly in bilinear groups in which no computationally
efficient homomorphism exists from G2 in G1 or G1 to G2, states that DDH is
hard in both G1 and G2.

Labelled Cramer-Shoup Encryption. We present here the well-known en-
cryption schemes based on DDH, and we show in Section 4 how to extend it
to Dk −MDDH. We focus on Cramer-Shoup [29] in all the following of the pa-
per, but one easily obtains the same results on El Gamal IND-CPA scheme [32] by
simply omitting the corresponding parts. We are going to rely on the IND-CCA
property to be able to decrypt queries in the simulation.
Vanilla Cramer-Shoup Encryption. The Cramer-Shoup encryption scheme
is an IND-CCA version of the ElGamal Encryption. We present it here as a labeled
public-key encryption scheme, the classical version is done with ` = ∅.
– Setup(1K) generates a group G of order p, with a generator g
– KeyGen(param) generates (g1, g2)

$← G2, dk = (x1, x2, y1, y2, z)
$← Z5

p, and
sets, c = gx1

1 gx2
2 , d = gy11 g

y2
2 , and h = gz1 . It also chooses a Collision-Resistant

hash function HK in a hash family H (or simply a Universal One-Way Hash
Function). The encryption key is ek = (g1, g2, c, d, h,HK).

– Encrypt(`, ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp,
the ciphertext is C = (`,u = (gr1, g

r
2), e = M · hr, v = (cdξ)r), where v is

computed afterwards with ξ = HK(`,u, e).
– Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether
ux1+ξy1
1 · ux2+ξy2

2
?= v. If the equality holds, one computes M = e/(uz1) and

outputs M . Otherwise, one outputs ⊥.
The security of the scheme is proven under the DDH assumption and the fact

the hash function used is a Universal One-Way Hash Function.
In following work [30] they refined the proof, explaining that the scheme can

be viewed as a 2-Universal Hash Proof on the language of valid Diffie Hellman
tuple.

Vanilla Cramer-Shoup Encryption with Matricial Notations.
– Setup(1K) generates a group G of order p, with a generator g, with an un-

derlying matrix assumption D1 using a base matrix [A] ∈ G2×1;
– KeyGen(param) generates dk = t1, t2, z

$← Z2
p (with t1 = (x1, x2), t2 =

(y1, y2) and z = (z, 1)), and sets c = t1A, d = t2A, h = zA. It also chooses a
hash function HK in a collision-resistant hash familyH (or simply a Universal
One-Way Hash Function). The encryption key is ek = ([A], [c], [d], [h],HK).

– Encrypt(`, ek, [m]; r), for a messageM = [m] ∈ G and random scalar r $← Zp,
the ciphertext is C = (`,u = [Ar]), e = [hr +m], v = [(c + d � ξ)r], where
v is computed afterwards with ξ = HK(`,u, e).

– Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether v is
consistent with t1, t2.
If it is, one computes M = [e − (uz)] and outputs M . Otherwise, one out-
puts ⊥.
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Groth-Sahai Proof System. Groth and Sahai [36] proposed non-interactive
zero-knowledge proofs of satisfiability of certain equations over bilinear groups,
called pairing product equations. Using as witness group elements (and scalars)
which satisfy the equation, the prover starts with making commitments on them.
To prove satisfiability of an equation (which is the statement of the proof), a
Groth-Sahai proof uses these commitments and shows that the committed values
satisfy the equation. The proof consists again of group elements and is verified
by a pairing equation derived from the statement.

We refer to [36] for details of the Groth-Sahai proof system, and to [33] for
the compatibility with the k-MDDH assumptions. More details can be found in
the paper full version [15]. We are going to give a rough idea of the technique
for SXDH.

To prove that committed variables satisfy a set of relations, the Groth-Sahai
techniques require one commitment per variable and one proof element (made
of a constant number of group elements) per relation. Such proofs are available
for pairing-product relations and for multi-exponentiation equations.

When based on the SXDH assumption, the commitment key is of the form
u1 = (u1,1, u1,2) ,u2 = (u2,1, u2,2) ∈ G 2

1 and v1 = (v1,1, v1,2) ,v2 = (v2,1, v2,2) ∈
G 2

2 . We write

u =

(
u1

u2

)
=

(
u1,1 u1,2
u2,1 u2,2

)
and v =

(
v1

v2

)
=

(
v1,1 v1,2
v2,1 v2,2

)
.

The Setup algorithm initializes the parameters as follows: u1 = (g1, u) with
u = gλ1 and u2 = u1

µ with λ, µ $← Z∗p, which means that u is a Diffie-Hellman
tuple in G1, since u1 = (g1, g

λ
1 ) and u2 = (gµ1 , g

λµ
1 ). The TSetup algorithm will

use instead u2 = u1
µ � (1, g1)

−1: u1 = (g1, g
λ
1 ) and u2 = (gµ1 , g

λµ−1
1 ). And it is

the same in G2 for v. Depending on the definition of u2, v2, this commitment can
be either perfectly hiding or perfectly binding. The two parameter initializations
are indistinguishable under the SXDH assumption.

To commit to X ∈ G1, one chooses randomness s1, s2 ∈ Zp and sets C(X) =
(1, X)�us11 �us22 = (1, X)� (us11,1, u

s1
1,2)� (us22,1, u

s2
2,2) = (us11,1 ·u

s2
2,1, X ·u

s1
1,2 ·u

s2
2,2).

Similarly, one can commit to element in G2 and scalars in Zp. The committed
group elements can be extracted if u2 is linearly dependant of u1 by knowing
the discrete logarithm x1 between u1,1 and u2,2: c2/(cx1

1 ) = X.
In the following we are going to focus on proof of linear multi-scalar expo-

nentiation in G1, that is to say we are going to prove equations of the form∏
iA

yi
i = A where Ai are public elements in G1 and yi are going to be scalars

committed into G2.

