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Abstract. In a Password-Protected Secret Sharing (PPSS) scheme with
parameters (¢,m) (formalized by Bagherzandi et al. [2]), a user Alice
stores secret information among n servers so that she can later recover
the information solely on the basis of her password. The security require-
ment is similar to a (¢, n)-threshold secret sharing, i.e., Alice can recover
her secret as long as she can communicate with ¢+1 honest servers but an
attacker gaining access to t servers cannot learn any information about
the secret. In particular, the system is secure against offline password
attacks by an attacker controlling up to t servers. On the other hand,
accounting for inevitable on-line attacks one allows the attacker an ad-
vantage proportional to the fraction of dictionary passwords tested in
on-line interactions with the user and servers.

We present the first round-optimal PPSS scheme, requiring just one mes-
sage from user to server and from server to user, and prove its security
in the challenging password-only setting where users do not have ac-
cess to an authenticated public key. The scheme uses an Oblivious PRF
whose security we define using a UC-style ideal functionality for which
we show concrete, truly practical realizations in the random oracle model
as well as standard-model instantiations. As an important application we
use this scheme to build the first single-round password-only Threshold-
PAKE protocol in the CRS and ROM models for arbitrary (¢,n) param-
eters with no PKI requirements for any party (clients or servers) and no
inter-server communication. Our T-PAKE protocols are built by com-
bining suitable key exchange protocols on top of our PPSS schemes. We
prove T-PAKE security via a generic composition theorem showing the
security of any such composed protocol.

1 Introduction

Remarkably, passwords have become a fundamental pillar of electronic security.
That’s quite a high task for these low-entropy easily-memorable easily-guessed
short character strings. In spite of repeated evidence of their vulnerability to
misuse and attack, passwords are still in widespread use and will probably remain
as such for a long while. The portability of passwords makes them ubiquitous



keys to access remote services, open computing devices, decrypt encrypted files,
protect financial and medical information, etc. Replacing passwords with long
keys requires storing these keys in devices that are not always available to the
user and are themselves at risk of falling in adversarial hands, hence endangering
these keys and the data they protect.

An increasingly common solution to the problem of data security and avail-
ability is to store the data itself, or at least the keys protecting its security, at a
remote server, which in turn is accessed using a password. This requires full trust
in this single server and the one password. In particular, compromising such a
server (or just its password file) is sufficient to crack most passwords stored at
it through an off-line dictionary attack. Indeed, loss of millions of passwords to
such attacks are common news nowadays [31]. Unfortunately, off-line attacks are
unavoidable in single-server scenarios. A natural approach to solving this prob-
lem is to distribute the above trust over a set of servers, for example by sharing
information among these servers using a secret sharing scheme. However, how
does the user access these servers? Using the same password in each of these
servers makes the off-line password recovery attack even worse (as it can be per-
formed against any of these servers) while memorizing a different password for
each server is impractical.

PPSS. The above problem and a framework for solution is captured by the
notion of Password-Protected Secret Sharing (PPSS), originated by the work of
Ford and Kaliski [16] and Jablon [18] and formalized by Bagherzandi et al. [2].
In such a scheme, parametrized by (¢,n), user Alice has some secret information
sc that she wants to store and protect, and be able to later access on the basis
of a single password pw. (Secret sc can represent any form of information, but it
is best to think of it as a cryptographic key which protects some cryptographic
capability.) The scheme has an initialization phase where Alice communicates
with each one of a set of n servers Si,...,S, after which each server S; stores
some information w; associated with user Alice. When Alice needs to retrieve sc,
she performs a reconstruction protocol by interacting with at least ¢t 4+ 1 servers
where the only input from Alice is her password pw.

