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Abstract. The Rényi divergence is a measure of closeness of two prob-
ability distributions. We show that it can often be used as an alternative
to the statistical distance in security proofs for lattice-based cryptogra-
phy. Using the Rényi divergence is particularly suited for security proofs
of primitives in which the attacker is required to solve a search problem
(e.g., forging a signature). We show that it may also be used in the case of
distinguishing problems (e.g., semantic security of encryption schemes),
when they enjoy a public sampleability property. The techniques lead to
security proofs for schemes with smaller parameters, and sometimes to
simpler security proofs than the existing ones.

1 Introduction

Let D1 and D2 be two non-vanishing probability distributions over a common
measurable support X. Let a ∈ (1,+∞). The Rényi divergence [Rén61,EH12]
(RD for short) Ra(D1‖D2) of order a between D1 and D2 is defined as the
((a−1)th root of the) expected value of (D1(x)/D2(x))a−1 over the randomness
of x sampled from D1. For notational convenience, our definition of the RD is
the exponential of the classical definition [EH12]. The RD is an alternative to
the statistical distance (SD for short) ∆(D1, D2) = 1

2
∑
x∈X |D1(x)−D2(x)| as

measure of distribution closeness, where we replace the difference in SD, by the
ratio in RD. RD enjoys several properties that are analogous of those enjoyed
by SD, where addition in the property of SD is replaced by multiplication in the
analogous property of RD (see Subsection 2.3).

SD is ubiquitous in cryptographic security proofs. One of its most useful
properties is the so-called probability preservation property: For any measurable



event E ⊆ X, we have D2(E) ≥ D1(E) −∆(D1, D2). RD enjoys the analogous
property D2(E) ≥ D1(E)

a
a−1 /Ra(D1‖D2). If the event E occurs with significant

probability under D1, and if the SD (resp. RD) is small, then the event E also
occurs with significant probability under D2. These properties are particularly
handy when the success of an attacker against a given scheme can be described as
an event whose probability should be negligible, e.g., the attacker outputs a new
valid message-signature pair for a signature scheme. If in the attacker succeeds
with good probability in the real scheme based on distribution D1, then it also
succeeds with good probability in the simulated scheme (of the security proof)
based on distribution D2.

To make the SD probability preservation property useful, it must be ensured
that the SD ∆(D1, D2) is smaller than any D1(E) that the security proof must
handle. Typically, the quantityD1(E) is assumed to be greater than some success
probability lower bound ε, which is of the order of 1/poly(λ) where λ refers to the
security parameter, or even 2−o(λ) if the proof handles attackers whose success
probabilities can be sub-exponentially small (which we believe better reflects
practical objectives). As a result, the SD ∆(D1, D2) must be < ε for the SD
probability preservation property to be relevant. Similarly, the RD probability
preservation property is non-vacuous when the RD Ra(D1‖D2) is ≤ poly(1/ε).
In many cases, the latter seems less demanding than the former: in all our
applications of RD, the RD between D1 and D2 is small while their SD is too
large for the SD probability preservation to be applicable. In fact, as we will see
in Subsection 2.3, the RD becomes sufficiently small to be useful before the SD
when supxD1(x)/D2(x) tends to 1. This explains the superiority of the RD in
several of our applications.

Although RD seems more amenable than SD for search problems, it seems
less so for distinguishing problems. A typical cryptographic example is semantic
security of an encryption scheme. Semantic security requires an adversary A to
distinguish between the encryption distributions of two plaintext messages of its
choosing: the distinguishing advantage AdvA(D1, D2), defined as the difference
of probabilities that A outputs 1 using D1 or D2, should be large. In security
proofs, algorithm A is often called on distributions D′1 and D′2 that are close
to D1 and D2 (respectively). If the SDs between D1 and D′1 and D2 and D′2 are
both bounded from above by ε, then, by the SD probability preservation prop-
erty (used twice), we have AdvA(D′1, D′2) ≥ AdvA(D1, D2)− 2ε. As a result, SD
can be used to distinguishing problems in a similar fashion as for search prob-
lems. The multiplicativity of the RD probability preservation property seems to
prevent RD from being applicable to distinguishing problems.

We replace the statistical distance by the Rényi divergence in several security
proofs for lattice-based cryptographic primitives. Lattice-based cryptography is a
relatively recent cryptographic paradigm in which cryptographic primitives are
shown at least as secure as it is hard to solve standard problems over lattices (see
the survey [MR09]). Security proofs in lattice-based cryptography involve differ-
ent types of distributions, often over infinite sets, such as continuous Gaussian
distributions and Gaussian distributions with lattice supports. The RD seems
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particularly well suited to quantify the closeness of Gaussian distributions. Con-
sider for example two continuous distributions over the reals, both with standard
deviation 1, but one with center 0 and the other one with center c. Their SD
is linear in c, so that c must remain extremely small for the SD probability
preservation property to be useful. On the other hand, their RD of order a = 2
is bounded as exp(O(c2)) so that the RD preservation property remains useful
event for slightly growing c.

RD was first used in lattice-based cryptography by [LPR13], in the decision
to search reduction for the Ring Learning With Errors problem (which serves as
a security foundation for many asymptotically fast primitives). It was then ex-
ploited in [LSS14] to decrease the parameters of the Garg et al. (approximation
to) cryptographic multilinear maps [GGH13]. In the present work, we present
a more extensive study of the power of RD in lattice-based cryptography, by
showing several independent applications of RD. In some cases, it leads to se-
curity proofs allowing to take smaller parameters in the cryptographic schemes,
hence leading to efficiency improvements. In other cases, this leads to alternative
security proofs that are conceptually simpler.

Our applications of RD also include distinguishing problems. To circum-
vent the aforementioned a priori limitation of the RD probability preservation
property for distinguishing problems, we propose an alternative approach that
handles a class of distinguishing problems, enjoying a special property that we
call public sampleability. This public sampleability allows to estimate success
probabilities via Hoeffding’s bound.

The applications we show in lattice-based cryptography are as follows:

• Smaller signatures for the Hash-and-Sign GPV signature scheme [GPV08].
• Smaller storage requirement for the Fiat-Shamir BLISS signature scheme
[DDLL13,PDG14,Duc14].
• Alternative proof that the Learning With Errors (LWE) problem with noise
chosen uniformly in an interval is no easier than the Learning With Errors
problem with Gaussian noise [DMQ13]. Our reduction does not require the
latter problem to be hard, and it is hence marginally more general as it also
applies to distributions with smaller noises. Further, our reduction preserves
the LWE dimension n, and is hence tighter than the one from [DMQ13] (the
latter degrades the LWE dimension by a constant factor).5
• Smaller parameters in the dual-Regev encryption scheme from [GPV08].

We think RD is likely to have further applications in lattice-based crypto-
graphy, for search and for distinguishing problems.
Related works. The framework for using RD in distinguishing problems was
used in [LPSS14], in the context of the k-LWE problem (a variant of LWE
in which the attacker is given extra information). In [PDG14], Pöpplemann,
Ducas and Güneysu used the Kullback-Leibler divergence (which is the RD of
5 Note that LWE with uniform noise in a small interval is also investigated in [MP13],
with a focus on the number of LWE samples. The reduction from [MP13] does not
preserve the LWE reduction either.
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order a = 1) to lower the storage requirement of [DDLL13]. Asymptotically,
using the Kullback-Leibler divergence rather than SD only leads to a constant
factor improvement. Our approach allows bigger savings in the case where the
number of signature queries is limited, as explained in Section 3.