2.4 Protocols

UC Framework. The goal of this simulation-based model [22] is to ensure that
UC-secure protocols will continue to behave in the ideal way even if executed
in a concurrent way in arbitrary environments. Due to lack of space, a short
introduction to the UC framework is given in the paper full version [15].
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Oblivious Transfer and Password-Authenticated Key-Exchange. The
security properties for these two protocols are given in terms of ideal function-
alities in the paper full version [15].

3 Structure-Preserving Smooth Projective Hashing

3.1 Definition

In this section, we are now going to narrow the classical definition of Smooth
Projective Hash Functions to what we are going to name Structure-Preserving
Smooth Projective Hash Functions, in which both words, witnesses and projec-
tion keys are group elements.

Since witnesses now become group elements, this allows a full compatibility
with Groth and Sahai methodology [36], such that for instance possessing a
Non-Interactive Zero-Knowledge Proof of Knowledge can become new witnesses
of our SP-SPHF, leading to interesting applications, as described later on.

As we are in the context of Structure Preserving cryptography, we assume
the existence of a (prime order) bilinear group (p,G1,G2, g1, g2,GT , e), and con-
sider Languages (sets of elements) L defined over this group. The hash space is
usually GT , the projection key space a group Gm1 ×Gn2 and the witness space a
group Gn1 ×Gm2 .

Definition 7 (Structure-Preserving Smooth Projective Hash Functions).
A Structure-Preserving Smooth Projective Hash Function over a language

L ⊂ X onto a set H is defined by 4 algorithms (HashKG,ProjKG,Hash,ProjHash):
– HashKG(L, param), outputs a hashing key hk for the language L;
– ProjKG(hk, (L, param),W ), derives the projection key hp thanks to the hash-

ing key hk.
– Hash(hk, (L, param),W ), outputs a hash value H ∈ H, thanks to the hashing

key hk, and W
– ProjHash(hp, (L, param),W,w), outputs the value H ′ ∈ H, thanks to hp and

the witness w that W ∈ L.

Remark 8. We stress that, contrarily to classical SPHF, both hp, W and more
importantly w are base group elements, and so live in the same space.

3.2 Properties

Properties are then inherited by those of classical Smooth Projective Hash Func-
tions.

– Correctness: On honest computations with (W,w) compatible with L, we
have ProjHash(hp, (L, param),W,w) = Hash(hk, (L, param),W ).

– Smoothness: For all W ∈ X \ L the following distributions are statistically
indistinguishable:

12



∆0 =

(L, param,W, hp, v)
param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W ),
v = Hash(hk, (L, param),W ) ∈ GT


∆1 =

{
(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),

hp = ProjKG(hk, (L, param),W ), v
$← GT

}
.

This is formalized by

Advsmooth
SPHF (K) =

∑
V ∈G

∣∣∣∣Pr∆1

[v = V ]− Pr
∆0

[v = V ]

∣∣∣∣ is negligible.

As usual, a derivative property called Pseudo-Randomnness, says the pre-
vious distribution are computationally indistinguishable from words in the lan-
guage while the witnesses remain unknown. This is implied by the Smoothness
on Hard Subset membership languages.

3.3 Retro-compatibility

Constructing SP-SPHF is not that hard of a task. A first naive approach allows
to transform every pairing-less SPHF into a SP-SPHF in a bilinear setting. It
should be noted that while the resulting Hash/ProjHash values live in the target
group, nearly all use cases encourage to use a proper hash function on them be-
fore computing anything using their value, hence the communication cost would
remain the same. (Only applications where one of the party has to provide an
additional proof that the ProjHash was honestly computed might be lost, but
besides proof of negativity from [18], this never arises.)

To this goal, simply given a new generator f ∈ G2, and a scalar witness vector
λ, one generates the new witness vector Λ = [f�λ]2. Words and projection keys
belong to G1, and hash values to GT . Any SPHF can thus be transformed into
an SP-SPHF in the following way:

SPHF SP-SPHF
Word u [λ� Γ (u)]1 [λ� Γ (u)]1
Witness w λ Λ = [f � λ]2
hk α α
hp = [γ(u)]1 [Γ (u)�α]1 [Γ (u)�α]1
Hash(hk,u) [Θ(u)�α]1 [f �Θ(u)�α]T
ProjHash(hp,u, w) [λ� γ(u)]1 [Λ� γ(u)]T

– Correctness is inherited for words in L as this reduces to computing the
same values but in GT .

– Smoothness: For words outside the language, the projection keys, remain-
ing unchanged, do not reveal new information, so that the smoothness will
remain preserved.
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SPHF SP-SPHF
DH hr, gr hr, gr

Witness w r gr2
hk λ, µ λ, µ

hp hλgµ hλgµ

Hash(hk,u) (hr)λ(gr)µ e((hr)λ(gr)µ, g2)
ProjHash(hp,u, w) hpr e(hp, gr2)

CS(M;r) hrM, fr, gr, (cdα)r hrM, fr, gr, (cdα)r

Witness w r gr2
hk λ1, λ2, µ, ν, η λ1, λ2, µ, ν, η

hp hλ1fµgνcη, hλ2dν hλ1fµgνcη, hλ2dν

Hash(hk,u) H = (hr)λ1+αλ2(fr)µ(gr)ν((cdα)r)µ e(H, g2)
ProjHash(hp,u, w) (hp1hp

α
2 )
r e(hp1hp

α
2 , g

r
2)

(with hp = (hp1, hp2))

Fig. 1. Example of conversion of classical SPHF into SP-SPHF

– Pseudo-Randomness: Without any witness, words inside the language are
indistinguishable from words outside the language (under the subgroup de-
cision assumption), hence the hash values remain pseudo-random.
It should be noted that in case this does not weaken the subgroup decision

assumption (k-MDDH in the following) linked to the original language, one can
set G1 = G2.

