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Abstract. To design effective countermeasures for cryptosystems against
side-channel power analysis attacks, the evaluation of the system leak-
age has to be lightweight and often times at the early stage like on
cryptographic algorithm or source code. When real implementations and
power leakage measurements are not available, security evaluation has
to be through metrics for the information leakage of algorithms. In this
work, we propose such a general and unified metric, information leakage
amount - ILA. ILA has several distinct advantages over existing metrics.
It unifies the measure of information leakage to various attacks: first-
order and higher-order DPA and CPA attacks. It works on algorithms
with no mask protection or perfect/imperfect masking countermeasure.
It is explicitly connected to the success rates of attacks, the ultimate
security metric on physical implementations. Therefore, we believe ILA
is an accurate indicator of the side-channel security level of the phys-
ical system, and can be used during the countermeasure design stage
effectively and efficiently for choosing the best countermeasure.

Keywords: Information leakage amount, side-channel security, power
analysis attack

1 Introduction

In the past decade, various side channel attacks (SCAs) utilizing the system
power consumption information, such as differential power analysis (DPA) [16],
correlation power analysis (CPA) [5], mutual information (MI) attacks [14] and
template attacks [6], have been presented to exploit the weakness in crypto-
graphic implementations to recover the secret key. Masking is one of the most
popular SCA countermeasures used to randomize sensitive variables [7]. When
applying masking at a higher level, e.g., algorithmic or source code level, every
key-sensitive intermediate variable is masked with at least one random value
M by a carefully designed masking function f , e.g., normally exclusive OR or
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multiplication. Therefore, during the cryptographic execution, any intermediate
variable Z is substituted by its masked counterpart, f(Z,M), to prevent side-
channel leakage. Perfectly masked devices with appropriate masking functions
and unbiased random masks can eliminate first-order leakage, e.g., it is not fea-
sible to break the system by exploiting only one time point of the power leakage
traces which corresponds to one intermediate variable. However, they are still
susceptible to second-order and higher-order attacks which combine two or more
time points of power leakage to retrieve the secret key. Some practical masking
schemes with limited implementation resources are not perfect and may still
have some first-order leakage.

How to evaluate a system’s SCA vulnerability/resilience comprehensively and
accurately under different attacks is an important research issue. Sound quanti-
tative metrics will be used to guide the implementation of countermeasures and
fairly compare the overall strength of countermeasures. One widely used metric
is success rate, the probability that an attack succeeds given a number of side-
channel leakage measurements [21]. This is indeed the ultimate practical measure
of a system’s SCA vulnerability/resilience, which depends on the cryptographic
algorithm, the specific implementation (with power measurement data available),
and the attack model (whether it is DPA, CPA, MIA, etc.) as illustrated in [18,
12]. We classify this metric as one for measuring the system physical leakage. In
recent years, there are research interests in using other physical leakage metrics
on instructions of cryptographic software and therefore pinpoint the location
of leakage to guide automatic implementation of countermeasures. Bayrak et
al. [2] introduced a methodology for detecting power leakage, using an informa-
tion theoretic metric - mutual information, MIL, between the key and leakage
measurements. Although not explicitly related to the success rate, the metric
MIL can be used to bound the success rate [21, 10] in some models. However, it
requires power consumption data. There are also other efforts in evaluating the
cryptosystem information leakage at an early stage, i.e., on source code of ci-
pher software or even algorithms and with no need of power measurement data.
The automatic software verification tools for SCA vulnerabilities [3, 8] employ
mutual information between the secret key and intermediate variables, denoted
as MIA. The metric of quantitative masking strength, QMS, is defined by [11]
to quantify the software leakage amount under imperfect masking, and a veri-
fication process is formulated to find the QMS value of cryptographic software
source code. However, none of the prior work has shown the relationship between
these system information leakage metrics and the success rate. It is not easy to
translate the bound on these information leakage (MIA and QMS) to the final
security measure of the implemented physical system, the success rate.

In this work, we propose a new unified metric, information leakage amount
(ILA), to quantify the system information leakage under various power analysis
attacks at the early cryptographic algorithm or software code level, whether the
cipher is unprotected or protected with masking. What is more, we also relate
this metric to the success rate of DPA/CPA attacks in analytic models. Note that
in this work we choose DPA/CPA because it has been shown both theoretically
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and empirically that the first-order and second-order CPA attacks are equivalent
to the strongest maximum-likelihood attacks under Gaussian noise models [13, 9,
15]. Our metric is unified, in the sense that it works on original algorithms with
no masking, perfect masking, or imperfect masking under first-order DPA/CPA
or second-order CPA. The success rate formulas are more general and simpler
than the formulas in [12, 13, 9], which are only for first-order DPA/CPA on un-
masked devices and for higher-order attacks on perfectly masked devices. Our
explicit success rate formulas in terms of ILA bridge the gap between the system
information leakage measure and the physical leakage measure. The metric ILA,
as a great indicator of the ultimate side-channel security level of the physical
system, can therefore be used during the countermeasure design stage (with-
out real implementations and power measurements) effectively and efficiently
for choosing the best countermeasure.

Table 1 summarizes the properties of our metric and compares it with other
three metrics, QMS, MIA, and MIL. A question mark means that the metric on
the column may be able to achieve the objective on the row, but it has not been
demonstrated in literature. For example, work in [21] shows that the mutual
information MIL has a monotonic relationship with the success rate of an attack
with only two candidate keys, but generally the MIL may not be converted to
the success rate explicitly.

Table 1. Comparison among ILA, QMS and MI as leakage evaluation metrics

ILA QMS MIA MIL
1. First-order DPA/CPA Metric on Software Code/Algorithm

√ √ √
×

2. Relate to First-order DPA Success Rate
√ √ √ √

3. Relate to First-order CPA Success Rate
√

× ? ?

4. Second-order DPA/CPA Metric on Software Code/Algorithm
√

× ? ×
5. Relate to Second-order DPA/CPA Success Rate

√
× ? ?

The rest of the paper is organized as follows. Section 2 gives an overview of the
existing leakage metrics and defines our proposed metric. Section 3 establishes
the success rate formula for CPAs in terms of our metrics. Section 4 presents
experimental results to evaluate the metrics and compare them with others.
Section 5 concludes the paper.