Very recently, Bogdanov et al. [BGM+15] adapted parts of our RD-based
hardness proof for LWE with noise uniform in a small interval, to the Learning
With Rounding problem. In particular, they obtained a substantial improvement
over the hardness results of [BPR12,AKPW13].
Road-map. In Section 2, we provide necessary background on lattice-based
cryptography, and on the Rényi divergence. In Section 3, we use RD to im-
prove some lattice-based signature scheme parameters. Section 4 contains the
description of the framework in which we can use RD for distinguishing prob-
lems, which we apply to the dual-Regev encryption scheme. In Section 5, we
describe an alternative hardness proof for LWE with noise uniformly chosen in
an interval.
Notations. If x is a real number, we let bxe denote a closest integer to x. The
notation ln refers to the natural logarithm and the notation log refers to the
base 2 logarithm. We define T = ([0, 1],+). For an integer q, we let Zq denote
the ring of integers modulo q. We let Tq denote the group Tq = {i/q mod 1 : i ∈
Z} ⊆ T. Vectors are denoted in bold. If b is a vector in Rd, we let ‖b‖ denote its
Euclidean norm. By default, all our vectors are column vectors.

If D is a probability distribution, we let Supp(D) = {x : D(x) 6= 0} denote its
support. For a setX of finite weight, we let U(X) denote the uniform distribution
on X. The statistical distance between two distributions D1 and D2 over a
countable support X is ∆(D1, D2) = 1

2
∑
x∈X |D1(x)−D2(x)|. This definition is

extended in the natural way to continuous distributions. If f : X → R takes non-
negative values, then for all countable Y ⊆ X, we define f(Y ) =

∑
y∈Y f(y) ∈

[0,+∞]. For any vector c ∈ Rn and any real s > 0, the (spherical) Gaussian
function with standard deviation parameter s and center c is defined as follows:
∀x ∈ Rn, ρs,c(x) = exp(−π‖x − c‖2/s2). The Gaussian distribution is Ds,c =
ρs,c/s

n. When c = 0, we may omit the subscript c.
We use the usual Landau notations. A function f(λ) is said negligible if it

is λ−ω(1). A probability p(λ) is said overwhelming if it is 1− λ−ω(1).
The distinguishing advantage of an algorithmA between two distributionsD0

and D1 is defined as AdvA(D0, D1) = |Prx←↩D0 [A(x) = 1]−Prx←↩D1 [A(x) = 1]|,
where the probabilities are taken over the randomness of the input x and the
internal randomness of A. Algorithm A is said to be an (ε, T )-distinguisher if it
runs in time ≤ T and if AdvA(D0, D1) ≥ ε.

2 Preliminaries

We assume the reader is familiar with standard cryptographic notions, as well
as with lattices and lattice-based cryptography. We refer to [Reg09a,MR09] for
introductions on the latter topic.
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2.1 Lattices

A (full-rank) n-dimensional Euclidean lattice Λ ⊆ Rn is the set of all integer
linear combinations

∑n
i=1 xibi of some R-basis (bi)1≤i≤n of Rn. In this setup,

the tuple (bi)i is said to form a Z-basis of Λ. For a lattice Λ and any i ≤ n,
the ith successive minimum λi(Λ) is the smallest radius r such that Λ contains
i linearly independent vectors of norm at most r. The dual Λ∗ of a lattice Λ is
defined as Λ∗ = {y ∈ Rn : ytΛ ⊆ Zn}.

The (spherical) discrete Gaussian distribution over a lattice Λ ⊆ Rn, with
standard deviation parameter s > 0 and center c is defined as:

∀x ∈ Λ,DΛ,s,c = ρs,c(x)
ρs,c(Λ) .

When the center is 0, we omit the subscript c.
The smoothing parameter [MR07] of an n-dimensional lattice Λ with respect

to ε > 0, denoted by ηε(Λ), is the smallest s > 0 such that ρ1/s(Λ∗ \ {0}) ≤ ε.
We use the following properties.

Lemma 2.1 ([MR07, Le. 3.3]). Let Λ be an n-dimensional lattice and ε > 0.
Then

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))
π

· λn(Λ).

Lemma 2.2 (Adapted from [GPV08, Le. 5.3]). Let m,n ≥ 1 and q a prime
integer, with m ≥ 2n ln q. For A ∈ Zn×mq we define A⊥ as the lattice {x ∈ Zm :
Ax = 0 mod q}. Then,

∀ε < 1/2 : Pr
A←↩U(Zn×mq )

[
ηε(A⊥) ≥ 4

√
ln(4m/ε)

π

]
≤ q−n.

Lemma 2.3 (Adapted from [GPV08, Cor. 2.8]). Let Λ,Λ′ be n-dimen-
sional lattices with Λ′ ⊆ Λ and ε ∈ (0, 1/2). Then for any c ∈ Rn and s ≥ ηε(Λ′)
and any x ∈ Λ/Λ′ we have

(DΛ,s,c mod Λ′)(x) ∈
[

1− ε
1 + ε

,
1 + ε

1− ε

]
· det(Λ)

det(Λ′) .

2.2 The SIS and LWE problems

The Small Integer Solution (SIS) problem was introduced by Ajtai in [Ajt96]. It
serves as a security foundation for numerous cryptographic primitives, including,
among many others, hash functions [Ajt96] and signatures [GPV08,DDLL13].

Definition 2.4. Let m ≥ n ≥ 1 and q ≥ 2 be integers, and β a positive real. The
SISn,m,q,β problem is as follows: given A←↩ U(Zn×mq ), the goal is to find x ∈ Zm
such that Ax = 0 mod q and 0 < ‖x‖ ≤ β.
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The SIS problem was proven by Ajtai [Ajt96] to be at least as hard as some
standard worst-case problems over Euclidean lattices, under specific parameter
constraints. We refer to [GPV08] for an improved (and simplified) reduction.

The Learning With Errors (LWE) problem was introduced in 2005 by Regev
[Reg05,Reg09b]. LWE is also extensively used as a security foundation, for
encryption schemes [Reg09b,GPV08], fully homomorphic encryption schemes
[BV11], and pseudo-random functions [BPR12,AKPW13], among many others.
Its definition involves the following distribution. Let χ be a distribution over T,
q ≥ 2, n ≥ 1 and s ∈ Znq . A sample from As,χ is of the form (a, b) ∈ Znq × T,
with a←↩ U(Znq ), b = 1

q 〈a, s〉+ e and e←↩ χ.

Definition 2.5. Let χ be a distribution over T, q ≥ 2, and m ≥ n ≥ 1. The
search variant sLWEn,q,χ,m of the LWE problem is as follows: given m samples
from As,χ for some s ∈ Znq , the goal is to find s. The decision variant LWEn,q,χ,m
consists in distinguishing between the distributions (As,χ)m and U(Znq × T)m,
where s←↩ U(Znq ).