We give in Figure 1 two examples of regular Smooth Projective Hash Func-
tions on Diffie-Hellman and Cramer-Shoup encryption ofM , where α = H(u, e),
and their counterparts with SP-SPHF. ElGamal being a simplification of Cramer-
Shoup, we skip the description of the associated SP-SPHF. We also give in Fig-
ure 2 the matricial version of Cramer-Shoup encryption, in which we denote by
C ′ the Cramer-Shoup encryption C of M in which we removed M .

3.4 Possible Applications

Nearly Constant 1-out-of-m Oblivious Transfer Using FLM. Recent
pairing-based constructions [1,28] of Oblivious Transfer use SPHF to mask each
line of a database with the hash value of as SPHF on the language corresponding
to the first flow being a commitment of the said line.

Sadly, those constructions require special UC commitment on scalars, with
equivocation and extraction capacities, leading to very inefficient constructions.
In 2011, [34] proposed a UC commitment, whose decommitment operation is
done via group elements. In section 5, we are going to show how to combine the
existing constructions with this efficient commitment using SP-SPHF, in order to
obtain a very efficient round-optimal where there is no longer a growing overhead
due to the commitment. As a side result, we show how to generalize the FLM
commitment to any MDDH assumption.
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SPHF SP-SPHF
CS(M;r) [hr +M,Ar, (c+ dα)r] [hr +M,Ar, (c+ dα)r]1

B :


h
f
g
c


Br +


0
0
0
d

αr +


M
0
0
0



Br +


0
0
0
d

αr +


M
0
0
0




1

Witness w r [r]2
hk λ1, λ2, µ, ν, η λ1, λ2, µ, ν, η
hp

[
hp1 =

(
λ1 µ ν η

)
B
]
, [hp1]1 , [hp2]1hp2 =

(
λ2 0 0 η

)
h
0
0
d




Hash(hk,u)
[(
λ1 + αλ2 µ ν η

)
(C′)

] [(
λ1 + αλ2 µ ν η

)
(C′)

]
T

ProjHash(hp,u, w) [(hp1 + αhp2)r] [(hp1 + αhp2)r]2

Fig. 2. Example of conversion of SPHF into SP-SPHF (matricial notations)

Round-Optimal Password Authenticated Key Exchange with Adap-
tive Corruptions. Recent developments around SPHF-based PAKE have either
lead to Round-Optimal PAKE in the BPR model [11], or with static corrup-
tions [14, 44]. In order to achieve round-optimality, [1] needs to do a bit-per-bit
commitment of the password, inducing a communication cost proportional to
the maximum password length.

In the following, we show how to take advantage of the SP-SPHF constructed
on the FLM commitment to propose a One-Round PAKE UC secure against
adaptive adversaries, providing a constant communication cost.

Using a ZKPK as a witness, Anonymous Credentials. Previous applica-
tions allow more efficient instantiations of protocols already using scalar-based
SPHF. However, one can imagine additional scenarios, where a scalar based ap-
proach may not be possible, due to the inherent nature of the witness used.

For example, one should consider a strong authentication scenario, in which
each user possesses an identifier delivered by an authority, and a certification on
a commitment to this identifier, together with a proof of knowledge that this
commitment is indeed a commitment to this identifier. (Such scenario can be
transposed to the delivery of a Social Security Number, where a standalone SSN
may not be that useful, but a SSN officially linked to someone is a sensitive
information that should be hidden.) In this scenario, a user who wants to access
his record on a government service where he is already registered, should give
the certificate, and then would use an implicit proof that this corresponds to his
identifier. With our technique, the server would neither learn the certificate in
the clear nor the user identifier (if he did not possess it earlier), and the user
would be able to authenticate only if his certificate is indeed on his committed
identifier.
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In our scenario, we could even add an additional step, such that Alice does
not interact directly with Bob but can instead use a pawn named Carol. She
could send to Carol a commitment to the signature on her identity, prove in a
black box way that it is a valid signature on an identity, and let Carol do the
interaction on her behalf. For example, to allow a medical practitioner to access
some subpart of her medical record concerning on ongoing treatment, in this
case, Carol would need to anonymously prove to the server that she is indeed a
registered medical practitioner, and that Alice has given her access to her data.

4 Encryption and Commitment Schemes Based on
k-MDDH

4.1 k-MDDH Cramer-Shoup Encryption

In this paper, we supersede the previous constructions with a k-MDDH based
one:
– Setup(1K) generates a group G of order p, with an underlying matrix as-

sumption using a base matrix [A] ∈ Gk+1×k;
– KeyGen(param) generates dk = t1, t2, z

$← Zk+1
p , and sets, c = t1A ∈ Zkp,d =

t2A ∈ Zkp,h = zA ∈ Zkp. It also chooses a hash function HK in a collision-
resistant hash family H (or simply a Universal One-Way Hash Function).
The encryption key is ek = ([c], [d], [h], [A],HK).

– Encrypt(`, ek, [m]; r), for a message M = [m] ∈ G and random scalars r $←
Zkp, the ciphertext is C = (u = [Ar]), e = [hr + m], v = [(c + d � ξ)r]1,
where v is computed afterwards with ξ = HK(`,u, e).

– Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether v is
consistent with t1, t2.
If it is, one computes M = [e − (uz)] and outputs M . Otherwise, one out-
puts ⊥.

Theorem 9. The k-MDDH Cramer-Shoup Encryption is IND-CCA 2 under
k-MDDH assumption and the collision resistance (universal one-wayness) of the
Hash Family.

