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Abstract. We extend the reach of functional encryption schemes that are
provably secure under simple assumptions against unbounded collusion
to include function-hiding inner product schemes. Our scheme is a private
key functional encryption scheme, where ciphertexts correspond to vectors
~x, secret keys correspond to vectors ~y, and a decryptor learns 〈~x, ~y〉. Our
scheme employs asymmetric bilinear maps and relies only on the SXDH
assumption to satisfy a natural indistinguishability-based security notion
where arbitrarily many key and ciphertext vectors can be simultaneously
changed as long as the key-ciphertext dot product relationships are all
preserved.

1 Introduction

Functional encryption (FE) [25, 8, 23] is an exciting paradigm for non-interactively
computing on encrypted data. In a functional encryption scheme for a family F , it
is possible to derive “special-purpose” decryption keys Kf for any function f ∈ F
from a master secret key. Given such a decryption key Kf and an encryption of
some input x, a user should be able to learn f(x) and nothing else about x.

A driving force behind FE has been to understand what class of functions
F can be supported and what notions of security can be achieved. In terms of
functionality, research in FE started with the early works on attribute-based
encryption [25, 16], progressively evolving to support more expressive classes
of functions, leading to the state of art works that are now able to support
computation of general polynomial-size circuits [24, 15, 14, 11]. In terms of security,
most of the prior work in this area focuses on the privacy of (encrypted) messages
(see, e.g., [8, 23, 10] for various security definitions considered in the literature for
message privacy).

In many application scenarios, however, it is important to also consider privacy
of the function being computed. Consider the following motivating example:
suppose a hospital subscribes to a cloud service provider to store medical records
of its patients. To protect the privacy of the data, these records are stored in an
encrypted form. At a later point in time, the hospital can request the cloud to
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perform some analysis on the encrypted records by releasing a decryption key
Kf for a function f of its choice. If the FE scheme in use does not guarantee any
hiding of the function (which is the case for many existing FE schemes), then
the key Kf might reveal f completely to the cloud, which is undesirable when f
itself contains sensitive information.

This has motivated the study of function privacy in FE, starting with the work
of Shen et al. [26], and more recently by [6, 7, 2, 9]. Intuitively speaking, function
privacy requires that given a decryption key Kf for a function f , one should
not be able to learn any unnecessary information about f . Using the analogy
to secure computation, function private FE can be seen as the non-interactive
analogue of private function evaluation (which guarantees the privacy of both
the input x and the function f being computed on x) just like standard FE can
be seen as the non-interactive analogue of secure function evaluation (which only
guarantees privacy of the input x). One may also observe that the notion of
function privacy is similar in spirit to program obfuscation [5, 11]. Indeed, in the
public-key setting, function private FE, in fact, implies program obfuscation.4 In
the secret-key setting, however, no such implication is known.

In this work, we continue the study of function privacy in FE. In particular, we
focus on the inner product functionality IP : a function IP~y ∈ IP in this function
family is parametrized by a vector ~y in the finite field Zp . On an input ~x ∈ Zp,
IP~y(~x) = 〈~x, ~y〉, where 〈~x, ~y〉 denotes the inner product

∑n
i=1 xiyi ∈ Zp. Inner

product is a particularly useful function for statistical analysis. In particular, in
the context of FE, (as shown by [17]) it enables computation of conjunctions,
disjunctions, CNF/DNF formulas, polynomial evaluation and exact thresholds.

Prior work on FE for inner product can be cast into the following two
categories:

– Generic constructions: By now, we have a large sequence of works [24, 15,
14, 10, 11, 27, 12, 4] on FE that support computation of general circuits. Very
recently, Brakerski and Segev [9] give a general transformation from any FE
scheme for general circuits into one that achieves function privacy. Then,
by combining [9] with the aforementioned works, one can obtain a function-
private FE scheme for inner product as a special case.
We note, however, that these generic FE constructions use heavy-duty tools for
secure computation (such as fully-homomorphic encryption [13] and program
obfuscation [5, 11]) and are therefore extremely inefficient. Furthermore, in
order to achieve collusion-resistance – one of the central goals in FE since its
inception – the above solution would rely on indistinguishability obfuscation
[5, 11], which is a strong assumption.

– Direct constructions: To the best of our knowledge, the only “direct” con-
struction of FE for inner product that avoids the aforementioned expensive
tools is due to the recent work of Abdalla et al. [1]. Their work, however,
does not consider function privacy.

4 Here, the security definition for function privacy determines the security notion
of program obfuscation that we obtain. See, e.g., [6] for further discussion on this
connection.



We clarify that our formulation of inner product FE is different from that
considered in the works of [17, 26, 18, 3, 21, 22, 7]. Very briefly, these works
study inner product in the context of predicate encryption, where a message
m is encrypted along with a tag ~x and decryption with a key Ky yields m iff
〈~x, ~y〉 = 0. In contrast, as discussed above, we are interested in learning the
actual inner product value (in Zp).

In summary, the state of the art leaves open the problem of constructing a
collusion-resistant, function-private FE scheme for inner product from standard
assumptions. We stress that unless we put some restrictions on the distribution
of the messages (as in the work of [6, 7]), this question only makes sense in the
secret-key setting.

Our Results. In this work, we resolve this open problem. Specifically, we construct
a function-private secret-key FE scheme for the inner product functionality that
supports any arbitrary polynomial number of key queries and message queries.
Our construction makes use of asymmetric bilinear maps and is significantly
more efficient than the generic solutions discussed earlier. The security notion we
prove for our construction is a natural indistinguishability-based notion, and we
establish it under the Symmetric External Diffie-Hellman Assumption (SXDH).
To obtain correctness for our scheme, we assume that inner products will be
contained in a polynomially-sized range. This assumption is quite reasonable for
statistical applications, where the average or count of some bounded quantity
over a polynomially-sized database will naturally be in a polynomial range.

Our Techniques. We begin with the basic idea for inner product encryption
developed in [17], which is the observation that one can place two vectors in the
exponents on opposite sides of a bilinear group and compute the dot product via
the pairing. This already provides some protection for the vectors as discrete log
is thought to be hard in these groups, but without further randomization, this
is vulnerable to many attacks, such as guessing the vector or learning whether
two coordinates of a vector are the same. For this reason, the construction in
[17] multiplies each of the exponent vectors by a random scalar value and uses
additional subgroups in a composite order group to supply more randomization.
The use of composite order groups in this way is by no means inherent, as
subsequent works [18, 21, 22] (for example) demonstrate how to supply a sufficient
amount of randomization in prime order bilinear groups using dual pairing vector
spaces. However, in all of these schemes, the random scalars prevent a decryptor
from learning the actual value of the inner product. Of course this is intentional
and required, as these are predicate encryption schemes where the prescribed
functionality only depends on whether the inner product is zero or nonzero.
To adapt these methods to allow a decryptor to learn the inner product, we
must augment the construction with additional group elements that produce
the same product of scalars in the exponent. Then the decryptor can produce
the value by finding a ratio between the exponents of two group elements. This
will be efficiently computable when the value of the inner product is in a known



polynomially-sized range. Crucially, we must prove that these additional group
elements do not reveal any unintended information.

