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Abstract. The standard method for designing a secure computation
protocol for function f first transforms f into either a circuit or a RAM
program and then applies a generic secure computation protocol that ei-
ther handles boolean gates or translates the RAM program into oblivious
RAM instructions.
In this paper, we show a large class of functions for which a different iter-
ative approach to secure computation results in more efficient protocols.
The first such examples of this technique was presented by Aggarwal,
Mishra, and Pinkas (J. of Cryptology, 2010) for computing the median;
later, Brickell and Shmatikov (Asiacrypt 2005) showed a similar tech-
nique for shortest path problems.
We generalize the technique in both of those works and show that it ap-
plies to a large class of problems including certain matroid optimizations,
sub-modular optimization, convex hulls, and other scheduling problems.
The crux of our technique is to securely reduce these problems to secure
comparison operations and to employ the idea of gradually releasing part
of the output. We then identify conditions under which both of these
techniques for protocol design are compatible with achieving simulation-
based security in the honest-but-curious and covert adversary models.
In special cases such as median, we also show how to achieve malicious
security.
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1 Introduction

Secure two-party computation allows Alice with private input x and Bob,
with input y, to jointly compute f(x, y) without revealing any information
other than the output f(x, y).

Building on Yao’s celebrated garbled circuits construction [25], many
recent works [17, 18, 4, 11, 15, 14, 10, 16, 21] construct such protocols by
first translating f into a boolean circuit and then executing a protocol to
securely evaluate each gate of that circuit. Alternatively, Ostrovsky and
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Shoup [20] demonstrated a way to construct two-party secure computa-
tion protocols for RAM programs by first translating the RAM program
into a sequence of oblivious RAM (ORAM) instructions and then apply-
ing a secure computation protocol to implement each ORAM operation.
Further refinements of this idea and state of the art approaches to ORAM
design [7, 23, 22] limit the overhead in terms of bandwidth, client storage
and total storage to roughly Õ(log3(n)) for each operation on a memory
of size n resulting in protocols [9, 16, 12, 24] that are efficient enough for
some problems in practice.

Reduction-based techniques In both of the above approaches, the secure
evaluation of f is reduced to the secure evaluation of either a boolean
gate or an ORAM instruction.

Instead of reducing function f into such low-level primitives and se-
curely evaluating each primitives, one can also consider reducing f into
a program that only makes secure evaluations of a higher-level primitive.
A natural candidate for this secure primitive is the comparison function,
or the millionaires problem.

Aggarwal, Mishra, and Pinkas [1] begin to investigate this approach
by studying the problem of securely computing the kth-ranked element of
dataset DA ∪DB where Alice privately holds dataset DA ⊂ F and Bob
privately holds dataset DB ⊂ F . They reduce the computation of the
kth-ranked element element to O(log k) secure comparisons of (logM)-bit
inputs where logM is the number of bits needed to describe the elements
in F ; this protocol outperforms the naive method for the same problem
since a circuit for computing ranked elements has size at least |DA∪DB|.

Their algorithm follows the classic communication-optimal protocol
for this problem: each party computes the median of its own dataset,
the parties then jointly compare their medians, and depending on whose
median is larger, each party eliminates half of its input values and then
recurses on the smaller datasets. Aggarwal, Mishra and Pinkas observe
that by replacing each comparison between the parties’ medians with
a secure protocol for comparing two elements, they can argue that the
overall protocol is secure in the honest-but-curious setting. In particular,
for the case of median, they observe that the sequence of answers from
each secure comparison operation can be simulated using only the output
kth-ranked element.

Brickell and Shmatikov [6] use a similar approach to construct semi-
honest secure computation protocols for the all pairs shortest distance
(APSD) and single source shortest distance (SSSD) problems. In both
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cases, their protocols are more efficient than circuit-based secure com-
putation protocols. While the work of [6] considers only the two-party
setting the work of [1] additionally considers the multiparty setting.

1.1 Our Results

We continue the study of reducing the secure evaluation of function f to
secure evaluation of comparisons in the two-party setting. Our first contri-
bution is to generalize the approach of Aggarwal, Mishra, and Pinkas and
that of Brickell and Shmatikov as the parameterized protocol in Fig. 1.
The parameters to this protocol are the comparison function LTf , and
the method F . The comparison function takes two input elements with
their corresponding key values and returns the element with the smaller
key value; F is the local update function that determines how each party
determines its input for the next iteration based on the answers from the
previous iteration (c1 . . . , cj) and its local input U (or V ).

Generic Iterative Secure Computation
Alice Input: Distinct elements U = {u1, . . . , un}
Bob Input: Distinct elements V = {v1, . . . , vn}
Output: The final output is c1, . . . , c`

1. Alice initializes (ua, ka)← F (⊥, U) and Bob initializes (vb, kb)← F (⊥, V ).

2. Repeat for `(|U |, |V |) times:

(a) Alice and Bob execute the secure protocol cj ← LTf ((ua, ka), (vb, kb)).

(b) Alice updates (ua, ka) ← F ((c1, . . . , cj), U) and Bob updates (vb, kb) ←
F ((c1, . . . , cj), V ).

Fig. 1. The generic structure of a secure iterative protocol.

We show that this parameterized protocol can be used to construct
more efficient secure computation protocols for a much larger class of opti-
mization problems than the three specific instances they considered. In §4,
we construct choices for LT, F that securely compute several combinato-
rial optimization problems, matroid optimization problems, sub-modular
optimizations, and computation of the convex hull.

A key reason for the improved efficiency of this approach over both
circuits and ORAM techniques is the fact that the output is gradually
released to both parties. The result of one iteration of the loop is used to
select inputs to the next iteration of the loop; more generally, the output
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of the secure computation can be thought to be released bit-by-bit, node-
by-node, or edge-by-edge. Thus it is not immediately clear that such an
approach can be secure, even against honest-but-curious adversaries.

