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Abstract. In a selective opening (SO) attack an adversary breaks into a subset
of honestly created ciphertexts and tries to learn information on the plaintexts of
some untouched (but potentially related) ciphertexts. Contrary to intuition, stan-
dard security notions do not always imply security against this type of adversary,
making SO security an important standalone goal. In this paper we study receiver
security, where the attacker is allowed to obtain the decryption keys correspond-
ing to some of the ciphertexts.
First we study the relation between two existing security definitions, one based on
simulation and the other based on indistinguishability, and show that the former
is strictly stronger. We continue with feasibility results for both notions which we
show can be achieved from (variants of) non-committing encryption schemes. In
particular, we show that indistinguishability-based SO security can be achieved
from a tweaked variant of non-committing encryption which, in turn, can be in-
stantiated from a variety of basic, well-established, assumptions. We conclude
our study by showing that SO security is however strictly weaker than all variants
of non-committing encryption that we consider, leaving potentially more efficient
constructions as an interesting open problem.
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1 Introduction

Security notions for encryption come in many forms that reflect different attacker goals
(e.g. one-wayness, indistinguishability for plaintexts or non-malleability of ciphertexts),
variations in possible attack scenarios (e.g. chosen plaintext or ciphertext attacks) and
definitional paradigms (e.g. through games or simulation). A class of attacks motivated
by practical considerations are those where the adversary may perform selective open-
ings (SO). Here, an adversary is allowed to break into a subset of honestly created
ciphertexts leaving untouched other (potentially related) ciphertexts.

This attack scenario was first identified in the context of adaptively secure multi-
party computation (MPC) where communication is over encrypted channels visible to
the adversary. The standard trust model for MPC considers an adversary who, based
on the information that he sees, can decide to corrupt parties and learn their internal
state. In turn, this may allow the attacker to determine the parties’ long term secret keys
and/or the randomness used to create the ciphertexts. The broader context of Internet
communication also naturally gives rise to SO attacks. Attackers that access and store
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large amount of encrypted Internet traffic are a reality, and getting access to the internal
states of honest parties can be done by leveraging design or implementation weaknesses
of deployed systems. For example the Heartbleed attack allowed a remote party to ex-
tract (among other things) the encryption keys used to protect OpenSSL connections.

Security against SO attacks comes in several distinct flavors. Depending on the at-
tack scenario, we distinguish two settings that fall under the general idea of SO attacks.
In sender security, we have n senders and one receiver. The receiver holds a secret key
relative to a public key known to all the senders. The senders encrypt messages for the
receiver and the adversary is allowed to corrupt some of the senders (and learn the mes-
sages and randomness underlying some of the ciphertexts). The concern is that the mes-
sages sent by uncorrupted senders stay secret. The second scenario deals with receiver
security. Here we consider one sender and n receivers who hold independently gener-
ated public and secret keys. The attacker is allowed to corrupt some of the receivers
(and learn the secret keys that decrypt some of the observed ciphertexts). Security in
this setting is concerned with the messages received by uncorrupted receivers. For each
of these settings, security can be defined using either the standard indistinguishability
paradigm or simulation-based definitions. Importantly, both scenarios capture realistic
attacks in secure computation where usually every party acts as either a sender or a
receiver at some point of time during a protocol execution.

Since most of the existent encryption schemes have been analyzed w.r.t. traditional
notions of security (e.g. indistinguishability under chosen plaintext or chosen cipher-
text attacks (ind-cpa, ind-cca)), a central question in this area is to understand how
security against SO attacks relates to the established definitions. Despite compelling
intuition that the only information that an adversary obtains is what it can glean from
the opened plaintexts, progress towards confirming or disproving this conjecture has
been rather slow. Perhaps the most interesting and surprising results are due to Bel-
lare et al. [2, 1] who showed that selective sender security as captured via simulation
based definitions is strictly stronger than indistinguishability under chosen plaintext at-
tacks [15] (denoted by ind-cpa security). The gap between standard notions of security
and SO security is uncomfortable: while SO attacks may naturally occur we do not have
a clear understanding of the level of security that existing constructions offer nor do we
have many ideas on how to achieve security against such attacks.

In this paper we study receiver security. This setting is less studied than sender
security yet it corresponds to more plausible attacks (e.g. the Heartbleed attack). In a
nutshell, we clarify the relation between various security notions for receiver security
and propose novel constructions. Before we describe our contributions in detail we
overview existing work in the area and take this opportunity to introduce more carefully
the different security notions of SO security.

1.1 Related Work

Selective opening attacks were first introduced in [12] in the context of commitment
schemes. In the context of encryption schemes, the first rigorous definitions were pro-
posed by Bellare, Hofheinz and Yilek [2]. They studied SO security for public key
encryption (PKE), for both the receiver and the sender settings and for each setting pro-
posed two types of definitions, indistinguishability-based and simulation-based ones.



Very roughly, the indistinguishability-based definition (denoted by ind-so) requires
that an adversary that sees a vector of ciphertexts cannot distinguish the true plaintexts
of the unopened ciphertexts from independently sampled plaintexts. This is required
even with access to the randomness used for generating the opened ciphertexts (in the
sender corruption setting), or with access to the secret keys that decrypt the opened ci-
phertexts (in the receiver corruption setting). This definition requires messages to come
from a distribution that is efficiently resamplable. A stronger security variant that does
not restrict the message distribution called full ind-so has been introduced later by
Böhl, Hofheinz and Kraschewski [5]. The simulation based notion (denoted by sim-so)
is reminiscent of the definitional approach of Dwork et al. [12] and requires computa-
tional indistinguishability between an idealized execution and the real one.

The first feasibility results for security against SO attacks are for the sender set-
ting and leverage an interesting relation with lossy encryption: a lossy PKE implies
ind-so for sender security [2]. Furthermore, if the PKE scheme has an efficient opening
algorithm of ciphertexts, then the scheme also satisfies sim-so security. The work of
Hemenway et al. [18] shows that lossy (and therefore ind-so) PKE can be constructed
based on several generic cryptographic primitives.

For primitives that benefit from multiple security notions, a central question is to
understand how these notions relate to each other. This type of results are important
as they clarify the limitations of some of the notions and enable trade-offs between
security and efficiency (to gain efficiency, a scheme with weaker guarantees may be
employed, if the setting allows it). The relation between traditional security notions of
encryption and security against SO attacks was a long-standing open problem that was
solved by Bellare et al. [1]. Their result is that standard ind-cpa security does not imply
sim-so (neither in the sender nor in the receiver setting). There is no fully satisfactory
result concerning the relation between ind-cpa and ind-so. Here, the best result is that
these two notions imply each other in the generic group model [19] and that for the
chosen-chiphertext attacks variant (CCA) the two notions are distinct.

Relations between the different notions for selective opening have mainly been stud-
ied in the sender setting. Böhl et al. establish that full ind-so and sim-so are incompa-
rable. Recently, [23] introduced an even stronger variant of the full ind-so definition,
and showed that many ind-cpa, ind-so and sim-so secure encryption schemes are inse-
cure according to their new notion. They further showed that sim-so definition does not
imply lossy encryption even without efficient openability. Finally, SO security has been
considered for CCA attacks [13, 20] and in the identity-based encryption scenario [3].

1.2 Our Contribution

With only two exceptions [2, 1] prior work on SO security has addressed mainly the
sender setting. We concentrate on the receiver setting. Though theoretically the feasi-
bility for SO security for the receiver is implied by the existence of non-committing
encryption schemes [6, 22, 9, 8], the state of the art constructions still leave many inter-
esting open problems in terms of relations between notions and feasibility results. This
is the focus of this work.

For relation between notions, similarly to prior separating results in the SO set-
ting [5, 19, 23], we demonstrate the existence of a separating scheme that is based on



generic assumptions and can be instantiated under various concrete assumptions. For
constructions, we find it useful to leverage the close relation between (variants of)
non-committing encryption and security under SO attacks. For example, we show that
ind-so security follows from a tweaked variant of non-committing encryption which, in
turn, we show how to instantiate from a variety of standard assumptions. Interestingly,
we also show a separation between SO security and non-committing encryption (which
leaves open the question of potentially more efficient constructions that meet the former
notion but not the latter). Below, we elaborate on our results in details.

Notation-wise, we denote the indistinguishability and simulation-based definitions
in the receiver setting by rind-so and rsim-so, respectively. For the corresponding
notions in the sender setting we write sind-so and ssim-so, respectively. That is, we
prepend “s” or “r” to indicate if the definition is for sender security or receiver security.