2 Leakage Metrics for Cryptosystems with Masking
Countermeasure

In this section, we first introduce the notations used and existing metrics, and
propose our unified metric ILA for first-order and second-order attacks on cryp-
tographic algorithm with imperfect/perfect masking. We then analyze these met-
rics in the case of Boolean masking.
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2.1 Notations and Existing First-Order Metrics

We denote sets by calligraphic letters (e.g., X ), denote random variables by cap-
ital letters (e.g., X) which take values on the set (X ), and denote observations of
the random variables by lowercase letters (e.g., x). We let X(i) denote the ith bit
of X. PX and EX are the notations for the probability and the expectation with
respect to X, respectively. For a cryptographic system with masking protection,
K, X, M denote the random variables for the key, the plaintext, and the mask,
respectively, and each takes values in sets X , K,M. Let F = f(X,K,M) denote
the algorithmic intermediate variable that possibly leaks, which is an algorithmic
function of the known input X, unknown key K and the random mask M . For
a second-order attack on masked devices, there are two select functions. One is
V0(X,K,M) = g(F ), which works on a key-sensitive intermediate variable and
therefore is also a function of the input X, the key K and the mask M . Note
the select function for an attack is determined by the system’s power model, and
g(·) is usually Hamming weight or Hamming distance. Without loss of generality,
the other select function is V1 = g(M) which depends on the mask M only. The
mask may be biased, i.e., not following the uniform distribution. If the mask is
unbiased and the masking operation is appropriate, we call it perfect masking.
Let kc be the secret key, kg ∈ K\{kc} be any other possible key hypothesis, and
Nk = |K| be the dimension of the key set.

A first-order attack uses only one select function V0 that corresponds to one
time point on power traces. Therefore a first-order leakage metric measures the
leakage of one select function that can be sensitive to both key and mask. Given a
plaintext x, the secret key kc and a random number m, the target select function
is vc0 = V0(x, kc,m). The information leakage is measured by the dependency of
vc0 on kc. Under perfect masking, the distribution of vc0 is independent of kc, and
hence the secret key could not be recovered from the leakage measurements of
vc0. Otherwise, vc0 is still vulnerable to first-order power analysis attacks. There
are mainly two existing first-order information leakage metrics.

Eldib et al. [11] proposed to quantify the masking strength under DPA by

QMS = (1−∆qms), with ∆qms = max
x,x′∈X ,k,k′∈K

|Dx,k(F )−Dx′,k′(F )|, (1)

where Dx,k denotes the distribution of F given (x, k), and ∆qms is the maximum
distribution difference. For perfect masking, QMS is maximum and reaches one,
which indicates that the key K and the intermediate variable F are statistically
independent. Without masking, QMS=0. For imperfect masking schemes, QMS
is in the range of (0,1).

The other metric uses the mutual information, an information theoretic quan-
tity commonly used for leakage evaluation. The mutual information between two
discrete random variables X and Y is defined as:

MI(X,Y ) =
∑

x∈X ,y∈Y
p(x, y) log

(
p(x, y)

p(x)p(y)

)
, (2)

where p(x, y) is the joint probability distribution function of X and Y , with
p(x) and p(y) as the corresponding marginal functions. For continuous random
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variables, the summation in definition (2) is replaced by integrations. Work in [3,
8] uses the mutual information between K and F to measure the information
leakage at the software code level. This mutual information only depends on the
algorithm and we denote it by MIA = MI(K,F ). In contrast, work in [2] uses
the mutual information between K and the leakage measurements L. We denote
it by MIL = MI(K,L), which is a physical leakage measure.

Note that there is no second-order system information leakage metric based
on QMS or MI shown in literature. In this work, we propose a general and
unified metric on the selection functions (V0 for first-order attacks, V0 and V1
for second-order attacks), which reflects the system susceptibility to attacks.

2.2 Our Proposed Information Leakage Metric

Eldib et al. empirically [11] showed that there is a relationship between QMS and
the number of traces needed in DPA. However, there is no theoretical proof for
such relation, and how QMS relates with multi-bit CPA or higher-order attacks
is unknown. We are seeking a new unified metric to reflect the information
leakage at the algorithm level, similar to QMS and MIA, and meanwhile can
explicitly relate to the success rate of different attacks, including DPA, CPA,
and high-order attacks.

Fei et al. [13] defined the confusion coefficient, for unmasked algorithm, as
κ(kc, kg) = EX{[V (X, kc) − V (X, kg)]

2} for the selection function V and the
expectation being taken over X. Each confusion coefficient is defined between
two key values. They showed that the confusion coefficients and the implementa-
tion signal-noise-ratio (SNR) together explicitly determine the success rates for
DPA and CPA. However, these confusion coefficients do not reflect the masking
strength as they are defined for unmasked algorithms only. The confusion co-
efficients are also used to model the success rates for higher-order attacks with
perfect masking in [9].

We propose to generalize the confusion coefficient definition for masked algo-
rithms (possibly imperfect). We then propose the new metric ILA based on the
generalized confusion coefficients. The ILA measures the information leakage of
V0 (and V1) under the protection of any masking countermeasure.

Definition 1. We define the new first-order confusion coefficient κ1O(kc, kg) of
masked algorithm as

κ1O(kc, kg) = EX{[EM (V0|(X, kc))− EM (V0|(X, kg))]2}, (3)

where EM (V0|(X, k)) is the conditional expectation of V0 given (X, k) over M,
and EX is the expectation over X .

Definition 2. The first-order information leakage amount ILA1O is defined as

ILA1O = EK\{kc}[κ1O(kc, kg)], (4)

where EK\{kc} is the expectation over all possible key hypothesis kg in K\{kc}.
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ILA1O, MIA and QMS are all metrics for sensitivity evaluation at the al-
gorithm level that do not require leakage measurements. QMS focuses on the
extreme value among the differences of distributions of any pair (x, k), (x′, k′) ∈
(X ,K), but ignores the other differences. The extreme value indicates the prob-
ability distance between the secret key to the one guessed key which is easiest
to distinguish. However, the SCA succeeds only if the secret key is distinguished
from all other guessed keys, not just one. Hence the expectation would be a
better measure for information leakage than the extreme value. We can see that
ILA1O is an expectation of squared distances:

ILA1O =
∑

kg∈K\{kc}
p(kg)κ1O(kc, kg)

=
∑

kg∈K\{kc}
p(kg)

∑
x∈X

p(x) · {EM [V0|(x, kc)]− EM [V0|(x, kg)]}2.
(5)

The calculation of ILA1O through equation (5) involves iterations over kg ∈ K\kc
and x ∈ X , which can be time-consuming for large sets of K and X . These
same iterations appear in MIA and QMS definitions too. As recommended for
MI calculations by [2, 8], the exhaustive iterations in calculating ILA1O can be
replaced by averaging over a random subset of sufficiently large size. Thus the
computational complexity is similar for the three metrics ILA1O, MIA and QMS.

Different from MIA and QMS, we find that ILA1O can be related to the
success rates of DPA and CPA in explicit formulas, similar to the work in [13].
In addition, ILA1O can be extended to a second-order metric ILA2O as well,
while there is no such work on MIA and QMS yet.