Our next contribution is to show that an instantiation of the above
generic protocol can be made secure in the honest-but-curious model when
the functions f is greedy-compatible, i.e. it satisfies a few simple properties.
First, the problem must have a unique solution. One can often guarantee
this property by specifying simple rules to break ties among comparisons.
Second, the order in which the output is revealed must be unique, and
finally, we require a local updatability property for the function F which
essentially states that F has a very weak homomorphism with the com-
parison function LT. (See definition 1). When these three conditions are
met, and when the LTf function can be securely evaluated efficiently,
then the instantiated protocol can be asymptotically (and practically)
superior to other approaches. See Table 2 for several examples.

Algorithm This Work Circuit ORAM

Convex Hull O(|Z|lM ) Ω(|I|2lM ) Ω(|I| log3 |I|lM )

MST O(V lM ) Ω((V α(V ))2lM ) Ω(V α(V ) log3 V lM )

Unit Job Sched O(|Z|lM ) Ω(|I|2lM ) Ω(|I| log3 |I|lM )

Single-Src ADSP O(V lM ) Ω(E2lM ) Ω(E log3ElM )

Submodular Opt O(|Z|lM ) Ω(|IS |2lM ) Ω(|IS | log |IS |lM )

Fig. 2. Communication costs for secure protocols in the semi-honest case. I = U ∪ V
the union of Alice and Bob’s inputs and Z is the output. V and E are the number
of vertices and edges in graph problems. α(·) is the Inverse Ackermann function. For
problems where each element is a set, IS represents the sum of the set sizes. lM = logM
where M typically represents the maximum integer values the inputs can take. For each
case, the complexity for the generic Circuit-based approach was obtained by relating
it to the number of (dependent) memory accesses made by the best algorithm and the
ORAM complexity was obtained by relating it to the time complexity of best known
algorithm. In many cases, our communication complexity is related to the output-size,
which can be much smaller than the input size for many problems.

1.2 Malicious and Covert Security

We also consider stronger notions of security for our protocols, namely
security against fully malicious adversaries, and security against covert
adversaries (which can be achieved much more efficiently) in the two-
party setting.
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Recall from the previous section that efficiency gain of our approach
owes in part to the gradual release of output during each iteration. Herein
lies a difficulty: A malicious adversary can manipulate its input used at
each iteration of the protocol based on the results from previous iter-
ations. This cheating ability complicates the construction of a proper
Ideal-simulator.

As a first step, we can require the adversary to commit to its input
before the protocol starts and force the adversary to only use commit-
ted data. To perform a simulation, we will first attempt to extract the
adversaries’ input, and then use this input to simulate the rest of the
computation. We can use standard ideas with extractable commitments
to perform this extraction. However, this is not enough. The main tech-
nical problem arises in the case that the adversary selectively aborts or
selectively uses his committed inputs in the iterative protocol based on
the intermediate results of the computation.

The prior work of Aggarwal, Mishra and Pinkas [1] claim that their
simulation works for malicious adversaries; however, their simulation fails
to account for the case when the adversary selectively aborts. Our second
technical contributions is to present a hardened version of the protocol by
Aggarwal, Mishra and Pinkas [1] for securely computing the median and
a simulation argument which proves that it achieves malicious security.

As we discuss in §6.1, the techniques we use to show full malicious
security rely on two specific properties that holds for the median prob-
lem. At a high level, for any input A of Alice and any element a ∈ A,
we need that only one sequence of outputs from the previous iterations
of our general protocol framework lead to Alice using a as an input. Fur-
thermore, there are at most polynomially-many execution “traces” for
any set of inputs from Alice and Bob (in contrast, graph problems have
exponentially many traces). If there were multiple traces that lead to the
use of element a ∈ A, then the adversary can selectively decide to abort
on one of the traces and such an adversary cannot be simulated since its
view depends on the trace and therefore the honest party’s input. If the
second property fails to hold then it can be argued that it would be hard
for the simulator to extract the “right” input of the adversary.

Indeed, the selective abort issue seems to be a fundamental bottleneck
to overcome. When these two properties fail to hold, e.g. in the case
of the convex hull, or submodular optimization problems, we augment
our basic protocol into one that achieves covert security as introduced
Aumann and Lindell [2]. Covert security guarantees that if an adversary
deviates in a way that would enable it to “cheat”, then the honest party is
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Algorithm This Work (covert) Circuit (malicious)

Convex Hull O(|Z|lM + |I|l2M ) Ω(|I|2lM )

MST O(V log V lM ) Ω((V α(V ))2lM )

Unit Job Scheduling O((|Z|+ |I|)lM ) Ω(|I|2lM )

Single-Source ADSP O((V + E)lM ) Ω(E2lM )

Fig. 3. Comparison of the communication costs of covert security with the malicious
security using circuits ignoring poly(k) factors. lM = logM . I = U ∪ V the union
of Alice and Bob’s inputs. V and E are the number of vertices and edges in graph
problems. We remark that since we ignore poly(k) factors, the complexity of the Circuit-
based approach would be the same as above even if we considered only achieving covert
security. We were unable to estimate costs for achieving malicious security with ORAM.

guaranteed to detect the cheating with reasonable probability. The covert
model handles situations in which a malicious party has a strong incentive
“not to be caught cheating,” while offering substantial improvements in
efficiency versus the fully malicious model.

To achieve covert security, we must handle both selective aborts, and
also ensure that an adversary does not cheat by using only a subset of
its committed input during the protocol (perhaps based on a predicate of
intermediate output). To handle this last issue, we require the adversary
to prove at the end of the protocol that all of the committed inputs
are either part of the output or used properly during the protocol. The
adversary will provide one proof per “element” of the input, and thus, we
need to design proofs that are sub-linear in the input size n, preferably
logarithmic or even constant-sized.

For each of our selected problems, we provide these novel consistency
checks. In cases such as the convex-hull, single-source shortest paths and
job-scheduling, these checks are simple and have constant size (modulo
the security parameter). For the case of the Minimum Spanning Tree,
however, we required an elegant application of the Union-Find data struc-
ture to achieve communication efficient consistency checks for this prob-
lem. We summarize our performance for many problems in Table 3.