The relation between rind-so and rsim-so. First, we study the relation between the
indistinguishability and simulation-based security notions in the receiver setting. We
establish that the rind-so notion is strictly weaker (and therefore easier to realize) than
the notion of rsim-so, by presenting a concrete pubic key scheme that meets the former
but not the latter level of security. Loosely speaking, a ciphertext includes a commitment
to the plaintext together with encryptions of the opening information of this commit-
ment (namely, the plaintext and the corresponding randomness). We then prove that
when switching to an alternative fake mode the hiding properties of our building blocks
(commitment and encryption schemes) imply that the ciphertext does not contain any
information about the plaintext. Nevertheless, simulation always fails since it would re-
quire breaking the binding property of the commitment. Applying the observation that
rsim-so implies rind-so security,1 we obtain the result that rind-so is strictly weaker.

In more details, our separating scheme is built from a commitment scheme and a
primitive called non-committing encryption for the receiver (NCER) [7] that operates
in two indistinguishable ciphertexts modes: valid and fake, where a fake ciphertext can
be decrypted into any plaintext using a proper secret key. This property is referred to as
secret key equivocation and is implied by the fact that fake ciphertexts are lossy which,
in turn, implies rind-so security. Specifically, the security of our scheme implies that:

Theorem 11 (Informal) There exists a PKE that is rind-so secure but is not rsim-so
secure.

Somewhat related to our work, [1] proved that the standard ind-cpa security does
not imply rsim-so security via the notion of decryption verifiability – the idea that it is
hard to decrypt a ciphertext into two distinct messages (even using two different secret
keys). Specifically, [1] showed that any ind-cpa secure PKE that is decryption verifiable
cannot be rsim-so secure. Compared with their result, our result implies that rsim-so
security is strictly stronger than rind-so security (which may turn out to be stronger
than ind-cpa security).

1 This can be derived from the fact that the adversary’s view is identical for any two simulated
executions with different sets of unopened messages, as the simulator never gets to see these
messages.



The feasibility of rind-so and rsim-so. We recall that in the sender setting, the no-
tions sind-so and ssim-so are achievable from lossy encryption and lossy encryption
with efficient openability.2 We identify a security notion (and a variant) which plays
for receiver security the role that lossy encryption plays in sender security. Specifi-
cally, we prove that NCER implies rsim-so and that a variant of NCER, which we refer
as tweaked NCER (formally defined in Section 3), implies rind-so. Loosely speaking,
the security of tweaked NCER is formalized as follows. Similarly to NCER, tweaked
NCER has the ability to create fake ciphertexts that are computationally indistinguish-
able from real ciphertexts. Nevertheless, while in NCER a fake ciphertext can be ef-
ficiently decrypted to any plaintext (by producing a matching secret key), in tweaked
NCER a fake ciphertext can only be efficiently decrypted to a concrete predetermined
plaintext. Informally, our results are captured by the following theorem:

Theorem 12 (Informal) Assume the existence of tweaked NCER and NCER, then there
exist PKE schemes that are rind-so and rsim-so secure, respectively.

Interestingly, we show that the converse implications do not hold. That is, a rsim-so
secure PKE is not necessarily a tweaked NCER or a NCER. This further implies that
a rind-so secure PKE is not necessarily a tweaked NCER or NCER. This result is
reminiscent of the previous result that sim-so and rind-so secure PKE do not imply
lossy encryption even without efficient openability [23].

Our separating scheme is based on an arbitrary key-simulatable PKE scheme. In-
tuitively, in such schemes, it is possible to produce a public key without sampling the
corresponding secret key. The set of obliviously sampled public keys may be larger than
the the set of public keys sampled together with their associated secret key, yet it is pos-
sible to explain a public key sampled along with a secret key as one sampled without.
In these schemes we also require that the two type of keys are also computationally
indistinguishable. Our proof holds for the case that the set of obliviously sampled keys
is indeed larger, so that not every obliviously sampled public key can be explained to
possess a secret key. In summary, we prove that:

Theorem 13 (Informal) Assume the existence of key-simulatable PKE, then there exists
a PKE scheme that is rsim-so secure but is neither tweaked NCER nor NCER.

Our constructions show that rsim-so (and rind-so) security can be achieved under
the same assumptions as key-simulatable PKE – there are results that show that the
latter can be constructed from a variety of hardness assumptions such as Decisional
Diffie-Hellman (DDH) and Decisional Composite Residuosity (DCR). They also show
that we can construct schemes from any hardness assumption that implies simulatable
PKE [9] (where both public keys and ciphertexts can be obliviously sampled).

2 Recall that a lossy encryption scheme is a public key encryption with the additional ability to
generate fake indistinguishable public keys so that a fake ciphertext (that is generated using a
fake public key) is lossy and is a non-committing ciphertext with respect to the plaintext. A
lossy encryption implies the existence of an opening algorithm (possibly inefficient) that can
compute a randomness for a given fake ciphertext and a message.



Realizing tweaked NCER. Finally, we demonstrate the broad applicability of this prim-
itive and show how to construct it from various important primitives: key-simultable
PKE, two-round honest-receiver statistically-hiding
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)
oblivious transfer (OT) and

hash proof systems (HPS). We stress that it is not known how to build NCER un-
der these assumptions (or any other generic assumption), which implies that tweaked
NCER is much easier to realize. In addition, we prove that the two existing NCER
schemes [7] with security under the DDH and DCR hardness assumptions imply the
tweaked NCER notion, where surprisingly, the former construction that is a secure
NCER for only polynomial-size message spaces, is a tweaked NCER for exponential-
size message spaces (this further hints that tweaked NCER may be constructed more
efficiently than NCER). These results imply that tweaked NCER (and thus rind-so)
can be realized based on DDH, DCR, RSA, factoring and learning with errors (LWE)
hardness assumptions.

Our results are summarized in Fig. 1.

Key-Simulatable PKE

(
2
1

)
-OT

HPS

NCER

Tweaked NCER rind-so rsim-so

Fig. 1. The arrows can be read as follows: solid arrows denote implication, crossed arrows denote
counterexamples, dashed arrows denote assumption-wise implication and dotted arrows denote
implication with respect to concrete instances (where the implication may not hold in general).
The implication of receiver indistinguishability security by simulation security is a known result.

The relation between sind-so and ssim-so. As a side result, we study the relation
between the indistinguishability and simulation based security definitions in the sender
setting. We show that sind-so is strictly weaker than the notion of ssim-so by presenting
a concrete public key scheme that meets the former but not the latter level of security.
Our separating scheme is built using the two primitives lossy public key encryption and
commitment scheme. We exploit the hiding properties of these building blocks to prove
that our scheme implies sind-so security. On the other hand, simulation always fails
since it implies breaking the binding property of the commitment scheme. Informally,
we prove the following theorem:

Theorem 14 (Informal) There exists a PKE that is sind-so secure but is not ssim-so
secure.



We stress that this was already demonstrated indirectly in [4] (by combining two
separation results). Here we design a concrete counter example to demonstrate the same
in a simpler manner. A similar result has been shown for full ind-so and sim-so in [5],
demonstrating that these definitions do not imply each other in the sender setting.

To sum up, we study the different levels for receiver security in the presence of SO
attacks. We clarify the relation between these notions and provide constructions that
meet them using the close conceptual relation between SO security and non-committing
encryption. From a broader perspective, our results position more precisely SO security
for the receiver in the spectrum of security notions for encryption.

2 Preliminaries

Basic notations. For x, y ∈ N with x < y, let [x] := {1, . . . , x} and [x, y] :=
{x, x + 1, . . . , y}. We denote the computational security parameter by k and statisti-
cal security parameter by s. A function µ(·) is negligible in security parameter κ if
for every polynomial p(·) there exists a value N such that for all κ > N it holds that
µ(k) < 1

p(κ) , where κ is either k or s. For a finite set S, we denote by s ← S the pro-
cess of sampling s uniformly. For a distribution X , we denote by x← X the process of
sampling x from X . For a deterministic algorithm A, we write a ← A(x) the process
of running A on input x and assigning y the result. For a randomized algorithm A, we
write a← A(x; r) the process of runningA on input x and randomness r and assigning
a the result. At times we skip r in the parenthesis to avoid mentioning it explicitly. We
write PPT for probabilistic polynomial-time. For a PKE (or commitment) scheme C,
we use the notationMC and respectively RC to denote the input and the randomness
space of the encryption (or commitment) algorithm of C. We use bold fonts to denote
vectors. If m is an n dimensional vector, we write mi for the i-th entry in m; if I ⊆ [n]
is a set of indices we write mI for the vector of dimension |I| obtained by projecting
m on the coordinates in I.

2.1 Public Key Encryption

A public key encryption (PKE) scheme PKE with message spaceM consists of three
PPT algorithms (Gen,Enc,Dec). The key generation algorithm Gen(1k) outputs a pub-
lic key pk and a secret key sk. The encryption algorithm Encpk(m; r) takes pk and a
message m ∈ M and randomness r ∈ R, and outputs a ciphertext c. The decryption
algorithm Decsk(c) takes sk and a ciphertext c and outputs a message m. For correct-
ness, we require that m = Decsk(c) for all m ∈M and all (pk, sk)← Gen(1k) and all
c ← Encpk(m). The standard notion of security for PKE is indistinguishability under
chosen plaintext attacks, denoted by ind-cpa [15] (and the corresponding experiment is
denoted as Expind-cpa

PKE ). As a general remark, we note that whenever we refer to a secret
key, we refer to the randomness used to generate it by the key generation algorithm.