We note that the construction in [17] is not known to be function-hiding. And
since we are further allowing the inner product itself to be learned, function-hiding
for our scheme means something different than function-hiding for schemes such
as [17]. In particular, function hiding for a public key scheme in our setting would
be impossible: one could simply create ciphertexts for a basis of vectors and
test decryption of one’s key against all of them to fully reconstruct the vector
embedded in the key. It is thus fundamental that the public key scheme in [1] is
not function-hiding. Indeed, their secret keys include vectors given in the clear
and have no hiding properties.

To prove function-hiding for our construction, we thus leverage our private key
setting to obtain a perfect symmetry between secret keys and ciphertexts, both
in our construction and in our security reduction. Since no public parameters for
encryption need to be published, the same techniques that we use to hide the
underlying vectors in the ciphertexts can be flipped to argue that function-hiding
holds for the secret keys.

The core of our security argument is an information-theoretic step (in the
setting of dual pairing vector spaces as introduced by Okamoto and Takashima
[19, 20]). Essentially, our master secret key consists of two dual orthonormal bases
that will be employed in the exponents to encode the vectors for ciphertexts and
secret keys respectively. Secret keys and ciphertexts thus correspond to linear
combinations of these basis vectors in the exponent. Since the bases themselves
are never made public, if all of the secret keys (for example) are orthogonal to
a particular vector, then there is a hidden “dimension” in the bases that can
be used to argue that the ciphertext vector can be switched to another vector
that has the same inner products with the provided keys. In fact, if we did not
want any function privacy and instead only wanted to hide whether a single
ciphertext corresponded to a vector ~x0 or ~x1 while giving out secret keys for
vectors ~y orthogonal to ~x0 − ~x1, then we would do this information-theoretically.
When we instead have many ciphertexts and we also demand function privacy
for the keys, we use a hybrid argument, employing various applications of the
SXDH assumption to move things around in the exponent bases and isolate
a single ciphertext or key in a particular portion of the bases to apply our
information-theoretic argument. The symmetry between keys and ciphertexts
in our construction allows us to perform the same hybrid argument to obtain
function privacy as in the case of multiple-ciphertext security.

2 Preliminaries

2.1 Functional Encryption Specifications and Security Definitions

In the rest of this paper, we will consider a specialization of the general definition
of functional encryption to the particular functionality of computing dot products
of n-length vectors over a finite field Zp. A private key functional encryption
scheme for this class of functions will have the following PPT algorithms:



Setup(1λ, n)→ PP,MSK The setup algorithm will take in the security parameter
λ and the vector length parameter n (a positive integer that is polynomial in λ).
It will produce a master secret key MSK and public parameters PP. (Note that
this is not a public key scheme, so the PP are not sufficient to encrypt - they are
just parameters that do not need to be kept secret.)

Encrypt(MSK,PP, ~x)→ CT The encryption algorithm will take in the master
secret key MSK, the public parameters PP, and a vector ~x ∈ Znp . It produces a
ciphertext CT.

KeyGen(MSK,PP, ~y)→ SK The key generation algorithm will take in the master
secret key MSK, the public parameters PP, and a vector ~y ∈ Znp . It produces a
secret key SK.

Decrypt(PP,CT,SK)→ m ∈ Zp or ⊥ The decryption algorithm will take in the
public parameters PP, a ciphertext CT, and a secret key SK. It will output either
a value m ∈ Zp or ⊥.

For correctness, we will require the following. We suppose that PP,MSK
are the result of calling Setup(1λ, n), and CT,SK are then the result of calling
Encrypt(MSK,PP, ~x) and KeyGen(MSK,PP, ~y) respectively. We then require
that the output of Decrypt(PP,CT,SK) must be either m = 〈~x, ~y〉 or ⊥. We will
only require that it is 〈~x, ~y〉 and not ⊥ when 〈~x, ~y〉 is from a fixed polynomial
range of values inside Zp, as this will allow a decryption algorithm to compute it
as a discrete log in a group where discrete log is generally hard.

Security We will consider an indistinguishability-based security notion defined by
a game between a challenger and an attacker. At the beginning of the game, the
challenger calls Setup(1λ, n,B) to produce MSK,PP. It gives PP to the attacker.
The challenger also selects a random bit b.

Throughout the game, the attacker can (adaptively) make two types of a
queries. To make a key query, it submits two vectors ~y0, ~y1 ∈ Znp to the challenger,

who then runs KeyGen(MSK,PP, ~yb) and returns the resulting SK to the attacker.
To make a ciphertext query, the attacker submits two vectors ~x0, ~x1 ∈ Znp to

the challenger, who then runs Encrypt(MSK,PP, ~xb) and returns the resulting
ciphertext to the attacker. The attacker can make any polynomial number of
key and ciphertext queries throughout the game. At the end of the game, the
attacker must submit a guess b′ for the bit b. We require that for all key queries
~y0, ~y1 and all ciphertext queries ~x0, ~x1, it must hold that

〈~y0, ~x0〉 = 〈~y0, ~x1〉 = 〈~y1, ~x0〉 = 〈~y1, ~x1〉

The attacker’s advantage is defined to be the probability that b′ = b minus 1
2 .

Definition 1. We say a private key functional encryption scheme for dot prod-
ucts over Znp satisfies function-hiding indistinguishability-based security if any
PPT attacker’s advantage in the above game is negligible as a function of the
security parameter λ.



Remark 1. We note that the attacker can trivially win the security game if
we allowed a key query ~y0, ~y1 and ciphertext query ~x0, ~x1 such that 〈~y0, ~x0〉 6=
〈~y1, ~x1〉. Our stronger requirement that 〈~y0, ~x1〉 and 〈~y1, ~x0〉 is used for our hybrid
security proof, but it might be possible to remove it by developing different proof
techniques.

2.2 Asymmetric Bilinear Groups

We will construct our scheme in aymmetric bilinear groups. We let G denote
a group generator - an algorithm which takes a security parameter λ as input
and outputs a description of prime order groups G1, G2, GT with a bilinear map
e : G1×G2 → GT . We define G’s output as (p,G1, G2, GT , e), where p is a prime,
G1, G2 and GT are cyclic groups of order p, and e : G1 × G2 → GT is a map
with the following properties:

1. (Bilinear) ∀g1 ∈ G1, g2 ∈ G2, a, b ∈ Zp, e(ga1 , gb2) = e(g1, g2)ab

2. (Non-degenerate) ∃g1 ∈ G1, g2 ∈ G2 such that e(g1, g2) has order p in GT .

We refer to G1 and G2 as the source groups and GT as the target group.
We assume that the group operations in G1, G2, and GT and the map e are
computable in polynomial time with respect to λ, and the group descriptions of
G1, G2, and GT include a generator of each group.