A second-order attack retrieves the secret key by combining the information
leakage at two leakage points, V0(X,K,M) and V1(M). A second-order metric
measures the leakage under second-order CPA attacks.

Definition 3. For a key hypothesis kg ∈ K\{kc}, we define the second-order
confusion coefficient of masked algorithm as

κ2O(kc, kg) = EX{[EM (Ṽ0Ṽ1|(X, kc))− EM (Ṽ0Ṽ1|(X, kg))]2}, (6)

where Ṽi = Vi − EX,M [Vi], i = 0, 1, are the centered select function values.

Definition 4. The second-order information leakage amount ILA2O is defined
as

ILA2O = EK\{kc}[κ2O(kc, kg)]. (7)

Comment: Although the definitions (4) and (7) of ILA depend on the correct key
kc, in many practical situations ILA is key-independent. The leaked intermediate
values often depend on key kc only through X ⊕ kc. In that case, for uniformly
distributed plaintext X, the ILA is in fact independent of kc since kg⊕kc iterates
over the same values for all kc.
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2.3 Analysis of the Metrics Under Boolean Masking

To better understand the metrics ILA, MIA and QMS, we compare them in detail
for a specific setting of biased Boolean masking F = Z(X, k)⊕M as in [11], under
several commonly used assumptions on the distribution of unmasked Z(X, k) and
keys. Here Z(X, k) denotes an unmasked intermediate variable with X being the
random plaintext. Hence V0 = g(Z(X, k)⊕M).

Assumption 1 (Uniform Intermediate Variable) Given a key k ∈ K, for ran-
dom plaintext X, the unmasked intermediate variable Z(X, k) is uniformly dis-
tributed. That is, Z(X, k) ∼ U(0, 2b−1), for all k ∈ K, where U(0, 2b−1) denotes
the discrete uniform distribution on {0, 1, ..., 2b − 1} with b being the number of
bits for Z(X, k).

Let V ∗0 (X, k) = g(Z(X, k)) denote the unmasked select function. Under As-
sumption 1, EX [V ∗0 (X, k)] is a constant independent of keys k. In general, we
would like the unmasked select function values under two different keys to be
uncorrelated.

Assumption 2 (Uncorrelated Keys) For any pair of keys k1, k2 ∈ K, and ran-
dom plaintext X, the select functions V ∗0 (X, k1) and V ∗0 (X, k2) are uncorrelated
so that EX [V ∗0 (X, k1)V ∗0 (X, k2)] = EX [V ∗0 (X, k1)]EX [V ∗0 (X, k2)].

Under Assumptions 1 and 2, EX [V ∗0 (X, k1)V ∗0 (X, k2)] = {EX [V ∗0 (X, k1)]}2
will also be a constant independent of keys k1 and k2. Unfortunately, many select
functions (e.g., the Hamming weights of an AES S-Box output) do not satisfy
Assumption 2. However, for a random key k2, a weaker assumption often holds.

Assumption 3 (Weak Uncorrelated Keys) For any fixed key k1, let k2 be a
random key ∈ K\{k1}. For a random plaintext X, the intermediate variables
Z(X, k1) and Z(X, k2) are uncorrelated so that EX,k2 [V ∗0 (X, k1)V ∗0 (X, k2)] =
{EX [V ∗0 (X, k1)]}2.

Under Assumptions 1 and 3, EX,k2 [V ∗0 (X, k1)V ∗0 (X, k2)] is a constant, which
helps us to derive simple explicit formulas of ILA in this section. Assumption
3 makes the calculation of the metrics easier here, as it removes ILA’s depen-
dence on many aspects of the algorithm including kc value. The leakage metrics
ILA under these assumptions reflect the masking strength only. In the next sec-
tion, Assumption 3 will not be assumed for DPA/CPA success rates derivations
though.

We first consider the DPA attack, where V0 is on a single bit. Since ⊕ is
taken bit by bit, we can take both Z(X, kc) and M as variables with one single
bit, and V0 = Z⊕M . Let the distribution of the mask bit be P(M = 1) = p and
P(M = 0) = 1− p, we have the following property.

Property 1 For the DPA model under Assumptions 1 and 3, if P(M = 1) = p,
then

– ILA1O = (1− 2p)2/2,
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– ILA2O = 2p2(1− p)2,

– MIA = 1 + (1− p) log2(1− p) + p log2(p),

– QMS = 1− |1− 2p|.

The detailed calculations are given in Appendix A. Note that although the
generalized confusion coefficients κ1O(kc, kg) (Equation 3) and κ2O(kc, kg) (Equa-
tion 6) are determined by the algorithm, their average terms ILA1O and ILA2O

become algorithm-independent and are only determined by the bias of the mask
distribution, p, according to Assumption 3. For perfect masking, p = 1/2; un-
masked, p = 0 or p = 1; imperfect masking, p takes other values. All metrics
change with p and have one-to-one correspondence between each other. Particu-
larly, ILA1O = (1−QMS)2/2. Work in [11] empirically finds that the number of
traces needed for DPA is approximately Ntrace = 1/(1−QMS)2.2. In Section 4.1,
we will show that number of traces Ntrace ∝ 1/ ILA1O ∝ 1/(1−QMS)2 instead.

Fig. 1 shows the relationship between these metrics and the probability p.
It is symmetric about the x-axis which implies the same effect of the mask bit
being 0 and 1. From Fig. 1, we see that ILA1O and MIA have the same pattern,
but ILA1O increases from 0 to 1/2 and MIA increases from 0 to 1 as p goes
from 1/2 to 0 (or 1). When p = 0 or p = 1, the device is without any masking
protection, QMS = 0 while ILA1O and MIA both reach their maximum. When
p = 1/2, the devices is protected by perfect masking, ILA1O = MIA = 0 and
QMS = 1 which are consistent with no first-order information leakage. However,
the second-order leakage still exists under perfect masking, and actually reaches
its maximum (biggest leakage) 1/8. As the mask gets more biased, the first-order
leakage increases while the second-order leakage decreases.
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Fig. 1. The quantities of several metrics under the biased masking for DPA.

Next we consider CPA in this setting. For CPA, V0 = HW (Z ⊕M) is the
Hamming weight function of a b-bit variable. We assume that the bits in the mask
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are independent from the same distribution with P(M(i) = 1) = p, i = 1, ..., b.
Here M(i) denotes the ith bit of the b-bit mask variable M .