In some cases, it is convenient to use an error distribution χ whose support
is Tq. In these cases, the definition of LWE is adapted in that U(Znq × T) is
replaced by U(Znq ×Tq). Note also that for a fixed number of samples m, we can
represent the LWE samples using matrices. The ai’s form the rows of a matrix A
uniform in Zm×nq , and the scalar product is represented by the product between
A and s.

Regev [Reg09b] gave a quantum reduction from standard worst-case problems
over Euclidean lattices to sLWE and LWE, under specific parameter constraints.
Classical (but weaker) reductions have later been obtained (see [Pei09,BLP+13]).
We will use the following sample-preserving search to decision reduction for
LWE.

Theorem 2.6 (Adapted from [MM11, Prop. 4.10]). If q ≤ poly(m,n) is
prime and the error distribution χ has support in Tq, then there exists a reduction
from sLWEn,q,χ,m to LWEn,q,χ,m that is polynomial in n and m.

2.3 The Rényi divergence

For any two discrete probability distributions P and Q such that Supp(P ) ⊆
Supp(Q) and a ∈ (1,+∞), we define the Rényi divergence of order a by

Ra(P‖Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.

We omit the a subscript when a = 2. We define the Rényi divergences of orders 1
and +∞ by

R1(P‖Q) = exp

 ∑
x∈Supp(P )

P (x) log P (x)
Q(x)

 and R∞(P‖Q) = max
x∈Supp(P )

P (x)
Q(x) .
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The definitions are extended in the natural way to continuous distributions. The
divergence R1 is the (exponential of) the Kullback-Leibler divergence.

For any fixed P,Q, the function a 7→ Ra(P‖Q) ∈ (0,+∞] is non-decreasing,
continuous over (1,+∞), tends to R∞(P‖Q) when a grows to infinity, and
if Ra(P‖Q) is finite for some a, then Ra(P‖Q) tends to R1(P‖Q) when a tends
to 1 (we refer to [EH12] for proofs). A direct consequence is that if P (x)/Q(x) ≤ c
for all x ∈ Supp(P ) and for some constant c, then Ra(P‖Q) ≤ R∞(P‖Q) ≤ c.
In the same setup, we have ∆(P,Q) ≤ c/2.

The following properties can be considered the multiplicative analogues of
those of the SD. We refer to [EH12,LSS14] for proofs.

Lemma 2.7. Let a ∈ [1,+∞]. Let P and Q denote distributions with Supp(P ) ⊆
Supp(Q). Then the following properties hold:

• Log. Positivity: Ra(P‖Q) ≥ Ra(P‖P ) = 1.
• Data Processing Inequality: Ra(P f‖Qf ) ≤ Ra(P‖Q) for any function
f , where P f (resp. Qf ) denotes the distribution of f(y) induced by sampling
y ←↩ P (resp. y ←↩ Q).

• Multiplicativity: Assume P and Q are two distributions of a pair of ran-
dom variables (Y1, Y2). For i ∈ {1, 2}, let Pi (resp. Qi) denote the marginal
distribution of Yi under P (resp. Q), and let P2|1(·|y1) (resp. Q2|1(·|y1))
denote the conditional distribution of Y2 given that Y1 = y1. Then we have:
• Ra(P‖Q) = Ra(P1‖Q1) ·Ra(P2‖Q2) if Y1 and Y2 are independent.
• Ra(P‖Q) ≤ R∞(P1‖Q1) ·maxy1∈X Ra(P2|1(·|y1)‖Q2|1(·|y1)).

• Probability Preservation: Let A ⊆ Supp(Q) be an arbitrary event. If a ∈
(1,+∞), then Q(A) ≥ P (A)

a
a−1 /Ra(P‖Q). Further, we have

Q(A) ≥ P (A)/R∞(P‖Q).

Let P1, P2, P3 be three distributions with Supp(P1) ⊆ Supp(P2) ⊆ Supp(P3).
Then we have:

• Weak Triangle Inequality:

Ra(P1‖P3) ≤
{

Ra(P1‖P2) ·R∞(P2‖P3),
R∞(P1‖P2)

a
a−1 ·Ra(P2‖P3) if a ∈ (1,+∞).

Getting back to the setup in which P (x)/Q(x) ≤ c for all x ∈ Supp(P ) and
for some constant c, the RD probability preservation property above is relevant
even for large c, whereas the analogous SD probability preservation property
starts making sense only when c < 2.

Pinsker’s inequality is the analogue of the probability preservation property
for a = 1: for an arbitrary event A ⊆ Supp(Q), we have Q(A) ≥ P (A) −√

lnR1(P‖Q)/2 (see [PDG14, Le. 1] for a proof). Analogously to the statistical
distance, this probability preservation property is useful for unlikely events A
only if lnR1(P‖Q) is very small. We refer to Subsection 3.1 for additional com-
ments on this property.
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2.4 RD bounds

We will use the following result, adapted from [LSS14].

Lemma 2.8. For any n-dimensional lattice Λ ⊆ Rn and s > 0, let P be the
distribution DΛ,s,c and Q be the distribution DΛ,s,c′ for some fixed c, c′ ∈ Rn. If
c, c′ ∈ Λ, let ε = 0. Otherwise, fix ε ∈ (0, 1) and assume that s ≥ ηε(Λ). Then,
for any a ∈ (1,+∞):

Ra(P‖Q) ∈
[(

1− ε
1 + ε

) 2
a−1

,

(
1 + ε

1− ε

) 2
a−1
]
· exp

(
aπ
‖c− c′‖2

s2

)
.

It may be checked that also R1(P‖Q) is of the order of exp(‖c′ − c‖2/s2),
R∞(P‖Q) = +∞ and ∆(P,Q) is of the order of ‖c′ − c‖2/s2. In that setup,
the RD of order a =∞ is useless, and the probability preservation properties of
the SD and RD of order a = 1 lead to interesting bounds for events occurring
only when ‖c′ − c‖/s = o(ε). Oppositely, for any a ∈ (1,+∞), the probability
preservation property for the RD of order a ∈ (1,+∞) may be used with ‖c′ −
c‖/s = O(

√
log(1/ε)) while still leading to probabilistic lower bounds of the

order of εO(1).
As we have already seen, if two distributions are close in a uniform sense,

then their RD is small. We observe the following immediate consequence of
Lemma 2.3, that allows replacing the SD with the RD in the context of smooth-
ing arguments, in order to save on the required parameter s. In applications of
Lemma 2.3, it is customary to use s ≥ ηε(Λ′) with ε ≤ 2−λ, in order to make the
distribution DΛ/Λ′,s,c = DΛ,s,c mod Λ′ within SD 2−λ of the uniform distribu-
tion U(Λ/Λ′). This translates via Lemma 2.1 to use s = Ω(

√
λ+ logn · λn(Λ′)).

Whereas if using an RD bound R∞(DΛ/Λ′,s,c‖UΛ/Λ′) = O(1) suffices for the
application, one can take ε = O(1) in the corollary below, which translates to
just s = Ω(

√
logn · λn(Λ′)), saving a factor Θ(

√
λ).