Proof. To sketch the proof of the theorem, one should remember that the original
proof articulate around three main cases noting `,u, e, v the challenge query, and
`′,u, e′, v′ the current decryption query:
– (`,u, e) = (`′,u′, e′) but v 6= v′. This will fail as v is computed to be the

correct checksum, hence we can directly reject the decryption query.
– (`,u, e) 6= (`′,u′, e′) but ξ = ξ′, this is a collision on the Hash Function.
– (`,u, e, v) 6= (`,u, e, v) and ξ 6= ξ′. This is the argument revolving around

the 2-Universality of the Hash Proof system defined by c,d. c,d gives 2k
equations in 2k + 2 variables, hence answering decryption queries always in
the same span can give at most 1 more equation leaving at least 1 degree of
freedom in the system. ut
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Structure-Preserving Smooth Projective Hash Function

For ease of readability we are going to set B =

h
A
c

 and D =


0

...
d


,

and write C ′ = [Br + ξDr]1 the ciphertext without the message M .
– HashKG(L, param), chooses Λ $← Z(k+2)×1

p , λ $← Zp and sets

hk1 = Λ, hk2 =

 λ
0

Λk+2

 ;

– ProjKG(hk, (L, param),W ), outputs hp1 = hk>1 B, hp2 = hk>2

h0
d

;

– Hash(hk, (L, param),W ), outputs a hash value H = [(hk1 + ξhk2)
>C ′]T ;

– ProjHash(hp, (L, param),W,w), outputs the value H ′ = [(hp1 + ξhp2)r]T .
The Smoothness comes inherently from the fact that we have 2k+2 unknowns

in hk while hp gives at most 2k equations. Hence an adversary has a negligible
chance to find the real values.

4.2 A Universally Composable Commitment with Adaptive
Security Based on MDDH

We first show how to simply generalize FLM’s commitment [34] from DLin to
k-MDDH.

FLM’s Commitment on DLin. At Asiacrypt 2011, Fischlin, Libert and Man-
ulis presented a universally composable commitment [34] with adaptive security
based on the Decision Linear assumption [20]. We show here how to generalize
their scheme to the Matrix Decisional Diffie-Hellman assumption from [33] and
recalled in Section 2. We first start by recalling their original scheme. Note that
sid denotes the session identifier and cid the commitment identifier and that the
combination (sid, cid) is globally unique, as in [34,37].
– CRS Generation: SetupCom(1K) chooses a bilinear group (p,G,GT ) of

order p > 2K, a generator g of G, and sets g1 = gα1 and g2 = gα2 with
random α1, α2 ∈ Z∗p. It defines the vectors g1 = (g1, 1, g), g2 = (1, g2, g)

and g3 = g1
ξ1g2

ξ2 with random ξ1, ξ2 ∈ Z∗p, which form a Groth-Sahai
CRS g = (g1,g2,g3) for the perfect soundness setting. It then chooses a
collision-resistant hash function H : {0, 1}∗ → Zp and generates a public
key pk = (X1, . . . , X6) for the linear Cramer-Shoup encryption scheme. The
CRS consists of crs = (K,G,GT , g,g, H, pk).

– Commitment algorithm: Com(crs,M, sid, cid, Pi, Pj), to commit to mes-
sage M ∈ G for party Pj , party Pi parses crs as (K,G,GT , g,g, H, pk) and
conducts the following steps:
• It chooses random exponents r, s in Zp and computes a linear Cramer-

Shoup encryption ψCS = (U1, U2, U3, U4, U5) of M ∈ G under the label
` = Pi‖sid‖cid and the public key pk.
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• It generates a NIZK proof πval−enc that ψCS = (U1, U2, U3, U4, U5) is in-
deed a valid encryption ofM ∈ G. This requires to commit to exponents
r, s and prove that these exponents satisfy the multi-exponentiation
equations U1 = g1

r, U2 = g2
s, U3 = gr+s, U4/M = X5

rX6
s and

U5 = (X1X3
α)r · (X2X4

α)s.
• Pi erases (r, s) after the generation of πval−enc but retains the DM =
πval−enc.

The commitment is ψCS .
– Verification algorithm: the algorithm VerCom(crs,M,DM , sid, cid, Pi, Pj)

checks the proof πval−enc and ignores the opening if the verification fails.
– Opening algorithm: OpenCom(crs,M,DM , sid, cid, Pi, Pj) reveals M and
DM = πval−enc to Pj .
The extraction algorithm uses Cramer-Shoup decryption algorithm, while the

equivocation uses the simulator of the NIZK. It is shown in [1] that the IND-CCA
security notion for C and the computational soundness of π make it strongly-
binding-extractable, while the IND-CCA security notion and the zero-knowledge
property of the NIZK provide the strong-simulation-indistinguishability.

Moving to k-MDDH: We now show how to extend the previous commitment
to the k-MDDH assumption. Compared to the original version of the commit-
ment, we split the proof πval−enc into its two parts: the NIZK proof denoted here
as [Π]1 is still revealed during the opening algorithm, while the Groth-Sahai
commitment [R]2 of the randomness r of the Cramer-Shoup encryption is sent
during the commitment phase. Furthermore, since the hash value in the Cramer
Shoup encryption is used to link the commitment with the session, we include
this value [R]2 to the label, in order to ensure that this extra commitment in-
formation given with the ciphertext is the original one. We refer the reader to
the original security proof in [34, Theorem 1], which remains exactly the same,
since this additional commitment provides no information (either computation-
ally or perfectly, depending on the CRS), and since the commitment [R]2 is not
modified in the equivocation step (only the value [Π]1 is changed).
– CRS Generation: algorithm SetupCom(1K) chooses a bilinear asymmetric

group (p,G1,G2,GT , e, g1, g2) of order p > 2K, and a set of generators [A]1
corresponding to the underlying matrix assumption.
As explained in [33], following their notations, one can define a Groth-Sahai
CRS by picking w $← Zk+1

p , and setting [U ]2 = [B||Bw]2 for a hiding CRS,
and [B||Bw+(0||z)>]2 otherwise, where [B]2 is an k-MDDH basis, and w, z
are the elements defining the challenge vector.
For the Cramer-Shoup like CCA-2 encryption, one additionally picks t1, t2,
z

