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Ivica Nikolić1 and Yu Sasaki1,2

1 Nanyang Technological University, Singapore
2 NTT Secure Platform Laboratories

inikolic@ntu.edu.sg sasaki.yu@lab.ntt.co.jp

Abstract. We study two open problems proposed by Wagner in his
seminal work on the generalized birthday problem. First, with the use
of multicollisions, we improve Wagner’s k-tree algorithm that solves the
generalized birthday problem for the cases when k is not a power of two.
The new k-tree only slightly outperforms Wagner’s k-tree. However, in
some applications this suffices, and as a proof of concept, we apply the
new 3-tree algorithm to slightly reduce the security of two CAESAR
proposals. Next, with the use of multiple collisions based on Hellman’s
table, we give improvements to the best known time-memory tradeoffs for
the k-tree. As a result, we obtain the a new tradeoff curve T 2 ·M lg k−1 =
k ·N . For instance, when k = 4, the tradeoff has the form T 2M = 4 ·N .

Keywords: Generalized birthday problem, k-list problem, k-tree algo-
rithm, time-memory tradeoff

1 Introduction

Arguably, the most popular problem in private key cryptography is the collision
search problem. It appears frequently not only in its classical usage, e.g. finding
collisions for hash functions, but also as an intermediate subproblem of a wider
cryptographic problem. The collision search has been widely studied and well
understood. Besides this problem, and along with the search of multicollisions
and multiple collisions, perhaps the next most popular is the generalized birthday
problem (GBP).

The GBP is defined as follows: given k lists of random elements, choose
a single element in each list, such that all the chosen elements sum up to a
predefined value. Wagner is the first to investigate the GBP for all values of
k and as an independent problem. In his seminal paper [31], he proposes an
algorithm to solve GBP for all values of k and shows wide variety of applications
ranging from blind signatures, to incremental hashing, low weight parity checks,
and cryptanalysis of various hash functions.

Prior to Wagner, GBP problem has been mostly studied in the context of
its application and only for a concrete number of lists (usually four lists, i.e.
k = 4). Schroeppel and Shamir [28] find all solutions to the 4-list problem.



Bernstein [4] uses similar algorithm to enumerate all solutions to a particular
equation. Boneh, Joux and Nguyen [10] use Schroeppel and Shamir’s algorithm
for solving integer knapsacks as well as Bleichenbacher [8] in his attack on DSA.
Chose, Joux, and Mitton [11] use it to speed up search for parity checks for
stream cipher cryptanalysis. Joux and Lercier [19] use related ideas in point-
counting algorithms for elliptic curves. Blum, Kalai, and Wasserman [9] apply
it to find the first known subexponential algorithm for the learning parity with
noise problem. Ajtai, Kumar, and Sivakumar findings [1] base on Blum, Kalai,
and Wasserman’s algorithm as a subroutine to speed up the shortest lattice
vector problem.

To solve the k-list problem, Wagner proposes a so-called k-tree algorithm.
In a nutshell, the k-tree is a divide and conquer approach and at each step it
operates on only two lists. The step operations are based on a simple collision
search. When the k lists are composed of n-bit words, Wagner’s k-tree algorithm
solves the GBP in O(k · 2

n
blg kc+1 ) time and memory and requires lists of around

2
n

blg kc+1 elements 3.

Even though the GBP has been shown to be very important to many prob-
lems in cryptography, more than a decade after its publication neither signifi-
cant improvement to the k-tree algorithm nor other dedicated algorithms have
emerged. However, moderate improvements and refinements have been pub-
lished. As one of the most important, we single out the extended k-tree algorithm
by Minder and Sinclair [21] that provides solution to GBP when the lists have
smaller sizes and the time-memory tradeoffs by Bernstein et al. [5, 6].

Our contribution. Wagner points out a few open problems of the GBP and
of the k-tree algorithm. Two of these problems, namely, improving the efficiency
of k-tree when k is not a power of two and memory reduction of the k-tree, are
in fact the main research topics of our paper.

The k-tree algorithm discards part of the lists when k is not a power of two
(note how the complexity of k-tree takes lower bound of lg k). For instance, 7-
tree works only with 4 lists, while the remaining 3 lists are not processed. Our
first improvement to the k-tree is to work with the discarded lists (we call them
passive lists) by creating multicollisions from the lists. From each of the passive
lists we create a multicollision set of values that coincide on certain l bits, where
l < n. Then, we produce several solutions with the k-tree from the other (active)
lists, and for the same l bits. Finally, the remaining n − l bits are absorbed by
combining the multicollisions from the passive lists, and the solutions from the
active lists. The advantage of our approach over the classical k-tree is limited
by the size of the multicollision sets, which in turn is bounded by the value
of n. The speed-up factor can be approximated as a · nc/ lg(b · n), where a, b, c
are constants that depend on k. The speed-up is sufficient to break the O(2

n
2 )

complexity bound for the 3-list problem and to show that in applications this
can matter. As an example, we show a security reduction of two authenticated

3 Note, we use lg for log2.



encryption CAESAR [3] proposals, Deoxys [16] and KIASU [18], based on the
latest results of Nandi [22]. He shows that a forgery attack for COPA based
candidates can be reduced to the 3-list problem. We apply our improved 3-tree
algorithm to this problem and reduce the security bound of the candidates by 2
bits.