Although one might be able to use either Universal arguments [19,
3] or SNARKS [8, 5] to achieve malicious security with low communica-
tion, both of those techniques dramatically increase the computational
overhead of the protocol. In particular, when proving an NP -relation of
size t on an input statement x, the prover’s computational complexity is
proportional to Õ(t) and the verifier’s computational complexity is pro-
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generalized compare
Alice Input: Tuple (u, x) with k-bit integer key x

Bob Input: Tuple (v, y) k-bit integer key y

LTf Output: Return u if x < y and v otherwise

Fig. 4. Generic comparison protocol

portional to Õ(|x|). In our context, since such a proof will be required in
each iteration, the computational complexity for both parties would be
Õ(|Z|× |I|) + c(f) where Z and I are the inputs and outputs of the com-
putation and c(f) is the complexity for computing f itself. In contrast,
our covert security and semi-honest protocol computation complexity is
O(|Z|+ |I|) + c(f).

2 Preliminaries

We denote (c1, . . . , cj) by c≤j . Two sequences of distributions {Cn}n∈N
and {Dn}n∈N are said to be computationally indistinguishable if for any
probabilistic polynomial time algorithm A, |Pr[A(Cn) = 1]−Pr[A(Dn) =
1] is a negligible function in n. We formally describe a generalized mil-
lionaire (comparison) function in Fig. 4.

3 Honest-But-Curious Protocols

For many well-known greedy algorithms we show how to securely compute
them using our Generic Protocol specified in Figure 1. On a high-level,
in this protocol abstraction, Alice and Bob have a set of inputs U and
V . In every iteration, each of them provide an input element e from their
local inputs and an associated key ke to the comparison functionality
LTf which returns the element with smaller key value. More precisely, in
iteration i, Alice supplies input (ua, ka) and Bob supplies input (vb, kb)
where ua ∈ U and vb ∈ V to the LTf -functionality. The functionality
returns as output ci = ka < kb ? ua : vb. At the end of each iteration
there is a local update rule that determines the next input and key for the
next iteration. Finally, Alice and Bob output c1, . . . , c` as their outputs.

We make the following requirements on the function f that we wish to
compute using a greedy-algorithm. For each instantiation, we show that
the requirements are satisfied.

Definition 1. We say that a two-party function f is greedy compatible
if there exists functions LT, F such that the following holds:

7



1. Unique Solution: Given the inputs U and V of Alice and Bob, there
is a unique solution.

2. Unique Order: There is a unique order in which the greedy-strategy
outputs the solution. More precisely,

f(U, V ) = (c1, . . . , c`)

where c1 = F (⊥, U ∪ V ) and ci+1 = F (c≤i, U ∪ V ) for every i =
1, . . . , `− 1.

3. Local Updatability: Informally, we require that F on the union of
Alice and Bob’s inputs can be obtained by applying F locally to U and
V and then computing a comparison. More precisely, we require that

F1(c≤j , U ∪ V ) = LTf (F (c≤j , U), F (c≤j , V ))

where F1 represents the first member in the tuple output by F .

3.1 Honest-but-Curious Security

Theorem 1. For any function f that is greedy compatible, the Generic
Iterative Secure Computation algorithm from Figure 1 securely computes
f on the union of the inputs held by Alice and Bob, for the case of semi-
honest adversaries.

We argue correctness and privacy of our protocols. Our analysis of
the protocol will be in the LTf hybrid, where the parties are assumed to
have access to a trusted party computing the LTf .

Correctness: First we observe that if U and V are Alice and Bob’s inputs,
then from the Unique Order property it holds that f(U, V ) = (c1, . . . , c`)
where c1 = F (⊥, U ∪ V ) and ci+1 = F (c≤i, U ∪ V ) for i = 1, . . . , ` − 1.
The output computed by Alice and Bob by executing the Generic Iterative
Secure Computation algorithm is c̃1, . . . , c̃` where

c̃1 = LTf (F (⊥, U), F (⊥, V ))

c̃i+1 = LTf (F (c̃≤i, U), F (c̃≤i, V )) for i in {1, . . . , `− 1}

Correctness now follows from the Local Updatability property of f .
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Privacy: Next to prove security in the honest-but-curious case, we con-
struct a simulator that given the parties input and output can simulate
the interaction indistinguishably.

Recall that, our analysis of the security of the protocol is in the LTf

hybrid. Thus the simulator that we describe will play the trusted party
implementing LTf , when simulating the adversary. Below we prove secu-
rity when one of the parties are corrupted. We argue for the case when
Alice is corrupted and the case for Bob follows symmetrically since the
protocol is symmetric in both parties.

Alice is corrupted. The simulator needs to produce a transcript indistin-
guishable to the honest adversary Ah in the LTf hybrid.

– The simulator upon corrupting Alice receives her input U . It feeds U
to the ideal functionality computing f to receive the output c≤l.

– Next run the honest Alice’s code for the Generic Algorithm. Alice
in iteration i for i = 1, . . . , `, submits an input (ua, ka) to the LTf

functionality. S simulates the output by feeding ci to Alice.

– Finally, at the end of `-iterations, S outputs the view of Alice.

From the Unique Order property and the fact that Alice is honest, the
view generated by S in the LTf -hybrid is identical to the view of Alice
in the real experiment. More precisely,

ideal
LTf

f,S(z),I(U, V, k) ≡ real
LTf

f,Ah(z),I
(U, V, k)

Therefore, from the composition theorem stated in Section ??, security
against semi-honest adversaries holds. This concludes the proof sketch of
Theorem 1.

4 Instantiations of Our Protocol

4.1 Convex Hull

In this problem, Alice and Bob have as input sets of points U and V in
a plane and the goal is to securely compute the convex hull of the union
of points. Each element u = (x, y) consists of two logM -bit integers that
represent the X and Y coordinate of the point. We assume that the union
of points are such that no two points share the same X-coordinate and no
three of them are collinear. The function F for the convex hull is defined
as F (c≤j , U) = (ua, ka) where:
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– If j = 0, then ua is point with the least value for the x-coordinate (i.e.
the leftmost point) and ka is set to be the x-coordinate of ua.

– If j > 0, ua is the point in U that attains the minimum value for
angle(cj , c) where angle(pt1, pt2) is the (clockwise) angle made by the
line joining pt1 and pt2 with the vertical drawn through pt1 and ka =
angle(cj , a).