The SXDH Assumption The security of our construction relies on the hardness
of the SXDH assumption. Given prime order groups (p,G1, G2, GT , e)← G(λ),
we define the SXDH problem as distinguishing between the following two distri-
butions:

D1 = (g1, g
a
1 , g

b
1, g

ab
1 , g2)

and

D2 = (g1, g
a
1 , g

b
1, g

ab+r
1 , g2)

where g1, g2 are generators of G1, G2, and a, b, r ← Zp.
The SXDH Assumption states that no polynomial-time algorithm can achieve

non-negligible advantage in deciding between D1 and D2. It also states that the
same is true for the analogous distributions formed from switching the roles of
G1, G2 (that is, D1 = (g2, g

a
2 , g

b
2, g

ab
2 , g1) and D2 = (g2, g

a
2 , g

b
2, g

ab+r
2 , g1))

2.3 Dual Pairing Vector Spaces

In addition to referring to individual elements of G1 and G2, we will also consider
“vectors” of group elements. For ~v = (v1, ..., vm) ∈ Zmp and g1 ∈ G1, we write g~v1
to denote the m-tuple of elements of G1:

g~v1 := (gv11 , ..., g
vm
1 )



We can also perform scalar multiplication and exponentiation in the exponent.
For any a ∈ Zp and ~v, ~w ∈ Zmp , we have:

ga~v1 :=(gav11 , ..., gavm1 )

g~v+~w1 =(gv1+w1
1 , ..., gvm+wm

1 )

We abuse notation slightly and also let e denote the product of the component
wise pairings:

e(g~v1 , g
~w
2 ) :=

m∏
i=1

e(gvi1 , g
wi
2 ) = e(g1, g2)〈~v,~w〉

Here, the dot product is taken modulo p.

Dual Pairing Vector Spaces We will employ the concept of dual pairing vector
spaces from [19, 20]. We will choose two random sets of vectors: B := {~b1, . . . ,~bm}
and B∗ = {~b∗1, . . . ,~b∗m} of Zmp subject to the constraint that they are “dual
orthonormal” in the following sense:

〈~bi,~b∗i 〉 = 1 (mod p) for all i

〈~bi,~b∗j 〉 = 0 (mod p) for all j 6= i.

We note that choosing sets (B,B∗) at random from sets satisfying these dual
orthonormality constraints can be realized by choosing a set of m vectors B
uniformly at random from Zmp (these vectors will be linearly independent with
high probability), then determining each vector of B∗ from its orthonormality
constraints. We will denote choosing random dual orthonormal sets this way as:
(B,B∗)← Dual(Zmp ).

3 Construction

We now present our construction in asymmetric bilinear groups. We will choose
dual orthonormal bases B and B∗ that will be used in the exponent to encode
ciphertext and key vectors respectively. Vectors will be encoded twice to create
space for a hybrid security proof and will be additionally masked by random
scalars (these basic features are also present in [17]). We will use additional dual
bases D,D∗ to separately encode these same scalars in the exponent so that
their effect can be removed from the final decryption result. We view it as a
core feature of our construction that the structure of keys and ciphertexts in
our scheme is perfectly symmetric, just on different sides of dual orthonormal
bases. This enables us to prove function hiding for the keys with exactly the
same techniques we use to prove indistinguishability security for the ciphertexts.



Setup(1λ, n),→ MSK,PP The setup algorithm takes in the security parameter λ
and a positive integer n specifying the desired length of vectors for the keys and
ciphertexts. It chooses an asymmetric bilinear group consisting of G1, G2, GT , all
with prime order p. It fixes generators g1, g2 of G1 and G2 respectively. It then
samples dual orthonormal bases B,B∗ ← Dual(Z2n

p ) and dual orthonormal bases
D,D∗ ← Dual(Z2

p). It defines the master secret key as MSK := B,B∗,D,D∗. The
groups G1, G2, GT , the generators g1, g2, and p are set to be public parameters.

Encrypt(MSK,PP, ~x)→ CT The encryption algorithm takes in the master secret
key B,B∗,D,D∗, the public parameters, and a vector ~x ∈ Znp . It chooses two
independent and uniformly random elements α, α̃ ∈ Zp. It then computes:

C1 := g
α(x1

~b∗1+···+xn~b
∗
n)+α̃(x1

~b∗n+1+···+xn~b
∗
2n)

1

C2 := g
α~d∗1+α̃

~d∗2
1 .

The ciphertext CT = {C1, C2}.

KeyGen(MSK,PP, ~y) → SK The secret key generation algorithm takes in the
master secret key B,B∗,D,D∗, the public parameters, and a vector ~y ∈ Znp . It

chooses two independent and uniformly random elements β, β̃ ∈ Zp. It then
computes:

K1 := g
β(y1~b1+···+yn~bn)+β̃(y1~bn+1+···+yn~b2n)
2

K2 := gβ
~d1+β̃ ~d2

2 .

The secret key SK = {K1,K2}.

Decrypt(PP,CT,SK) → m ∈ Zp or ⊥ The decryption algorithm takes in the
public parameters, the ciphertext C1, C2, and the secret key K1,K2. It computes:

D1 := e(C1,K1)

D2 := e(C2,K2).

It then computes an m such that Dm
2 = D1 as elements of GT . It outputs m. We

note that we can guarantee that the decryption algorithm runs in polynomial
time when we restrict to checking a fixed, polynomially size range of possible
values for m and output ⊥ when none of them satisfy the criterion Dm

2 = D1.

Correctness We observe that for a ciphertext formed by calling Encrypt(MSK,PP, ~x)
and a key formed by calling KeyGen(MSK,PP, ~y), we have

D1 = e(C1,K1) = e(g1, g2)αβ〈~x,~y〉+α̃β̃〈~x,~y〉 = e(g1, g2)(αβ+α̃β̃)〈~x,~y〉

and D2 = e(C2,K2) = e(g1, g2)αβ+α̃β̃ .

This follows immediately from the definitions of C1, C2,K1,K2 and the fact
that B,B∗ and D,D∗ are dual orthonormal bases pairs. Thus, if 〈~x, ~y〉 is in the
polynomial range of possible values for m that the decryption algorithm checks,
it will output m := 〈~x, ~y〉 as desired.



4 Security Proof

Our security proof is structured as a hybrid argument over a series of games
which differ in how the ciphertext and keys are constructed. Intuitively, if there
were only one ciphertext, we could embed the difference of the two possible
ciphertext vectors, namely ~x0− ~x1, into the definition of the bases B,B∗ to argue
that this difference is hidden when only key vectors orthogonal to ~x0 − ~x1 are
provided. In other words, there is ambiguity in the choice of B,B∗ left conditioned
on the provided keys, and this can be exploited to switch ~x0 for ~x1. But there is
a limited amount of such ambiguity, so to re-purpose it for many ciphertexts, we
employ a hybrid argument that isolates each ciphertext in turn in a portion of the
basis. Since keys and ciphertexts are constructed and treated symmetrically in
our scheme, we can apply the same hybrid argument over keys to prove function
hiding, just reversing the roles of B and B∗.