Our second contribution are time-memory tradeoffs for the k-tree algorithm.
This research topic has been investigated by Bernstein et al. Their best tradeoffs

are described with the curves TM lg k = k ·N and T 2 ·M lg k−2 = k2

4 ·N , where M
and T , are the memory and time complexity, respectively, and N is the size of the
space of elements. To achieve a better tradeoff, we play around with the idea of
producing multiple collisions in a memory constrained environment with the use
of Hellman’s tables4. It allows us to significantly reduce the memory complexity
of the first level of the k-tree algorithm and to achieve better tradeoffs. As a
result, we obtain the tradeoff T 2M lg k−1 = k ·N . This translates to T 2M = 4 ·N
for k = 4, and T 2M2 = 8 · N for k = 8 (cf. TM2 = 4 · N and TM3 = 8 · N
curves of Bernstein et al.). As illustrated further in Fig. 6, for a given amount
of memory, the new tradeoff always leads to a lower time complexity than the
previous tradeoffs. The improvement of the tradeoff can be seen on the case of
generalized birthday problem for the hash function SHA-160 and k = 8. Our new
tradeoff requires around 250 SHA-1 computations and 230 memory on 8 cores
(with the use of van Oorschot and Wiener’s parallel collisions search [30]), while
with the same memory, the old tradeoff needs around 265 SHA-1 computations.

2 The Generalized Birthday Problem

Wagner introduced the generalized birthday problem (GBP) as multidimensional
generalization of the birthday problem. GBP is also called a k-list problem, and
is formalized as follows:

Problem 1 Given k lists L1, . . . , Lk of elements drawn uniformly and indepen-
dently at random from {0, 1}n, find x1 ∈ L1, . . . , xk ∈ Lk such that x1 ⊕ x2 ⊕
. . .⊕ xk = 0.

Obviously, if |L1| × |L2| × . . . × |Lk| ≥ 2n, then with a high probability the
solution to the problem exists. The real challenge, however, is to find it efficiently.

When all the lists have a minimal size, i.e. |Li| = 2
n
k , efficient algorithms to

the k-list problem are known only for the cases when k = 2, and k ≥ n. The
former is due to the collisions search algorithm, i.e. 2-list problem is equivalent to
finding collisions thus it can be solved in 2n/2. The latter is due to the Bellare and
Micciancio result [2] which states that such problem can be solved by Gaussian
elimination in O(n3 + kn). A trivial algorithm is known for the k-list when
2 < k < n. The algorithm first creates two larger lists L1, L2, where L1 =
{X|X = x1 ⊕ . . .⊕ xk/2, xi ∈ Li}, L2 = {Y |Y = xk/2+1 ⊕ . . .⊕ xk, xi ∈ Li} and

4 Joux and Lucks [20] use this technique to generate multiple collisions, which later
lead to multicollisions.
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Fig. 1. Wagner’s 4-tree algorithm.

subsequently it finds a collision between the two lists. The size of the lists is 2
n
2

thus the time complexity of the algorithm is O(2
n
2 ).

Wagner proposed the k-tree algorithm that solves GBP (k-list problem) faster
under the assumption that the list sizes are larger. Further we describe the case
when k = 4, refer to Fig. 1. Let us define S ./ T as a list of elements common
to both S and T , and let lowl(x) stand for the l least significant bits of x.
Furthermore, let us define S ./l T as a set that contains all pairs from S×T that
agree in their l least significant bits (the xor on the least significant bits is zero).
Assume L1, L2, L3, L4 are four lists, each containing 2l elements (l will be defined
further). First we create a list L12 of values x1 ⊕ x2, where x1 ∈ L1, x2 ∈ L2,
such that lowl(x1 ⊕ x2) = 0. Similarly, we create a list L34 of values x3 ⊕ x4,
where x3 ∈ L3, x4 ∈ L4, such that lowl(x3 ⊕ x4) = 0. Finally, we search for a
collisions between L12 and L34. It is easy to see that such a collision reveals the
required solution, i.e. x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0.

The main advantage of the k-tree algorithm lies in the way the solution is
found – at each of the two levels, only a simple collision search algorithm is used,
and only a certain number of bits is made to fulfill the final goal (the xor is zero
on all bits). At the first level, the lists L12, L34 contain words that have zeros on
the l least significant bits, thus xor of any two words from the lists must have
zeros on these bits. At the second level, the xor of the words from the two lists
will result in zeros on the remaining n− l bits, if there are enough pairs. To get
the sufficient number of pairs, the value of l is defined as l = n/3. Then each of
L12, L34 will have 2n/3 · 2n/3/2n/3 = 2n/3 words, and thus at the second level
there will be 2n/3 · 2n/3 = 22n/3 possible xors, one of which will have zeros on
the remaining n−n/3 = 2n/3 bits. It is important to note that l is chosen as to
balance the complexity of the two levels. Obviously, the total memory and the
time complexities of the 4-tree algorithm are O(2n/3) each.



The very same idea is used to tackle any k-list problem, where k is a power
of two. The only difference is in the choice of l, and in the number of levels.
In general, the number of levels equals lg k, and at each level except the final,
additional l bits are set to zero. At the final level, the remaining 2l bits are
zeroed. Hence, l · lg k+ l = n, and thus l = n/(lg k+ 1). The algorithm works in
O(k2

n
lg k+1 ) time and memory and requires lists of sizes 2

n
lg k+1 . As an example,

let us focus on 8-list problem, i.e. we have L1, . . . , L8 lists, lg 8 = 3 levels, and
l = n/4. At the first level we build L12, L34, L56, L78, by combining two lists
Li, Lj , each with 2l = 2n/4 elements that have zeros in the n/4 least significant
bits. At the second, we build L1234 and L5678 that have again 2n/4 elements with
zeros in the next n/4 bits. Finally, at the third level, we find the solution that
will have zeros on the remaining n/2 bits.

Wagner’s algorithm works similarly when k is not a power of two. The trick
is to make some lists passive, i.e. to choose one element from each of the passive
lists, and then continue with the algorithm as for the case of power of two and
the remaining lists. For instance, to solve 6-list problem for lists L1, . . . , L6,
we take any element v5 ∈ L5 and v6 ∈ L6, and then solve the 4-list problem
x1 ⊕ x2 ⊕ x3 ⊕ x4 = v5 ⊕ v6, for the lists L1, . . . , L4. We can easily remove the
non-zero condition v5⊕v6 in the right part, by adding this value to each element
of the list L1. Hence, the complexity of the k-list problem for the case when k is
not a power of two equals the complexity to the closest (and smaller) power of

two case. Thus, for any value of k, the k-tree algorithm works in O(k · 2
n

blg kc+1 )
time and memory.