Property 2 For the CPA model under Assumptions 1 and 3,

ILA1O = b(1− 2p)2/2, ILA2O = 2bp2(1− p)2. (8)

The proof is provided in Appendix B.
For the CPA model, the ILA1O and ILA2O follow the similar pattern as in the

DPA model, just differing by a factor of b, the number of bits. In fact, the DPA
model is a special case of the CPA model with b = 1. The other two metrics MIA
and QMS are harder to derive for CPA. It is hard, if not impossible, to relate
MIA and QMS to the success rate of CPA.

3 Relating ILA to DPA and CPA Success Rates

As shown in [12, 13, 9], the success rates of first-order DPA and CPA on un-
masked devices and second-order CPA on perfectly masked devices can all be
expressed in terms of the confusion coefficients and the implementation signal-
to-noise-ratio (SNR). Our metrics ILA1O and ILA2O are algorithmic properties
like the confusion coefficients. We generalize the results of [12, 13, 9] to masked
implementations (possibly with imperfect masking), and show that the success
rates of CPA/DPA should be determined by the SNRs and our generalized con-
fusion coefficients. The formulas are further simplified to consist of ILA1O and
ILA2O. We show derivations for the success rates of first-order and second-order
DPA and CPA on masked devices in this section. We then use these metrics to
compare the first-order leakage and second-order leakage.

3.1 First-Order Power Analysis Attack Model

We assume a commonly used linear power consumption model with additive
noises for both DPA and CPA,

L0 = c0 + ε0V0 + σ0r0, (9)

where r0 is the unit noise variable (the mean is 0 and the variance is 1) and
ε0 is the single-bit unit power consumption. Hence the physical system SNR is
δ0 = ε0/σ0. We derive the success rate formulas for first-order CPA in terms of
SNR and ILA1O, and consider DPA as a special case of CPA with b = 1. Notice
that some other researchers defined SNR differently as SNR∗ = ε20V ar(V0)/σ2

0 ,
which includes the variance of intermediate value V0 also. We consider V ar(V0)
to be part of algorithmic leakage measured by ILA1O, since it depends on V0.
Our SNR reflects purely the physical system property, since ε0 reflects the power
consumption differential caused by one-bit.

The leakage measurements of L0 are denoted as L = {l1,0, l2,0, ..., ln,0}, where
n is the number of traces. For unmasked devices, the CPA exploits the corre-
lation between the leakage L and unmasked select function V ∗0 = g(Z(X, k))
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to discover the secret key. For masked devices, the attacker does not know M
value, and therefore does not know the value of V0 = g(F (X, k,M)). To conduct
CPA, the attacker has to correlate L with EM [V0|(X, k,M)], the expectation of
V0 over all possible mask values. This value is V ∗0 (X, k) for unmasked devices,
and is a constant (thus no leakage) for perfectly masked devices. Let vgm,i,0 de-
note V0(xi, kg,mi) for the i-th power trace, the selection function value under
plaintext xi, guess key kg and the mask mi, EM [vgm,i,0] denote the targeted ex-
pectation of V0(xi, kg,m) over all m ∈ M, and E[V g0 ] denote the expectation
of V0(x, kg,m) over all x ∈ X and m ∈ M. Under the power model (9) with
imperfect masking, the first-order CPA distinguishes the key kg by the Pearson’s
correlation:

ρ̂g =

n∑
i=1

(li,0 − l.,0)[EM (vgm,i,0)− E(V g0 )]√
n∑
i=1

(li,0 − l.,0)2
n∑
i=1

[EM (vgm,i,0)− E(V g0 )]2

, (10)

where l.,0 =
n∑
i=1

li,0/n is the mean of power leakage.

The CPA succeeds when ρ̂c− ρ̂g > 0 for all kg ∈ K\{kc}. For a random plain-
text attack with a large number of traces, under Assumption 1, the denominator
of (10) converges to the same limit for all kg, since E[EM (vgm,i,0)] = E(V g0 ) =

E(V c0 ) and E{EM [(vgm,i,0)2]} = E{EM [(vcm,i,0)2]}. Hence ρ̂c− ρ̂g > 0 is equivalent
to that the difference in the numerators of (10) is positive. That is, ρ̂c − ρ̂g > 0
when ∆1O

n (kc, kg) > 0, where

∆1O
n (kc, kg) =

n∑
i=1

(li,0 − l.,0)

σ0
[EM (vcm,i,0)− EM (vgm,i,0)]. (11)

Let∆1O
n denote the (Nk−1)-dimension vector consisting of these ∆1O

n (kc, kg)
for all kg ∈ K\{kc}. Let µ and Σ denote the mean and variance of ∆1O

1 (kc, kg).
Then following the work in [20, 13], the success rate can be described with a
multivariate Gaussian distribution N(µ,Σ/n) using the Central Limit Theorem.
That is,

SR = ΦΣ(
√
nµ). (12)

where ΦΣ is the cumulative distribution function (CDF) of the Nk − 1 dimen-
sional Gaussian distribution with mean 0 and variance Σ.

For unmasked devices, the mean vector µ and the variance matrix Σ are
expressed by Fei et al. [13] in terms of their confusion coefficients κ. With im-
perfect masking, we show (in Appendix C) that similar expressions hold with
our generalized confusion coefficients κ1O.

Theorem 1. Under CPA leakage model (9), the success rate of the CPA is
given by equation (12). Under Assumption 1, the element in the mean vector µ
corresponding to key kgi is

µgi =
δ0
2
κ1O(kc, kgi); (13)
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And the elements of covariance matrix Σ are

σkgi,kgi = κ1O(kc, kgi), σkgi,kgj = κ1O(kc, kgi, kgj) for kgi 6= kgj , (14)

where κ1O(kc, kgi, kgj) = EX{[EM (vcm,1,0)−EM (vgim,1,0)][EM (vcm,1,0)−EM (vgjm,1,0)]}.

Similar to [13], we can get the above three-way generalized confusion coeffi-
cients κ1O(k1, k2, k3) from two-way generalized confusion coefficients κ1O(k1, k2)
(see more details in Appendix D).

Lemma 1. Given kc, kgi, kgj ∈ K,

κ1O(kc, kgi, kgj) =
1

2
[κ1O(kc, kgi) + κ1O(kc, kgj)− κ1O(kgi, kgj)]. (15)

The average of κ1O(kc, kgi) over all kgi is ILA1O. By Lemma 1, the average of
κ1O(kc, kgi, kgj) over all kgi 6= kgj is ILA1O /2. Replacing all the confusion coeffi-
cient terms in equations (13) and (14) by their averages, we get an approximate
asymptotic success rate for first-order CPA on masked devices:

SR = Φ 1
2 [INk−1+JNk−1](

δ0
√
n
√

ILA1O

2
1Nk−1), (16)

where INk−1 is the (Nk − 1)× (Nk − 1) identity matrix with diagonal entries of
ones and off-diagonal entries of zeros, JNk−1 is the (Nk − 1)× (Nk − 1) matrix
with all entries of ones, and 1Nk−1 is the (Nk − 1) dimensional vector of ones.