Lemma 2.9. Let Λ,Λ′ be n-dimensional lattices with Λ′ ⊆ Λ and ε ∈ (0, 1/2).
Let DΛ/Λ′,s,c denote the distribution on Λ/Λ′ induced by sampling from DΛ,s,c

and reducing modulo Λ′, and let UΛ/Λ′ denote the uniform distribution on Λ/Λ′.
Then for any c ∈ Rn and s ≥ ηε(Λ′) and any x ∈ Λ/Λ′ we have

R∞(DΛ/Λ′,s,c‖UΛ/Λ′) ≤
1 + ε

1− ε .

3 Application to lattice-based signature schemes

In this section, we use the RD to improve the security proofs of the GPV and
BLISS signature schemes [GPV08,DDLL13], allowing to take smaller parameters
for any fixed security level.
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3.1 Sampling Discrete Gaussians and the BLISS Signature Scheme

We show that the use of RD in place of SD leads to significant savings in the
required precision of integers sampled according to a discrete Gaussian distri-
bution in the security analysis of lattice-based signature schemes. These savings
consequently lower the precomputed table storage for sampling discrete Gaus-
sians with the method described in [DDLL13,PDG14]. In Table 1, we provide a
numerical comparison of RD and SD based on an instantiation of BLISS-I.

Discrete Gaussian Sampling. In the BLISS signature scheme [DDLL13] (and
similarly in earlier variants [Lyu12]), each signature requires the signing al-
gorithm to sample O(n) independent integers from the 1-dimensional discrete
Gaussian distribution DZ,s, where s = O(m) is the standard deviation param-
eter (here the variable m denotes a parameter related to the underlying lattice
dimension, and is typically in the order of several hundreds).6

In [DDLL13], a particularly efficient sampling algorithm for DZ,s is pre-
sented. To produce a sample from DZ,s, this algorithm samples about ` =
dlog(0.22s2(1 + 2τs))e Bernoulli random variables of the form Bexp(−π2i/s2),
where i = 0, . . . , ` − 1 and τ = O(

√
λ) is the tail-cut factor for the Gaus-

sian. To sample those Bernoulli random variables, the authors of [DDLL13] use
a precomputed table of the probabilities ci = exp(−π2i/s2), for i = 1, . . . , `.
Since these probabilities are real numbers, they must be truncated to some bit
precision p in the precomputed table, so that truncated values c̃i = ci + εi are
stored, where |εi| ≤ 2−pci are the truncation errors.

In previous works, the precision was determined by an analysis either based
on the statistical distance (SD) [DDLL13] or the Kullback-Leibler divergence
(KLD) [PDG14]. In this section, we review and complete these methods, and we
propose an RD-based analysis that leads to bigger savings, asymptotically and
in practice (see Table 1). More precisely, we give sufficient lower bounds on the
precision p to ensure security on the scheme implemented with truncated values
against adversaries succeeding with probability ≥ ε and making ≤ qs signing
queries. For any adversary, the distributions Φ′ and Φ denote the signatures in
the view of the adversary in the untruncated (resp. truncated) cases.

SD-based analysis [DDLL13]. Any forging adversary A with success probabil-
ity ≥ ε on the scheme implemented with truncated Gaussian has a success prob-
ability ε′ ≥ ε−∆(Φ,Φ′) against the scheme implemented with perfect Gaussian
sampling. We select parameters to handle adversaries with success probabilities
≥ ε/2 against the untruncated scheme; we can set the required precision p so that
∆(Φ,Φ′) ≤ ε/2. Each signature requires ` ·m samples from the Bernoulli random
variables (Bc̃i)i. To ensure security against qs signing queries, each of the trun-
cated Bernoulli random variables Bc̃i should be within SD ∆(Φ,Φ′)/(` ·m ·qs) of
the desired Bci (by the union bound). Using ∆(Bc̃i , Bci) = |εi| ≤ 2−pci ≤ 2−p−1

6 Note that [Lyu12,DDLL13] consider the unnormalized Gaussian function ρ′σ,c(x) =
exp(−‖x− c‖/(2σ2)) instead of ρs,c. We have ρs,c = ρ′σ,c when σ = s/

√
2π.
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leads to a precision requirement

p ≥ log(` ·m · qs/∆(Φ,Φ′)) ≥ log(` ·m · qs/ε). (1)

The overall precomputed table is hence of bit-size LSD = p ·` ≥ log(` ·m ·qs/ε) ·`.
Note that in [DDLL13], the authors omitted the term ` · m · qs in their

analysis: they only ensured that ∆(Bc̃i , Bci) ≤ ε, leading to the requirement
that p ≥ log(1/ε).

One may also set the precision pi depending on i for 0 ≤ i ≤ ` − 1. It is
sufficient to set

2−pici = 2−pi exp(−π2i/s2) ≤ (ε/2)/(` ·m · qs).

Hence the precision pi is

pi ≥ log
(
` ·m · qs

ε
· exp(−π2i/s2)

)
+ 1. (2)

The bit-size of the overall precomputed table can be computed as a sum of the
above pi’s. Using the symmetry of the Bernoulli variable, we can further drop
the bit-size of the precomputed table.

KLD-based analysis [PDG14]. In [PDG14], Pöppelman, Ducas and Güneysu
replace the SD-based analysis by a KLD-based analysis (i.e., using the RD
of order a = 1) to reduce the precision p needed in the precomputed table.
They show that any forging adversary A with success probability ε on the
scheme implemented with truncated Gaussian has a success probability ε′ ≥
ε−

√
lnR1(Φ‖Φ′)/2 on the scheme implemented with perfect Gaussian (see re-

mark at the end of Subsection 2.3). By the multiplicative property of the RD
over the ` ·m · qs independent samples needed for signing qs times, we get that
R1(Φ‖Φ′) ≤ (maxi=1,...,`R1(Bc̃i‖Bci))`·m·qs . Now, we have:

lnR1(Bc̃i‖Bci) = (1− ci − εi) ln 1− ci − εi
1− ci

+ (ci + εi) ln ci + εi
ci

≤ −(1− ci − εi)
εi

1− ci
+ (ci + εi)

εi
ci

= ε2
i

(1− ci)ci
.

Using |εi| ≤ 2−pci and 1− ci ≥ 1/2, we obtain lnR1(Bc̃i‖Bci) = 2−2p+1 ci
1−ci ≤

2−2p. Therefore, we obtain ε′ ≥ ε−
√
` ·m · qs · 2−2p. We can select parameters

such that
√
` ·m · qs · 2−2p+1 ≤ ε/2. This leads to a precision requirement

p ≥ 1
2 log

(
` ·m · qs

ε2

)
+ 1

2 . (3)

The overall precomputed table is hence of bit-size LKLD ≥ (log(` ·m · qs/ε2)/2 +
1/2) · `. This KLD-based analysis may save some storage if ε is not too small.

Note that in [PDG14], the authors selected ε = 1/2 and ` ·m · qs = 2λ where
λ is the desired bit-security, and hence obtained p ≥ λ/2 + 1.
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One may also set the precision pi depending on i. It is sufficient to set

pi ≥
1
2 log

(
` ·m · qs

ε2 · ci
1− ci

)
+ 1. (4)

Using symmetry, we may assume ci ≤ 1/2.