The main requirements from this protocol are, informally: (i) an attacker
breaking into ¢ servers cannot gain any information on sc other than by correctly
guessing Alice’s password and running an on-line attack with it (more on this
below). It follows, in particular, that off-line attacks on the password are not
possible as long as the attacker has not compromised more than t servers. In
this case, the only avenue of attack against the secrecy of sc is for the attacker
to select one value pw’ from a given dictionary D of passwords (from which the
user has selected a password at random) and check its validity by interacting
with the user and servers using pw’ as the password. If the overall number of
interactions between the attacker and the user, and between the attacker and the
servers, is ¢ then we allow the attacker to break the semantic security of sc with
advantage ¢/|D|. Moreover, we will require that “testing” a guessed password
by impersonating the user to the servers will require interacting with ¢ + 1
different servers. (ii) Soundness: Similarly, a compromise of up to ¢ servers cannot



allow an attacker to make the user reconstruct a wrong secret sc’ # sc, except
with probability proportional to the number of on-line interactions between the
attacker and the user. This is a necessary exception as the attacker can isolate
the user and simulate a run with the servers with a password pw’ and secret
sc’ chosen by the adversary; what’s required is that only if pw’ happens to be
the user’s password will the attack succeed. Additionally, a desirable property is
(iii) Robustness: Alice can correctly reconstruct sc as long as (a) no more than
t servers are corrupted and (b) Alice communicates without disruptions with at
least t4 1 honest servers. Note that robustness can only be achieved if 2t+1 < n
while the other properties do not impose such intrinsic limitation.

T-PAKE. While PPSS schemes have many uses such as for retrieving keys,
credentials, data, and so on, the main PPSS application is for bootstrapping a
Threshold Password-Authenticated Key Exchange (T-PAKE) [27]. In a (t,n) T-
PAKE protocol, a user with a single password is to establish authenticated keys
with any given subset of the n servers, such that security of the keys established
with uncorrupted servers is guaranteed as long as there are no more than ¢
corrupted servers. PPSS schemes make it possible to build T-PAKE protocols by
combining the PPSS scheme with a regular key exchange protocol in a modular
and generic way. This allows one to focus on the PPSS design which by virtue
of being a much simpler primitive, e.g., avoiding the intricacies of the security
of (password) authenticated key exchange protocols, is likely to result in simpler
and stronger solutions, as is indeed demonstrated by our results below.

Prior/Concurrent Work and Our Contributions

For the general case of (¢,n) parameters, Bagherzandi et al. [2] showed a PPSS
scheme in the random oracle model (ROM) where the reconstruction protocol
involves three messages between the user and a subset of t+ 1 servers (effectively
4 messages in the typical case that the user initiates the interaction). However, if
any of these servers deviates from the correct execution of the protocol, the pro-
tocol needs to be re-run with a new subset of servers, which potentially increases
the number of protocol rounds to O(n). Another significant shortcoming of the
PPSS solution from [2] is that it is secure only in the PKI model, namely, where
the user can authenticate the public keys of the servers. Indeed, if the attacker
can induce the user to run the protocol on incorrect public keys, the protocol of
[2] becomes completely insecure. Thus, [2] leaves at least two open questions: Do
PPSS protocols with optimal single-round communication exist (i.e., requiring a
single message from user to server and single message from server to user), and
can such protocols work in the password-only model, namely when the user does
not have a guaranteed authentic public key.

We answer both questions in the affirmative by exhibiting a PPSS protocol
for a general (t,n) setting with optimal single-round communication (in ROM)
which works in the password-only model. Concurrently to our work, Camenisch
et al. [7] have also presented a general (¢,n) setting PPSS which works in the
password-only model (and ROM). Their protocol sends 10 messages between



the user and each server, its total communication complexity is O(t?), and the
computational cost is more than 7 times the cost of our solution. Moreover, its
robustness is fragile in the same way as that of [2], i.e. the user runs the recon-
struction protocol with a chosen subset of t+ 1 players, and the protocol must be
re-started if any server in this chosen group deviates. By contrast, the protocol
we present has 2 messages and O(nlogn) (worst-case) communication complex-
ity, which reduces to O(n) if the user caches O(n) data between reconstruction
protocol instances. Our protocol also has stronger robustness guarantee, namely,
Alice recovers her shared secret sc in the single protocol instance as long as it has
unobstructed communication with at least ¢ + 1 honest servers and if 2t +1 < n.
While [7] formalize a UC functionality for PPSS (which they call “TPASS”,
for Threshold Password-Authenticated Secret Sharing) and prove their proto-
col to realize this functionality, we model the security of a PPSS scheme in the
password-only setting with a game-based notion. We show that our game-based
security notion is strong enough to imply the security of a natural T-PAKE
construction built on top of a PPSS scheme. However, a PPSS satisfying a UC
formalization might simplify the use of PPSS in the design of other cryptographic
schemes, which leaves designing a UC secure PPSS with low message complexity
and good robustness as an interesting open question.