$← Zk+1
p , and a Universal One-Way Hash Function H and sets [h]1 =

[z ·A]1, [c]1 = [t1A]1, [d]1 = [t2A]1.
The CRS consists of crs = (K, p,G1,G2,GT , [A]1 ∈ Gk×k+1

1 , [U ]2, [h]1 ∈
Gk1 , [c]1 ∈ Gk1 , [d]1 ∈ Gk1 ,H).

– Commitment algorithm: Com(crs,M, sid, cid, Pi, Pj), to commit to mes-
sage M ∈ G1 for party Pj , party Pi conducts the following steps:
• It chooses random exponents r in Zkp and commits to r in [R]2 with

randomness ρ $← Zk×k+1
p , setting [R]2 = [Uρ+ ι2(r)]2 ∈ Gk×k+1

2 . It also
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computes a Cramer-Shoup encryption ψCS = [C]1 of M ∈ G1 under the
label ` = Pi‖sid‖cid and the public key pk:

[C]1 = [Ar||hr +M ||(c+ d�H(`||C1||C2||R))r]1 = [C1||C2||C3]1

For simplicity we write `′ = `||[C1]1||[C2]1||[R]2.
• It generates a NIZK proof DM = [Π]1 that ψCS is indeed a valid en-

cryption of M ∈ G1 for the committed r in [R]2. This requires to prove
that these exponents satisfy the multi-exponentiation equations:
[C1]1 = [Ar]1, [C2 −M ]1 = [hr]1, [C3 = (c+ d�H(`′))r]1

The associated proof is then [Π]1 = [ρ>(A||h||c+ d�H(`′))]1.
• Pi erases r after the generation of [R]2 and [Π]1 but retains DM = [Π]1.

The commitment is ([C]1, [R]2).
– Verification algorithm: the algorithm VerCom(crs,M,DM , sid, cid, Pi, Pj)

checks the consistency of the proof πval−enc with respect to [C]1 and [R]2.
and ignores the opening if the verification fails.

– Opening algorithm: OpenCom(crs,M,DM , sid, cid, Pi, Pj) reveals M and
DM = [Π]1 to Pj .
One can easily see that [C3]1 is the projective hash computation of a 2-

universal hash proof on the language “[C1]1 in the span of A”, with [C2]1 being
an additional term that uses the same witness to mask the committed message,
so that [C]1 is a proper generalization of the Cramer-Shoup CCA-2 encryp-
tion. Details on the k-MDDH Groth-Sahai proofs are given in the paper full
version [15].

It is thus easy to see that this commitment is indeed a generalization of the
FLM non-interactive UC commitment with adaptive corruption under reliable
erasures (in which we switched the CRS, the Cramer-Shoup encryption and the
Groth-Sahai proof in the k-MDDH setting).

4.3 A Structure-Preserving Smooth Projective Hash Function
Associated with this Commitment

Structure-Preserving Smooth Projective Hash Function. We now want
to supersede the verification equation of the commitment by a smooth projective
hash function providing implicit decommitment, simply using the proof as a
witness. We consider the language of the valid encryptions ofM using a random r
which is committed into [R]2:
LM = {[C]1 | ∃r∃ρ such that [R]2 = [Uρ+ ι2(r)]2

and [C]1 = [Ar||hr +M ||(c+ d�H(`||C1||C2||R))r]1}

The verifier picks a random hk = α
$← Zk+3×k+1

p and sets hp = [α�U ]2.
On one side, the verifier then computes:
Hash(hk, ([C]1, [R]2)) = [α� ((C1||C2 −M ||C3)− (A||h||c+ d�H(`′)) ·R)]T

While the prover computes ProjHash(hp,Π) = [Π · hp]T .
– Correctness: comes directly from the previous equations.
– Smoothness: on a binding CRS, [U ]2’s last column is in the span of the k

first (which are simply [B]2), hence as hk ∈ Zk+1
p , the k equations given in
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hp are not enough to determine its value and so it is still perfectly hidden
from an information theoretic point of view.

– Pseudo-Randomness: Under the MDDH assumption, the subset membership
decision is a hard problem, as the generalized Cramer-Shoup is IND-CCA-2,
and [R]2 is an IND-CPA commitment to r.

Theorem 10. Under the k-MDDH assumption, the above SP-SPHF is strongly
pseudo-random on a perfectly hiding CRS.

For sake of compactness, the proof is postponed to the paper full version [15].

Efficiency. The rough size of a projection key is k×(k+3) (number of elements
in each proof times number of proofs). It should be noted, that for a CS-SPHF
(in the case of the oblivious transfer), instead of repeating the projection key
k + 3 times (in order to verify each component of the Cramer-Shoup), one can
generate a value ε $← Zp, an hp for a single equation, and say that for the other
component, one simply uses hpε

i

, as the trick explained in [1].