The approximation SR formula (16) is very close to the SR formula (12) for
small SNR δ0. We will examine the approximation in Section 3.3.

3.2 Second-Order Power Analysis Attack Model

Second-order power analysis attack combines the two leakage measurements of
V0 and V1 at two different positions involving the same mask M to break the
masking protection. Similar to (9), we assume linear leakage for V1

L1 = c1 + ε1V1 + σ1r1, (17)

where r1 is the unit noise.
Second-order CPA uses n pairs of independent realizations of noisy physical

leakage (l1,0, l1,1), (l2,0, l2,1), ..., (ln,0, ln,1) for (L0, L1). Here li,j = cj + εjvi,j +

σjri,j , i = 1, ..., n, j = 0, 1. Denote the centered version of Lj and Vj by L̃j =

Lj −E(Lj) and Ṽj = Vj −E(Vj), for j = 0, 1. While the first-order CPA exploits

the correlation between L̃0 and Ṽ0, the second-order CPA exploits the correlation
between L̃0L̃1 and Ṽ0Ṽ1. That is, it uses the centered product statistic:

1

n

n∑
i=1

l̃i0 l̃i1EM [ṽgm,i,0ṽm,1], (18)
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where l̃ij = (li,j− l̄.,j)/σj , j = 0, 1, is the centered leakage, ṽgm,i,0 = vgm,i,0−E[V g0 ]
and ṽm,1 = vm,1 − E[V1] are the centered select functions values under guessed
key kg given mask m, and vm,1 = V1(m).

We denote the difference between the centered product statistics under secret
key kc and guessed key kg as

∆2O
n (kc, kg) =

1

n

n∑
i=1

l̃i0 l̃i1[EM (ṽcm,i,0ṽm,1)− EM (ṽgm,i,0ṽm,1)]. (19)

The second-order CPA succeeds when ∆2O
n (kc, kg) > 0 for all kg ∈ K\{kc}.

Using derivations in [19, 9, 17], the success rate of second-order CPA also follows
equation (12): SR = ΦΣ(

√
nµ).

Ding et al. [9] expressed µ and Σ in terms of confusion coefficients κ under
perfect masking. With possibly imperfect masking, we generalize the formula in
terms of our generalized confusion coefficients κ2O (see details in Appendix E).

Theorem 2. Under CPA leakage model (9) and (24), the success rate of the
second-order CPA is given by equation (12). Under Assumption 1, the element
in µ corresponding to key kgi is

µgi =
δ0δ1

2
κ2O(kc, kgi); (20)

And the elements of covariance Σ are

σkgi,kgi = κ2O(kc, kgi), σkgi,kgj = κ2O(kc, kgi, kgj) for kgi 6= kgj , (21)

where κ2O(kc, kgi, kgj) = EX{[EM (ṽcm,1,0ṽm,1)−EM (ṽgim,1,0ṽm,1)][EM (ṽcm,1,0ṽm,1)−
EM (ṽgjm,1,0ṽm,1)]}.

Similar with Lemma 1, for kc, kgi, kgj ∈ K,

κ2O(kc, kgi, kgj) =
1

2
[κ2O(kc, kgi) + κ2O(kc, kgj)− κ2O(kgi, kgj)]. (22)

As in the first-order analysis, replacing the generalized confusion coefficients
κ2O by ILA2O, we get the approximate asymptotic success rate:

SR = Φ 1
2 [INk−1+JNk−1](

δ0δ1
√
n
√

ILA2O

2
1Nk−1). (23)

Next we evaluate the above approximations.

3.3 Approximation Errors in the Simple Success Rate Formulas

Work in [13, 9] gives the explicit theoretical success rate formulas for two cases:
the first-order CPA on unmasked devices and the second-order CPA on perfectly
masked devices, respectively. By plugging ILA1O when p = 0 in (16) and ILA2O

when p = 1/2 in (23), we get the two corresponding simple success rate formulas.
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Compared to the formulas in [13, 9], our simple formulas ignore some higher order
terms and replace the confusion coefficients by ILA. Here we study the effect of
the simplification for CPA on unmasked and perfect masked AES.

We show the difference between our simplified success rate formulas and
the explicit success rate formulas of [13, 9] in Fig. 2. The average error-ratio is
defined as: ESR[|NExplicit,SR−NSimple,SR |/NExplicit,SR], where NExplicit,SR and
NSimple,SR are numbers of traces needed to achieve a fixed SR value by the
explicit and simplified theoretical success rate formulas respectively, and ESR is
the expectation over all success rate values SR ranging from 0 to 1. Here, we
take the expectation over discrete success rate values SR = [0.1, 0.2, 0.3, ..., 0.9].
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Fig. 2. The average error-ratio of number of measurements between explicit and sim-
plified success rate formulas on AES S-Box

Fig. 2 shows that as the SNR grows, both error ratios increase. The error-
ratio≤ 10% when SNR ≤ 0.26 for the first-order attack, and when SNR ≤ 0.16
for the second-order attack. Hence the simplified success rate formulas in Equa-
tions (16) and (23) work well for small SNR values. For practical physical im-
plementations, devices with large SNR values are very leaky and not considered
secure. The success rate analysis is only meaningful when the SNR is small.

3.4 Comparing Effectiveness of the First-Order Attack and the
Second-Order Attack

For unmasked devices, first-order leakage is sufficient to discover the secret key.
With perfect masking, only second-order leakage can be used to discover the
secret key. However, for imperfect masking implementations, both first-order
and second-order leakage exist. Which leakage is more effective to exploit? We
can compare them using the proposed metrics through formulas (16) and (23).

Property 3 For a masked implementation
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– The first-order attack is more effective when δ1 <
√

ILA1O

ILA2O
;

– The second-order attack is better when δ1 >
√

ILA1O

ILA2O
.

For very small SNR, the first order leakage will dominate. The threshold SNR
value to determine dominance by the first-order or the second-order leakage is
given by the square root of the ratio between the two information leakages:√

ILA1O

ILA2O
. If the typical SNR value is known for certain physical devices, we

can predict which type of leakage dominates and therefore guide the software
designer in effective leakage reduction.