Notice that a normal ciphertext for a vector ~x contains two parallel copies
of ~x in the exponent of C1: one attached to ~b∗i ’s and one attached to ~b∗n+i’s for
i = 1, ..., n. We will refer to this as a type-(~x, ~x) ciphertext. We will use this
notation to define a type-(~0, ~x) ciphertext - one which is normally formed but has

no ~b∗i components for i = 1, ..., n and no ~d∗1 component in C2. We will also use
the same terminology to refer to keys (i.e: type-(~y, ~y) / type-(~0, ~y) / type-(~y,~0)
keys).

Letting Q1 denote the total number of ciphertext queries the attacker makes,
we define 7 games for each j = 0, ..., Q1:

Game1j,Z In Game1j,Z all ciphertexts before the jth ciphertext are of type-(~0, ~x1i ),

the jth ciphertext is of type-(~0, ~x0i ), all ciphertexts after the jth ciphertext are
also type-(~0, ~x0i ) ciphertexts, and all keys are of type-(~y0i , ~y

0
i ).

Game2j,Z Game2j,Z is the same as Game1j,Z except that the jth ciphertext is now

of type-(~x0j , ~x
0
j ).

Game3j,Z Game3j,Z is the same as Game2j,Z except that the jth ciphertext is now

of type-(~x0j , ~x
1
j ).

Game4j,Z Game4j,Z is the same as Game3j,Z except that all ciphertexts before the

jth ciphertext are now of type-(~x1i , ~x
1
i ) and all ciphertexts after the jth ciphertext

are now type-(~x0i , ~x
0
i ) ciphertexts.

Game5j,Z Game5j,Z is the same as Game4j,Z except that all ciphertexts before the

jth ciphertext are now of type-(~x1i ,~0) and all ciphertexts after the jth ciphertext
are now type-(~x0i ,~0) ciphertexts.

Game6j,Z Game6j,Z is the same as Game5j,Z except that the jth ciphertext is now

of type-(~x1j , ~x
1
j ).



Game7j,Z Game7j,Z is the same as Game6j,Z except that all ciphertexts before the

jth ciphertext are now of type-(~x1i , ~x
1
i ) and all ciphertexts after the jth ciphertext

are now type-(~x0i , ~x
0
i ) ciphertexts.

Letting Q2 denote the total number of key requests the attacker makes, we
define 7 additional games for each j = 0, ..., Q2:

Game1O,j In Game1O,j all keys before the jth key are of type-(~0, ~y1i ), the jth key

is of type-(~0, ~y0i ), all keys after the jth key are also type-(~0, ~y0i ) keys, and all
ciphertexts are of type-(~x1i , ~x

1
i ).

Game2O,j Game2O,j is the same as Game1O,j except that the jth key is now of

type-(~y0j , ~y
0
j ).

Game3O,j Game3O,j is the same as Game2O,j except that the jth key is now of

type-(~y0j , ~y
1
j ).

Game4O,j Game4O,j is the same as Game3O,j except that all keys before the jth

key are now of type-(~y1i , ~y
1
i ) and all keys after the jth key are now type-(~y0i , ~y

0
i )

keys.

Game5O,j Game5O,j is the same as Game4O,j except that all keys before the jth

key are now of type-(~y1i ,~0) and all keys after the jth key are now type-(~y0i ,~0)
keys.

Game6O,j Game6O,j is the same as Game5O,j except that the jth key is now of

type-(~y1j , ~y
1
j ).

Game7O,j Game7O,j is the same as Game6O,j except that all keys before the jth

key are now of type-(~y1i , ~y
1
i ) and all keys after the jth key are now type-(~y0i , ~y

0
i )

keys.

Note that Game70,Z is the real security game played with b = 0 and Game7O,Q2
is

the real security game played with b = 1. Note also that Game7Q1,Z
and Game7O,0

are identical.
We will use a hybrid argument to transition between the two to show that

no polynomial attacker can achieve non-negligible advantage in the security
game (distinguishing between b = 0 and b = 1.). Our hybrid works in two parts,
first transitioning all ciphertexts from type-(~x0i , ~x

0
i ) to type-(~x1i , ~x

1
i ) (using the

Gameij,Z ’s), then transitioning all keys from type-(~y0i , ~y
0
i ) to type-(~y1i , ~y

1
i ) (using

the GameiO,j ’s).

First we will transition from Game70,Z (the real security game played with

b = 0) to Game11,Z . We then transition from Game11,Z to Game21,Z , to Game31,Z ,

...., to Game71,Z , to Game12,Z etc. until reaching Game7Q1,Z
, where all ciphertexts



are of type (~x1i , ~x
1
i ) (but all keys are still of type (~y0i , ~y

0
i )). Recall that Game7Q1,Z

is identical to Game7O,0. We will then transition from Game7Q1,Z
= Game7O,0 to

Game1O,1, to Game2O,1, ...., to Game7O,1, to Game1O,2, etc. until reaching Game7O,Q2
,

where all keys are of type (~y1i , ~y
1
i ) (and all ciphertexts are of type (~x1i , ~x

1
i )). This

is identical to the real security game played with b = 1.

We begin the first transition in a hybrid over the Q1 ciphertexts. Recall that
the real security game played with b = 0 is identical to Game70,Z , so in particular,

the following lemma allows us to make the first transition from Game70,Z to

Game11,Z .

Lemma 1. No polynomial-time attacker can achieve a non-negligible difference
in advantage between Game7(j−1),Z and Game1j,Z for j = 1, ..., Q1 under the SXDH
assumption.

Proof. Given an attacker that achieves non-negligible difference in advantage
between Game7(j−1),Z and Game1j,Z for some j ∈ [1, Q1], we could achieve non-
negligible advantage in deciding the SXDH problem as follows:

Given SXDH instance g1, g
a
1 , g

b
1, T = gab+r1 , g2 where either r ← Zp or r = 0,

use g1, g2 as the generators of the same name used to form ciphertexts and keys
respectively. Generate bases (F,F∗) ← Dual(Z2n

p ), (H,H∗) ← Dual(Z2
p) and

implicitly define new bases (B,B∗), (D,D∗) as the following:

~bi = ~fi − a~fn+i for i = 1, ..., n

~bn+i = ~fn+i for i = 1, ..., n

~b∗i = ~f∗i for i = 1, ..., n

~b∗n+i = ~f∗n+i + a~f∗i for i = 1, ..., n

~d1 = ~h1 − a~h2
~d2 = ~h2

~d∗1 = ~h∗1
~d∗2 = ~h∗2 + a~h∗1

Note that these bases are distributed exactly the same as those output by
Dual(Z2n

p ) and Dual(Z2
p) respectively (they are created by applying an invertible

linear transformation to the output of Dual(Z2n
p ) and Dual(Z2

p)).