R∞-based analysis. The probability preservation property of the Rényi diver-
gence from Lemma 2.7 is multiplicative for a > 1 (rather than additive for a = 1).
Here we use the order a =∞. This property gives that any forging adversary A
having success probability ε on the scheme implemented with truncated Gaus-
sian sampling has a success probability ε′ ≥ ε/R∞(Φ‖Φ′) on the scheme imple-
mented with perfect Gaussian. If R = R∞(Φ‖Φ′) ≤ O(1), then ε′ = Ω(ε). By
the multiplicative property of the RD (over the ` · m · qs samples needed for
signing qs times), we have R∞(Φ‖Φ′) ≤ R∞(Bc̃i‖Bci)`·m·qs . By our assumption
that ci ≤ 1/2, we have R∞(Bc̃i‖Bci) = 1 + |εi|/ci ≤ 1 + 2−p. Therefore, we
get ε′ ≥ ε/(1 + 2−p)`·m·qs . We select parameters to get adversaries with success
probabilities ≥ ε/2 against the untruncated scheme and set the precision so that
(1 + 2−p)`·m·qs ≤ 2. This yields an approximated precision requirement

p ≥ log(` ·m · qs). (5)

Note above estimate may not be accurate unless ` ·m ·qs is much smaller than 2p.
Hence we may also require that p ≥ log(` ·m · qs) +C for some constant C. This
condition essentially eliminates the term ε from the precision needed by the SD-
based and KLD-based analyses.7 Overall, we get a precomputed table of bit-size
LRD = log(` ·m · qs) · `.

Ra-based analysis. We may also consider Ra-based analysis for general a > 1. It
should noted that the reductions here are not tight: for Ra-based analysis with
a > 1, the probability preservation shows ε′ > εa/(a−1)/Ra(Φ‖Φ′). The Rényi
divergence can be computed by

(Ra(Φ‖Φ′))a−1 = (1− ci − εi)a

(1− ci)a−1 + (ci + εi)a

ca−1
i

= (1− ci − εi)
(

1− εi
1− ci

)a−1
+ (ci + εi)

(
1 + εi

ci

)a−1
.

If a is much smaller than 2p, we get

(Ra(Φ‖Φ′))a−1 ≈ (1− ci − εi)
(

1− (a− 1)εi
1− ci

)
+ (ci + εi)

(
1 + (a− 1)εi

ci

)
= 1 + ε2

i (a− 1)
ci(1− ci)

≤ 1 + 2−2p(a− 1) ci
1− ci

≤ 1 + 2−2p(a− 1).

7 Note that the resulting precision is not independent of ε. The parameters m = m(ε)
and ` = `(ε) are chosen in [DDLL13] so that any forging adversary has success
probability at most ε on the scheme implemented with perfect Gaussian sampling.
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For instance if we take a = 2, we have R2(Φ‖Φ′) ≤ 1 + 2−2p and hence ε′ ≥
ε2/R2(Φ‖Φ′). To get a success probability lower bound ε2/2, it is sufficient to
set

p ≥ 1
2 log(` ·m · qs). (6)

On the other hand, if a is much larger than 2p, then we have

(Ra(Φ‖Φ′))a−1 = (1− ci − εi)
(

1− εi
1− ci

)a−1
+ (ci + εi)

(
1 + εi

ci

)a−1

≈ (ci + εi) exp
(

(a− 1)εi
ci

)
.

Hence the Rényi divergence

Ra(Φ‖Φ′) ≈ (ci + εi)1/(a−1) exp
(
εi
ci

)
≈ 1 + εi

ci
.

As a→∞, Ra(Φ‖Φ′)→ 1 + 2−p.
Thus if the tightness of the reduction is not a concern, using Ra with small

a reduces the precision requirement. Furthermore, we can amplify the success
probability of the forger on the truncated Gaussian from ε′ to some ε′′ > ε′.

Numerical examples. In Table 1, we consider a numerical example which
gives the lower bound on the precision for the scheme BLISS-I (with ε = 2−128)
when allowing up to qs = 264 sign queries to the adversary. For the BLISS-I
parameters, we use m = 1024, ` = 29, s = d

√
2π · 254 ·

√
1/(2 ln 2)e = 541 and

τ = 13.4/
√

2π ≈ 5.4). The reductions in the table are tight, except for R2 (as
ε′ in the reduction does not depend directly on ε but on ε2), and we are a little
bit loose for the R∞ case.

Table 1. Comparison of the precision to handle adversaries with success probability
≥ ε making ≤ qs sign queries to BLISS-I. Our Rényi-based parameters are on the last
two lines.

Lower bound on the precision p Example p Table bit-size
SD (Eq. (1)) p ≥ log(` ·m · qs/ε) p ≥ 207 6003
SD (Eq. (2)) pi ≥ log(` ·m · qs · e−π2i/s2

/ε) + 1 – 4598
KLD (Eq. (3)) p ≥ log(` ·m · qs/ε2)/2 + 1/2 p ≥ 168 4872
KLD (Eq. (4)) pi ≥ log(` ·m · qs/ε2 · ci/(1− ci))/2 + 1 – 3893
R∞ (Eq. (5)) p ≥ log(` ·m · qs) p ≥ 79 2291
R2 (Eq. (6)) p ≥ log(` ·m · qs)/2 p ≥ 40 1160

When instantiating BLISS-I with the parameters of Table 1, the table bit-size
can be reduced from about 6000 bits to about 1200 bits by using R2 in place
of SD. If the tightness of the reduction is concerned, we may use R∞ instead,
which leads to a table of about 2300 bits.
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3.2 GPV Signature scheme

The RD can also be used to reduce the parameters obtained via the SD-based
analysis of the GPV signature scheme in [GPV08].

In summary, the signature and the security proof from [GPV08] work as
follows. The signature public key is a matrix A ∈ Zn×mq with n linear in the
security parameter λ, q = poly(n), and m = O(n log q). The private signing key
is a short basis matrix T for the lattice A⊥ = {x ∈ Zm : A · x = 0 mod q},
whose last successive minimum satisfies λm(A⊥) ≤ O(1) when m = Ω(n log q)
(see [GPV08]). A signature (σ, s) on a message M is a short vector σ ∈ Zm
and a random salt s ∈ {0, 1}λ, such that A · σ = H(M, s) mod q, where H is
a random oracle hashing into Znq . The short vector σ is sampled by computing
an arbitrary vector t satisfying A · t = H(M, s) mod q and using T along with
a Gaussian sampling algorithm (see [GPV08,BLP+13]) to produce a sample
from t+DA⊥,r,−t.