3.5 Extension to Higher-Order Power Analysis Attack Model

We now consider a cryptography algorithm protected by J-th order masking,
with mask shares M1,M2, ...,MJ . A J-th order attack combines the information
leakage of V0(X,K,M1, ...,MJ) and the leakage of V1(M1), ..., VJ(MJ) to retrieve
the secret key. J-th order power analysis attack combines the J + 1 leakage
measurements of V0, V1, ..., VJ at J + 1 different positions to break the masking
protection. The leakage vector is li = (li,0, ..., li,J). Similar to (9) and (24), the
leakage model is now:

Lj = cj + ε1Vj + σjrj , j = 0, ..., J. (24)

where rj is the unit noise.
For a key hypothesis kg ∈ K\{kc}, we define the J-th order confusion coeffi-

cient of masked algorithm as

κJO(kc, kg) = EX{[EM (Ṽ0Ṽ1...ṼJ |(X, kc))− EM (Ṽ0Ṽ1...ṼJ |(X, kgi))]2}, (25)

where Ṽi = Vi − EX,M [Vi], i = 0, 1, ..., J , are the centered select function values.

Definition 5. The J-th order information leakage amount ILAJO is defined as

ILAJO = EK\{kc}[κJO(kc, kg)]. (26)

As in [9] and in section 3.2, we can derive the approximate asymptotic success
rate as:

SR = Φ 1
2 [INk−1+JNk−1](

√
n
√

ILAJO

J∏
j=0

δj

2
1Nk−1). (27)

4 Numerical Results

In this section, we first numerically investigate the relationship between success
rates of DPA/CPA and the metrics ILA, MIA and QMS on synthetic data exam-
ples. We also evaluate our metrics and the simplified success rates of DPA/CPA
on realistic measurement data.
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4.1 Numerical Comparison of Metrics versus Success Rates

We first show, by numerical examples, that ILA1O measures the leakage infor-
mation amount under CPA, but MIA and QMS do not. We consider synthetic
data examples with biased masking on the outputs of an AES S-Box, where the
masking bits are independent with pi = P(M(i) = 1), i = 1, 2, ..., 8.

In the first example, the last 4-bits are perfectly masked with p5 = p6 =
p7 = p8 = 0.5, and the information leakage is through the Hamming weights
of the first 4-bits according to model (9). We consider two cases where −→p 4 =
[p1, p2, p3, p4] = [0.5, 0.2, 0.2, 0.1] and −→p 4 = [0, 0.4, 0.4, 0.4] respectively. We cal-
culate the values of the different metrics through definitions in equations (1), (2)
and (5), rather than using specialized formulas in Properties 1 and 2 (which only
apply to Boolean masking with equal pi’s for each bit). Detailed algorithms are
provided in Appendix F. In both cases MIA = 1.09, but the information leak-
age amount differs with ILA1O = 0.68 and ILA1O = 0.56, respectively. Fig. 3
(a) shows the success rates of CPA in both cases on synthetic data generated
from the power model (9) with SNR = 0.1. The empirical success rate for a fixed
number of measurements Ntrace is found by repeatedly randomly sampling Ntrace

traces for an attack, and calculating the proportion of attacks that retrieves the
correct secret key. We see that the ILA1O correctly predicts the two different
CPA success rates curves (with difference about 10%), while by MIA the infor-
mation leakage should be the same in these two cases. Note that from Fig. 2,
the error ratio of our simplified SR formula under first-order CPAs is only 1.5%
when SNR = 0.1.

In the second example, the last 6-bits are perfectly masked. For two cases of
−→p 2 = [p1, p2] = [0.3, 0.3] and −→p 2 = [0.1, 0.5], QMS = 0.4, but ILA = 0.16 and
0.32 respectively. Fig. 3 (b) shows that ILA1O correctly predicts the different
empirical CPA success rate curves, while QMS incorrectly labels the two cases
as equally leaky. Therefore, only ILA1O correctly measures the CPA leakage in
these examples.

The formulas (16) and (23) give the CPA success rates using ILA and SNR.
Fig. 4 plots the number of traces Ntrace needed to achieve success rate of SR =
80%, when ILA and SNR vary. Fig. 4 (a) is for the first-order CPA attack
(16) and (b) is for the second-order CPA attack (23). As ILA increases or SNR
increases, less traces are needed to get SR = 80%. For a fixed SNR value, the
number of traces Ntrace is inverse proportional to ILA.

For the special case of single-bit DPA, all three metrics are monotonic func-
tions of each other (Property 1). Thus, MIA and QMS can predict the DPA suc-
cess rate through their relationship with ILA. Particularly, for DPA, ILA1O =
(1 − QMS)2/2 and the Ntrace traces needed for DPA is inverse proportional to
(1−QMS)2.

4.2 Experimental Results on Physical Implementations

We next verify the prediction of success rates by ILA, and show that it also
correctly predicts the dominance by first-order or second-order CPA leakage on



16 L. Zhang et al.

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Measurements
(a)

S
uc

ce
ss

 R
at

e

 

 

Theroretical: ILA
1O

=0.68,MI
A
=1.09

Empirical: ILA
1O

=0.68,MI
A
=1.09

Theroretical: ILA
1O

=0.56,MI
A
=1.09

Empirical: ILA
1O

=0.56,MI
A
=1.09

0 0.5 1 1.5 2 2.5
x 10

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Measurements
(b)

S
uc

ce
ss

 R
at

e

 

 

Theroretical: ILA
1O

=0.32,QMS=0.40

Empirical: ILA
1O

=0.32,QMS=0.40

Theroretical: ILA
1O

=0.16,QMS=0.40

Empirical: ILA
1O

=0.16,QMS=0.40

Fig. 3. First-order CPA attacks under two different biased masking schemes with
SNR = 0.1 (a) with the same MIA value but different ILA1O values; (b) with the
same QMS value but different ILA1O values

0.1 0.2 0.3 0.4 0.5

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

          ILA
1O

       

(a) First−order

S
N

R

 

 

10^3.5

10^4

10^4.5

10^5

10^5.5

10^6

10^6.5

0.1 0.2 0.3 0.4 0.5

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

         ILA
2O

        

(b) Second−order

S
N

R

 

 

10^5

10^6

10^7

10^8

10^9

10^10

Fig. 4. The theoretical number of traces needed for SR = 80% under first-order and
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real physical systems. Two physical implementations of masked Keccak and AES
algorithms are considered. The masked AES [1] is implemented on an SASEBO-
GII board [22]. The protected Keccak implementation with secret sharing [4] is
on the 32-bit Microblaze processor of the SASEBO-GII board. All the power
traces are collected using a LeCroy WaveRunner 640Zi oscilloscope.

We get several power data sets with biased masking through choosing parts
of the fully masking data set according to biased masks distributions. The first
two data sets are on the same AES implementation with δ0 = 0.10, δ1 = 0.12
but with different biased masks. The leakage amount on the first data set is
ILA1O = 0.338, ILA2O = 13.8, while the leakage amount on the second data
set is ILA1O = 0.174, ILA2O = 15.7 for CPA attacks. For the third data set on
Keccak, δ0 = 0.10, δ1 = 0.10, ILA1O = 0.010, ILA2O = 0.006 for DPA attacks.
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For these three data sets,
√

ILA1O / ILA2O/δ1 = 1.3, 0.88, 2.02 respectively.
By Property 3, the first-order attack is more effective in the first and third data
sets, and the second-order attack is more effective in the second data set.