To construct any key (for, say, vector ~y0), generate random β, β̃′ ← Zp,
implicitly define β̃ = βa+ β̃′, and compute:

K1 = g
β(y01

~f1+···+y0n ~fn)+β̃
′(y01

~fn+1+···+y0n ~f2n)
2

= g
β(y01

~f1+···+y0n ~fn)+(β̃−βa)(y01 ~fn+1+···+y0n ~f2n)
2

= g
β(y01(

~f1−a~fn+1)+···+y0n(~fn−a~f2n))+β̃(y
0
1
~fn+1+···+y0n ~f2n)

2

= g
β(y01

~b1+···+y0n~bn)+β̃(y
0
1
~bn+1+···+y0n~b2n)

2

K2 = gβ
~h1+β̃

′~h2

2

= g
β~h1+(β̃−βa)~h2

2

= g
β(~h1−a~h2)+β̃~h2

2

= gβ
~d1+β̃ ~d2

2

a properly distributed type-(~y0, ~y0) key (as expected in both Game7(j−1),Z and

Game1j,Z).

For the jth ciphertext and all ciphertexts after, draw α′i, α̃
′
i ← Zp and

compute:

C1,i = (gb1)α
′
i(x

0
1,i
~f∗n+1+···+x

0
n,i

~f∗2n)(T )α
′
i(x

0
1,i
~f∗1 +···+x

0
n,i

~f∗n)g
α̃′i(x

0
1,i
~f∗n+1+···+x

0
n,i

~f∗2n)

1

· (ga1 )α̃
′
i(x

0
1,i
~f∗1 +···+x

0
n,i

~f∗n)

= g
α′ir(x

0
1,i
~f∗1 +···+x

0
n,i

~f∗n)+(α̃′i+α
′
ib)(x

0
1,i(

~f∗n+1+a
~f∗1 )+···+x

0
n,i(

~f∗2n+a
~f∗n))

1

= g
α′ir(x

0
1,i
~b∗1+···+x

0
n,i
~b∗n)+(α̃′i+α

′
ib)(x

0
1,i
~b∗n+1+···+x

0
n,i
~b∗2n)

1

C2,i = (gb1)α
′
i
~h∗2 (T )α

′
i
~h∗1g

α̃′i
~h∗2

1 (ga1 )α̃
′
i
~h∗1

= g
α′ir

~h∗1+(α̃′i+α
′
ib)(

~h∗2+a
~h∗1)

1

= g
α′ir

~d∗1+(α̃′i+α
′
ib)

~d∗2
1



For ciphertexts before the jth ciphertext, draw α′i, α̃
′
i ← Zp and compute:

C1,i = (gb1)α
′
i(x

1
1,i
~f∗n+1+···+x

1
n,i

~f∗2n)(T )α
′
i(x

1
1,i
~f∗1 +···+x

1
n,i

~f∗n)g
α̃′i(x

1
1,i
~f∗n+1+···+x

1
n,i

~f∗2n)

1

· (ga1 )α̃
′
i(x

1
1,i
~f∗1 +···+x

1
n,i

~f∗n)

= g
α′ir(x

1
1,i
~f∗1 +···+x

1
n,i

~f∗n)+(α̃′i+α
′
ib)(x

1
1,i(

~f∗n+1+a
~f∗1 )+···+x

1
n,i(

~f∗2n+a
~f∗n))

1

= g
α′ir(x

1
1,i
~b∗1+···+x

1
n,i
~b∗n)+(α̃′i+α

′
ib)(x

1
1,i
~b∗n+1+···+x

1
n,i
~b∗2n)

1

C2,i = (gb1)α
′
i
~h∗2 (T )α

′
i
~h∗1g

α̃′i
~h∗2

1 (ga1 )α̃
′
i
~h∗1

= g
α′ir

~h∗1+(α̃′i+α
′
ib)(

~h∗2+a
~h∗1)

1

= g
α′ir

~d∗1+(α̃′i+α
′
ib)

~d∗2
1

(The only difference from the prior ciphertext construction is that ~x1 is used
instead of ~x0).

When r ← Zp, all ciphertexts before the jth ciphertext are properly distributed
type-(~x1i , ~x

1
i ) ciphertexts and the remaining ciphertexts are properly distributed

type-(~x0i , ~x
0
i ) ciphertexts where αi = α′ir and α̃i = α̃′i + α′ib. This is as would be

expected in Game7(j−1),Z .
When r = 0, all ciphertexts before the jth ciphertext are properly distributed
type-(~0, ~x1i ) ciphertexts and the remaining ciphertexts are properly distributed
type-(~0, ~x0i ) ciphertexts where α̃i = α̃′i + α′ib. This is as would be expected in
Game1j,Z .

Our simulation is therefore identical to either Game7(j−1),Z or Game1j,Z de-

pending on the SXDH challenge T = gab+r1 having r ← Zp or r = 0 respectively.
Therefore, by playing the security game in this manner with the supposed attacker
and using the attacker’s output as an answer to the SXDH challenge, we will
enjoy the same non-negligible advantage as the supposed attacker in deciding
the SXDH problem.

By the SXDH assumption, this is not possible, so no such adversary can exist.

Lemma 2. No polynomial-time attacker can achieve a non-negligible difference
in advantage between Game1j,Z and Game2j,Z for j = 1, ..., Q1 under the SXDH
assumption.

Proof. Given an attacker that achieves non-negligible difference in advantage
between Game1j,Z and Game2j,Z for some j ∈ [1, Q1], we could achieve non-
negligible advantage in deciding the SXDH problem as follows:

Given SXDH instance g1, g
a
1 , g

b
1, T = gab+r1 , g2 where either r ← Zp or r = 0,

use g1, g2 as the generators of the same name used to form ciphertexts and keys



respectively.. Generate bases (F,F∗) ← Dual(Z2n
p ), (H,H∗) ← Dual(Z2

p) and
implicitly define new bases (B,B∗), (D,D∗) as the following:

~bi = ~fi − a~fn+i for i = 1, ..., n

~bn+i = ~fn+i for i = 1, ..., n

~b∗i = ~f∗i for i = 1, ..., n

~b∗n+i = ~f∗n+i + a~f∗i for i = 1, ..., n

~d1 = ~h1 − a~h2
~d2 = ~h2

~d∗1 = ~h∗1
~d∗2 = ~h∗2 + a~h∗1

Note that these bases are distributed exactly the same as those output by
Dual(Z2n

p ) and Dual(Z2
p) respectively (they are created by applying an invertible

linear transformation to the output of Dual(Z2n
p ) and Dual(Z2

p)).