The correctness of the Convex-hull instantiation follows from the Gift-
Wrapping (or Jarvis march) algorithm. Furthermore, it is easy to verify
that Convex Hull is greedy compatible with F if no two-points have the
same x or y coordinate and no three-points are collinear. Hence, we have
the following theorem.

Theorem 2. The Generic Iterative Secure Computation proto-
col instantiated with the F described above securely computes the convex
hull of the union of inputs of Alice and Bob, for the case of semi-honest
adversaries, assuming all inputs of Alice and Bob are distinct, no two of
which share the same x-coordinate and no three points are collinear.

Overhead: The total number of rounds of communication is |Z|, the size of
the convex-hull Z which is at most |I| where I = U∪V . In each round, the
protocol performs at most one secure comparison of logM -bit integers.
A circuit for performing the comparison has O(logM) gates and logM
inputs. The overhead of the protocol for computing this circuit, secure
against semi-honest adversaries, is logM oblivious-transfers. This can be
thought of as O(logM) public-key operations, O(logM) symmetric key
operations and communication of O(logM). The overall communication
complexity is O(|Z| logM).

In comparison, the naive circuit implementation will have at least
|I| (dependent) memory accesses which will result in a circuit size of
Ω(|I|2 logM). If we considered an ORAM implementation it would result
in total communication of Ω(|I| log3 |I| logM) since the best algorithm
would require O(|I| log |I|) steps and the overhead for each step is log2 |I|
since we need to maintain a memory of size O(|I|).

In the full version, we provide more examples: Job Interval Scheduling
problem; general Matroid optimization problems for which membership
in set I can be tested locally including minimum spanning tree problems
and unit cost scheduling problems; the single-source shortest distance
problem; and sub modular optimization problems such as set-cover and
max cover approximations.
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5 Covert Security

We describe the main issues to overcome with the current protocol:

Adaptively chosen inputs As our iterative protocol gradually releases the
answer, it is possible for the adversary to modify its input as the protocol
proceeds. To defend, we include an input commitment phase. Then in the
secure computation phase, the adversary provides decommitments with
every input it uses in the computation of the LTf -functionality.

Missing inputs Consider an adversary that commits to its inputs but fails
to follow the greedy strategy, namely, does not perform the local update
rule using F honestly. This is an issue even if the adversary is restricted to
only use inputs that it committed to because it can adaptively decide to
use only a subset of them. Consider the minimum spanning tree problem
in which the adversary can decide to drop a certain edge based on the
partial output released before an iteration. To prevent this attack, we will
rely on digital signatures.

Alice and Bob will first pick signature keys and share their verification
keys. Next, in every computation using LTf , Alice and Bob will obtain
signatures of the output along with some specific auxiliary information
that will later be used by each party to demonstrate honest behavior.
More precisely, after the secure computation phase and the output is
obtained, for every input u ∈ U of Alice, it does the following:

– If u is part of the output, then we require Alice to prove to Bob that
it has a signature on u under Bob’s key and modify LTf to reveal
the Commitment of u to Bob in that iteration. This will allow Bob
to determine which of the Commitments made by Alice in the input
commitment phase is not part of the output.

– If u is not part of the output, Alice proves to Bob that u is not part of
the solution. We prove in many of our examples how we can achieve
this efficiently. In essence, Alice will show that in the iteration after
which u was eliminated, a better element was chosen. For instance,
in the minimum spanning tree problem, we demonstrate that an edge
e = (a, b) was eliminated because a cheaper edge e′ got added to the
output that connected the components containing vertices a and b.

Input Commitment Phase: To resolve, we add an Input Commitment
Phase at the beginning of the protocol and a Consistency-Check Phase
at the end of the protocol described in the Section 5.1. In an Input Com-
mitment Phase executed at the beginning of the protocol, both parties
commit to their input using an extractable commitment scheme ΠExt.
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Modifications to LTf functionality: Besides the inputs (ua, ka) and (vb, kb)
that Alice and Bob submit, they also submit (auxa, skA) and (auxb, skB)
which are the auxiliary information corresponding to their inputs and
their signing keys respectively. The function besides outputting the an-
swer as in Figure 1 additionally signs (ua, auxa) if ua is the output and
(ub, auxb) if ub is the output using both keys skA and skB. We remark here
that for modularity we describe that the signatures are computed by LT
functionality. However, in all our instantiations the message to be signed
(u, aux) in the ith iteration can be computed directly from the outputs of
the current and previous calls to the LTf functionality, namely, c1, . . . , ci
and signature of these messages under the keys of Alice and Bob can
be computed and sent directly to the other party. In particular, these
signatures need not be computed securely.

Consistency-Check Phase: Alice and Bob need to prove they followed the
greedy strategy at every iteration. Recall that, ci for each i belongs to
Alice or Bob. Alice proves that corresponding to every commitment C in
the Input Commitment Phase, there exists an input u such that either

– u is one of the ci’s and it has a signature on ci using skB, or
– u could not have been selected by the greedy strategy.

We achieve this by securely evaluating this consistency check procedure
where in the first case, u is revealed to both parties and in the second
case, only the result of the check is revealed.

5.1 Generic Algorithm for Covert Security

generalized compare with covert security
Alice Input: Tuple (ua, x, auxa, skA) with k-bit integer key x

Bob Input: Tuple (vb, y, auxb, skB) k-bit integer key y

LTf Output: (ua, auxa, σA, σB) if x < y and (vb, auxb, σA, σB) otherwise where
σA and σB are signatures on message m under keys skA and skB respectively
and m = (ua, auxa) if x < y and m = (vb, auxb) otherwise.