3 Improved Algorithm for the 3-list Problem

We focus on the 3-list problem and show how to improve the complexity of
Wagner’s 3-tree algorithm. Our improvement is based on the idea of multicolli-
sions. The technique mimics the approach developed by Nikolić et al. [24] and
further generalized by Dinur et al. [12]. We exploit the k-tree algorithm, but we
also work with the passive lists and make them more active. Namely, instead of
simply taking one element from the passive lists, we find in them partial multi-
collisions – sets of words that share the same value on particular bits. We then
force the active lists on these bits to have a specific value (which is xor of all the
values of the partial multicollisions), and at the final step, merge the results of
the active and passive lists to obtain zero on the remaining bits. Let us take a
closer look at this idea.

Definition 1 The set of n-bit words S = {x1, . . . , xp} forms a p-partial multi-
collision on the s least significant bits, if lows(x1) = lows(x2) = . . . = lows(xp).

This is to say that all p words are equal on the last s bits. Note, the choice to work
with the least bits is not crucial but is introduced to simplify the presentation.
Given an arbitrary set, we can create a p-partial multicollision from this set,
i.e. we can find a subset that is p-partial multicollision. The maximal value of p
depends on the size of the initial set and will be analyzed later in the section.
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Fig. 2. Multicollision technique for k=3. The values in blue denote the size of the lists.

Let us assume that we are given a 3-list problem with lists L1, L2, L3, each of
size 2l. If we apply the k-tree algorithm, then l should equal n/2, the lists L1, L2

will be active, while L3 will be passive. Instead of marking L3 as passive, let us
create a p-partial multicollision from L3 on the l least significant bits (LSB) and
denote this set as L3 (refer to Fig. 2). Without loss of generality we can assume
that the colliding value of the l bits is zero (if not, we xor this value to all the
elements of the list L1). Furthermore, with the use of the join operator, from
L1, L2 we create a list L12 of all values x1 ⊕ x2, where x1 ∈ L1, x2 ∈ L2 and
lowl(x1 ⊕ x2) = 0; obviously |L12| ' 2l with high probability. Finally, we use
the join operator once again between L12 and L3, to find the required solution.
As we have to cancel additional n − l bits, the solution will exist with a high
probability as long as p|L12| ≥ 2n−l, that is, p22l−n ≥ 1.

The complexity of our algorithm depends on the complexity of the two join
operators and of producing multicollisions. The join operators (which are in-
deed simple collision searching algorithms) work in O(2l) as in each of the cases,
the sizes of the lists are not larger than 2l. Furthermore, the partial multicol-
lisions from |L3| = 2l can be produced in O(2l) time and memory5. Hence the
multicollision technique solves the 3-list problem in O(2l) time and memory.

Let us find the value of l. For this purpose we replace the inequality p22l−n ≥ 1,
with

p22l−n = 1, (1)

5 It is to initialize counters for each possible value of the colliding bits, then for each
x ∈ L3 increase the counter lowl(x3). After all elements have been processed, counter
with the highest value corresponds to the largest multicollision set.



and obtain

l =
n

2
− 1

2
lg p. (2)

Therefore, the complexity of our algorithm is O(2
n
2 /
√
p), hence the speed-up

factor is
√
p. Recall that p is the size of the multicollision set produced from

the passive list L3 – the larger the size, the greater the speed-up. Note, in the
original Wagner’s 3-tree algorithm, one element is chosen at random from L3

and therefore the multicollision set consists of a single element. That is, for the
classical 3-tree, p = 1 and the complexity is O(2

n
2 ).

Let us examine the maximal possible value of p, i.e. the size of the p-partial
multicollisions set on l bits produced from the set L3 of size 2l. Theorem 5 of [29]
defines the number of elements in a set required to produce multicollision with
a high probability, and by this theorem we obtain

(p!)1/p2
p−1
p l = 2l. (3)

A more straightforward way that we use to find the value of p is based on
the so-called balls-into-bins problem: m balls are thrown into m bins (the bin
for each ball is chosen uniformly at random), and the problem is to find the
expected maximum load, i.e. the expected number of balls in a bin that contains
the most balls. The solution to this problem is well known and the expected
maximum load asymptotically is:

Θ

(
lnm

ln lnm

)
. (4)

Our multicollision problem is an instance of the balls-into-bins problem as the
number of elements in the passive list L3 (the number of balls), and the size of the
multicollision space (the number of bins) are both 2l. Therefore, the asymptotics

of p(l) can be evaluated as Θ( ln 2l

ln ln 2l
) = Θ( l

ln l ). Finally, as l ≈ n
2 , we obtain that

the speed-up factor
√
p of our improved 3-tree (over Wagner’s 3-tree) is

√
n/2

lnn/2 ,

thus the complexity of our algorithm is

O

(
2
n
2 /

√
n/2

lnn/2

)
. (5)

To find the actual speed-up for concrete values of n, we need to approximate
the asymptotics of p(l), i.e. need to find the approximate value of c in p(l) =
c l

ln l . For this purpose, we have run a series of experiments. For each value of
l = 10, . . . , 28, we have generated 2l random values (of bit length l) and have
checked the maximal number of multicollisions. For each l, the experiments have
been repeated 20 times. The outcomes of the experiments are reported in Tbl. 1.
Based on the experiments, the value of c can be approximated as c ≈ 1.3. With
such an assumption, we have computed the speed-up factor of our improved
3-tree for various values of n – we refer the reader to Tbl. 2.