2.2 Selective Opening Security

Depending on the attack scenario, we distinguish two settings that fall under the general
idea of SO attacks. In sender security, we have n senders and one receiver. The receiver



holds a secret key relative to a public key known to all senders. The senders send mes-
sages to the receiver and the adversary is allowed to corrupt some of the senders (and
learn the messages and randomness underlying some of the ciphertexts). The concern is
that the messages sent by uncorrupted users stay secret. The second scenario deals with
receiver security. Here we consider one sender and n receivers who hold independently
generated public and secret keys. The attacker is allowed to learn the secret keys of
some of the receivers. Security is concerned with the messages received by uncorrupted
receivers.

For each of these settings we consider two types of definitions from the litera-
ture [2]: (1) an indistinguishability based definition and (2) a simulation based defini-
tion. Indistinguishability-based definitions require that an adversary that sees a vector of
ciphertexts cannot distinguish the true plaintexts of the ciphertexts from independently
sampled plaintexts, even in the presence of the randomness used for generating the
opened ciphertexts (in the sender corruption setting), or the secret keys that decrypt the
opened ciphertexts (in the receiver corruption setting). The indistinguishability based
definitions use the notion of efficiently resamplable message distributions which we
recall next following [5].

Definition 21 (Efficiently resamplable distribution) Let n = n(k) > 0 and let Dist
be a joint distribution over

(
{0, 1}k

)n
. We say that Dist is efficiently resamplable if

there is a PPT algorithm ResampDist such that for any I ⊆ [n] and any partial vector
m′I ∈

(
{0, 1}k

)|I|
, ResampDist(m

′
I) returns a vector m sampled from Dist|m′I , i.e.

m′ is sampled from Dist conditioned on mI = m′I .

Below, we recall indistinguishability and simulation based definitions for security in
the presence of selective opening attacks3. We present the definitions for sender and re-
ceiver security. To avoid heavy notation we follow the following conventions when
naming the security notions: we use “ind” or “sim” to indicate if the definition is
indistinguishability-based or simulation-based, and prepend “s” or “r” to indicate if
the definition is for sender security or receiver security; we keep “so” in the name of
the notion to indicate that we deal with selective opening attacks. We also note that we
consider chosen plaintext attacks only, but avoid showing this explicitly in the names of
the security notions.

Definition 22 (Indistinguishability based SO security) For a PKE scheme PKE =
(Gen,Enc,Dec), a polynomially bounded function n = n(k) > 0 and a stateful PPT
adversary A, consider the following two experiments; the left experiment corresponds to
sender corruptions, whereas, the right experiment corresponds to receiver corruptions.

In the above experiments we only assume adversaries that are well-behaved in that
they always output efficiently resamplable distributions together with resampling algo-
rithms.

3 We remark that a stronger security notion that does not does require efficient resemplability is
possible, but no constructions that satisfy this stronger notion are known.



Experiment 1 Expsind-so
PKE (A, k)

b← {0, 1}
(pk, sk)← Gen(1k)
(Dist,ResampDist, state1)← A(pk)
m := (mi)i∈[n] ← Dist
r := (ri)i∈[n] ←RnPKE
e := (ei)i∈[n] ← (Encpk(mi; ri))i∈[n]
(I, state2)← A(e, state1)
m′ ← Resamp(mI)
m∗ = m if b = 0, else m∗ = m′

b′ ← A(rI ,m
∗, state2),

Return 1 if b = b′, and 0 otherwise.

Experiment 2 Exprind-so
PKE (A, k)

b← {0, 1}
(pk, sk) := (pki, ski)← (Gen(1k))i∈[n]
(Dist,ResampDist, state1)← A(pk)
m := (mi)i∈[n] ← Dist
r := (ri)i∈[n] ←RnPKE
e := (ei)i∈[n] ← (Encpki(mi; ri))i∈[n]
(I, state2)← A(e, state1)
m′ ← Resamp(mI)
m∗ = m if b = 0, else m∗ = m′

b′ ← A(skI ,m
∗, state2)

Return 1 if b = b′, and 0 otherwise.

We say that PKE is sind-so secure if for a well-behaved PPT A there exists a negligible
function µ = µ(k) such that

Advsind-so
PKE (A, k) := 2

∣∣∣∣Pr[Expsind-so
PKE (A, k) = 1]− 1

2

∣∣∣∣ ≤ µ.
We say that PKE is rind-so secure if for a well-behaved PPT A there exists a negligible
function µ = µ(k) such that

Advrind-so
PKE (A, k) := 2

∣∣∣∣Pr[Exprind-so
PKE (A, k) = 1]− 1

2

∣∣∣∣ ≤ µ.
Pr
[
Expsind-so

PKE (A, k) = 1
]

and Pr
[
Exprind-so

PKE (A, k) = 1
]

denote the winning proba-
bility of A in the respective experiments.

Simulation based security is defined, as usual, by comparing an idealized execution
with the real one. Again, we consider both sender and receiver security.

Definition 23 (Simulation based SO security) For a PKE scheme PKE = (Gen,Enc,
Dec), a polynomially bounded function n = n(k) > 0, a PPT adversary A and a PPT
algorithm S, we define the following pairs of experiments.

We say that PKE is ssim-so secure iff for every PPT A there is a PPT algorithm S,
a PPT distinguisher D with binary output and a negligible function µ = µ(k) such that

Advssim-so
PKE (D, k) :=∣∣∣Pr[1← D(Expssim-so-real

PKE (A, k))]− Pr[1← D(Expssim-so-ideal
PKE (S, k))]

∣∣∣ ≤ µ.
We say that PKE is rsim-so secure iff for every PPT A there is a PPT algorithm S,

a PPT distinguisher D with binary output and a negligible function µ = µ(k) such that

Advrsim-so
PKE (D, k) :=∣∣∣Pr[1← D(Exprsim-so-real

PKE (A, k))]− Pr[1← D(Exprsim-so-ideal
PKE (S, k))]

∣∣∣ ≤ µ.
Our definitions consider non-adaptive attacks, where the adversary corrupts the parties
in one go. Our results remain unaffected even in the face of an adaptive adversary [5].



Experiment 3 Expssim-so-real
PKE (A, k)

(pk, sk)← Gen(1k)
(Dist, state1)← A(pk)
m := (mi)i∈[n] ← Dist
r := (ri)i∈[n] ←RnPKE
e := (ei)i∈[n] ← (Encpk(mi; ri))i∈[n]
(I, state2)← A(e, state1)
output← A(rI ,mI , state2)
Return (m,Dist, I, output).

Experiment 4 Expssim-so-ideal
PKE (S, k)

(Dist, state1)← S(·)
m := (mi)i∈[n] ← Dist
(I, state2)← S(state1)
output← S(mI , state2)
Return (m,Dist, I, output).

Experiment 5 Exprsim-so-real
PKE (A, k)

(pk, sk) := (pki, ski)← (Gen(1k))i∈[n]
(Dist, state1)← A(pk)
m := (mi)i∈[n] ← Dist
r := (ri)i∈[n] ← RnPKE
e := (ei)i∈[n] ← (Encpki(mi; ri))i∈[n]
(I, state2)← A(e, state1)
output← A(skI ,mI , state2)
Return (m,Dist, I, output).

Experiment 6 Exprsim-so-ideal
PKE (S, k)

(Dist, state1)← S(·)
m := (mi)i∈[n] ← Dist
(I, state2)← S(state1)
output← S(mI , state2)
Return (m,Dist, I, output).

3 Building Blocks

Our constructions employ a number of fundamental cryptographic building blocks as
well as a new primitive which we call tweaked NCER.

Commitment Schemes. We define a non-interactive statistically hiding commitment
scheme (NISHCOM).

Definition 31 (NISHCOM) A non-interactive commitment scheme nisCom consists of
two algorithms (nisCommit, nisOpen) defined as follows. Given a security parameter
k, message m ∈ MnisCom and random coins r ∈ RnisCom, PPT algorithm nisCommit
outputs commitment c. Given k, commitment c and message m, (possibly inefficient)
algorithm nisOpen outputs r. We require the following properties:

– Correctness. We require that c = nisCommit(m; r) for all m ∈ MnisCom and r ←
nisOpen(c,m).

– Security. A NISHCOM nisCom is stat-hide secure if commitments of two distinct
messages are statistically indistinguishable. Specifically, for any unbounded pow-
erful adversary A, there exists a negligible function µ = µ(s) such that
Advstat-hide

nisCom (A, k) := |Pr[1← A(c0)]− Pr[1← A(c1)]| ≤ µ
for ci ← nisCommit(mi), i ∈ {0, 1} and m0,m1 ∈MnisCom.
A NISHCOM nisCom is comp-bind secure if no commitment can be opened to two
different messages in polynomial time. Specifically, the advantage Advcomp-bind

nisCom (A,
k) of A is defined by Pr[(m0, r0,m1, r1) ← A(k) : nisCommit(prm,m0; r0) =
nisCommit(prm,m1; r1)] (with the probability over the choice of the coins of A)
is smaller than some negligible function µ = µ(k).
A NISHCOM nisCom is called secure it is {stat-hide, comp-bind} secure.