Fig. 5. Generic Millionaire’s protocol with Covert security

We make the following requirements on the function f we compute.
For each instantiation, we show that the requirements are satisfied. We
say that a function f is covert-greedy compatible if it is greedy compatible
and additionally the following holds:
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Generic Consistency Check
Prover Input: Tuple (u, key(u), C,D, {ui, auxi, σ

i}i∈I)

CCvk Output: It outputs 1 to Verifier and additionally outputs u when u = ui

for some i, if all the following hold:

1. Correct Input: D is a valid decommitment information for C to (u, key(u)).
2. Consistency Check: Either CC(u, key(u), {ui, auxi}i∈I) returns true or ui = u

for some i ∈ I.
3. Signature Check: Vervk((ui, auxi), σ

i) = 1 for i ∈ I

Fig. 6. Generic Consistency Check Procedure GCCvk

– Consistency Check: There exists a consistency-check procedure
CC, functions key, wit and aux which satisfies the following property:
Given inputs U and V for Alice and Bob and any output c̃1, . . . , c̃`,
it holds that, for every input u of Alice (respectively, v of Bob), such
that: CC(u, key(u), {c̃i, aux(i, c̃i)}i∈I)

• Returns TRUE: if u is not part of the solution and I = wit(U) or
u = ui for some i ∈ I
• Returns FALSE: if u is in the solution and u 6= ui for any i ∈ I.

Furthermore, we require that aux(ua) for an input ua in iteration i
can be determined by c<i.

Let ΠExt = 〈C,R〉 be an extractable commitment scheme. In Figure 7, we
give our general protocol to achieve covert security. Then for each of our
problems, we specify how we modify the LTf functionality and provide
the Consistency Check procedure. Let com be a statistically-binding com-
mitment scheme. In Figure fig:conc-check, we give the generic structure
of the consistency-check procedure.

Theorem 3. Let f be a functionality that is covert-greedy compatible.
Then the Generic Covert Security protocol described in Figure 7 securely
computes f in the presence of covert adversaries with 1-deterrence.

Proof. Our analysis of the security of the protocol is in the LTf , CCvk

hybrid, where the parties are assumed to have access to a trusted party
computing the respective functionalities. Thus the simulator that we de-
scribe will play the trusted party implementing the two functionalities,
when simulating the adversary. We consider the different corruption cases:
(1) When no party is corrupted (2) When one of the parties are corrupted.
In the first case, the security reduces to the semi-honest case and follows
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Generic Iterative Secure Computation with Covert Security
Alice Input: A set of distinct elements U = {u1, . . . , un}
Bob Input: A set of distinct elements V = {v1, . . . , vn}
Output: c1, . . . , c`.

Input Commitment Phase:
1. For every i ∈ [n], Alice acting as the Sender with input m = (ui, key(ui))

interacts with Bob as the Receiver using the protocol ΠExt.

2. For every i ∈ [n], Bob acting as the Sender with input m = (vi, key(vi))
interacts with Alice as the Receiver using the protocol ΠExt.

3. Alice and Bob run Gen(1k) to obtain the key-pairs (skA, vkA) and (skB , vkB)
respectively. Alice sends vkA to Bob and Bob sends vkB to Alice.

Secure Computation Phase:
1. Alice initializes (ua, ka)← F (⊥, U) and Bob initializes (vb, kb)← F (⊥, V ).

2. Repeat for `(|U |, |V |) times:

(a) Alice and Bob execute the protocol computing LTf,vkA,vkB on inputs
(ua, ka, aux(i, ua), skA) and (vb, kb, aux(i, ub), skB)) and receives as output
(cj , σA, σB) where i is the iteration number.

(b) Alice updates (ua, ka) ← F (c≤j , U) and Bob updates (vb, kb) ←
F (c≤j , V ). They store σB and σA respectively.

3. Alice outputs c1, . . . , c`. Bob outputs c1, . . . , c`.
Consistency Check Phase:

1. For every commitment C made by Alice in the Input Commitment Phase to
an element ua, Alice and Bob execute the protocol

CCvkB ((ua, key(ua), C,D, σ, {(ci, auxi, σi
B)}i∈I),⊥)

where (a) I = wit(ua), if ua is not part of the output, (b) σ is a signature on
a message of the form (ua, ·), otherwise. If CC outputs 0, then Bob outputs
corruptA. If CC returns ua, Bob stores ua in store OutCheckA.

2. For every commitment C made by Bob in the Input Commitment Phase to
an element vb, Alice and Bob execute the protocol

CCvkA((vb, key(vb), C,D, σ, {(ci, auxi, σi
A)}i∈I),⊥)

where (a) I = wit(vb), if vb is not part of the output, (b)σ is a signature on
a message of the form (vb, ·), otherwise. If CC outputs 0, then Alice outputs
corruptB . If CC returns vb, Bob stores vb in store OutCheckB .

3. If OutCheckA is not equal to c≤` minus the elements that are part of Bob’s
input, then Bob outputs corruptA.

4. If OutCheckB is not equal to c≤` minus the elements that are part of Alice’s
input, then Alice outputs corruptA.

Fig. 7. The generic structure of a secure iterative protocol with covert security

the proof presented in Section 3.1. Below we prove security when one of
the parties are corrupted. We argue for the case when Alice is corrupted
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and the case for Bob follows symmetrically since the protocol is symmetric
in both parties.

Alice is corrupted. On a high-level, by our assumptions there is a unique
solution and a unique order in which the output is revealed in every
iteration. More precisely, given the optimal solution, the output of each
iteration using LTf is determined. Furthermore, this output is either an
element in Alice’s input or Bob’s input. The simulator S fixes A’s random
tape unfiromly at random and proceeds as follows:

1. S executes the Input Commitment Phase playing the role of Bob. For
all commitments made by Alice, S runs the extractor algorithm E
provided by the ΠExt protocol to create a transcript and extract all
of Alice’s input. For all of Bob’s, S commits to the all 0 string.

2. Now S has Alice’s input which it feeds to the ideal functionality com-
puting f and receives the output c1, . . . , c`. Next S interacts with
Alice in the Secure Computation Phase. In iteration i, S receives Al-
ice’s input (ua, x, auxa, skA) for LTf . S can check if Alice’s input is
correct, by performing the computation of LTf with Alice’s input as
(ua, x). If ua = ci then S simply outputs ci as the output of the com-
putation. Otherwise, ci must be Bob’s input and the simulator checks
if the computation with Bob’s input as ci results in ci. If it is not, S
outputs badi and halts.

3. If S successfully completes the Secure Computation Phase, it pro-
ceeds to simulate the Consistency Check Phase. In this phase, Alice
first proves consistency for every commitment C it made in the Input
Commitment Phase by providing input to the CCvkB functionality.
The simulator evaluates the input using the procedure honestly and
sends corruptA if the procedure returns 0.