The main idea in the security proof from the SIS problem [GPV08] is based
on simulating signatures without T , by sampling σ from DZm,r and then pro-
gramming the random oracle H at (M, s) according to H(M, s) = A · σ mod q.
As shown in [GPV08, Le. 5.2], the conditional distribution of σ given A·σ mod q
is exactly the same in the simulation and in the real scheme. Therefore, the SD
between the simulated signatures and the real signatures is bounded by the SD
between the marginal distribution D1 of A ·σ mod q for σ ←↩ DZm,r and U(Zmq ).
This SD for one signature is bounded by ε if r ≥ ηε(A⊥). This leads, over the
qs sign queries of the attacker, in the SD-based analysis of [GPV08], to take
ε = O(2−λq−1

s ) and thus r = Ω(
√
λ+ log qs) (using Lemma 2.2), in order to

handle attackers with success probability 2−o(λ).
Now, by Lemma 2.9, we have that the RD R∞(D1‖U) is bounded by 1 +

c · ε for one signature, for some constant c. By the multiplicativity property of
Lemma 2.7, over qs queries, it is bounded by (1+cε)qs . By taking ε = O(q−1

s ), we
obtain overall an RD bounded asO(1) between the view of the attacker in the real
attack and simulation, leading to a security proof with respect to SIS but with a
smaller r = Ω(

√
log λ+ log(nqs)). When the number of sign queries qs allowed

to the adversary is much smaller than 2λ, this leads to significant parameter
savings, because SIS’s β is reduced and hence n,m, q may be set smaller for the
same security parameter λ.

4 Rényi divergence and distinguishing problems

In this section, we prove Theorem 4.1 which allows to use the RD for distin-
guishing problems, and we show how to apply it to the dual-Regev encryption
scheme.

4.1 Problems with public sampleability

A general setting one comes across in analyzing the security of cryptographic
schemes has the following form. Let P denote a decision problem that asks to
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distinguish whether a given x was sampled from distribution X0 or X1, defined
as follows:

X0 = {x : r ←↩ Φ, x←↩ D0(r)}, X1 = {x : r ←↩ Φ, x←↩ D1(r)}.

Here r is some parameter that is sampled from the same distribution Φ in
both X0 and X1. The parameter r then determines the conditional distributions
D0(r) and D1(r) from which x is sampled in X0 and X1, respectively, given r.
Now, let P ′ denote another decision problem that is defined similarly to P ,
except that in P ′ the parameter r is sampled from a different distribution Φ′

(rather than Φ). Given r, the conditional distributions D0(r) and D1(r) are the
same in P ′ as in P . Let X ′0 (resp. X ′1) denote the resulting marginal distributions
of x in problem P ′. Now, in the applications we have in mind, the distributions
Φ′ and Φ are “close” in some sense, and we wish to show that this implies an
efficient reduction between problems P ′ and P , in the usual sense that every
distinguisher with efficient run-time T and non-negligible advantage ε against
P implies a distinguisher for P ′ with efficient run-time T ′ and non-negligible
advantage ε′. In the classical situation, if the SD ∆(Φ,Φ′) between Φ′ and Φ is
negligible, then the reduction is immediate. Indeed, for b ∈ {0, 1}, if pb (resp. p′b)
denotes the probability that a distinguisher algorithm A outputs 1 on input
distribution Xb (resp. X ′b), then we have, from the SD probability preservation
property, that |p′b−pb| ≤ ∆(Φ,Φ′). As a result, the advantage ε′ = |p′1−p′0| of A
against P ′ is bounded from below by ε− 2∆(Φ,Φ′) which is non-negligible (here
ε = |p1 − p0| is the assumed non-negligible advantage of A against P ).

Unfortunately, for general decision problems P, P ′ of the above form, it seems
difficult to obtain an RD-based analogue of the above SD-based argument, in the
weaker setting when the SD ∆(Φ,Φ′) is non-negligible, but the RD R = R(Φ‖Φ′)
is small. Indeed, the probability preservation property of the RD in Lemma 2.7
does not seem immediately useful in the case of general decision problems P, P ′.
With the above notations, it can be used to conclude that p′b ≥ p2

b/R but this
does not allow us to usefully relate the advantages |p′1 − p′0| and |p1 − p0|.

Nevertheless, we now make explicit a special class of “publicly sampleable”
problems P, P ′ for which such a reduction can be made. In such problems, it is
possible to efficiently sample from both distributions D0(r) (resp. D1(r)) given
the single sample x from the unknown Db(r). This technique is implicit in the
application of RD in the reductions of [LPR13], and we abstract it and make it
explicit in the following.

Theorem 4.1. Let Φ,Φ′ denote two distributions with Supp(Φ) ⊆ Supp(Φ′),
and D0(r) and D1(r) denote two distributions determined by some parameter r ∈
Supp(Φ′). Let P, P ′ be two decision problems defined as follows:

• Problem P : Distinguish whether input x is sampled from distribution X0
or X1, where

X0 = {x : r ←↩ Φ, x←↩ D0(r)}, X1 = {x : r ←↩ Φ, x←↩ D1(r)}.
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• Problem P ′: Distinguish whether input x is sampled from distribution X ′0
or X ′1, where

X ′0 = {x : r ←↩ Φ′, x←↩ D0(r)}, X ′1 = {x : r ←↩ Φ′, x←↩ D1(r)}.

Assume that D0(·) and D1(·) satisfy the following public sampleability prop-
erty: there exists a sampling algorithm S with run-time TS such that for all (r, b),
given any sample x from Db(r):

• S(0, x) outputs a fresh sample distributed as D0(r) over the randomness of S,
• S(1, x) outputs a fresh sample distributed as D1(r) over the randomness of S.

Then, given a T -time distinguisher A for problem P with advantage ε, we
can construct a distinguisher A′ for problem P ′ with run-time and distinguishing
advantage respectively bounded from above and below by (for any a ∈ (1,+∞]):

O

(
1
ε2 log

(
Ra(Φ‖Φ′)
εa/(a−1)

)
· (TS + T )

)
and ε

4 ·Ra(Φ‖Φ′) ·
(ε

2

) a
a−1

.

Proof. Distinguisher A′ is given an input x sampled from Db(r) for some r
sampled from Φ′ and some unknown b ∈ {0, 1}. For an ε′ to be determined later,
it runs distinguisher A on N = O(ε−2 log(1/ε′)) independent inputs sampled
from D0(r) and D1(r) calling algorithm S on (0, x) and (1, x) to obtain estimates
p̂0 and p̂1 for the acceptance probabilities p0(r) and p1(r) of A given as inputs
samples from D0(r) and D1(r) (with the r fixed to the value used to sample
the input x of A′). By the choice of N and the Hoeffding bound, the estimation
errors |p̂0 − p0| and |p̂1 − p1| are < ε/8 except with probability < ε′ over the
randomness of S. Then, if p̂1− p̂0 > ε/4, distinguisher A′ runs A on input x and
returns whatever A returns, else distinguisher A′ returns a uniformly random
bit. This completes the description of distinguisher A′.

Let S1 denote the set of r’s such that p1(r)− p0(r) ≥ ε/2, S2 denote the set
of r’s that are not in S1 and such that p1(r)− p0(r) ≥ 0, and S3 denote all the
remaining r’s. Then:

• If r ∈ S1, then except with probability < ε′ over the randomness of S, we will
have p̂1 − p̂0 > ε/4 and thus A′ will output A(x). Thus, in the case b = 1,
we have Pr[A′(x) = 1|r ∈ S1] ≥ p1(r) − ε′ and in the case b = 0, we have
Pr[A′(x) = 1|r ∈ S1] ≤ p0(r) + ε′.
• Assume that r ∈ S2. Let u(r) be the probability over the randomness of S
that p̂1 − p̂0 > ε/4. Then A′ will output A(x) with probability u(r) and
a uniform bit with probability 1 − u(r). Thus, in the case b = 1, we have
Pr[A′(x) = 1|r ∈ S2] = u(r) · p1(r) + (1− u(r))/2, and in the case b = 0, we
have Pr[A′(x) = 1|r ∈ S2] = u(r) · p0(r) + (1− u(r))/2.