Non-Committing Encryption for Receiver (NCER). A non-committing encryption
for receiver [21, 7] is a PKE scheme with the property that there is a way to generate fake



ciphertexts which can then be decrypted (with the help of a trapdoor) to any plaintext.
Intuitively, fake ciphertexts are generated in a lossy way so that the plaintext is no longer
well defined given the ciphertext and the public key. This leaves enough entropy for the
secret key to be sampled in a way that determines the desired plaintext. We continue
with a formal definition of NCER and its security notion referred as ind-ncer security.

Definition 32 (NCER) An NCER nPKE consists of five PPT algorithms (nGen, nEnc,
nEnc∗, nDec, nOpen) defined as follows. Algorithms (nGen, nEnc, nDec) form a PKE.
Given the public key pk, the fake encryption algorithm nEnc∗ outputs a ciphertext e∗

and a trapdoor t. Given the secret key sk, the public key pk, fake ciphertext e∗, trapdoor
t and plaintext m, algorithm nOpen outputs sk∗.

– Correctness. We require that m = nDecsk(c) for all m ∈ M, all (pk, sk) ←
nGen(1k) and all c← nEncpk(m).

– Security. An NCER scheme nPKE is ind-ncer secure if the real and fake ciphertexts
are indistinguishable. Specifically, for a PPT adversary A, consider the experiment
Expind-ncer

nPKE defined as follows.

Experiment 7 Expind-ncer
nPKE (A, k)

b← {0, 1}
(pk, sk0)← nGen(1k)
m← A(pk)
e0 ← nEncpk(m)
(e1, t)← nEnc∗pk(1

k), sk1 ← nOpen(sk0, pk, e1, t,m)
b′ ← A(skb, eb)
Return 1 if b = b′, and 0 otherwise.

We say that nPKE is ind-ncer-secure if for a PPT adversary A, there exists a neg-
ligible function µ = µ(k) such that

Advind-ncer
nPKE (A, k) := 2

∣∣∣∣Pr[Expind-ncer
nPKE (A, k) = 1]− 1

2

∣∣∣∣ ≤ µ.
An NCER nPKE is secure if it is ind-ncer secure.

Tweaked NCER. We introduce a variant of NCER which modifies the definition of
NCER in the following two ways. First, the opening algorithm nOpen may be ineffi-
cient. In addition, the fake encryption algorithm is required to output a fake ciphertext
e∗ given the secret key sk and a plaintextm, so that decryption is “correct” with respect
to e∗ and m. We call the resulting notion, which we formalize below, tweaked NCER.

Definition 33 (Tweaked NCER) A tweaked NCER scheme tPKE is a PKE that con-
sists of five algorithms (tGen, tEnc, tEnc∗, tDec, tOpen) defined as follows. Algorithms
(tGen, tEnc, tDec) form a PKE. Given the secret key sk and the public key pk, and a
plaintextm, the PPT fake encryption algorithm tEnc∗ outputs a ciphertext e∗. Given the
secret key sk and the public key pk, fake ciphertext e∗ such that e∗ ← tEnc∗pk(sk,m

′)
for some m′ ∈ MtPKE and a plaintext m, the inefficient algorithm tOpen outputs sk∗

such that m = tDecsk∗(e
∗).



– Correctness. We require that m = tDecsk(c) for all m ∈ M, all (pk, sk) ←
tGen(1k) and all c← tEncpk(m).

– Security. A tweaked NCER scheme tPKE is ind-tcipher secure if real and fake ci-
phertexts are indistinguishable. Specifically, for a PPT adversary A, consider the
experiment Expind-tcipher

tPKE defined as follows.

Experiment 8 Expind-tcipher
tPKE (A, k)

b← {0, 1}
(pk, sk)← tGen(1k)
m← A(pk)
e0 ← tEncpk(m)
e1 ← tEnc∗pk(sk,m)
b′ ← A(sk, eb)
Return 1 if b = b′, and 0 otherwise.

Experiment 9 Expind-tncer
tPKE (A, k)

b← {0, 1}
(pk, sk0)← tGen(1k)
m← A(pk)
e0 ← tEnc∗pk(sk0,m)
e1 ← tEnc∗pk(sk0,m

′) for m′ ∈MtPKE

sk1 ← tOpen(e1,m)
b′ ← A(skb, eb)
Return 1 if b = b′, and 0 otherwise.

We say that tPKE is ind-tcipher secure if for a PPT adversary A, there exists a
negligible function µ = µ(k) such that

Advind-tcipher
tPKE (A, k) := 2

∣∣Pr[Expind-tcipher
tPKE (A, k) = 1]− 1

2

∣∣ ≤ µ.
We say that tPKE is ind-tncer secure if for an unbounded adversary A, there exists
a negligible function µ = µ(s) such that

Advind-tncer
tPKE (A, k) := 2

∣∣Pr[Expind-tncer
tPKE (A, k) = 1]− 1

2

∣∣ ≤ µ.
A tweaked NCER tPKE is secure if it is {ind-tcipher, ind-tncer} secure.

Key-Simulatable PKE. A key-simulatable public key encryption scheme is a PKE in
which the public keys can be generated in two modes. In the first mode a public key is
picked together with a secret key, whereas the second mode implies an oblivious public
key generation without the secret key. Let V denote the set of public keys generated
in the first mode and K denote the set of public keys generated in the second mode.
Then it is possible that K contains V (i.e., V ⊆ K). Moreover, in case V ⊂ K the set of
public keys fromK\V is not associated with any secret key. We respectively denote the
keys in V and K \ V as valid and invalid public keys. In addition to the key generation
algorithms, key-simulatable PKE also consists of an efficient key faking algorithm that
explains a public key from V , that was generated in the first mode, as an obliviously
generated public key from K that was generated without the corresponding secret key.
The security requirement asserts that it is hard to distinguish a random element from
K from a random element from V . The formal definition follows. We note that the
notion of key-simulatable PKE is very similar to the simulatable PKE [9] notion with
the differences that the latter notion assumes that K = V and further supports oblivious
ciphertext generation and ciphertext faking.

Definition 34 (Key-simulatable PKE) A key-simulatable public key encryption sPKE

consists of five PPT algorithms (sGen, sEnc, sDec, s̃Gen, s̃Gen
−1

) defined as follows.



Algorithms (sGen, sEnc, sDec) form a PKE. Given the security parameter k, the oblivi-
ous public key generator s̃Gen returns a public key pk′ from K and the random coins r′

used to sample pk′. Given a public key pk ∈ V , the key faking algorithm returns some
random coins r.

– Correctness. We require that m = sDecsk(c) for all m ∈ M, all (pk, sk) ←
sGen(1k) and all c← sEncpk(m).

– Security. A key-simulatable scheme sPKE is ind-cpa secure if (sGen, sEnc, sDec)
is ind-cpa secure. It is called ksim secure if it is hard to distinguish an oblivi-
ously generated key from a legitimately generated key. Specifically, for a PPT ad-
versary A, there exists a negligible function µ = µ(k) such that Advksim

sPKE(A, k) :=∣∣Pr [1← A(r, pk)]− Pr
[
1← A(r′, pk′)

]∣∣ ≤ µ where (pk, sk)← sGen(1k), r ←

s̃Gen
−1

(pk) and (pk′, r′)← s̃Gen(1k).
A key-simulatable scheme sPKE is secure if it is {ind-cpa, ksim} secure.

An extended key-simulatable PKE is a secure key-simulatable where in addition V ⊂ K
and it holds that Pr

[
pk ∈ K \ V | (pk, r)← s̃Gen(1k)

]
is non-negligible.

4 Selective Opening Security for the Receiver

In this section we provide negative and positive results regarding security for the re-
ceiver in the presence of selective opening attacks. First, we show that rind-so is strictly
weaker than rsim-so security by constructing a scheme that meets the former but not the
latter level of security. We then relate the different forms of security under SO attacks
with non-committing encryption (for the receiver). Specifically, we show that secure
NCER implies rsim-so and that secure tweaked NCER implies rind-so. Interestingly,
we show that the converse implications do not hold. In terms of constructions, we show
that tweaked NCER can be constructed from various primitives such as key-simulatable
PKE, two-round honest-receiver statistically-hiding

(
2
1

)
-OT protocol, secure HPS and

NCER. The DDH based secure NCER scheme of [7] that works for polynomial message
space turns out to be secure tweaked NCER for exponential message space.