To construct any key (for, say, vector ~y0), generate random β, β̃′ ← Zp,
implicitly define β̃ = βa+ β̃′, and compute:

K1 = g
β(y01

~f1+···+y0n ~fn)+β̃
′(y01

~fn+1+···+y0n ~f2n)
2

= g
β(y01

~f1+···+y0n ~fn)+(β̃−βa)(y01 ~fn+1+···+y0n ~f2n)
2

= g
β(y01(

~f1−a~fn+1)+···+y0n(~fn−a~f2n))+β̃(y
0
1
~fn+1+···+y0n ~f2n)

2

= g
β(y01

~b1+···+y0n~bn)+β̃(y
0
1
~bn+1+···+y0n~b2n)

2

K2 = gβ
~h1+β̃

′~h2

2

= g
β~h1+(β̃−βa)~h2

2

= g
β(~h1−a~h2)+β̃~h2

2

= gβ
~d1+β̃ ~d2

2

a properly distributed type-(~y0, ~y0) key (as expected in both Game1j,Z and

Game2j,Z).



For ciphertexts before the jth ciphertext draw random α̃i ← Zp and compute:

C1,i = g
α̃i(x

1
1,i
~f∗n+1+···+x

1
n,i

~f∗2n)

1 (ga1 )α̃i(x
1
1,i
~f∗1 +···+x

1
n,i

~f∗n)

= g
α̃i(x

1
1,i(

~f∗n+1+a
~f∗1 )+···+x

1
n,i(

~f∗2n+a
~f∗n))

1

= g
α̃i(x

1
1,i
~b∗n+1+···+x

1
n,i
~b∗2n)

1

C2,i = g
α̃i~h
∗
2

1 (ga1 )α̃i
~h∗1

= g
α̃i(~h

∗
2+a

~h∗1)
1

= g
α̃i ~d
∗
2

1

a properly distributed type-(~0, ~x1i ) ciphertext (as expected in both Game1j,Z and

Game2j,Z).
For ciphertexts after the jth ciphertext draw random α̃i ← Zp and compute:

C1,i = g
α̃i(x

0
1,i
~f∗n+1+···+x

0
n,i

~f∗2n)

1 (ga1 )α̃i(x
0
1,i
~f∗1 +···+x

0
n,i

~f∗n)

= g
α̃i(x

0
1,i(

~f∗n+1+a
~f∗1 )+···+x

0
n,i(

~f∗2n+a
~f∗n))

1

= g
α̃i(x

0
1,i
~b∗n+1+···+x

0
n,i
~b∗2n)

1

C2,i = g
α̃i~h
∗
2

1 (ga1 )α̃i
~h∗1

= g
α̃i(~h

∗
2+a

~h∗1)
1

= g
α̃i ~d
∗
2

1

a properly distributed type-(~0, ~x0i ) ciphertext (as expected in both Game1j,Z and

Game2j,Z). Note that this construction is the same as that of the first j − 1

ciphertexts except for the ~x0i components used instead of ~x1i .
For the jth ciphertext, compute:

C1,j = (gb1)x
0
1,j
~f∗n+1+···+x

0
n,j

~f∗2n(T )x
0
1,j
~f∗1 +···+x

0
n,j

~f∗n

= g
r(x0

1,j
~f∗1 +···+x

0
n,j

~f∗n)+b(x
0
1,j(

~f∗n+1+a
~f∗1 )+···+x

0
n,j(

~f∗2n+a
~f∗n))

1

= g
r(x0

1,j
~b∗1+···+x

0
n,j
~b∗n)+b(x

0
1,j
~b∗n+1+···+x

0
n,j
~b∗2n)

1

C2,j = (gb1)
~h∗2 (T )

~h∗1

= g
r~h∗1+b(

~h∗2+a
~h∗1)

1

= g
r~d∗1+b

~d∗2
1



When r = 0, this is a properly distributed type-(~0, ~x0j ) ciphertext where α̃j = b

(as would be expected in Game1j,Z).

When r ← Zp, this is a properly distributed type-(~x0j , ~x
0
j ) ciphertext where αj = r

and α̃j = b (as would be expected in Game2j,Z).

Our simulation is therefore identical to either Game1j,Z or Game2j,Z depending

on the SXDH challenge T = gab+r1 having r = 0 or r ← Zp respectively. Therefore,
by playing the security game in this manner with the supposed attacker and using
the attacker’s output as an answer to the SXDH challenge, we will enjoy the same
non-negligible advantage as the supposed attacker in deciding the SXDH problem.

By the SXDH assumption, this is not possible, so no such adversary can exist.

Lemma 3. No attacker can achieve a non-negligible difference in advantage
between Game2j,Z and Game3j,Z for j = 1, ..., Q1.

Proof. This lemma is unconditionally true because both games are information-
theoretically identical.

In the simulation of the security Game2j,Z , one draws bases (B,B∗) ←
Dual(Z2n

p ). However, imagine knowing the jth ciphertext vectors ~x0j , ~x
1
j ahead of

time and drawing the bases in the following way: first, draw B,B∗ ← Dual(Z2n
p )

then apply following invertible linear transformation to get (F,F∗), which is used
(along with a normally drawn (D,D∗)← Dual(Z2

p)) as the basis:

~fi = ~bi for i = 1, ..., n

~fn+i = ~bn+i +
α̃j(x

0
i,j − x1i,j)
αjx01,j

~b1 for i = 1, ..., n

~f∗1 = ~b∗1 −
n∑
i=1

α̃j(x
0
i,j − x1i,j)
αjx01,j

~b∗n+i

~f∗i = ~b∗i for i = 2, ..., 2n

where αj , α̃j are randomly drawn values used in the creation of the jth ciphertext.
Recall that the distribution of the (F,F∗) produced this way is identical to that
produced by Dual(Z2n

p )).

Consider simulating Game2j,Z with this basis. Any key (for, say, vector ~y0)
looks like:

K1 = g
β(y01

~f1+···+y0n ~fn)+β̃(y
0
1
~fn+1+···+y0n ~f2n)

2

K2 = gβ
~d1+β̃ ~d2

2 .



where:

K1 = g
β(y01

~f1+···+y0n ~fn)+β̃(y
0
1
~fn+1+···+y0n ~f2n)

2

= g
β(y01

~b1+···+y0n~bn)+β̃(y
0
1(
~bn+1+

α̃j(x
0
1,j−x

1
1,j)

αjx
0
1,j

~b1)+···+y0n(~b2n+
α̃j(x

0
n,j−x

1
n,j)

αjx
0
1,j

~b1))

2

= g
β(y01

~b1+···+y0n~bn)+β̃(y
0
1
~bn+1+···+y0n~b2n)+

β̃α̃j〈~y
0,~x0j−~x

1
j 〉

αjx
0
1,j

~b1

2

= g
β(y01

~b1+···+y0n~bn)+β̃(y
0
1
~bn+1+···+y0n~b2n)

2

The last step above comes from the fact that 〈~y0, ~x0j − ~x1j 〉 = 0.