Fig. 5 shows the success rates of CPAs on the first two data sets for AES. Each
figure plots four curves, the theoretical success rates for first-order CPA (16) and
the second-order CPA (23), and two corresponding empirical success rate curves.
The empirical success rates are close to the theoretical success rates. The first-
order leakage and second-order leakage are ranked in the order predicted by
Property 3.
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Fig. 5. The first-order CPA attack and second-order CPA attack on AES with different
masking biases.

Fig. 6 shows the success rates of CPA on the Keccak data are also as predicted
by Equations (16) and (23).
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subset.
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5 Conclusion

In this work, we propose a new unified metric, ILA, to measure the information
leakage at the early stage of cryptographic software under different power analy-
sis attacks. It quantifies the leakage amount of algorithms with various masking
strength to first-order or second-order power analysis attacks. Unlike existing
metrics, ILA relates to the attack success rate on the physical implementations
through a simple explicit formula. We demonstrate that it accurately quantifies
the leakage amount comparing to existing metrics on both synthetic data and
real physical implementation data. Therefore, it would be a reliable metric for
system designers to predict the system leakage and develop better protections.
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Appendices

A Derivation of ILA, QMS and MIA for DPA Model

For the DPA model, Z is one single bit, as well as M . Under Assumption 1,
P(Z = 0) = P(Z = 1) = 1/2. For the Boolean masking, V0 = F = Z⊕M . Hence
P(Z ⊕M = 0) = P(Z ⊕M = 1) = 1/2,

P(Z ⊕M = 1|Z) = (1− 2p)Z + p = p or 1− p. (28)

Using equation (28), Dx,k(F ) = p or 1 − p, which implies max{|Dx,k(F ) −
Dx′,k′(F )|} = |1− 2p|. Hence QMS = 1− |1− 2p|.

For MIA, we calculate the entropies first.

H(K) = −
∑
k∈K

p(k) log2 p(k) = −
∑
k∈K

1

Nk
log2

1

Nk
= log2Nk.

H(K|V0) = −
∑
k∈K

p(k).
∑

x∈{0,1}
p(x).

∑
v0∈{0,1}

p(v0|k, x). log2 p(k|v0, x)

= −
∑
k∈K

1
Nk
.
∑

x∈{0,1}

1
2 .[p log2

p
2Nk
1
4

+ (1− p) log2

1−p
2Nk
1
4

]

= log2Nk − [1 + (1− p) log2(1− p) + p log2 p].
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Therefore,

MIA = H(K)−H(V0|K) = 1 + (1− p) log2(1− p) + p log2 p. (29)

We will derive the ILA1O and ILA2O expressions in the CPA model in Ap-
pendix B. Plugging-in b = 1, we get their DPA model expressions.

B Derivation of ILA1O and ILA2O For CPA model

For the CPA model, the selection is Hamming weights V0 = H(Z ⊕M), V1 =
H(M), and both M and Z are b-bit variables. Since P(M(i) = 1) = p, i =
1, 2, ..., b, we have:

EM [H(M)] = bp, EM [H(M)2] = bp+ b(b− 1)p2. (30)

Under Assumption 1, Z has uniform distribution for any key kg so that always

EX [H(Z)] = b/2, EX [H(Z)2] = (b2 + b)/4. (31)

Here V ∗0 (X, k) = H[Z(X, k)]. Under Assumptions 1 and 3,

Ekgκ(kc, kg) = EkgEX{[V ∗0 (X, kc)− V ∗0 (X, kg)]
2}

= EkgEX [V ∗0 (X, kc)
2] + EkgEX [V ∗0 (X, kg)

2]− 2EkgEX [V ∗0 (X, kc)V
∗
0 (X, kg)]

= 2EX [V ∗0 (X, kc)
2]− 2{EX [V ∗0 (X, kc)]}2.

(32)
Using (31), this becomes

Ekgκ(kc, kg) = 2( b
2+b
4 )− 2( b

2

4 ) = b
2 . (33)

By the property 2 in [19], with ∧ denoting the bit-wise multiplication,

EM [H(Z ⊕M)|(X, kc)] = EM [H(Z) +H(M)− 2H(Z ∧M)|(X, kc)]
= (1− 2p)H(Z) + bp.

(34)

Then for the first-order CPA, using equations (34) and (33)

ILA1O = Ekg [κ1O(kc, kg)]
= Ekg [EX{[EM (H(Z ⊕M)|(X, kc))− EM (H(Z ⊕M)|(X, kg))]2}]
= Ekg [(1− 2p)2κ(kc, kg)] = b(1−2p)2

2 .

(35)

Similar to (34), using (30),

EM{[H(Z ⊕M)− b
2 ][H(M)− bp]|(X, kc)}

= EM{[H(Z ⊕M)H(M)− bpH(Z ⊕M)]|(X, kc)}
= EM{[H(Z)H(M) +H(M)2 − 2H(Z ∧M)H(M)− bpH(Z ⊕M)]|Z}
= H(Z)bp+ [bp+ b(b− 1)p2]− 2[p+ (b− 1)p2]H(Z)

−bp[(1− 2p)H(Z) + bp]
= −2p(1− p)[H(Z)− b

2 ].

(36)

Hence for the second-order CPA, using equations (36) and (33)

ILA2O = Ekg [κ2O(kc, kg)]

= Ekg [EX{[EM (Ṽ0Ṽ1|(X, kc))− EM (Ṽ0Ṽ1|(X, kg))]2}]
= Ekg [4p2(1− p)2κ(kc, kg)] = 2bp2(1− p)2.

(37)
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C Theorem 1: µ and Σ in the first-order CPA (12)

Denote vgm,1,0 = V0(x1, kg,m) and v1,0 = V0(x1, kc,m1). Recall that, under As-

sumption 1, E[vgm,1,0] = E[V g0 ] = E[V c0 ] and EX{[EM (vgm,1,0)]2} = EX{[EM (vcm,1,0)]2}
for any kg. Hence we have an useful expression that will be used later,

EX{EM (vcm,1,0)[EM (vcm,1,0)− EM (vgm,1,0)]}
= 1

2EX{[EM (vcm,1,0)]2 + [EM (vgm,1,0)]2 − 2EM (vgm,1,0)EM (vgm,1,0)]}
= 1

2EX{[EM (vcm,1,0)− EM (vgm,1,0)]2} = 1
2κ1O(kc, kg).