4.1 rind-so Secure PKE 6=⇒ rsim-so Secure PKE

Our construction is built from an ind-ncer secure scheme nPKE and a {stat-hide,
comp-bind} secure NISHCOM nisCom that satisfy a compatibility condition. Specif-
ically, we require that the message and randomness spaces of nisCom, denoted by
MnisCom andRnisCom, are compatible with the message spaceMnPKE of nPKE.

Definition 41 An ind-ncer secure NCER nPKE and a {stat-hide, comp-bind} secure
NISHCOM nisCom are said to be compatible ifMnPKE =MnisCom = RnisCom.

Theorem 42 Assume there exist an ind-ncer secure NCER and a {stat-hide, comp-bind}
secure NISHCOM that are compatible. Then, there exists a PKE that is rind-so secure
but is not rsim-so secure.



Proof: We describe our separating encryption scheme first. Consider a scheme nPKE =
(nGen, nEnc, nEnc∗, nDec, nOpen) that is secure NCER (cf. Definition 32) and an NISH-
COM nisCom = (nisCommit, nisOpen) (cf. Definition 31) that are compatible. We
define the encryption scheme PKE = (Gen,Enc,Dec) as follows.

Gen(1k)
(pk0, sk0)← nGen(1k)
(pk1, sk1)← nGen(1k)
pk = (pk0, pk1)
sk = (sk0, sk1)
Return (pk, sk)

Encpk(m)
c← nisCommit(m, r)
e0 ← nEncpk0(m)
e1 ← nEncpk1(r)
Return e = (e0, e1, c)

Decsk(e)
e := (e0, e1, c)
m = nDecsk0(e0)
r = nDecsk1(e1)
if c = nisCommit(m, r)

Return m
else Return ⊥

The proof follows from Lemmas 41 and 45 below which formalize that PKE is
rind-so secure but not rsim-so secure.

Lemma 41 Assume that nPKE is ind-ncer secure and nisCom is {stat-hide, comp-bind}
secure, then PKE is rind-so secure.

Proof: More precisely we show that for any PPT adversary A attacking PKE there exist
a PPT adversary B and an unbounded powerful adversary C such that

Advrind-so
PKE (A, k) ≤ n

(
4 ·Advind-ncer

nPKE (B, k) +Advstat-hide
nisCom (C, k)

)
.

We prove this lemma using the following sequence of experiments.

– Exp0 = Exprind-so
PKE .

– Exp1 is identical to Exp0 except that the first component of each ciphertext in
the vector e is computed using nEnc∗ of nPKE. That is, for all i ∈ [n] ciphertext
ei is defined by (e∗i0, ei1, ci) such that (e∗i0, ti0) ← nEnc∗pki0(1

k). Furthermore,
if i ∈ I (i.e., A asks to open the ith ciphertext), then Exp1 computes sk∗i0 ←
nOpen(ski0, e

∗
i0, ti0,mi) and hands (sk∗i0, ski1) to A.

– Exp2 is identical to Exp1 except that the second component of each ciphertext in
the vector e is computed using nEnc∗ of nPKE, That is, for all i ∈ [n] ciphertext
ei is defined by (e∗i0, e

∗
i1, ci) such that (e∗i1, ti1) ← nEnc∗pki1(1

k). Furthermore,
if i ∈ I (i.e., A asks to open the ith ciphertext), then Exp2 computes sk∗i1 ←
nOpen(ski1, e

∗
i1, ti1, ri) and hands (sk∗i0, sk

∗
i1) to A, where ri is the randomness

used to compute ci.
– Exp3 is identical to Exp2 except that the third component of each ciphertext in

the vector e is a commitment of a dummy message. That is, for all i ∈ [n] ci-
phertext ei is defined by (e∗i0, e

∗
i1, c

∗
i ) such that c∗i ← nisCommit(m∗i ; r

∗
i ), where

m∗i is a dummy message from MnisCom and r∗i ← RnisCom. Furthermore, if i ∈
I then Exp3 first computes ri ← nisOpen(c∗i ,mi). Then it computes sk∗i1 ←
nOpen(ski1, e

∗
i1, ti1, ri) and hands (sk∗i0, sk

∗
i1) to A, where ri is the randomness

returned by nisOpen.



We note that although the third experiment is not efficient (the experiment needs to
equivocate the commitment without a trapdoor), it does not introduce a problem in
our proof: an adversary that distinguishes between Exp2 and Exp3 gives rise to an un-
bounded adversary that breaks the statistical hiding property of the commitment scheme
used by our construction.

Let εj be the advantage of A in Expj , i.e. εj := 2
∣∣Pr[Expj(A, k) = 1]− 1

2

∣∣. We
first note that ε3 = 0 since in experiment Exp3 the adversary receives a vector of ci-
phertexts that are statistically independent of the encrypted plaintexts, implying that the
adversary (even with unbounded computing power) outputs the correct bit b with prob-
ability 1/2. Next we show that |ε0 − ε1| ≤ 2n∆ind-ncer and |ε1 − ε2| ≤ 2n∆ind-ncer,
where ∆ind-ncer = Advind-ncer

nPKE (B, k) for a PPT adversary B. Finally, we argue that
|ε2 − ε3| ≤ n∆stat-hide where ∆stat-hide = Advstat-hide

nisCom (C, k) for an unbounded pow-
erful adversary C. All together this implies that |ε0 − ε3| ≤ 4n∆ind-ncer + n∆stat-hide
and that ε0 ≤ 4n∆ind-ncer + n∆stat-hide, which proves the lemma.

Claim 42 |ε0 − ε1| ≤ 2n∆ind-ncer, where ∆ind-ncer = Advind-ncer
nPKE (B, k).

Proof: We prove the claim by introducing n intermediate hybrids experiments be-
tween Exp0 and Exp1; the difference between two consequent hybrids is bounded by
a reduction to ind-ncer security of nPKE. More specifically, we introduce n − 1 in-
termediate hybrid experiments so that E0 = Exp0, En = Exp1 and the ith hybrid
experiment Ei is defined recursively. That is,

– E0 = Exp0.
– For i = [n], Ei is identical to Ei−1 except that the ith ciphertext ei is computed by
(e∗i0, ei1, ci) where (e∗i0, ti0)← nEnc∗pki0(1

k). Furthermore, if i ∈ I (i.e., if A asks
to open the ith ciphertext), thenEi computes sk∗i0 ← nOpen(ski0, e

∗
i0, ti0,mi) and

hands (sk∗i0, ski1) to A.

Clearly En = Exp1 where the first component of all ciphertext is computed using
nEnc∗. Let γi define the advantage of A inEi, i.e. γi := 2

∣∣Pr[Ei(A, k) = 1]− 1
2

∣∣. Next
we show that |γi−1 − γi| ≤ 2∆ind-ncer for all i ∈ [n]. This implies that |γ0 − γn| ≤
2n∆ind-ncer. Now, since γ0 = ε0 and γn = ε1 we get |ε0 − ε1| ≤ 2n∆ind-ncer, thus
proving the claim.

We fix i ∈ [n] and prove that |γi−1 − γi| ≤ 2∆ind-ncer. Specifically, we show that
any adversary B that wishes to distinguish a real ciphertext from a fake one relative
to nPKE can utilize the power of adversary A. Upon receiving pk from experiment
Expind-ncer

nPKE and i, B interacts with A as follows.

1. B samples first a bit b ← {0, 1} and sets pki0 = pk. It then uses nGen to generate
the rest of the public keys to obtain pk (and all but (i0)th secret key).4 Finally, it
hands pk to A that returns Dist and ResampDist.

2. B samples m ← Dist(1k) and outputs mi to Expind-ncer
nPKE that returns (sk, e). B

then sets ski0 = sk. (Note that this completes vector sk since B generated the rest
of the secret keys in the previous step).

4 Recall that each public key within pk includes two public keys relative to nPKE.



– For j ∈ [i−1], B computes the first component of ciphertext ej by (ej0, tj0)←
nEnc∗pkj0(1

k). B completes ej honestly (i.e., exactly as specified in Enc).
– For j = i, B sets the first component of ej to be e. B completes ej honestly.
– For j ∈ [i+ 1, n], B computes ciphertext ej honestly.

Let e = (ej)j∈[n]. B hands e to A that returns I.
3. B resamples m′ ← ResampDist(mI). Subsequently it hands m∗ to A as well as

secret keys for all the indices that are specified in I, where m∗ = m if b = 0,
m∗ = m′ otherwise. That is,

– If j ∈ I lies in [i − 1], then B computes sk∗j0 ← nOpen(skj0, ej0, tj0,mj)
and hands (sk∗j0, skj1).

– If j ∈ I equals i, then B hands (skj0, skj1) where skj0 is same as sk that B
had received from Expind-ncer

nPKE .
– If j ∈ I lies in [i+ 1, n], then B returns (skj0, skj1).