5 Application: Nearly Optimal Size 1-out-of-m Oblivious
Transfer

5.1 Main Idea of the Construction

Our oblivious transfer scheme builds upon that presented by Abdalla et al. at
Asiacrypt 2013 [1]. In their scheme, the authors use a SPHF-friendly commitment
(which is a notion stronger than a UC commitment) along with its associated
SPHF in a now classical way to implicitly open the commitment. They claim that
the commitment presented in [34] cannot be used in such an application, since
it is not “robust”, which is a security notion meaning that one cannot produce
a commitment and a label that extracts to x′ (possibly x′ = ⊥) such that there
exists a valid opening data to a different input x, even with oracle access to
the extraction oracle (ExtCom) and to fake commitments (using SCom). Indeed,
because of the perfectly-hiding setting of Groth-Sahai proofs, for any ciphertext
C and for any message x, there exists a proof Π that makes the verification of
C on x. However, we show in this section that in spite of this result, such a
commitment can indeed be used in a relatively close construction of oblivious
transfer scheme. To this aim, we use our construction of structure-preserving
SPHF on FLM’s commitment, simply using the decommitment value (a Groth-
Sahai proof) as the witness, presented in Section 4.3.

It should be noted that the commitment used in [1, 2] has the major draw-
back of leaking the bit-length of the committed message. While in application
to Oblivious Transfer this is not a major problem, for PAKE this is a way more
sensitive issue, as we show in the next section. Moreover, using FLM’s commit-
ment is conceptually simpler, since the equivocation only needs to modify the
witness, allowing the user to compute honestly its message in the commitment
phase, whereas in the original commitments, a specific flow had to be sent during
the commitment phase (with a different computation and more witnesses for the
SPHF, than in the honest computation of the commitment).
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5.2 A Universally Composable Oblivious Transfer with Adaptive
Security Based on MDDH

We denote by DB the database of the server containing t = 2m lines, and j the
line requested by the user in an oblivious way. We assume the existence of a
Pseudo-Random Generator (PRG) F with input size equal to the plaintext size,
and output size equal to the size of the messages in the database and a IND-CPA
encryption scheme E = (Setupcpa,KeyGencpa,Encryptcpa,Decryptcpa) with plain-
text size at least equal to the security parameter. The commitment used is the
variant of [34] described above. It is denoted as Com` in the description of the
scheme, with ` being a label. Note that sid denotes the session identifier, ssid the
subsession identifier and cid the commitment identifier and that the combination
(sid, cid) is globally unique, as in [34,37].

We present our construction, in Figure 3, following the global framework
presented in [1], for an easier efficiency comparison (we achieve nearly optimality
in the sense that it is linear in the number of lines of the database, but with a
constant equal to 1 only).

Theorem 11. The oblivious transfer scheme described in Figure 3 is UC-secure
in the presence of adaptive adversaries, assuming reliable erasures and authen-
ticated channels.

The proof is given in the paper full version [15] for completeness.

6 Application: Adaptive and Length-Independent
One-Round PAKE

Password-authenticated key exchange (PAKE) protocols allow two players to
agree on a shared high entropy secret key, that depends on their own pass-
words only. Katz and Vaikuntanathan recently came up with the first concrete
one-round PAKE protocols [43], where the two players just have to send simul-
taneous flows to each other. Following their idea, [14] proposed a round-optimal
PAKE protocol UC secure against passive corruptions. On the other hand, [2]
proposed the first protocol UC secure against adaptive corruptions, and [1] built
upon both [43] and [2], to propose the first one-round protocol UC secure against
adaptive corruptions. Unfortunately, both of them share a drawback, which is
that they use a commitment growing linearly with the length of a password. Be-
sides being an efficiency problem, it is over all a security issue in the UC frame-
work. Indeed, the simulator somehow has to “guess” the length of the password
of the player it simulates, otherwise it is unable to equivocate the commitment
(since the commitment reveals the length of the password it commits to). Since
such a guess is impossible, the apparently only solution to get rid of this limi-
tation seems to give the users an upper-bound on the length of their passwords
and to ask them to compute commitments of this length, which leads to costly
computations.
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CRS generation:
crs

$← SetupCom(1K), paramcpa
$← Setupcpa(1

K).

Pre-flow:

1. Server generates a key pair (pk, sk)
$← KeyGencpa(paramcpa) for E , stores sk and

completely erases the random coins used by KeyGen
2. Server sends pk to User

Index query on j:

1. User chooses a random value J , computes S ← F (J) and encrypts J under pk:
c

$← Encryptcpa(pk, J)

2. User computes ([C]1, [R]2, [Π]1)
$← Com`(crs, j, sid, cid, Pi, Pj) with the label ` =

(sid, ssid, Pi, Pj)
3. User stores [Π]1 and completely erases J and the random coins used by Com

and Encryptcpa and sends [C]1, [R]2 and c to Server

Database input (n1, . . . , nt):

1. Server decrypts J ← Decryptcpa(sk, c) and computes S ← F (J)

2. For s = 1, . . . , t: Server computes hks
$← HashKG(Ls), hps ← ProjKG(hks,Ls),

Ks ← Hash(hks, (Ls, (`, [C]1, [R]2))), and Ns ← S ⊕Ks ⊕ ns
3. Server erases everything except (hps, Ns)s=1,...,t and sends them over a secure

channel

Data recovery:
Upon receiving (hps, Ns)s=1,...,t, User computes
Kj ← ProjHash(hpj , (Lj , `, [C]1, [R]2), [Π]1) and gets nj ← S ⊕Kj ⊕Nj .

Fig. 3. UC-Secure 1-out-of-t OT from an SPHF-Friendly Commitment (for Adaptive
Security)

In this section, we are now going to present a constant-size, round-optimal,
PAKE UC secure against adaptive corruptions. It builds upon the protocol pro-
posed in [1], using the same techniques as in the former section to avoid the
apparent impossibility to use FLM’s commitment.

It should be noted that we need the classical requirement for extraction
capabilities (see for example [16,47] for a detailed explanation), i.e. a password
pw is assumed to be a bit-string of length bounded by log p−2, and then one can
use a bijective embedding function G mapping {0, 1}|p|−2 in G1. For the sake of
simplicity, we continue to write pwi in the high level description, but it should
be interpreted as a commitment to G(pwi).