Table 1. Experimental search of number of multicollisions.

l Average size l
ln l

c

10 5.80 4.34 1.34

11 5.85 4.59 1.27

12 6.10 4.83 1.26

13 6.45 5.07 1.27

14 7.00 5.30 1.32

15 7.15 5.54 1.29

16 7.55 5.77 1.31

17 7.90 6.00 1.32

18 8.15 6.23 1.31

19 8.50 6.45 1.32

20 8.70 6.68 1.30

21 9.05 6.89 1.31

22 9.50 7.12 1.33

23 9.65 7.34 1.31

24 10.30 7.55 1.36

25 10.40 7.77 1.34

26 10.60 7.98 1.33

27 11.05 8.19 1.35

28 11.15 8.40 1.33

Table 2. A comparison of the time complexities of Wagner’s 3-tree with our new
approach.

n Speed-up (
√
p ) l

64 3.43 31

128 4.42 62

256 5.82 126

512 7.71 253

The above strategy is in line with the multicollision approach by Nikolić et
al. used in the analysis of the lightweight block cipher LED [14]. The advanced
approach by Dinur et al., however, cannot be used for further improvements.
One of their main ideas is to work simultaneously with a few multicollisions,
instead of only one. In the case of the k-tree algorithm, this would mean to
produce from L3 several p-partial multicollision sets. However, each such set will
collide on s different value of the l LSBs, i.e. the elements of the first p-partial
multicollision set will have the value v1 on the l LSB, the elements of the second
set will have the value v2, etc. The different values will increase the complexity
of the later stage of k-tree by a factor of s. When using the join operator on l
bits of L1 and L2 there will be s targets (whereas previously we had only one),
thus a simple collision search will have to be repeated s times. Therefore, in this
particular case, Dinur et al. approach cannot be used.

Improvements for k > 3. Our technique can be applied as well to improve
the k-tree algorithm for larger (and non-power of two) values of k. Again, we will
start with the classical k-tree and assume that all the lists are of size 2l (where
l < n

lg k+1 ). Given k that is not a degree of 2, the number of active lists kA is

2blg kc and the number of passive lists kP is k − kA. For instance, for k = 7, it
means that kA = 4, kP = 3 (see Fig. 3). Without loss of generality, assume that
the first kA lists are active, and the remaining lists are passive. First, we produce
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Fig. 3. Multicollision technique for k=7. The values in blue denote the size of the lists.

p-partial multicollision sets on λ = l · lg kA bits, independently for all of the kP
passive lists, and obtain LkA+1, . . . , Lk. Let v1, . . . , vkP be the common values of
these sets, and v = v1 ⊕ . . .⊕ vkP . Obviously the set LP = LkA+1 ./l . . . ./l Lk
has cardinality |LP | = pkP and all the elements of the set have the value v on the
λ LSBs. For the sake of simplicity, assume v = 0. Next, focus on the active lists
and find 2l solutions for kA-problem on the same λ = l · lg kA bits by running
the k-tree with initial lists of sizes 2l. Note, this way at level lg kA there will be
one list with 2l elements that have zeros on λ LSBs. If the number of solutions
produced from the two independent steps satisfy pkP ·2l ≥ 2n−λ, then one of the
elements of the list found by the kA-tree algorithm can be matched with one of
the elements of LP , on the remaining n− λ bits. As a result we will obtain one
solution to the original k-list problem.

Let us focus on the complexity of the algorithm. The p-partial multicollisions
produced from the passive lists Li, i = kA + 1, . . . , k, require around kP · |Li| =
kP ·2l operations. Under the assumption that kP is small, the additional kP +pkP

operations spent on producing v and LP can be ignored as the whole complexity
will be dominated by the multicollisions. On the other hand, the production of

2l elements with the kA-tree requires around kA · 2
λ

lg kA = kA · 2l operations.
As a result, the total complexity of the algorithm is around kP · 2l + kA · 2l =
(kP +kA) ·2l = k ·2l. Let us find the value of l. For this reason we equate pkP ·2l
to 2n−λ (specified in the inequality above), and obtain kP lg p+ l = n− l · lg kA,
or equivalently

l =
n

lg kA + 1
− kP lg p

lg kA + 1
. (6)



Therefore the improved k-tree outperforms the classical k-tree by a factor of

k2
n

lg kA+1

k2l
= 2

kP lg p

lg kA+1 = (2lg p)
kP

lg kA+1 = p
kP

lg kA+1 . (7)

The value of p can be approximated as follows. First note that we can no longer
use the balls-into-bins problem, as the size of the lists (i.e. 2l) not necessarily
equals the size of the multicollision space (e.g., when k = 7, the space has 22l

elements). Therefore, we use (3), to approximate the number of multicollisions.
From (3), with a simple transformation we obtain that l

p = lg p
e . The approxi-

mate solution of this equation is of the form p = l
lg l
e

. Therefore, the speed up

factor of our improved k-tree algorithm can be evaluated as

(
l

lg l
e

)
kP

lg kA+1 ≈ a · nc

lg(b · n)
, (8)

where a, b, c are constants that depend on the values of kA and kP .

Applications. The improvement of the 3-tree algorithm can be used for crypt-
analysis of authenticated encryption schemes proposed to the ongoing CAE-
SAR [3]. Some of these schemes, to process the final incomplete blocks of mes-
sages, use a construction called XLS proposed by Ristenpart and Rogaway [27].
Initially, XLS was proven to be secure, however Nandi [22] points out flaws in the
security proof and shows a very simple attack that requires three queries to break
the construction. However, the CAESAR candidates that rely on XLS, do not
allow this trivial attack as the required decryption queries are not permitted by
the schemes. To cope with this limitation, Nandi proposes another attack [23],
that requires only encryption queries. He is able to reduce the design flaw of
XLS to the 3-list problem. Therefore, Nandi is able to attack schemes that claim
birthday bound query complexity because with only 2

n
3 queries (equivalent to

size of the lists in the 3-list problem), he can find a solution to the 3-list problem

(in 2
2n
3 time). However, Nandi cannot break the schemes that claim birthday

bound time complexity, as he cannot solve the 3-list problem faster than 2
n
2 .