4. Finally, for every Commitment made by Bob that is not part of the
input, S simply sends what the CCvk functionality should send if Bob
is honest, namely, it sends 1 to Alice.

This concludes the description of the simulator S. We now proceed to
prove covert-security. First, we prove the following claim.

Consider an adversarial Alice A∗. We prove indistinguishability in
a hybrid experiment H where we construct another simulator S′ that
knows Bob’s input. In this experiment S′ proceeds identically to S with
the exception that in the Input Commitment Phase it commits to the real
inputs of Bob instead of the all 0 string as S would. Indistinguishability
of the output of S and S′ follows directly from the hiding property of
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the commitment scheme and the fact that the views are in the LT, CC-
hybrid. More precisely,

idealLT,CC
f,S(z),I(x1, x2, k) ≈ idealLT,CC

f,S′(z),I(x1, x2, k)

Next, we argue indistinguishability of the hybrid experiment H and
the real experiment. First, we observe that both these experiment pro-
ceed identically in the Input Commitment Phase. Fix a partial transcript
τ of the view at the end of Input Commitment Phase. Let c1, . . . , c` be
the output obtained by S′. It now follows that, conditioned on the Se-
cure Computation Phase outputting c1, . . . , c`, the views in H and the
real experiment are identically distributed. This is because the simulator
honestly computes the LT-functionality and the output is completely de-
termined by c≤i (ci is the output of the iteration and the other previous
outputs are required to determine auxb). For any view v of the experi-
ment, let Success(v) denote this event. Let bad denote the union of all
events badi. It follows that

Pr[v ← idealLT,CC
f,S′(z),I(x1, x2, k) : D(v) = 1 ∧ ¬bad]

= Pr[v ← realLT,CC
f,A∗(z),I(x1, x2, k)) : D(v) = 1 ∧ Success(v)] (1)

Assume for contradiction, the simulation did not satisfy covert secu-
rity with 1-deterrence. Then there exists an adversary A, distinguisher D
and polynomial p(·) such that∣∣∣Pr[D(idealLT,CC

f,S′(z),I(x1, x2, k)) = 1]− Pr[D(realLT,CC
f,A∗(z),I(x1, x2, k))) = 1]

∣∣∣
≥ Pr[outB(realf,A∗(z),I(x1, x2, k)) = corruptA] +

1

p(k)

Using Equation 1, we rewrite the above equation as follows:∣∣∣Pr[v ← idealLT,CC
f,S′(z),I(x1, x2, k) : D(v) = 1 ∧ bad]

− Pr[v ← realLT,CC
f,A∗(z),I(x1, x2, k)) : D(v) = 1 ∧ ¬Success(v)]

∣∣∣
≥ Pr[outB(realf,A∗(z),I(x1, x2, k)) = corruptA] +

1

p(k)
(2)

Below in Claim 1, we show that Pr[bad] is negligible close to Pr[¬Success].
Furthemore, if ¬Success occurs, then it must be the case that Bob outputs
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corruptA. Therefore,∣∣∣Pr[v ← idealLT,CC
f,S′(z),I(x1, x2, k) : D(v) = 1 ∧ bad]

− Pr[v ← realLT,CC
f,A∗(z),I(x1, x2, k)) : D(v) = 1 ∧ ¬Success(v)]

∣∣∣
≤ Pr[¬Success]− µ1(n)

= Pr[outB(realf,A∗(z),I(x1, x2, k)) = corruptA]− µ1(k)

This is a contradiction to Equation 2.

Claim 1.
∣∣∣Pr[bad]− Pr[¬Success]

∣∣∣ < µ1(k)

where the first probability is over the experiment in H and the second is
over the real experiment.

Proof: Observe that if bad occurs, then S′ outputs badi for some i. This
means that in iteration i, the result of the computation using LT was not
ci. Since, we consider unique inputs, it must be the case that the output
was something different from ci. There are two cases:

ci was part of Alice’s input In this case, Alice must not have used the
input corresponding to ci in iteration i. Hence, the output of the ith

iteration must have been different. Since there is a unique order in
which the outputs are revealed, the computation between Alice and
Bob must have resulted in an output different from c≤`. Then by the
the consistency-check property of f , it will follow that Alice cannot
convince Bob in the Consistency-Check Phase for the commitment
corresponding to Ci on the same transcript output by S′. This means
that Bob would output corruptA in Step 1 on such a transcript.

ci was part of Bob’s input Suppose that Alice used an input u in iter-
ation i that was chosen by the greedy procedure. In this case, it cannot
be that Alice committed to u in the Input Commitment Phase. This
is because, S′ extracted all the inputs from Alice and the output is
unique given Alice’s input. In this case, we show that Alice will fail in
the Consistency-Check Procedure. First, we observe that Alice can-
not produce an input to CC such that the output is u. Recall that
it would have to produce both a signature using Bob’s key for u and
a commitment C from the input commitment phase containing the
input u, since there is no such commitment, it cannot achieve this.
Hence, OutCheckA computed by Bob will not contain u but c≤` does.
Therefore, Bob will output corruptA in Step 3.
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We recall that the view in H and the real experiments are identically
distributed up until the iteration where badi occurs. Therefore, from the
above argument, it follows that if badi was output by Si on any partial
transcript τ in hybrid experiment H up until iteration i, then Bob must
have output corruptA on a continuation from τ in the real experiment
except with negligible probability. This concludes the proof of the Claim
and the Theorem. ut

5.2 Convex Hull

We present a consistency-check for the convex-hull problem that will pro-
vide covert-security with 1-deterrence. Recall from the general covert-
secure protocol that an adversary can fail to consider some of its input
committed in the Commitment Phase. In the Consistency-Check Phase,
the adversary needs to show that a particular point p committed to is not
part of the convex hull. Towards this, it will choose three points p1, p2
and p3 on the convex-hull that was output and prove that p lies strictly
in the interior of the triangle formed by the p1, p2 and p3. As before we
assume that no two points share the same x or y coordinate and no three
points are collinear.