• If r ∈ S3, except with probability < ε′ over the randomness of S, we have p̂1−
p̂0 < ε/4 and A′ will output a uniform bit. Thus, in the case b = 1, we have
Pr[A′(x) = 1|r ∈ S3] ≥ 1/2− ε′, and in the case b = 0, we have Pr[A′(x) =
1|r ∈ S3] ≤ 1/2 + ε′.
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Overall, the advantage of A′ is bounded from below by:∑
r∈S1

Φ′(r) (p1(r)− p0(r)− 2ε′) +
∑
r∈S2

Φ′(r)u(r) (p1(r)− p0(r))−
∑
r∈S3

Φ′(r)2ε′

≥ Φ′(S1) · ε2 − 2ε′.

Without loss of generality, we may assume that the advantage of A is positive.
By an averaging argument, the set S1 has probability Φ(S1) ≥ ε/2 under distri-
bution Φ. Hence, by the RD probability preservation property (see Lemma 2.7),
we have Φ′(S1) ≥ (ε/2)

a
a−1 /Ra(Φ‖Φ′). The proof may be completed by set-

ting ε′ = (ε/8) · (ε/2)
a
a−1 /Ra(Φ‖Φ′). ut

4.2 Application to dual-Regev encryption

Let m,n, q, χ be as in Definition 2.5 and Φ denote a distribution over Zm×nq .
We define the LWE variant LWEn,q,χ,m(Φ) as follows: Sample A ←↩ Φ, s ←↩
U(Znq ), e ←↩ χm and u ←↩ U(Tm); The goal is to distinguish between the
distributions (A, 1

qAs + e) and (A,u) over Zm×nq × Tm. Note that standard
LWE is obtained by taking Φ′ = U(Zm×nq ).

As an application to Theorem 4.1, we show that LWE with non-uniform
and possibly statistically correlated ai’s of the samples (ai, bi)’s (with bi either
independently sampled from U(T) or close to 〈ai, s〉 for a secret vector s) remains
at least as hard as standard LWE, as long as the RD R(Φ‖U) remains small,
where Φ is the joint distribution of the given ai’s and U denotes the uniform
distribution.

To show this result, we first prove in Corollary 4.2 that there is a reduction
from LWEn,q,χ,m(Φ′) to LWEn,q,χ,m(Φ) using Theorem 4.1 if Ra(Φ‖Φ′) is small
enough. We then describe in Corollary 4.3 how to use this first reduction to
obtain smaller parameters for the dual-Regev encryption. This allows us to save
an Ω(

√
λ/ log λ) factor in the Gaussian deviation parameter r used for secret

key generation in the dual-Regev encryption scheme [GPV08], where λ refers to
the security parameter.

Corollary 4.2. Let Φ and Φ′ be two distributions over Zm×nq with Supp(Φ) ⊆
Supp(Φ′). If there exists a distinguisher A against LWEn,q,χ,m(Φ) with run-
time T and advantage ε = o(1), then there exists a distinguisher A′ against
LWEn,q,χ,m(Φ′) with run-time T ′ = O(ε−2 log Ra(Φ‖Φ′)

εa/(a−1) · (T + poly(m, log q)))
and advantage Ω

(
ε1+a/(a−1)

Ra(Φ‖Φ′)

)
, for any a ∈ (1,+∞].

Proof. Apply Theorem 4.1 with r = A ∈ Zmq , x = (A, b) ∈ Zm×nq ×Tm, D0(r) =
(A,A · s + e) with s ←↩ U(Znq ) and e ←↩ χm, and D1(r) = (A,u) with u ←↩
U(Zmq ). The sampling algorithm S is such that S(0, x) outputs (A,A ·s′+e′) for
s′ ←↩ U(Znq ) and e′ ←↩ χm, while S(1, x) outputs (A,u′) with u′ ←↩ U(Zmq ). ut

We recall that the dual-Regev encryption scheme has a general public pa-
rameter A ∈ Zm×nq , a secret key of the form sk = x with x ←↩ DZm,r and a
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public key of the form u = Atx mod q. A ciphertext for a message M ∈ {0, 1}
is obtained as follows: Sample s ←↩ U(Znq ), e1 ←↩ χm and e2 ←↩ χ; return
ciphertext (c1, c2) = ( 1

qAs+ e1,
1
q 〈u, s〉+ e2 + M

2 ) ∈ Tm × T.

Corollary 4.3. Suppose that q is prime, m ≥ 2n log q and r ≥ 4
√

log(12m)/π.
If there exists an adversary against the IND-CPA security of the dual-Regev en-
cryption scheme with run-time T and advantage ε, then there exists a distinguish-
ing algorithm for LWEn,q,χ,m+1 with run-time O((ε′)−2 log(ε′)−1 ·(T+poly(m)))
and advantage Ω((ε′)2), where ε′ = ε− 2q−n.

Proof. The IND-CPA security of the dual-Regev encryption scheme as described
above is at least as hard as LWEn,q,χ,m+1(Φ) where Φ is obtained by sam-
pling A ←↩ U(Zm×nq ), u ←↩ At · DZm,r mod q and returning the (m + 1) × n
matrix obtained by appending ut at the bottom of A. We apply Corollary 4.2
with Φ′ = U(Z(m+1)×n

q ).
Since q is prime, if A is full rank, then the multiplication by At induces

an isomorphism between the quotient group Zm/A⊥ and Znq , where A⊥ = {x ∈
Zm : At ·x = 0 mod q}. By Lemma 2.2, we have η1/3(A⊥) ≤ 4

√
log(12m)/π ≤ r,

except for a fraction ≤ q−n of the A’s. Let BAD denote the union of such bad A’s
and the A’s that are not full rank. We have Pr[BAD] ≤ 2q−n.

By the multiplicativity property of Lemma 2.7, we have:

R∞(Φ‖Φ′) ≤ max
A/∈BAD

R∞(DZm,r mod A⊥‖UZm/A⊥).

Thanks to Lemma 2.9, we know that the latter is ≤ 2. The result now follows
from Corollary 4.2. ut

In all applications we are aware of, the parameters satisfy m ≤ poly(λ)
and q−n ≤ 2−λ, where λ refers to the security parameter. The r = Ω(

√
log λ)

bound of our Corollary 4.3, that results from using δ = 1/3 in the condition
r ≥ ηδ(A⊥) in the RD-based smoothing argument of the proof above, improves
on the corresponding bound r = Ω(

√
λ) that results from the requirement to use

δ = O(2−λ) in the condition r ≥ ηδ(A⊥) in the SD-based smoothing argument of
the proof of [GPV08, Th. 7.1], in order to handle adversaries with advantage ε =
2−o(λ) in both cases. Thus our RD-based analysis saves a factor Ω(

√
λ/ log λ) in

the choice of r, and consequently of a−1 and q. (The authors of [GPV08] specify
a choice of r = ω(

√
log λ) for their scheme because they use in their analysis

the classical “no polynomial attacks” security requirement, corresponding to
assuming attacks with advantage ε = λ−O(1), rather than the stronger ε =
ω(2−λ) but more realistic setting we take.)