Note, Nandi constructs the 3-list problem from only 2
n
3 queries, rather than

from 3 ·2n3 , as the elements of all three lists depend on the same 2
n
3 ciphertexts.

The CAESAR schemes based on XLS, such as Deoxys [16], Joltik [17], KI-
ASU [18], Marble [13], SHELL [32], claim only birthday bound time complexity,
thus Nandi’s findings do not break the security claims of these candidates. How-
ever, our improved 3-tree algorithm goes below the birthday bound and thus can
be used to show a slight weakness in some of these candidates.

Let us focus on the 128-bit CAESAR candidates Deoxys and KIASU. The 3-
list problem for XLS in these candidates has the parameter n = 128. According
to Tbl. 2, we can take

√
p = 4.42 and l = 62. Consequently, the complexity of

a forgery based on the XLS weakness is C · 262, where C is a constant factor.
The value of C is 1 because: 1) as mentioned above, the 3 lists can be produced
from the same 262 ciphertexts, and 2) all of the operations required by the



improved 3-tree algorithm are significantly less expensive than one encryption
of the analyzed schemes. As a result, we obtain a forgery on the COPA modes
of Deoxys and KIASU in 262 encryptions and thus the security level of these
schemes is reduced by 2 bits from the claimed 64 bits.

4 Improved Time-Memory Tradeoffs

In applications, usually the elements of the lists Li are in fact outputs of functions
fi, thus GBP is often formulated as:

Problem 2 Given non-invertible functions f1, . . . , fk : {0, 1}n′ → {0, 1}n, n′ ≥
n, find y1, . . . , yk ∈ {0, 1}n

′
such that f1(y1)⊕ f2(y2)⊕ . . .⊕ fk(yk) = 0.

In some applications, all the functions are identical, and the problem is to
find distinct inputs:

Problem 3 Given a non-invertible function f : {0, 1}n′ → {0, 1}n, n′ ≥ n, find
distinct y1, . . . , yk ∈ {0, 1}n

′
such that f(y1)⊕ f(y2)⊕ . . .⊕ f(yk) = 0.

Both of the above problems give rise to the possibility of time-memory trade-
offs, i.e., reducing the memory complexity of the k-tree algorithm at the expense
of time. We will investigate time-memory tradeoffs for the GBP as defined in
Problem 3. Recall that k-tree in its current form assumes that both time and
memory are of equal magnitude, i.e. T = M = O(k · 2

n
lg k+1 ).

Bernstein et al. [5, 6] investigate k-tree in memory restricted environments
and propose a few tradeoffs. Their main approach is to solve the k-list problem
on less than n bits. Assume M = 2m, where M < 2

n
lg k+1 . Then, a k-list problem

on n̄ = m(lg k + 1) bits (instead of n bits) can easily be solved with the k-tree
algorithm. The first tradeoff idea is to perform a precomputation (or prefiltra-
tion) such that all the entries in each list have the value of 0 in the n− n̄ most
significant bits.6 For the remaining n̄ least significant bits, they apply the k-tree
algorithm and thus find a solution for all n bits. The time complexity is the sum
of the cost for precomputation and for solving the k-tree algorithm, which is
k · (2n−n̄ · 2m + 2m) ≈ k · 2n−m lg k. The tradeoff is therefore defined as

T ·M lg k = k ·N. (9)

Their second idea is similar but does not use precomputation. They apply the k-
tree algorithm on n̄ = m(lg k+1) bits until the value of the remaining n− n̄ bits
probabilistically becomes zero. Obviously, in total there will be 2n−n̄ repetition
of the k-tree, thus the time complexity becomes T = k · 2m · 2n−n̄ = k · 2n−m lg k,
which provides the same tradeoff as the previous one, i.e.,

T ·M lg k = k ·N. (10)

6 It is pointed out in [6] that n − n̄ bits can have an arbitrary value as long as the
sum of all lists is zero. The technique is called clamping through precomputations.



The third idea also relies on reduction of n, but the technique is more advanced.
Assume, f1 = f2, f3 = f4, . . ., i.e. the functions are pairwise identical. The k-list
problem is regarded as two separate k

2 problems, the first involving the functions
f1, f3, . . ., while the second f2, f4, . . .. If the amount of available memory is 2m,
then it is possible to solve each of these k

2 -list problems on up to n̄ = m(lg k
2 +1) =

m · lg k bits. By elevating the two k
2 -lists to k-list, the remaining n− n̄ bits can

be zeroed with the use of memoryless collision search algorithm. Therefore the

time complexity is T = k
2 · 2

n−n̄
2 · 2m = k

2 · 2
n
2−m( lg k

2 −1) and their tradeoff curve
is defined as

T ·M
lg k
2 −1 =

k

2
·N 1

2 ,

which is converted to

T 2 ·M lg k−2 =
k2

4
·N, (11)

Because this method solves k
2 -list problem, it is meaningful when k > 4. We note

that when M < 2
n

lg k+2 , then (11) provides better tradeoff while for M > 2
n

lg k+2 ,
(9) is better.

The k-tree relies on producing multiple collisions. For instance, at the first
level of 4-tree, 2

n
3 colliding pairs on n

3 bits are produced. Producing these pairs is
trivial when the amount of available memory is 2

n
3 . However, once the memory

is reduced to 2m,m < n
3 , the trivial collision search does not work.

The fact that k-tree requires multiple collisions, opens doors to the following
technique based on Hellman’s tables [15] 7.