We describe below how to instantiate this problem in our framework.
First we show that convex-hull is covert-greedy compatible:

greedy compatible From Section 4.1 we know this is greedy compatible.
Consistency Check: We define the key(u) = ⊥ and aux(i, u) = ⊥. The

function wit on input u is defined to be the index of three points in
the output c1, . . . , c` such that u resides within the triangle formed
by the three points. Observe that if a particular point u is not on the
convex-hull, it lies inside and there must be three points on the hull
for which u is contained in the triangle formed by the three points.
Moreover, for any point outside the hull, there exists no set of three
points for which this conditions will be true. The function CC on input
(u,C,D, (u1, u2, u3)) outputs 1 only if u is contained in the triangle
formed by u1, u2 and u3.

Theorem 4. The Generic Iterative Secure Computation with
Covert Security protocol instantiated with the Consistency Check Pro-
cedure CC, functions aux, key and wit described above securely computes
the convex hull of the union of inputs of Alice and Bob, in the presence
of covert-adversaries with 1-deterrence, assuming all inputs of Alice and
Bob are distinct, no two of which share the same x-coordinate and no
three points are collinear.
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Overhead: The total number of rounds of communication is O(|Z|+ |I|).
This is because the secure computation phase take O(|Z|)-rounds and
the consistency check phase is O(|I|)-rounds. In each round of the secure
computation phase, the protocol performs at most one secure comparison
of logM -bit integers and one signature computation on a logM bit string.
As mentioned before, the signatures need not be securely computed and
can be computed locally and sent to the other party. In particular, for
the case of convex-hull, the message to be signed is the point output in
the current iteration. Therefore, the communication complexity of each
round of iteration in this phase is O(logM) +O(k). In each round of the
consistency check phase, the protocol performs (a) One decommitment
verification that will cost poly(k) (b) O(1) signature verifications that will
cost poly(k) (c) O(1) subtractions of logM -bit integers (this will require
O(logM) gates) and O(1) multiplications of logM -bit integers (this will
require O(log2M) gates). This is for checking if a point is in a triangle.
Since all the circuits need to be securely computed against malicious
adversaries there will be a poly(k) overhead. The overall communication
complexity will be O(|Z| logM+|I| log2M) times poly(k). In comparison,
the naive circuit implementation will have at least n memory accesses
which will result in a circuit size of Ω(|I|2 logM) times poly(k).

5.3 Matroids

We begin with a simple consistency-check for matroids that will yield
covert-security with 1-deterrence. The communication complexity of im-
plementing this check would be O(|S|) where the matroid is (S, I).

We recall some basic notions regarding matroids (see [13]). All sets
in I are referred to as independent sets and any set not in I is called a
dependent set. A cycle of a matroid (S, I) is a setwise minimal depen-
dent set. A cut in (S, I) is a setwise minimal subset of S intersecting all
maximal independent sets. The names have been so chosen to maintain
the intuitive connection with the special case of MST. 1 Suppose B is
an independent set and B ∪ {x} is dependent. Then B ∪ {x} contains a
cycle. We refer to this cycle as the fundamental cycle of x and B. The
cycle must contain x, since C − {x} ⊆ B and hence independent. The
following proposition follows directly form the properties of a matroid.

Proposition 1. An element x ∈ S is in no minimum weight maximal
independent set iff it has the largest weight on some cycle.

1 Note however, the notion of cuts in graphs are a union of cuts as defined here since
the notion of a cut in a graph need not necessarily be setwise minimal.
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This proposition will form the basis of the consistency-check as for every
element x not in the minimum weight maximal independent set B, there
is a unique cycle, i.e. the fundamental cycle of x and B which can be
computed by both parties given B and x. Then this cycle can be used
to demonstrate that x is not part of the solution. In the full version, we
consider other examples such as the (a) minimum spanning tree,2 (b) unit
job scheduling, and (c) single source shortest distance examples.

6 Computing the Median: Revisiting the AMP protocol

To incorporate the median protocol to our framework we need to make
a few modifications; the output of each iteration is not part of the final
output. The output of the final iteration is the output of the protocol.

We define LTf (x, y) function simply returns either 0 or 1 depend-
ing on whether x > y. The definition of F is slightly more complicated
and subsumes the pruning of the input sets that is explicit in the AMP
protocol. Specifically, we define

FA(i,m, x, S) =


n/2 if i = 0
x/2 if m = 0 ∧ i > 0

x+ x/2 if m = 1 ∧ i > 0
FB(i,m, x, S) = FA(i,m, x, S)

In words, Alice begins the protocol using her n/2th (i.e. her median)
element in comparison with Bob’s median element. If Alice’s element is
larger, then she updates her index to the median of the smaller half of
her array (i.e., the n/4 rank element) and conversely Bob updates his
index to the median of the larger half of his array (i.e., his n/2+n/4 rank
element). The loop is repeated `(|U |, |V |) = dlog(|U |)e = dlog(n)e times
and at the end of the looping, the output O.

Malicious Security for aborting adversaries The security proof in [1] for
the median protocol does not handle the case when the adversary aborts
during extraction. We improve their simulation to handle this case.

As in [1], we construct a simulator in a hybrid model where all parties
have access to an ideal functionality that computes comparisons. In the
malicious protocol, at every step a lower bound l and an upper bound u
is maintained by secret sharing the values between the two parties. This
enforces the input provided by the parties to lie between l and u. Consider

2 It is possible to achieve better efficiency then the general matroid approach for MST.
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an adversary A for the protocol. We can visualize the actions of A in each
iteration as either going left or right in a binary tree depending on the
output of the comparison at that iteration. In the malicious setting, the
simulator is required to extract the adversary’s input to feed it to the
ideal functionality. Since the actual inputs are revealed at each node, the
simulator needs a mechanism to visit every node. Since every node can
be arrived by a sequence of left or right traversal to a child, the simulator
can reach every node by providing the appropriate sequence of outputs
for the comparison operation and then allowing the adversary to reveal
the value at that node. This value is given as input to the next iteration.
Since we are in the hybrid where the simulator can see every input that
the adversary sends, the simulator can extract the entire tree. Recall that
the adversary is required to provide inputs that respect the lower and
upper bound. Hence after extraction, an in-order traversal of the binary
tree gives a sorted set of values. Using this set as the adversary’s input,
the simulator feeds it to the ideal functionality and obtains the output,
and then traverses the tree again giving the actual inputs as dictated by
the median.