(~x0j , ~x
1
j are vectors requested in the game where we require 〈~y0, ~x0j 〉 = 〈~y0, ~x1j 〉 =⇒

〈~y0, ~x0j − ~x1j 〉 = 0). This is a type-(~y0, ~y0) key in the (B,B∗) basis (as expected in

both Game2j,Z and Game3j,Z).
All ciphertexts created before the jth ciphertext look like properly distributed

type-(~0, ~x1i ) ciphertexts in the (B,B∗) basis:

C1,i = g
α̃i(x

1
1,i
~f∗n+1+···+x

1
n,i

~f∗2n)

1

= g
α̃i(x

1
1,i
~b∗n+1+···+x

1
n,i
~b∗2n)

1

C2,i = g
α̃i ~d
∗
2

1

Similarly, all ciphertexts created after the jth ciphertext look like properly
distributed type-(~0, ~x0i ) ciphertexts in the (B,B∗) basis:

C1,i = g
α̃i(x

0
1,i
~f∗n+1+···+x

0
n,i

~f∗2n)

1

= g
α̃i(x

0
1,i
~b∗n+1+···+x

0
n,i
~b∗2n)

1

C2,i = g
α̃i ~d
∗
2

1

However, the jth ciphertext constructed (as a type-(~x0j , ~x
0
j ) ciphertext) looks

like a type-(~x0j , ~x
1
j ) ciphertext in the (B,B∗) basis:

C1,j = g
αj(x

0
1,j
~f∗1 +···+x

0
n,j

~f∗n)+α̃j(x
0
1,j
~f∗n+1+···+x

0
n,j

~f∗2n)

1

= g

αj(x
0
1,j(

~b∗1−

n∑
i=1

α̃j(x
0
i,j − x1i,j)
αjx01,j

~b∗n+i) + · · ·+ x0n,j
~b∗n) + α̃j(x

0
1,j
~b∗n+1 + · · ·+ x0n,j

~b∗2n)

1

= g
αj(x

0
1,j
~b∗1+···+x

0
n,j
~b∗n)+α̃j(x

1
1,j
~b∗n+1+···+x

1
n,j
~b∗2n)

1

C2,j = g
αj ~d
∗
1+α̃j

~d∗2
1



This construction of the jth ciphertext is the only difference between Game2j,Z
and Game3j,Z . So, drawing (B,B∗) directly from Dual(Z2n

p ) and using it to play

Game2j,Z results in Game2j,Z in the (B,B∗) basis. However, transforming this

basis to (F,F∗) and using it instead results in playing Game3j,Z with the (B,B∗)
basis. However, since (B,B∗) and (F,F∗) have the same distribution (the one
produced by Dual(Z2n

p )), this means that the two Games are actually information-
theoretically identical. Therefore, no attacker can achieve non-negligible difference
advantage in distinguishing between Game2j,Z and Game3j,Z .

Lemma 4. No polynomial-time attacker can achieve a non-negligible difference
in advantage between Game3j,Z and Game4j,Z for j = 1, ..., Q1 under the SXDH
assumption.

Proof. Given an attacker that achieves non-negligible difference in advantage
between Game3j,Z and Game4j,Z for some j ∈ [1, Q1], we could achieve non-
negligible advantage in deciding the SXDH problem as follows:

Given SXDH instance g1, g
a
1 , g

b
1, T = gab+r1 , g2 where either r ← Zp or r = 0,

use g1, g2 as the generators of the same name used to form ciphertexts and keys
respectively. Generate bases (F,F∗) ← Dual(Z2n

p ), (H,H∗) ← Dual(Z2
p) and

implicitly define new bases (B,B∗), (D,D∗) as the following:

~bi = ~fi − a~fn+i for i = 1, ..., n

~bn+i = ~fn+i for i = 1, ..., n

~b∗i = ~f∗i for i = 1, ..., n

~b∗n+i = ~f∗n+i + a~f∗i for i = 1, ..., n

~d1 = ~h1 − a~h2
~d2 = ~h2

~d∗1 = ~h∗1
~d∗2 = ~h∗2 + a~h∗1

Note that these bases are distributed exactly the same as those output by
Dual(Z2n

p ) and Dual(Z2
p) respectively (they are created by applying an invertible

linear transformation to the output of Dual(Z2n
p ) and Dual(Z2

p)).



To construct any key (for, say, vector ~y0), generate random β, β̃′ ← Zp,
implicitly define β̃ = βa+ β̃′, and compute:

K1 = g
β(y01

~f1+···+y0n ~fn)+β̃
′(y01

~fn+1+···+y0n ~f2n)
2

= g
β(y01

~f1+···+y0n ~fn)+(β̃−βa)(y01 ~fn+1+···+y0n ~f2n)
2

= g
β(y01(

~f1−a~fn+1)+···+y0n(~fn−a~f2n))+β̃(y
0
1
~fn+1+···+y0n ~f2n)

2

= g
β(y01

~b1+···+y0n~bn)+β̃(y
0
1
~bn+1+···+y0n~b2n)

2

K2 = gβ
~h1+β̃

′~h2

2

= g
β~h1+(β̃−βa)~h2

2

= g
β(~h1−a~h2)+β̃~h2

2

= gβ
~d1+β̃ ~d2

2

a properly distributed type-(~y0, ~y0) key (as expected in both Game3j,Z and

Game4j,Z).

For the jth ciphertext, draw αj , α̃j ← Zp and compute:

C1,j = g
αj(x

0
1,j
~f∗1 +···+x

0
n,j

~f∗n)+α̃j(x
1
1,j
~f∗n+1+···+x

1
n,j

~f∗2n)

1 (ga1 )α̃j(x
1
1,j
~f∗1 +···+x

1
n,j

~f∗n)

= g
αj(x

0
1,i
~f∗1 +···+x

0
n,i

~f∗n)+α̃j(x
1
1,j(

~f∗n+1+a
~f∗1 )+···+x

1
n,j(

~f∗2n+a
~f∗n))

1

= g
αj(x

0
1,j
~b∗1+···+x

0
n,j
~b∗n)+α̃j(x

1
1,j
~b∗n+1+···+x

1
n,j
~b∗2n)

1

C2,j = g
αj~h

∗
1

1 g
α̃j~h

∗
2

1 (ga1 )α̃j
~h∗1

= g
αj~h

∗
1+α̃j(

~h∗2+a
~h∗1)

1

= g
αj ~d
∗
1+α̃j

~d∗2
1

a properly distributed type-(~x0j , ~x
1
j ) ciphertext (as expected in both Game3j,Z and

Game4j,Z).