Fact 1 (Hellman’s table) Let f : {0, 1}∗ → {0, 1}n be an arbitrary-size input
and n-bit output function, N = 2n, and let M = 2m be the amount of avail-
able memory. Once the precomputation equivalent to MX evaluations of f is
performed, the cost of generating new collisions for f is N

MX per collision.

The technique works as follows. Choose M distinct values v0
i ∈ {0, 1}n, where

i = 1, 2, . . . ,M . For each of them, compute chains of length X with the target
function f , i.e. compute vji ← f(vj−1

i ) for i = 1, . . . ,M, j = 1, . . . , X, and store
only the first and last values of each chain, i.e. (v0

i , v
X
i ), in a precomputation

table Tpre. The construction of Tpre is depicted in Fig. 4. Note, even though
MX values exist in all the chains, only 2M values are stored in Tpre. Once Tpre
is constructed, to generate a collision, start with a random point and construct
a chain of length N

MX . As there are N possible values, and MX are in Tpre, one
point of the new chain will collide with one point of the chains created during
the construction of the table. The match can be detected by further extending
the new chain at most X times, as eventually it will reach one of vXi stored in
Tpre. Then, the exact colliding values can be detected by recalculating chains

7 Note, we could not exploit the more advanced Rivest’s distinguished points and
Oechslin’s rainbow tables [25] to improve the analysis.
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Fig. 4. Hellman’s table Tpre when M memory is available.

from v0
i and the starting value of the new chain. Obviously Tpre can be reused

to find not only one, but multiple collisions.
Joux and Lucks [20] use this technique to produce 3-collisions. They set

M = X = 2
n
3 to generate 2

n
3 ordinary collisions with time T = 2

2n
3 and memory

M = 2
n
3 . Then, they find another collision between 2

n
3 ordinary collisions and

2
2n
3 single values. When they generate 2

n
3 ordinary multiple collisions, Hellman’s

table has an important role to keep the memory M rather than MX.
Further, we will use Hellman’s table to produce multiple collisions for the

first level of k-tree, but only on certain l bits (where l < n).

4.1 Improved Time-Memory Tradeoffs for the 4-list Problem

We present a more efficient time-memory tradeoff for GBP. Our tradeoff curve
depends on the number of available lists, which is parameterized by k. For a
better understanding, first we explain our algorithm for k = 4.

The original 4-tree algorithm consists of two-level collision searches (the pa-
rameter l used below will be determined later).

Level 1. Construct two lists, L12 and L34, each containing 2
n−l

2 partial colli-
sions on l bits.

Level 2. Find a collision between the elements of L12 and L34 on the remaining
n− l bits.

Our new 4-tree algorithm works similarly with the exception of Level 1. At

this level, we first construct Hellman’s table, and then we use it to find 2
n−l

2

collisions. As a result, our algorithm decomposes Level 1 into two parts. Its
complexity depends on the available memory M which in turn determines the
length of the chains X. The updated 4-tree is illustrated in Fig. 5 and is specified
as follows.

Level 1a. Construct Hellman’s table containing M chains, each of length of X.
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Fig. 5. Improved time-memory tradeoff for the 4-list problem with Hellman’s table.

Level 1b. With the use of Hellman’s table, find 2 · 2n−l2 partial collisions on l

bits. Store a half (2
n−l

2 ) of them in a list L12 and the other half in L34.
Level 2. Find a collision between the elements of L12 and L34 on the remaining

n− l bits.

Construction of Hellman’s table. For the Level 1a our algorithm first con-
structs Hellman’s table which contains M chains of length X. However, unlike
in [20], we have the following technical obstacle. The function f takes an n-bit
input and produces an n-bit output and thus for such a function only full n-bit
collisions can be identified. In other words, the classical Hellman’s table cannot
be used to find partial collisions.

To solve this problem, we define a reduction function fl : {0, 1}l → {0, 1}l so
that only the l bits are meaningful in the chain. For generating chains with fl,
n− l bits of 0’s are concatenated to the l-bit input, and this value is processed
with f : {0, 1}n → {0, 1}n. Finally, the n-bit output is truncated to l bits, and is
used as the input to the next chain. That is, fl(x) = Truncl

(
f(0n−l||x)

)
, where

Truncl(·) truncates the n-bit input to the l least significant bits.
To summarize, we choose M distinct l-bit values v0

i for i = 1, 2, . . . ,M , for

each of them generate a chain of length X by computing vj+1
i = fl(v

j
i ) where

j = 1, 2, . . . , X. In total, MX values are in all the chains and only the first and
the last points of each chain are stored in Tpre. Thus Hellman’s table requires
around MX time and M memory.

Generation of l-bit collisions. According to Fact 1, once Hellman’s table
Tpre is constructed, the complexity for producing l-bit collisions is reduced sig-
nificantly. Considering that the size of the values in the chains is l bits and the

length of each chain is X, Fact 1 shows that the cost is 2l

MX per collision.
To generate an l-bit collision, we choose a random l-bit value and with the

function fl from it compute a chain of length 2l

MX +X. On average, one collision



will occur before we reach the 2l

MX value of this new chain against the MX values
stored in Tpre. The computation of additional X values in the chain ensures that
the corresponding vXi will appear as one of the ending points of Tpre. The exact
colliding pairs are detected by recomputing the chains from v0

i and the chosen
l-bit value.

From the definition of fl, the two inputs colliding on f always have the form
(0n−l‖l1, 0n−l‖l2), where 0n−l is a sequence of n − l zero bits and l1 and l2 are
some l-bit values. A collision of the two chains means that Truncl

(
f(0n−l‖l1)

)
=

Truncl
(
f(0n−l‖l2)

)
. Therefore, f(0n−l‖l1) and f(0n−l‖l2) only collide in the

least significant l bits, while on the remaining n− l bits behave randomly.