4. B outputs 1 in experiment Expind-ncer
nPKE if A wins.

Next, note that B perfectly simulates Ei−1 if it received a real ciphertext e within
(sk, e). Otherwise, B perfectly simulates Ei. This ensures that the probability that B
outputs 1 in Expind-ncer

nPKE given a real ciphertext is at least as good as the probability
that A wins in Ei−1. On the other hand, the probability that B outputs 1 in Expind-ncer

nPKE

given a fake ciphertext is at least as good as the probability that A wins in Ei. Since the
advantage of A in Ei is γi, its winning probability (cf. Definition 22) Pr[Ei(A, k) = 1]
in the experiment is γi

2 + 1
2 . Similarly, the winning probability of A in experiment Ei−1

is γi−1

2 + 1
2 . Denoting the bit picked in Expind-ncer

nPKE by c we get,

Pr
[
1← B(sk, e) | (pk, sk)← nGen(1k) ∧ e← nEncpk(mi)

]︸ ︷︷ ︸
=Pr[1←B | c=0]

≥ γi−1
2

+
1

2
and

Pr
[
1← B(sk, e) | (pk, sk)← nGen ∧ (e, te)← nEnc∗pk ∧ sk ← nOpen(sk, e, te,mi)

]︸ ︷︷ ︸
=Pr[1←B | c=1]

≥ γi
2

+
1

2
.

This implies that

∆ind-ncer = Advind-ncer
nPKE (B, k) = 2

∣∣∣∣Pr[Expind-ncer
nPKE (B, k) = 1]− 1

2

∣∣∣∣
= 2

∣∣∣∣∣∣∣Pr[0← B | c = 0]Pr(c = 0)︸ ︷︷ ︸
=1/2

+Pr[1← B | c = 1]Pr(c = 1)︸ ︷︷ ︸
=1/2

−1

2

∣∣∣∣∣∣∣
= |Pr[0← B | c = 0] + Pr[1← B | c = 1]− 1|

= |Pr[1← B | c = 0]− Pr[1← B | c = 1]| ≥ |γi−1 − γi|
2

.

�
The following claim follows by a similar hybrid argument as described above.



Claim 43 |ε1 − ε2| ≤ 2n∆ind-ncer, where ∆ind-ncer = Advind-ncer
nPKE (B, k).

Finally, we prove the following claim.

Claim 44 |ε2 − ε3| ≤ n∆stat-hide, where ∆stat-hide = Advstat-hide
nisCom (C, k).

Proof: We prove the claim by introducing n intermediate hybrids experiments between
Exp2 and Exp3; we show that each pair of consecutive experiments is statistically
indistinguishable based on stat-hide security of the NISHCOM. These hybrid experi-
ments are defined as follows:

– H0 = Exp2.
– For i = [n],Hi is identical toHi−1 except that the ith ciphertext ei in e is computed

as (e∗i0, e
∗
i1, c

∗
i ) where c∗i ← nisCommit(m∗i ; r

∗
i ), where m∗i is a dummy message

fromMnisCom and r∗ ← RnisCom. Furthermore, if i ∈ I, then Hi computes ri ←
nisOpen(c∗i ,mi) and hands (sk∗i0, sk

∗
i1) to A.

We remark again that the hybrid experiments defined above are not efficient, but this is
not an issue as we rely on the statistical security of the underlying NISHCOM.

Clearly, Hn = Exp3 where the third component of each ciphertext within e is
computed using dummy messages. Let νi be the advantage of A in Hi, i.e., νi :=
2
∣∣Pr[Hi(A, k) = 1]− 1

2

∣∣. Next, we show that |νi−1 − νi| ≤ ∆stat-hide for all i ∈ [n],
where ∆stat-hide = Advstat-hide

nisCom (C, k) . All together, this implies that |ν0 − νn| ≤
n∆stat-hide. Since ν0 = ε2 and νn = ε3 we get that |ε2 − ε3| ≤ n∆stat-hide which
proves the claim.

Fix i ∈ [n]. The only difference between experiments Hi−1 and Hi is relative to
the third component of ciphertext ei. Namely, in Hi−1, the third component in ei is
a commitment to mi where mi is the ith element in m. On the other hand, in Hi it
is a commitment to a dummy message from MnisCom. As the underlying NISHCOM
satisfies statistical hiding property, even an unbounded adversary C cannot distinctHi−1
and Hi with probability better than ∆stat-hide, so |νi−1 − νi| ≤ ∆stat-hide as desired. �
�

We conclude with the proof of the following lemma.

Lemma 45 PKE is not rsim-so secure.

Proof: We then rely on a result of [1] which establishes that no decryption verifi-
able ind-cpa secure is rsim-so. Informally, decryption verifiability implies the exis-
tence of an algorithm W (that either outputs accept or reject), such that it is hard to
find pk, sk0, sk1, distinctm0,m1 and a ciphertext e where bothW (pk, sk0, e,m0) and
W (pk, sk1, e,m1) accept. Note that it is hard to find two valid secret keys and plain-
texts as required since decryption follows successfully only if the commitment that
is part of the ciphertext is also correctly opened. In particular, an adversary that pro-
duces a ciphertext that can be successfully decrypted into two distinct plaintexts (under
two different keys) must break the comp-bind security of the underlying commitment
scheme.5 This implies that PKE is not rsim-so secure. �

5 Recall that the decryption algorithm verifies first whether the commitment within the cipher-
text is consistent with the decrypted ciphertexts (that encrypt the committed message and its
corresponding randomness for commitment).



Compatible Secure NCER and Secure NISHCOM. We instantiate the commitment
scheme with the Paillier based scheme of Damgård and Nielsen [10, 11], which is com-
prised of the following algorithms that use public parameters (N, g) where N is a k-bit
RSA composite and g = xN mod N2 for an uniformly random x← Z∗N .

– nisCommit, givenN, g and messagem ∈ ZN , pick r ← Z∗N and compute gm ·rN mod
N2.

– nisOpen, given commitment c and message m, compute randomness r such that c =
gm · rN mod N2. Namely, find first r̃ such that c = r̃N mod N2. This implies that
r̃N = (xN )m · rN mod N2 for some r ∈ Z∗N , since we can fix r = r̃/xm.

This scheme is computationally binding, as a commitment is simply a random Paillier
encryption of zero. Furthermore, opening to two different values implies finding the
N th root of g (which breaks the underlying assumption of Paillier, i.e., DCR). Finally,
the NCER can be instantiated with the scheme from [7] that is also based on the DCR
assumption. The message space of these two primitives is ZN . In addition, the ran-
domness of the commitment scheme is Z∗N and thus can be made consistent with the
plaintext spaces, as it is infeasible to find an element in ZN/Z∗N .

4.2 Secure Tweaked NCER =⇒ rind-so Secure PKE

In this section we prove that every secure tweaked NCER is a rind-so secure PKE.
Intuitively, this holds since real ciphertexts are indistinguishable from fake ones, and
fake ciphertexts do not commit to any fixed plaintext. This implies that the probability
of distinguishing an encryption of one message from another is exactly half, even for
an unbounded adversary.

Theorem 43 Assume there exists an {ind-tcipher, ind-tncer} secure tweaked NCER,
then there exists a PKE that is rind-so secure.

Proof: More precisely, let tPKE = (tGen, tEnc, tEnc∗, tDec, tOpen) denote a secure
tweaked NCER. Then we prove that tPKE is rind-so secure, by proving that for any
PPT adversary A attacking tPKE in the rind-so experiment there exist a PPT adversary
B and an unbounded powerful adversary C such that

Advrind-so
tPKE (A, k) ≤ 2n

(
Advind-tcipher

tPKE (B, k) +Advind-tncer
tPKE (C, k)

)
.

We modify experiment rind-so step by step, defining a sequence of 2n+ 1 experi-
ments and bound the advantage of A in the last experiment. The proof is then concluded
by proving that any two intermediate consecutive experiments are indistinguishable due
to either ind-tcipher security or ind-tncer security of tPKE. Specifically, we define a
sequence of hybrid experiments {Expi}2ni=0 as follows.

– Exp0 = Exprind-so
tPKE .

– For all i ∈ [n], Expi is identical to Expi−1 except that the ith ciphertext in vector
e is computed by e∗i ← tEnc∗pki(ski,mi), so that if i ∈ I then Expi outputs the
secret key ski computed by tGen and hands ski to adversary A (here we rely on
the additional property of tEnc∗).



– For all i ∈ [n], Expn+i is identical to Expn+i−1 except that the ith ciphertext in
vector e is computed by sampling a random message m∗i ∈ MtPKE first and then
computing e∗i ← tEnc∗pki(ski,m

∗
i ). Next, if i ∈ I then Expn+i computes a secret

key sk∗i ← tOpen(e∗i ,mi) and hands sk∗i to A.