The language Lpwi
is then the language of valid Cramer-Shoup encryptions

of the embedded password G(pwi), consistent with the randomness committed
in the second part, and the rest of the label.

Theorem 12. The Password Authenticated Key Exchange scheme described in
Figure 4 is UC-secure in the presence of adaptive adversaries, assuming reliable
erasures and authenticated channels.
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CRS: crs $← SetupCom(1K).
Protocol execution by Pi with pwi:

1. Pi generates hki $← HashKG(Lpwi
), hpi ← ProjKG(hki,Lpwi

)
and erases any random coins used for the generation

2. Pi computes ([Ci]1, [Ri]2, [Πi]1) = Com`i(crs, pwi, sid, cid, Pi, Pj)
with `i = (sid, Pi, Pj , hpi)

3. Pi stores [Πi]1, completely erases random coins used by Com
and sends hpi, [Ci]1, [Ri]2 to Pj

Key computation: Upon receiving hpj , [Cj ]1, [Rj ]2 from Pj

1. Pi computes H ′i ← ProjHash(hpj , (Lpwi
, `i, [Ci]1, [Ri]2), [Πi]1))

and Hj ← Hash(hki, (Lpwi
, `j , [Cj ]1, [Rj ]2)) with `j = (sid, Pj , Pi, hpj)

2. Pi computes ski = H ′i ·Hj and erases everything else, except pwi.

Fig. 4. UC-Secure PAKE from the revisited FLM Commitment

The proof is given in the paper full version [15] for completeness.

7 Application: Anonymous Credential-Based Message
Transmission

Anonymous Credential protocols [21, 27, 31] allow to combine security and pri-
vacy. Typical credential use involves three main parties. Users need to interact
with some authorities to obtain their credentials (assumed to be a set of at-
tributes validated / signed), and then prove to a server that a subpart of their
attributes verifies an expect policy.

In this section, we give another go to Anonymous Credential, this time to
allow message recovery. This is between Anonymous Credential but also Condi-
tional Oblivious Transfer [51] and Oblivious Signature-Based Envelope [46].

We present a constant-size, round-optimal protocol that allow to use a Cre-
dential to retrieve a message without revealing the Anonymous Credentials in a
UC secure way, by simply building on the commitment proposed earlier in the
paper.

7.1 Anonymous Credential System

In a Attribute-Based Credential system, we assume that different organization
issue credentials to users. A user i possesses a set of credential Credi of the form
{Credi,j , vkj} where organization j assesses that the user verifies some property.
(The DMV will assess that the user is indeed capable of driving, the university
that she has a bachelor in Computer Science, while Squirrel Airways that she
reached the gold membership, all those authorities don’t communicate with each
other).
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A Server might have an access Policy P requiring some elements (For example
being a female, with a bachelor, and capable of driving).

– Setup(1K): A probabilistic algorithm that gets a security parameter K, an
upper bound t for the size of attribute sets and returns the public parameters
param

– OKeyGen(param): Generates a pair of signing keys skj , vkj for each organi-
zation.

– UKeyGen(param): Generates a pair of keys ski, vki for each use.
– CredObtain(〈Ui, ski〉, 〈Oj , skj〉) Interactive process that allows a user i to ob-

tain some credentials from organization j by providing his public key vkj
and a proof that it belongs to him.

– CredUse(〈Ui,Credi, ski〉, 〈S, P,M〉) Interactive process that allows a user i to
access a message guarded by the server S under some policy P by using the
already obtained credentials.
An attribute-based anonymous credential system is called secure if it is cor-

rect, unforgeable and anonymous.

CRS generation:
crs

$← SetupCom(1K), paramcpa
$← Setupcpa(1

K).

Pre-flow:

1. Server generates a key pair (pk, sk)
$← KeyGencpa(paramcpa) for E , stores sk and

completely erases the random coins used by KeyGen
2. Server sends pk to User

Credential Use by user i:

1. User chooses a random value J , computes S ← F (J) and encrypts J under pk:
c

$← Encryptcpa(pk, J)

2. User computes ([C]1, [R]2, [Π]1)
$← Com`(crs,Credi, sid, cid, Pi, Pj) with ` =

(sid, ssid, Pi, Pj)
3. User stores [Π]1 and completely erases J and the random coins used by Com

and Encryptcpa and sends [C]1, [R]2 and c to Server

Database input M with policy P :

1. Server decrypts J ← Decryptcpa(sk, c) and computes S ← F (J)

2. Server computes hkP
$← HashKG(LP ), hpP ← ProjKG(hkP ,LP ), KP ←

Hash(hkP , (LP , (`, [C]1, [R]2))), and NP ← S ⊕KP ⊕M
3. Server erases everything except (hpP , NP ) and sends them over a secure channel

Data recovery:
Upon receiving (hpP , NP ), User computes
K ← ProjHash(hpP , (LP , `, [C]1, [R]2), [Π]1) and gets M ← S ⊕K ⊕NP .

Fig. 5. UC-Secure Anonymous Credential from an SPSPHF-Friendly Commitment (for
Adaptive Security)
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7.2 Construction

Smooth Projective Hash Functions have been shown to handle complex lan-
guages [2, 13], those properties can naturally be extended to Structure Preserv-
ing Smooth Projective Hash Function, allowing credentials to be expressive as
disjunction / conjunction of sets of credentials, range proofs, or even composition
(having a credential from authority A signed by authority B for example).

What is really new with the Structure Preserving part is that now a user can
request to have a credential on a witness by requiring a Structure-Preserving
signature on it, while before scalars either required to give too much information
to the server B or prevented chaining as most signatures requires some sort of
Hashing (BLS requires an explicit Hash, while signature à la Waters requires to
handle a bit per bit version of the message hindering drastically the efficiency of
the protocol). This allows more possibilities in both the Credential Generation
step and the policy required for accessing messages, while maintaining an efficient
construction.