The collision generation process is iterated 2
n−l

2 times and the input and
output of each pair is stored in L12. Similarly, the process is iterated additional

2
n−l

2 times and the results are stored in L34. Therefore the complexity of this

step is around 2 · 2n−l2 · 2l

MX = 2 · N
1
2 2

l
2

MX time and 2 · 2n−l2 = 2 · N
1
2

2
l
2

memory.

Finding a solution to the 4-list problem. From the two lists L12 and L34

containing 2
n−l

2 partial collisions on l bits, we find a collision on the remaining

n − l bits. This procedure is straightforward and it requires 2
n−l

2 = N
1
2

2
l
2

time

and no additional memory.

Parameters and the tradeoff. The complexities for each step are as follows:

Level 1a. Time = MX, Memory = M

Level 1b. Time = 2 · N
1
2 2

l
2

MX
, Memory = 2 · N

1
2

2
l
2

Level 2. Time =
N

1
2

2
l
2

, Memory = negligible

To balance the memory at Level 1a and Level 1b, M,N, l should satisfy the

relation M = 2 · N
1
2

2
l
2

. From this relation, the time complexity of Level 2 becomes

M
2 , and thus is negligible compared to Level 1a when X is sufficiently large. To

balance the time complexities of Level 1a and Level 1b, we need MX = 2· N
1
2 2

l
2

MX ,
which gives the relation M3X2 = 4·N . Finally, as the time complexity T satisfies
T = MX, we obtain the following tradeoff curve

T 2 ·M = 4 ·N. (12)

For instance, when the available memory is 2
n
4 (instead of 2

n
3 as in the

original 4-tree), then the updated 4-tree finds a solution in around 2
3n
8 time.

This is to be compared to Bernstein et al. tradeoffs given in (9) and (10) which
require around 2

n
2 time. Additional points of the tradeoff curve and comparison

to previous results are given in Table 4.



During the analysis, we relied implicitly on several facts. First, we assumed
that Hellman’s table can contain an arbitrary number of points. In order to
avoid collisions between the chains, however, the values of M and X cannot
be arbitrary, but should depend on l. That is, during the construction of Hell-
man’s table, the number of chains and their length is bounded by the value
of l. Biryukov and Shamir in [7] call this a matrix stopping rule, and define
it as MX2 ≤ 2l. It is trivial to see that this inequality holds in our case as
MX2 = M 4N

M3 = 4N
M2 = 4N

(2N
1
2 /2

l
2 )2

= 2l. For instance, when M = 2
n
4 , then

l ≈ n
2 , T = 2

3n
8 , X = 2

n
8 . Therefore, obviously MX2 = 2

n
2 = 2l. We assumed

as well that the tradeoff applies only to Problem 3. However, a close inspections
of our algorithm reveals that it can be applied to the case of pairwise identical
functions, i.e., f1 = f2, f3 = f4. That is, the area of application of the trade-
off is wider, and is similar to the area of the tradeoff given by Bernstein et al.
in (11). To deal with the extended case, we have to create two Hellman’s tables
at the initial stage, one for each pair of functions. Thus the time and memory
complexities will increase by a factor of two at Level 1a, and will stay the same
at Levels 1b and 2.

4.2 Improved Time-Memory Tradeoff for the k-list Problem

In this section, we generalize the time-memory tradeoff for the k-tree algorithm,
where k = 2d. Overall, we replace the collision generation at Level 1 of the k-tree
algorithm with a generation based on Hellman’s table. Hereafter, we call the bits
whose sum is fixed to zero clamped bits.

The ordinary k-tree algorithm initially starts from 2d lists containingM = 2m

elements. At Level 1, 2d−1 lists containing M elements are generated with m
bits clamped. At Level i for i = 2, 3, . . . , d− 1, 2d−i lists containing M elements
are generated with im bits clamped. At the last Level d there are two lists
containing M elements with (d − 1)m bits clamped. As no longer M collisions
are required, but rather only one, the sum on up to (d + 1)m bits can be 0, by
setting (d + 1)m = n, and thus the k-tree algorithm will find the solution to
the k-list problem. However, if the memory size is restricted, i.e. m� n

d+1 , the
k-tree algorithm can enforce the sum of only (d+ 1)m bits to zero.

Our algorithm replaces Level 1 with Hellman’s table collision generation and
performs the same procedure as the k-tree algorithm from Level 2 to Level d.
To find the required solution after Level d, however, at Level 1 we clamp more
bits. Let the number of the clamped bits at Level 1 be l. After the first level
we will have 2d−1 lists, each with M = 2m elements. Similarly, after Level i for
i = 2, 3, . . . , d−1, we will have 2d−i lists containing M elements with l+(i−1)m
bits clamped. After the final Level d, we will have one element with l+ dm zero
bits. Therefore, we set l + dm = n, i.e. l = n− dm, to get at least one solution
on all n bits. In Table 3, we compare the number of clamped bits of the k-tree
and our algorithm.

From the condition l = n−dm and the parameters k and m, we can determine
the reduction function fl for Hellman’s table. We create M chains of length X,



Table 3. A comparison of the number of clamping bits between the k-tree and our
algorithm.

#lists #clamped bits

k-tree algorithm Our algorithm

Level 1 2d−1 m l

Level i, (i = 2, . . . , d− 1) 2d−i im l + (i− 1)m

Level d 1 (d + 1)m l + dm

and only store the first and last values of the chains in Hellman’s table Tpre.

Once Tpre is constructed, we can find an l-bit partial collision with a cost of 2l

MX

per a collision, which is equivalent to N
Md+1X

. At Level 1, we produce in total

(2d−1 ·M) l-bit collisions, and store them in 2d−1 lists each with M elements.
The total cost for producing the partial collisions and thus the complexity of
Level 1 is 2d−1 · N

MdX
.