Let εi denote the advantage of A in experiment Expi i.e., εi := |Pr[Expi(A, k) = 1]−
1
2 |. We first note that ε2n = 0 since in experiment Exp2n the adversary receives a vector
of ciphertexts that are statistically independent of the encrypted plaintexts, implying
that the adversary outputs the correct bit b with probability 1/2. We next show that
|εi−1 − εi| ≤ 2∆ind-tcipher for any i ∈ [n], where ∆ind-tcipher = Advind-tcipher

tPKE (B, k)
for a PPT adversary B. Finally, we prove that |εn+i−1 − εn+i| ≤ 2∆ind-tncer for any
i ∈ [n], where ∆ind-tncer = Advind-tncer

tPKE (C, k) for an unbounded powerful adversary
C. Together this implies that |ε0 − ε2n| ≤ 2n(∆ind-tcipher+∆ind-tncer). So we conclude
that ε0 ≤ n(∆ind-tcipher + ∆ind-tncer) + ε2n = 2n(∆ind-tcipher + ∆ind-tncer) which
concludes the proof of the theorem for all i ∈ [n].

Claim 46 |εi−1 − εi| ≤ 2n∆ind-tcipher, where ∆ind-tcipher = Advind-tcipher
tPKE (B, k).

Proof: In the following, we prove that one can design an adversary B that distinguishes
a real ciphertext from a fake one in Expind-tcipher

tPKE , using adversary A. B interacts with
A as follows:

1. Upon receiving pk from Expind-tcipher
tPKE and an integer i, B sets pki = pk. It picks

a bit b randomly. It then generates the rest of the public and secret key pairs using
tGen for all j ∈ [n] \ i, obtaining pk. It hands pk to A who returns Dist and
ResampDist.

2. B samples m ← Dist(1k) and hands mi to Expind-tcipher
tPKE which returns (sk, e).

B fixes ei = e and completes sk by setting ski = sk. Next, for j ∈ [i − 1] it
computes ej ← tEnc∗pkj (skj ,mj), whereas for j ∈ [i+1, n] it samples randomness
rj ← RtPKE and computes ej ← tEncpkj (mj ; rj). Let e = (ei)i∈[n]. B hands e to
A who returns I.

3. B samples m′ ← Resamp(mI) and hands A m∗ and the following secret keys for
all the indices that are specified in I. Here m∗ is m if b = 0 and m′ otherwise.
That is,

– If j ∈ I lies in [i− 1] or in [i+ 1, n], then B returns skj .
– If j ∈ I equals i, then B returns sk.

4. B outputs 1 in Expind-tcipher
tPKE if A wins.

Next, note that B perfectly simulates Expi−1 if it receives a real ciphertext e within
(sk, e). On the other hand, B perfectly simulates Expi if e is a fake ciphertext. This
ensures that the probability that B outputs 1 given a real ciphertext is at least as good
as the probability that A wins in Expi−1. On the other hand, the probability that B
outputs 1 given a fake ciphertext is at least as good as the probability that A wins in
Expi. Since the advantage of A in Expi is εi, its winning probability (cf. Definition 22)
Pr[Expi(A, k) = 1] in the experiment is εi

2 + 1
2 . Similarly, the winning probability of



A in experiment Expi−1 is εi−1

2 + 1
2 . Denoting the bit picked in Expind-tcipher

tPKE by c,

Pr
[
1← B(pk, sk, e,mi) | (pk, sk)← tGen(1k) ∧ e← tEncpk(mi)

]︸ ︷︷ ︸
=Pr[1←B | c=0]

≥ εi−1
2

+
1

2
and

Pr
[
1← B(pk, sk, e∗,mi) | (pk, sk)← tGen(1k) ∧ e∗ ← tEnc∗pk(sk,mi)

]︸ ︷︷ ︸
=Pr[1←B | c=1]

≥ εi
2
+

1

2
.

This implies that

∆ind-tcipher = Advind-tcipher
tPKE (B, k) = 2

∣∣∣∣Pr[Expind-tcipher
tPKE (B, k) = 1]− 1

2

∣∣∣∣
= 2

∣∣∣∣∣∣∣Pr[0← B | c = 0]Pr(c = 0)︸ ︷︷ ︸
=1/2

+Pr[1← B | c = 1]Pr(c = 1)︸ ︷︷ ︸
=1/2

−1

2

∣∣∣∣∣∣∣
= |Pr[0← B | c = 0] + Pr[1← B | c = 1]− 1|

= |Pr[1← B | c = 0]− Pr[1← B | c = 1]| ≥ |εi−1 − εi|
2

�

Claim 47 |εn+i−1 − εn+i| ≤ 2n∆ind-tcipher for all i ∈ [n],
where ∆ind-tncer = Advind-tncer

tPKE (C, k).

Proof: We prove that one can design an unbounded adversary C that distinguishes the
two views generated in experiment ind-tncer, using adversary A. C interacts with A:

1. Upon receiving pk from Expind-tncer
tPKE and an integer i, C sets pki = pk and picks a

bit b. It then generates the rest of the public and secret key pairs using tGen for all
j ∈ [n] \ {i}, obtaining pk. It hands pk to A who returns Dist and ResampDist.

2. C samples m ← Dist(1k) and hands mi to Expind-tncer
tPKE which returns (sk, e). C

fixes ei = e and completes sk by setting ski = sk. Next, for j ∈ [i− 1] it samples
m∗j ←MtPKE and computes ej ← tEnc∗pkj (skj ,m

∗
j ), whereas for j ∈ [i+1, n] it

computes ej ← tEnc∗pkj (skj ,mj). Let e = (ej)j∈[n]. C hands e to A receiving I.
3. C samples m′ ← Resamp(mI) and hands m∗ to A and the following secret keys

for all the indices that are specified in I. Here m∗ is m if b = 0 and m′ otherwise.
That is,

– If j ∈ I lies in [i− 1], then C returns skj such that skj = tOpen(ej ,mj).
– If j ∈ I equals i, then C returns sk.
– If j ∈ I lies in [i+ 1, n], then C returns skj .

4. C outputs 1 in Expind-tncer
tPKE if A wins.

Next, note that B perfectly simulates Expn+i−1 if it receives a real ciphertext e
within (sk, e). On the other hand, B perfectly simulates Expn+i if e is a fake ciphertext
and sk is a secret key returned by tOpen. This ensures that the probability that B outputs



1 given a real ciphertext is at least as good as the probability that A wins in Expn+i−1.
On the other hand, the probability that B outputs 1 given a fake ciphertext is at least as
good as the probability that A wins in Expn+i. Since the advantage of A in Expi is
εn+i, its winning probability (c.f Definition 22) Pr[Expi(A, k) = 1] in the experiment
is εn+i

2 + 1
2 . Similarly, the winning probability of A in experiment Expn+i−1 is εn+i−1

2 +
1
2 . Denoting the bit picked in Expind-tncer

tPKE by c we get,

Pr
[
1← C(sk, e) | (pk, sk)← tGen(1k) ∧ e← tEnc∗pk(sk,mi)

]︸ ︷︷ ︸
=Pr[1←C | c=0]

≥ εn+i−1
2

+
1

2
and

Pr
[
1← C(sk∗, e∗) | (pk, sk)← tGen ∧ e∗ ← tEnc∗pk(sk,m

∗) ∧ sk∗ ← tOpen(e∗, sk,mi)
]︸ ︷︷ ︸

=Pr[1←C | c=1]

≥ εn+i
2

+
1

2
.

Following a similar argument as in the previous claim, we conclude that 2∆ind-tncer ≥
|εn+i−1 − εn+i|. �

4.3 Secure NCER =⇒ rsim-so Secure PKE

In this section we claim that secure NCER implies selective opening security in the
presence of receiver corruption. Our theorem is stated for the stronger simulation based
security definition but holds for the indistinguishability definition as well. The proof is
given in the full version [17].

Theorem 44 Assume there exists an ind-ncer secure PKE, then there exists a PKE that
is rsim-so secure.

4.4 rsim-so Secure PKE 6=⇒ Secure NCER and Tweaked NCER

In this section we prove that rsim-so does not imply both tweaked NCER and NCER
by providing a concrete counter example based on an extended key-simulatable PKE
(cf. Section 3). The key point in our proof is that in some cases simulatable public keys
cannot be explained as valid public keys. Formally,

Theorem 45 Assume there exists an {ind-cpa, ksim} secure extended key-simulatable
PKE, then there exists a PKE that is rsim-so secure but is not a {ind-tcipher, ind-tncer}
secure tweaked NCER nor a ind-ncer secure NCER.

Proof: We describe our separating encryption scheme first; the complete proof is given
in the full version [17]. Given an extended key-simulatable PKE sPKE = (sGen, sEnc,

sDec, s̃Gen, s̃Gen
−1

) for a plaintext spaceMsPKE, we construct a new scheme PKE =
(Gen,Enc,Dec) with a binary plaintext space that is rsim-so secure, and thus also
rind-so secure, yet it does not imply tweaked NCER. For simplicity, we assume that
MsPKE is the binary space {0, 1}. The DDH based instantiation of sPKE with V ⊂ K
from Section 4.4 is defined with respect to this space.