(38)

For large n, l.,0 = c0 + ε0E(v1,0) and l1,0 = c0 + ε0v1,0 +σ0r1,0, then equation
(11) becomes

∆1O
1 (kc, kg) = {δ0[v1,0 − E(v1,0)] + r1,0}[EM (vcm,1,0)− EM (vgm,1,0)]. (39)

Since E[r1,0] = 0, we have:

µkg = δ0E{(v1,0 − E[v1,0])(EM [vcm,1,0]− EM [vgm,1,0])}
= δ0E{v1,0(EM [vcm,1,0]− EM [vgm,1,0])} = δ0

2 κ1O(kc, kg).
(40)

The last equality uses the fact that EM [v1,0] = EM [vcm,1,0] and equation (38).

The element in covariance Σ corresponding to kgi and kgj is:

σkgi,kgj = COV (∆1O
1 (kc, kgi), ∆

1O
1 (kc, kgj)) = E[∆1O

1 (kc, kgi)∆
1O
1 (kc, kgj)]−µkgiµkgj .

(41)
Since E[r21,0] = 1, keep the leading term (dropping the terms with δ0), we have

σkgi,kgj = EX{(EM [vcm,1,0]− EM [vgim,1,0])(EM [vcm,1,0]− EM [vgjm,1,0])} = κ1O(kc, kgi, kgj).
(42)

D Proof of Lemma 1

Similar to the derivation of (38),

κ1O(kc, kgi, kgj)

= EX{(EM [vcm,1,0]− EM [vgim,1,0])(EM [vcm,1,0]− EM [vgjm,1,0])}
= EX{(EM [vcm,1,0])2 − EM [vcm,1,0]EM [vgim,1,0]

−EM [vcm,1,0]EM [vgjm,1,0] + EM [vgim,1,0]EM [vgjm,1,0]}
= 1

2EX{(EM [vcm,1,0]− EM [vgim,1,0])2 + (EM [vcm,1,0]− EM [vgjm,1,0])2

−(EM [vgim,1,0]− EM [vgjm,1,0])2}
= 1

2 [κ1O(kc, kgi) + κ1O(kc, kgj)− κ1O(kgi, kgj)].

(43)
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E Theorem 2: µ and Σ in the Second-order CPA (12)

For large sample n, l.,j = cj + εjE[v1,j ], then l1,j = cj + εj ṽ1,j + σjr1,j , j = 0, 1,
where ṽ1,j = v1,j − E(v1,j) are the centered version of v1,0 = V0(x1, kc,m1) and
v1,1 = V1(m1). Similarly, let ṽm,1,0, ṽgm,1,0, and ṽm,1 denote the centered versions
of corresponding quantities vm,1,0, vgm,1,0, and vm,1. We have

∆2O
1 (kc, kg) = (δ0ṽ1,0 + r1,0)(δ1ṽ1,1 + r1,1)(EM [ṽcm,1,0ṽm,1]− EM [ṽgm,1,0ṽm,1]).

(44)
Since E[r1,0] = E[r1,1] = 0,

µkg = δ0δ1E{ṽ1,0ṽ1,1(EM [ṽcm,1,0ṽm,1]− EM [ṽgm,1,0ṽm,1])}
= δ0δ1EX{EM{ṽ1,0ṽ1,1(EM [ṽcm,1,0ṽm,1]− EM [ṽgm,1,0ṽm,1])}}. (45)

By assumption 1, E[ṽ1,0ṽ1,1] = E[ṽcm,1,0ṽm,1] = E[ṽgm,1,0ṽm,1]. Similar to the
derivation of (38),

µkg = δ0δ1EX{EM [ṽ1,0ṽ1,1](EM [ṽcm,1,0ṽm,1]− EM [ṽgm,1,0ṽm,1])}
= δ0δ1

2 EX{{EM [ṽcm,1,0ṽm,1]− EM [ṽgm,1,0ṽm,1]}2}
= δ0δ1

2 κ2O(kc, kg).

(46)

The element in covariance Σ corresponding to kgi and kgj is:

σkgi,kgj = COV (∆1(kc, kgi), ∆1(kc, kgj)) = E[∆1(kc, kgi)∆1(kc, kgj)]−µkgiµkgj .
(47)

Since E[r21,0] = E[r21,1] = 1, the leading term (dropping terms with δ0 or δ1) is ,

σkgi,kgj
= EX{(EM [ṽcm,1,0ṽm,1]− EM [ṽgim,1,0ṽm,1])(EM [ṽcm,1,0ṽm,1]− EM [ṽgjm,1,0ṽm,1])}
= κ2O(kc, kgi, kgj).

(48)

F Algorithms for Calculating ILA1O

Here, we describe the algorithm of computing ILA1O knowing the mask distri-
bution. Algorithm 1 assigns the probability distribution of mask with the known
probability for each masking bit. Algorithm 2 calculates the first-order informa-
tion leakage amount based on this probability distribution. These algorithms are
used to calculate the ILA1O values in Section 4.1.
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Algorithm 1 Probability Distribution of Mask

Input: Probability distribution of masking bits −→p
Output: Probability distribution of mask fM

1: Nm ← size of key space |M|
2: Nbit ← size of byte |−→p |
3: for m = 0→ Nm − 1 do
4: fM [m] = 1
5: for i = 0→ Nbit − 1 do
6: if m(i) = 1 then . m(i) the (i+ 1)th bit of m
7: fM [m]← fM [m] ∗ pi . pi the (i+ 1)th value of −→p
8: end if
9: if m(i) = 0 then

10: fM [m]← fM [m] ∗ (1− pi)
11: end if
12: end for
13: end for

Algorithm 2 Calculation of ILA1O

Input: Correct Key kc, probability distribution of mask fM , intermediate value V (a
Nk ×Nx ×Nm dimension matrix)
Output: ILA1O

1: Nk ← size of key space |K|
2: Nx ← size of plaintext (ciphertext ) |X |
3: Nm ← size of mask |M|
4: ILA1O ← 0
5: for kg = 0→ Nk − 1 do
6: E2[kg]← 0
7: for x = 0→ Nx − 1 do
8: E1[kg][x]← 0
9: for m = 0→ Nm − 1 do

10: E1[kg][x]← E1[kg][x] + (V [kc][x][m] ∗ fM [m]− V [kg][x][m] ∗ fM [m])
11: end for
12: E2[kg]← E2[kg] + E1[kg][x] ∗ E1[kg][x] ∗ 1

Nx
. E2[kg] = κ1O(kc, kg)

13: end for
14: ILA1O ← ILA1O +E2[kg] ∗ 1

Nk−1

15: end for