Complexity evaluation and the tradeoff curve. The complexity to gen-
erate Tpre is MX time and M memory. As mentioned above, Level 1 requires
2d−1 · N

MdX
time and 2d−1 ·M memory. The time and memory complexities of the

remaining Levels 2 to d are all M , thus negligibly small compared to the genera-
tion of Tpre. We balance the time complexity of Hellman’s table generation and
of Level 1, which gives the relation T = MX = 2d−1 · N

MdX
, and can further be

reduced to (MX)2 = 2d−1 · N
Md−1 and approximately results in a tradeoff curve

T 2 ·M lg k−1 = k ·N (13)

Note, the tradeoff given in Section 4.1 can be obtained from the above tradeoff
by setting k = 4. In Table 4, we compare the previous tradeoffs given in (9),
(11) to our new tradeoff for k = 4, 8 and for two particular memory amounts.
Obviously, the time complexity of our algorithm is significantly smaller for the
same amount of available memory.

The tradeoff curves of these three methods are also depicted in Fig. 6. The
vertical axis and horizontal axis represent the logarithm of the time complexity t
and memory complexity m, respectively. Curves for k = 8 and k = 16 are drawn
in Fig. 6 with red lines and black lines, respectively. For k = 8 with m ≥ n

4 , the
ordinary k-tree algorithm with t = n

4 can be performed. Thus, the time-memory
tradeoffs are meaningful only when the memory amount is limited to m < n

4 ,
and Fig. 6 only describes the curves in this range. Similarly, for k = 16 only
m < n

5 is shown in the figure.
The previous curve given in (9) achieves the same time complexity as the

k-tree algorithm when sufficient memory is available, while the time complexity
is about 2n when the available amount of memory is very limited. The previous
curve given in (11) cannot reach the time complexity of the k-tree algorithm even
if sufficient memory is available, while the time complexity is at most 2

n
2 for very



Table 4. Comparison of tradeoffs. For simplicity, the constant multiplication for N is
ignored.

Method M T Other parameters

k = 4

Bernstein et al. Eq.(9) 2
n
4 2

n
2 −

(T ·M2 = N) 2
n
6 2

2n
3 −

Our 2
n
4 2

3n
8 X = 2

n
8 , l = n

2

(T 2 ·M = N) 2
n
6 2

5n
12 X = 2

n
4 , l = 2n

3

k = 8

Bernstein et al. Eq.(9) 2
n
5 2

2n
5 −

(T ·M3 = N) 2
n
6 2

n
2 −

Bernstein et al. Eq.(11) 2
n
5 2

2n
5 −

(T 2 ·M = N) 2
n
6 2

5n
12 −

Our 2
n
5 2

3n
10 X = 2

n
10 , l = 2n

5

(T 2 ·M2 = N) 2
n
6 2

n
3 X = 2

n
6 , l = n

2

limited amount of memory. It is easy to see that our tradeoff takes advantages
of those two curves, i.e. it requires the same complexity as the k-tree algorithm
when sufficient memory is available and requires only 2

n
2 time complexity when

the available amount of memory is limited. Therefore, our tradeoff always allows
a lower time complexity than both of the previous tradeoffs. It improves the
time complexity and simplifies the situation, as it is the best for any value of
m (unlike the previous two tradeoffs that outperformed each other for different
values of m).

5 Conclusion

We have shown improvements to Wagner’s k-tree algorithm for the case when
k is not a power of two, and when the available memory is restricted. For the
former case, our findings indicate that the passive lists can be used to reduce

the complexity of the k-tree (in the case of 3-tree, by a factor of
√

n/2
lnn/2 ).

Rather than discarding the passive lists, we have produced multicollisions sets
from them, and later, we have used the sets to decrease the size and thus the
complexity of the k-tree algorithm. In the case of a memory restricted k-list
problem, we have provided a new time-memory tradeoff based on the idea of
Hellman’s table. The precomputed table has allowed us to efficiently produce a
large number of collisions at the very first level of the k-tree algorithm, and thus
to reduce the memory requirement of the whole algorithm. As a result, we have
achieved an improved tradeoff that follows the curve T 2M lg k−1 = k ·N .

We point out that we have run series of experiments to confirm parts of
the analysis. In particular, we have verified that the predicted number of mul-
ticollisions and we have completely implemented the tradeoff for k = 4, n = 60
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and various sizes of available memory, e.g, m = 8, 10, 14. The outcome of the
experiments has confirmed the tradeoff.

The 3-list problem appears frequently in the literature and as our improved 3-
tree algorithm is the first that solves this problem with below the birthday bound
complexity, we expect future applications of the algorithm. However, although
our improved 3-tree asymptotically outperforms Wagner’s 3-tree algorithm, the
speed up factor is lower for smaller values of n. Thus we urge careful analysis
when applying the improved 3-tree.

Bernstein [5] argues that the large memory requirement of Wagner’s k-tree
algorithm makes it impractical. He assumes that the memory access is far more
expansive, thus the actual cost of the algorithm is miscalculated. He introduces
tradeoffs (discussed in Section 4) to reduce the memory requirement, and to
obtain algorithms of lower complexity (measured by the new metric). We note
that as our tradeoffs are more memory effective, by the new metric they lead to
better algorithms for the k-tree problem with pairwise identical functions.

There are several future research directions. One is to consider restrictions
on the amount of available data. The functions fi in the k-list problem are often
assumed to be public, i.e. the attacker can evaluate them offline. When fi are not
public, the data needs to be collected by making online queries. Thus developing
new time-memory-data tradeoffs for this scenario is an interesting open problem.
Another direction is to consider the weight of each function in the total cost of
the algorithm, which leads to the case of an unbalanced GBP. This is based on
the fact that in specific applications, it may occur that some of the functions
are more costly to compute than other functions. The algorithm that solves an
unbalanced GBP will be different than the one for the balanced GBP.
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