Theorem 13. The Anonymous Credential Protocol described in Figure 5 is UC-
secure in the presence of adaptive adversaries, assuming reliable erasures and
authenticated channels.

The ideal functionality and a sketch of the proof are given in the paper full
version [15] for completeness.

A Commitments and Smooth Projective Hash Functions
A.1 Encryption

An encryption scheme C is described through four algorithms (Setup,KeyGen,
Encrypt,Decrypt):
– Setup(1K), where K is the security parameter, generates the global parame-

ters param of the scheme;
– KeyGen(param) outputs a pair of keys, a (public) encryption key pk and a

(private) decryption key dk;
– Encrypt(ek,M ; ρ) outputs a ciphertext C, on M , under the encryption key

pk, with the randomness ρ;
– Decrypt(dk, C) outputs the plaintext M , encrypted in the ciphertext C or ⊥.
Such encryption scheme is required to have the following security properties:

– Correctness: For every pair of keys (ek, dk) generated by KeyGen, every mes-
sages M , and every random ρ, we should have

Decrypt(dk,Encrypt(ek,M ; ρ)) =M.

– Indistinguishability under Adaptive Chosen Ciphertext Attack IND-CCA (see
[49,52]): An adversary should not be able to efficiently guess which message
has been encrypted even if he chooses the two original plaintexts, and ask
several decryption of ciphertexts different from challenge one.
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The ODecrypt oracle outputs the decryption of c under the challenge de-
cryption key dk. The input queries (c) are added to the list CT of decrypted
ciphertexts.

Expind-cca−bE,A (K)

1. param← Setup(1K)
2. (pk, dk)← KeyGen(param)
3. (M0,M1)← A(FIND : pk,ODecrypt(·))
4. c∗ ← Encrypt(ek,Mb)
5. b′ ← A(GUESS : c∗,ODecrypt(·))
6. IF (c∗) ∈ CT RETURN 0
7. ELSE RETURN b′

A.2 Commitments

A commitment scheme is said equivocable if it has a second setup SetupComT(1K)
that additionally outputs a trapdoor τ , and two algorithms
– SimCom`(τ) takes as input the trapdoor τ and a label ` and outputs a pair

(C, eqk), where C is a commitment and eqk an equivocation key;
– OpenCom`(eqk, C, x) takes as input a commitment C, a label `, a message
x, an equivocation key eqk, and outputs an opening data δ for C and ` on x.

such as the following properties are satisfied: trapdoor correctness (all simulated
commitments can be opened on any message), setup indistinguishability (one
cannot distinguish the CRS ρ generated by SetupCom from the one generated
by SetupComT) and simulation indistinguishability (one cannot distinguish a
real commitment (generated by Com) from a fake commitment (generated by
SCom), even with oracle access to fake commitments), denoting by SCom the
algorithm that takes as input the trapdoor τ , a label ` and a message x and
which outputs (C, δ)

$← SCom`(τ, x), computed as (C, eqk)
$← SimCom`(τ) and

δ ← OpenCom`(eqk, C, x).
A commitment scheme C is said to be extractable if it has a second setup

SetupComT(1K) that additionally outputs a trapdoor τ , and a new algorithm
– ExtCom`(τ, C) which takes as input the trapdoor τ , a commitment C, and

a label `, and outputs the committed message x, or ⊥ if the commitment is
invalid.

such as the following properties are satisfied: trapdoor correctness (all commit-
ments honestly generated can be correctly extracted: for all `, x, if (C, δ)

$←
Com`(x) then ExtCom`(C, τ) = x), setup indistinguishability (as above) and
binding extractability (one cannot fool the extractor, i.e., produce a commit-
ment and a valid opening data to an input x while the commitment does not
extract to x).

A commitment scheme is said extractable and equivocable if the indistinguish-
able setup algorithm outputs a common trapdoor that allows both equivocability
and extractability, and the following properties are satisfied: strong simulation
indistinguishability (one cannot distinguish a real commitment (generated by
Com) from a fake commitment (generated by SCom), even with oracle access
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Expc-s-ps-rand-bA (K)

(ρ, τ)
$← SetupComT(1K)

(`, x, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ); C $← SimCom`(τ)

hk
$← HashKG(Lx); hp← ProjKG(hk, Lx,⊥)

If (b = 0) H ← Hash(hk, Lx, (`, C))

Else H
$← Π

(`′, C′, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(state, C, hp, H)

If ((`′, ?, C′) ∈ Λ) THEN H ′ ←⊥
Else H ′ ← Hash(hk, Lx, (`

′, C′)

Return ASCom·(τ,·),ExtCom·(τ,·)(H ′)

Fig. 6. Strong Pseudo-Randomness

to the extraction oracle (ExtCom) and to fake commitments (using SCom)) and
strong binding extractability (one cannot fool the extractor, i.e., produce a com-
mitment and a valid opening data (not given by SCom) to an input x while the
commitment does not extract to x, even with oracle access to the extraction
oracle (ExtCom) and to fake commitments (using SCom)).

A.3 Smooth Projective Hash Functions Used With Commitments

The strong pseudo-randomness property, from [14], is defined by the experi-
ment Expc-s-ps-randA (K) depicted in Figure 6. It is a strong version of the pseudo-
randomness where the adversary is also given the hash value of a commitment
of its choice (obviously not generated by SCom or SimCom though, hence the
test with Λ which also contains (C, `, x)). This property only makes sense when
the projection key does not depend on the word C to be hashed. It thus applies
to KV-SPHF, and CS-SPHF only.
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