5 Application to LWE with uniform noise

The LWE problem with noise uniform in a small interval was introduced in [DMQ13].
In that article, the authors exhibit a reduction from LWE with Gaussian noise,
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which relies on a new tool called lossy codes. The main proof ingredients are the
construction of lossy codes for LWE (which are lossy for the uniform distribution
in a small interval), and the fact that lossy codes are pseudorandom.

We note that the reduction from [DMQ13] needs the number of LWE samples
to be bounded by poly(n) and that it degrades the LWE dimension by a constant
factor. The parameter β (when the interval of the noise is [−β, β]) should be at
least mnσα where α is the LWE Gaussian noise parameter and σ ∈ (0, 1) is an
arbitrarily small constant.

We now provide an alternative reduction from the LWEn,q,Dα,m distinguish-
ing problem to the LWEn,q,U([−β,β]),m distinguishing problem, and analyze it
using RD. Our reduction preserves the LWE dimension n, and is hence tighter
than the one from [DMQ13]. We also require that β = Ω(mα).

Theorem 5.1. Let m ≥ n ≥ 1 and with q ≤ poly(m,n) prime. Let α, β > 0 be
real numbers with β = Ω(mα). Then there is a polynomial-time reduction from
LWEn,q,Dα,m to LWEn,q,φ,m, with φ = 1

q bqU([−β, β])e.

Proof. In the proof, we let Uβ denote the distribution U([−β, β]), to ease nota-
tions. Our reduction relies on four steps:

• A reduction from LWEn,q,Dα,m to LWEn,q,ψ,m with ψ = Dα + Uβ ,
• A reduction from LWEn,q,ψ,m to sLWEn,q,ψ,m,
• A reduction from sLWEn,q,ψ,m to sLWEn,q,Uβ ,m,
• A reduction from sLWEn,q,Uβ ,m to LWEn,q,Uβ ,m.

First step. The reduction is given m elements (ai, bi) ∈ Znq × T, all drawn
from As,Dα (for some s), or all drawn from U(Znq ×T). The reduction consists in
adding independent samples from Uβ to each bi. The reduction maps the uniform
distribution to itself, and As,Dα to As,ψ.

Second step. Reducing the distinguishing variant of LWE to its search variant
is direct.

Third step. The reduction from sLWEn,q,ψ,m to sLWEn,q,Uβ ,m is vacuous:
by using the RD (and in particular the probability preservation property
of Lemma 2.7), we show that an oracle solving sLWEn,q,Uβ ,m also solves
sLWEn,q,ψ,m.

Lemma 5.2. Let α, β be real numbers with α ∈ (0, 1/e) and β ≥ α. Let ψ =
Dα + Uβ. Then

R2(Uβ‖ψ) = α

β

∫ β

0

1∫ β
−β e

−π(x−y)2
α2 dy

dx ≤ 1 + 16α
β

√
ln(1/α)/π.

Proof. The density function of ψ is the convolution of the density functions ofDα

and Uβ :

fψ(x) = 1
2αβ

∫ β

−β
e
−π(x−y)2

α2 dy.
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Using Rényi of order 2, we have:

R2(Uβ‖ψ) =
∫ β

−β

1
(2β)2

1
2αβ

∫ β
−β e

−π(x−y)2
α2 dy

dx = α

β

∫ β

0

1∫ β
−β e

−π(x−y)2
α2 dy

dx.

The denominator in the integrand is a function for x ∈ [0, β].

φ(x) = α−
∫ ∞
β+x

exp(−πy
2

α2 ) dy −
∫ ∞
β−x

exp(−πy
2

α2 ) dy.

For standard Gaussian, we use the following tail bound [CDS03]:
1√
2π

∫ ∞
z

e−x
2/2dx ≤ 1

2e
−z2/2.

Then we have

φ(x) ≥ α
(

1− 1
2 exp

(
−π(β + x)2

α2

)
− 1

2 exp
(
−π(β − x)2

α2

))
.

Taking the reciprocal of above, we use the first-order Taylor expansion. Note
here

t(x) = 1
2 exp

(
−π(β + x)2

α2

)
+ 1

2 exp
(
−π(β − x)2

α2

)
.

We want to bound the function t(x) by a constant c ∈ (0, 1). Here t(x) is not
monotonic. We take the maximum of the first-half and the maximum of the
second-half of t(x). An upper bound (β ≥ α) is:

t(x) ≤ 1
2e
−πβ2/α2

+ 1
2 =: σα,β + 1

2 < 1.

We then use the fact that 1
1−t(x) = 1 + 1

1−t(x) t(x) ≤ 1 + 1
1−2σα,β t(x) to bound

the Rényi divergence of order 2.

R2(Uβ‖ψ) = α

β

∫ β

0

1
φ(x)dx

≤ 1
β

∫ β

0

1
1− 1

2 exp
(
−π(β+x)2

α2

)
− 1

2 exp
(
−π(β−x)2

α2

)dx

≤ 1
β

∫ β

0

(
1 + 1

1− 2σα,β
exp

(
−π(β + x)2

α2

)
+ 1

1− 2σα,β
exp

(
−π(β − x)2

α2

))
dx

= 1 + 1
(1− 2σα,β)β

∫ 2β

0
exp

(
−πx2

α2

)
dx

= 1 + 1
2(1− 2σα,β)β

∫ 2β

−2β
exp

(
−πx2

α2

)
dx

= 1 + α

(1− 2σα,β)β (1− 2Dα(2β)) ≤ 1 + 1
1− 2σα,β

α

β
.
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Hence we have the bound,

R2(Uβ‖ψ) ≤ 1 + 1
1− e−πβ2/α2

α

β
.

ut

We use Lemma 5.2 with m samples and β = Ω(mα) to ensure that the mth
power of the RD is ≤ 2. The RD multiplicativity and probability preservation
properties (see Lemma 2.7) imply that ε′ ≥ ε2/Rm2 (Uβ‖φ); hence if an oracle
solves sLWEn,q,Uβ ,m with probability ε, then it also solves sLWEn,q,ψ,m with
probability ≥ ε2/2.

Fourth step. We reduce sLWEn,q,Uβ ,m with continuous noise Uβ to sLWEn,q,φ,m
with discrete noise φ = 1

q bqUβe with support contained in Tq, by rounding to
the nearest multiple of 1

q any provided bi (for i ≤ m). We reduce sLWEn,q,φ,m
to LWEn,q,φ,m by invoking Theorem 2.6. ut

6 Open problems

Our results show the utility of the Rényi divergence in several areas of lattice-
based cryptography. However, they also suggest some natural open problems,
whose resolution could open up further applications. In particular, can we extend
the applicability of RD to more general distinguishing problems than those sat-
isfying our ‘public sampleability’ requirement? This may extend our results fur-
ther. For instance, can we use RD-based arguments to prove the hardness of LWE
with uniform noise without using the search to decision reduction of [MM11]?
This may allow the proof to apply also to Ring-LWE with uniform noise.
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