We show how to construct a simulator that also allows the adversary to
abort. If the adversary aborts when the execution reaches some particular
node, then the simulator will not be able to extract the values in the entire
tree rooted at that node. Our simulation proceeds as follows. It explores
the tree just as in [1] and marks the nodes on which the adversary aborted.
At the end of the extraction, the simulator has a partial binary tree.
However, the simulator needs to send some input the ideal functionality on
behalf of the adversary to obtain the output. Towards that, the simulator
extends the partial tree to a full binary tree by adding dummy nodes.
Next, the simulator assigns values for the dummy nodes. To do that every
dummy node is given a unique label and then following [1], we perform an
in-order traversal of the tree (excluding leaves) to obtain the adversary’s
input. Then each label is assigned a value equal to the first value in
the sequence before the label. Then the sequence is sanitized to handle
duplicate items as in [1].

The following observations follows from [1]. When the computation
reaches a leaf, the adversary provides a single value to the comparison.
For the rightmost leaf, the value is the largest value among all nodes. For
the other nodes, the value is the same value on the lowermost internal
node of the path from the root to the leaf, for which the comparison
result returned true. Each item in the input of Alice appears exactly
once in an internal node and exactly once in a leaf node. Finally, the
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values for the labels have so been chosen so that if for the actual (some
hidden) inputs of the adversary the median is revealed in a particular leaf
node, the median calculated by the input constructed by simulator will
have the property that the leaf node corresponding to the median on the
simulator’s reconstructed input and the actual node corresponding to the
adversary’s input will be part of the same subtree of all dummy nodes.
Thus, any traversal to either of these nodes from the root will result on
the same node on which the adversary aborted.

Proof sketch. When S receives the output from the trusted party, it sim-
ulates the route that the execution takes in the tree, and performs any
additional operation that Alice might apply to its view of the protocol.
There are two cases depending on the median: Either the median is the
value revealed in one of the comparisons in a leaf where the adversary
aborted in some ancestor of that node, or it is the value revealed in a leaf
that is not a dummy node. In the latter case, the simulation traverses the
route the execution would take using the median and reach the leaf node.
In the former case, the simulation will result in a traversal to the leaf
node corresponding to the input computed by the simulator. However, by
construction, the actual median lies in the same subtree as this leaf node
and the simulator will abort at the same place as it would have with the
actual inputs of the adversary. Hence the simulation proceeds identical to
real experiment.

6.1 On achieving malicious security in our general framework

Recall that in our general iterative framework the outputs are gradually
released and this can allow a malicious adversary to alter its input to an
intermediate iteration of the protocol based on the results from previous
iterations. As in the covert security protocol, this can be circumvented
by requiring the adversary to commit to their input before the protocol
starts and the simulation extract these inputs at the beginning to be fed
to the ideal functionality. However, this is not enough, as an adversary can
selectively abort or selectively use his committed inputs in the iterative
protocol based on the intermediate results of the computation. One ap-
proach would be to simply require each party to prove in zero-knowledge
that it used the correct input. While this can be made communication
efficient (by relying on universal arguments or SNARKs) it will blow up
the computational complexity. This might be efficient if a short witness
can establish correctness (analogous to our consistency checks for covert
security) but seems unlikely for the applications discussed in this work.
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For the specific case of the median, as explained above, we are able to ob-
tain malicious security without significant blow up in the communication
or computation complexity. Towards obtaining efficient simulation of ma-
licious adversaries, we next try to identify what property of the median
protocol enables such efficient simulation.

Towards this, define tracei in our general framework to be the trace
of the outputs in the first i iterations, namely, c1, . . . , ci which are the
outputs of LTf in each iteration. Let Alice’s input be A = {a1, . . . , an}.
For any particular data element aj held by Alice (analogously for Bob)
define T (aj) to be the set containing all traces tracei such that there is
some input set B for Bob such that aj is Alice’s input in the i + 1’st
iteration when Alice and Bob interact with inputs A and B and tracei is
the trace for the first i iterations.

When we consider the secure median protocol the first property we
observe is that T (aj) is exactly 1. To see this consider two traces tracei =

(c1, . . . , ci) and t̃racei = ĉ1, . . . , ĉi such that the maximum prefix length
that they share is k, namely, for t = 1, . . . , k, ct = ĉt and ck+1 6= ĉk+1.
Since the outputs of each iteration are results of comparisons, let us as-
sume without loss of generality that ck+1 = 0 (meaning Alice’s input was
less than Bob’s input in that iteration) and ĉk+1 = 1. Since they share the
same prefix until iteration k, the input fed by Alice in the k+1st iteration
in both the traces must be identical. Call this element aj1 . Let aj2 and
aj3 be the input used by Alice in iteration i+1 at the end of traces tracei
and t̃racei. It follows from the AMP protocol that aj2 < aj1 < aj3 . This
is because at iteration k + 1 the result of the comparisons either prunes
the data of elements less than aj1 or greater than aj1 . Hence, each input
aj cannot be in two different traces. A second property of the median
protocol is that given an adversary every possible trace can be simulated
in polynomial time. This is because the number of iterations is O(log n)
and in each iteration there are at most two outcomes. We next give a
rough intuition as to why these two properties are necessary.

If the first property fails to hold, then for a particular input element
there are two different traces. This means the adversary can decide to
selectively abort in one of the traces and such an adversary cannot be
simulated without knowing the honest parties input. If the second prop-
erty fails to hold, the adversary can selectively use its data. Since the all
traces cannot enumerated in polynomial time, the adversary’s input needs
to be extracted by other means. If we relied on extractable commitments
as in the case of covert security, the simulator will not know what to feed
to the ideal functionality as some of the committed inputs may never be
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used by the adversary. Another example besides the median that satisfies
this would be the bisection method to find roots of a polynomial where
Alice and Bob hold parts of a polynomial and wish to find a root in a
prescribed interval. In future work, we plan to explore more examples
that admit malicious security in our framework.
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