For all ciphertexts after the jth ciphertext, draw α′i, α̃
′
i ← Zp and compute:

C1,i = (gb1)α
′
i(x

0
1,i
~f∗n+1+···+x

0
n,i

~f∗2n)(T )α
′
i(x

0
1,i
~f∗1 +···+x

0
n,i

~f∗n)g
α̃′i(x

0
1,i
~f∗n+1+···+x

0
n,i

~f∗2n)

1

· (ga1 )α̃
′
i(x

0
1,i
~f∗1 +···+x

0
n,i

~f∗n)

= g
α′ir(x

0
1,i
~f∗1 +···+x

0
n,i

~f∗n)+(α̃′i+α
′
ib)(x

0
1,i(

~f∗n+1+a
~f∗1 )+···+x

0
n,i(

~f∗2n+a
~f∗n))

1

= g
α′ir(x

0
1,i
~b∗1+···+x

0
n,i
~b∗n)+(α̃′i+α

′
ib)(x

0
1,i
~b∗n+1+···+x

0
n,i
~b∗2n)

1

C2,i = (gb1)α
′
i
~h∗2 (T )α

′
i
~h∗1g

α̃′i
~h∗2

1 (ga1 )α̃
′
i
~h∗1

= g
α′ir

~h∗1+(α̃′i+α
′
ib)(

~h∗2+a
~h∗1)

1

= g
α′ir

~d∗1+(α̃′i+α
′
ib)

~d∗2
1

For ciphertexts before the jth ciphertext, draw α′i, α̃
′
i ← Zp and compute:

C1,i = (gb1)α
′
i(x

1
1,i
~f∗n+1+···+x

1
n,i

~f∗2n)(T )α
′
i(x

1
1,i
~f∗1 +···+x

1
n,i

~f∗n)g
α̃′i(x

1
1,i
~f∗n+1+···+x

1
n,i

~f∗2n)

1

· (ga1 )α̃
′
i(x

1
1,i
~f∗1 +···+x

1
n,i

~f∗n)

= g
α′ir(x

1
1,i
~f∗1 +···+x

1
n,i

~f∗n)+(α̃′i+α
′
ib)(x

1
1,i(

~f∗n+1+a
~f∗1 )+···+x

1
n,i(

~f∗2n+a
~f∗n))

1

= g
α′ir(x

1
1,i
~b∗1+···+x

1
n,i
~b∗n)+(α̃′i+α

′
ib)(x

1
1,i
~b∗n+1+···+x

1
n,i
~b∗2n)

1

C2,i = (gb1)α
′
i
~h∗2 (T )α

′
i
~h∗1g

α̃′i
~h∗2

1 (ga1 )α̃
′
i
~h∗1

= g
α′ir

~h∗1+(α̃′i+α
′
ib)(

~h∗2+a
~h∗1)

1

= g
α′ir

~d∗1+(α̃′i+α
′
ib)

~d∗2
1

(The only difference from the prior ciphertext construction is that ~x1 is used
instead of ~x0).

When r = 0, all ciphertexts before the jth ciphertext are properly distributed
type-(~0, ~x1i ) ciphertexts and all ciphertexts after the jth are properly distributed
type-(~0, ~x0i ) ciphertexts where α̃i = α̃′i + α′ib. This is as would be expected in
Game3j,Z .

When r ← Zp, all ciphertexts before the jth are properly distributed type-(~x1i , ~x
1
i )

ciphertexts and all ciphertexts after the jth are properly distributed type-(~x0i , ~x
0
i )

ciphertexts where αi = α′ir and α̃i = α̃′i + α′ib. This is as would be expected in
Game4j,Z .

Our simulation is therefore identical to either Game3j,Z or Game4j,Z depending

on the SXDH challenge T = gab+r1 having r = 0 or r ← Zp respectively. Therefore,
by playing the security game in this manner with the supposed attacker and using



the attacker’s output as an answer to the SXDH challenge, we will enjoy the same
non-negligible advantage as the supposed attacker in deciding the SXDH problem.

By the SXDH assumption, this is not possible, so no such adversary can exist.

Lemma 5. No polynomial-time attacker can achieve a non-negligible difference
in advantage between Game4j,Z and Game5j,Z for j = 1, ..., Q1 under the SXDH
assumption.

Proof. The proof of this lemma is symmetric to that of the previous Lemma 4,
just flipping the role of the two parallel bases.

Lemma 4 showed how to create keys of type-(~y0, ~y0) and a type-(~x0j , ~x
1
j)

ciphertext while having the ciphertexts before and after the jth be type-(~0, ~x1i )
and type-(~0, ~x0i ) or type-(~x1i , ~x

1
i ) and type-(~x0i , ~x

0
i ) respectively based on the

challenge elements of the SXDH problem. By symmetrically applying the same
embedding to the opposite halves of the parallel bases, we can achieve the same
result, but with the ciphertexts before and after the jth being type-(~x1i , ~x

1
i ) and

type-(~x0i , ~x
0
i ) or type-(~x1i ,~0) and type-(~x0i ,~0) respectively based on the challenge

elements of the SXDH problem, which is what we need for this transition.

Lemma 6. No attacker can achieve a non-negligible difference in advantage
between Game5j,Z and Game6j,Z for j = 1, ..., Q1.

Proof. The proof of this lemma is information-theoretic and similarly symmetric
to that of Lemma 3, just flipping the role of the two parallel bases (just like the
previous lemma did with Lemma 4).

Lemma 7. No polynomial-time attacker can achieve a non-negligible difference
in advantage between Game6j,Z and Game7j,Z for j = 1, ..., Q1 under the SXDH
assumption.

Proof. The proof of this lemma is nearly identical to that of Lemma 5 (which
transitioned ciphertexts before the jth between type-(~x1i ,~0) and type-(~x1i , ~x

1
i )

and ciphertexts after the jth between type-(~x0i ,~0) and type-(~x0i , ~x
0
i )) but instead

constructing the jth ciphertext as type-(~x1i , ~x
1
i ) instead of type-(~x0i , ~x

1
i ).

The previous lemmas let us transition to Game7Q1,Z
, where all ciphertexts

are of type-(~x1i , ~x
1
i ) and all keys are type-(~y0i , ~y

0
i ) keys. Notice that Game7Q1,Z

is

identical to Game7O,0. It is easy to see that we can now use a symmetric set of

hybrids to transition all keys to type-(~y1i , ~y
1
i ) in a similar manner: starting by

transitioning from Game7Q1,Z
= Game7O,0 to Game1O,1, then proceeding through

the GameiO,j using the same methods as in the Gameij,Z , just switching the roles

of the basis vectors (switching all ~b∗ with ~b, ~d∗ with ~d, α with β, α̃ with β̃, and
~xi with ~yi, while always producing type (~x1i , ~x

1
i ) ciphertexts (instead of always

producing type (~y0i , ~y
0
i ) keys).

These symmetric arguments let us transition to Game7O,Q2
, where all cipher-

texts are of type-(~x1, ~x1) and all keys are type-(~y1i , ~y
1
i ) keys. This is identical



to the original security game when b = 1. So, by a hybrid argument, we have
shown that no polynomial-time attacker gan achieve non-negligible difference in
advantage in the security game when b = 0 (Game70,Z) vs when b = 1 (Game7O,Q2

)
under the SXDH assumption, so our construction is therefore secure.
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