Gen(1k)
α← {0, 1}
(pkα, skα)← sGen(1k)

(pk1−α, r1−α)← s̃Gen(1k)
pk = (pk0, pk1)
sk = (α, skα, r1−α)
Return (pk, sk)

Encpk(b)
e0 ← Encpk0(b)
e1 ← Encpk1(b)
Return e = (e0, e1)

Decsk(e)
sk = (α, skα, r1−α)
e := (e0, e1)
b = Decskα(eα)
Return b

Realizing Key-Simulatable and Extended Key-Simulatable PKE. An example of
a {ind-cpa, ksim} secure key-simulatable PKE is the ElGamal PKE [14] where we
set K to be equal to the set of valid public keys, i.e. K = V . In addition, note that any
simulatable PKE as defined in [9] is also {ind-cpa, ksim} secure key-simulatable PKE.

Below we provide an example of extended key-simulatable PKE with security un-
der the DDH assumption. For simplicity we consider a binary plaintext space. Let
(g0, g1, p) ← G(1k) be an algorithm that given a security parameter k returns a group
description G = Gg0,g1,p specified by its generators g0, g1 and its order p. Furthermore,
we set K = G2 and V = {(gx0 , gx1 ) ∈ G2 | x ∈ Zp}. Then define the following
extended key-simulatable PKE,

– sGen, given the security parameter k, set (g0, g1, p) ← G(1k). Choose uniformly ran-
dom x← Zp and compute hi = gxi for all i ∈ {0, 1}. Output the secret key sk = x
and the public key pk = (h0, h1).

– sEnc, given the public key pk and plaintext m ∈ {0, 1}, choose a uniformly random
s, t← Zp. Output the ciphertext (gs0g

t
1, g

m
0 · (hs0ht1)).

– sDec, given the secret key x and ciphertext (gc, hc), output hc · (gxc )−1.
– s̃Gen, given 1k, output two random elements from G and their bit sequence as the

randomness.
– s̃Gen

−1
, given a legitimate public key h0, h1, simply returns the bit strings of h0, h1 as

the randomness used to sample them from G2 by s̃Gen.
We remark that a public key chosen randomly from G2 does not necessarily correspond
to a secret key. Furthermore, Pr

[
pk ∈ K \ V | pk ← s̃Gen(1k)

]
is non-negligible. This

is a key property in our proof from Section 4.4.

4.5 Realizing Tweaked NCER

Based on key-simulatable PKE. We prove that secure tweaked NCER can be built
based on any secure key-simulatable PKE with K = V (cf. definition 3). Specifically,
our construction is based on the separating scheme presented in Section 4.4. In ad-
dition, we define the fake encryption algorithm so that it outputs two ciphertexts that
encrypt two distinct plaintexts rather than the same plaintext twice (implying that ci-
phertext indistinguishability follows from the ind-cpa security of the underlying en-
cryption scheme). More formally, the fake encryption algorithm can be defined as fol-
lows. Given sk = (α, skα, r1−α) and message b, a fake encryption of b is computed by
e∗ = (sEncpk0(b), sEncpk1(1 − b)) if α = 0 and e∗ = (sEncpk0(1 − b), sEncpk1(b))
otherwise. It is easy to verify that given sk, the decryption of e∗ returns b and that e∗

is computationally indistinguishable from a valid encryption even given the secret key.



Next, we discuss the details of the non-efficient opening algorithm which is required
to generate a secret key for a corresponding public key given a fake ciphertext and a
message b′. In more details, assuming sk = (α, skα, r1−α) and pk = (pk0, pk1),

tOpen(sk, pk, (e∗0, e
∗
1), b

′) =


(α, skα, r1−α) if e∗α = sEncpkα(b

′)

(1− α, sk1−α, rα) else, where rα ← s̃Gen
−1

(pkα)
and sk1−α is a valid secret key
of pk1−α.

Note that since it holds that V = K for the underlying sPKE scheme, there exists
a secret key that corresponds to pk1−α and it can be computed (possibly in an inef-
ficient way). Encryption schemes for larger plaintext spaces can be obtained by re-
peating this basic scheme sufficiently many times.6 Finally, we note that the scheme
is {ind-tcipher, ind-tncer} secure. Recalling that any simulatable PKE with K = V
is a key-simulatable PKE [9, 8], we conclude that secure tweaked NCER for a binary
plaintext space can be built relying on DDH, RSA, factoring and LWE assumptions.

An additional realization based on statistically-hiding
(
2
1

)
-OT in presented in the

full version [17]. These two implementations support binary plaintext space. Below
presented new constructions that support exponential plaintext spaces.

Based on NCER. We show that the DCR based secure NCER of [7] is also a secure
tweaked NCER. Let (p′, q′) ← G(1n) be an algorithm that given a security parameter
k returns two random n bit primes p′ and q′ such that p = 2p′ + 1 and q = 2q′ + 1 are
also primes. Let N = pq and N ′ = p′q′. Define (tGen, tEnc, tEnc∗, tDec, tOpen) by,

– tGen, given the security parameter k, run (p′, q′) ← G(1n) and set p = 2p′ + 1,
q = 2q′ + 1, N = pq and N ′ = p′q′. Choose random x0, x1 ← ZN2/4 and a
random g′ ∈ Z∗N2 and compute g0 = g′2N , h0 = gx0

0 and h1 = gx1
0 . Output public

key pk = (N, g0, h0, h1) and secret key sk = (x0, x1).
– tEnc, given the public key pk and a plaintext m ∈ ZN , choose a uniformly random

t← ZN/4 and output ciphertext

c← tEncpk(m; t) =
(
gt0 mod N2, (1 +N)mht0 mod N2, ht1 mod N2

)
.

– tDec, given the secret key (x0, x1) and a ciphertext (c0, c1, c2), check whether c2x1
0 =

(c2)
2; if not output ⊥. Then set m̂ = (c1/c

x0
0 )N+1. If m̂ = 1 + mN for some

m ∈ ZN , then output m; else output ⊥.
– tEnc∗, given the public key pk, secret key sk and a messagem, choose uniformly ran-

dom t ← Zφ(N)/4, compute the fake ciphertext (where all the group elements are
computed mod N2) c∗ ← (c∗0, c

∗
1, c
∗
2) = ((1 +N) · gt0, (1 +N)m · (c∗0)x0 , (c∗0)

x1) .
– tOpen, given N ′, (x0, x1), a triple (c0, c1, c2) such that (c0, c1, c2) ← tEnc∗pk(sk,

m) and a plaintext m∗ ∈ ZN , output sk∗ = (x∗0, x1), where x∗0 ← ZNN ′ is the
unique solution to the equations x∗0 = x mod N ′ and x∗0 = x0 +m−m∗ mod N .
These equations have a unique solution due to the fact that gcd(N,N ′) = 1 and the

6 We note that this construction was discussed in [16] in the context of weak hash proof systems
and leakage resilient PKE.



solution can be obtained employing Chinese Remainder Theorem. It can be verified
that the secret key sk∗ matches the public key pk and also decrypts the ‘simulated’
ciphertext to the required messagem∗. The first and third components of pk remain
the same since x1 has not been changed. Now gx

∗
0 = gx

∗
0 mod N ′ = gx0 mod N ′ =

gx0 = h0. Using the fact that the order of (1 +N) in Z∗N2 is N , we have(
c1

c
x∗0
0

)N+1

=

(
(1 +N)x0+mgtx0

0

(1 +N)x
∗
0g
tx∗0
0

)N+1

=
(
(1 +N)x0+m−x∗0 mod N

)N+1

= ((1 +N)m)
N+1

= (1 +mN).

It is easy to verify that real and fake ciphertexts are computationally indistinguish-
able under the DCR assumption since the only difference is with respect to the first
element (which is an 2N th power in a real ciphertext and not an 2N th power in a
simulated ciphertext). The other two elements are powers of the first element. Further-
more sk = (x0, x1) and sk∗ = (x∗0, x1) are statistically close since x0 ← ZN2/4 and
x∗0 ← ZNN ′ and the uniform distribution over ZNN ′ and ZN2/4 is statistically close.

5 Selective Opening Security for the Sender

In this section we prove sind-so is strictly weaker than ssim-so security by construct-
ing a scheme that meets the former but not the latter level of security. Our starting
point is a lossy encryption scheme loPKE = (loGen, loGen∗, loEnc, loDec). We then
modify loPKE by adding a (statistically hiding) commitment to each ciphertext such
that the new scheme, denoted by PKE, becomes committing. Next, we prove that PKE
is sind-so secure by showing that the scheme remains lossy and is therefore sind-so
secure according to [2]. Finally, using the result from [1] we claim that PKE is not
ssim-so secure. The following theorem is proven in the full version [17].

Theorem 51 Assume there exists a {ind-lossy, ind-lossycipher} secure lossy PKE
and a {stat-hide, comp-bind} secure NISHCOM that are compatible. Then, there ex-
ists a PKE that is sind-so secure but is not ssim-so secure.
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