Our PPSS construction is based on a novel version of so-called Oblivious
Pseudorandom Function (OPRF) [17] and our contributions touch on three dis-
tinct elements, OPRF’s, PPSS, and T-PAKE’s, which we discuss next.

OPRF. The basic building block of our PPSS construction is a Verifiable Obliv-
ious PRF (V-OPRF). Oblivious PRF (OPRF) was defined [17,20] as a protocol
between two parties, a server and a user, where the first holds the key k for a
PRF function f while the latter holds an argument = on which fx(-) should be
evaluated. At the end of the protocol the user learns fi(x) and is convinced that
such value is properly evaluated while the server learns nothing. Formalizing the
OPRF primitive in a way that can serve our application is not trivial. Indeed, the
intuitive definition of OPRF [17,20] as the secure computation of a two-party
functionality which on input pair (k, z) returns an output pair (L, fx(x)), is lim-
iting for at least three reasons: (1) It does not imply security when several OPRF
instances are executed concurrently, as is the case in our PPSS construction; (2)
It does not apply to our setting where the existence of authenticated channels
cannot be assumed; and (3) It is not clear how to instantiate such functionality
in the concurrent setting without on-line extractable zero-knowledge proofs of
knowledge, which would add a significant overhead to any OPRF instantiation.

We overcome these issues via a novel formalization of the verifiable version of
the OPRF primitive, V-OPRF, as an ideal functionality in the Universal Com-
posability (UC) framework [10] for which we show several very efficient instan-
tiations. Expressing V-OPRF in the UC framework is a delicate task, especially
in the setting of interest to us where there are no authenticated channels. Our
formalism enforces that the server who generates the PRF key k also produces
a function descriptor m, which fixes a deterministic function fr. (For honest
servers, 7 is a commitment to k and the fixed function f; is equal to the PRF



fx-) Then, in any (non-rejecting) execution of the V-OPRF protocol executed
given the function descriptor m, the V-OPRF functionality verifies that the user’s
output is computed as fr(x). In other words, the V-OPRF functionality ensures
consistency between V-OPRF instances executed under the same function de-
scriptor 7 as well as verifiability that the output value is computed using the
committed function f.

Our UC V-OPRF formalization bears interesting similarities to UC blind
signatures [25,15,1]. In a nutshell, instead of on-line extraction of argument x
from the (potentially malicious) client in every V-OPRF instance, a V-OPRF
functionality issues a ticket for every instance executed under a given descriptor
7. The user (or adversary) can then use these tickets to evaluate function fi
on inputs of their choice, but with the constraint that m tickets cannot be used
to compute f, values on more than m distinct inputs. Given this similarity, we
observe that an efficient realization of V-OPRF can be achieved (in ROM) by
hashing a deterministic blind signature-message pair.

We obtain three highly efficient variants of this design strategy, which provide
three single-round V-OPRF instantiations in ROM, and we prove them UC-
secure under “one-more” type of assumptions [3,21]. Specifically, we show such
V-OPRF instantiations in ROM under a one-more Gap DH assumption on any
group of prime order, a similar assumption on the group with a bilinear map,
and a one-more RSA assumption. We also provide an efficient standard model
V-OPRF construction for the Naor-Reingold PRF [30], based on the honest-
but-curious OPRF protocol given by [17]. This protocol has four messages and
is secure under Strong-RSA and the Decisional Composite Residuosity (DCR)
assumptions. A single round standard-model (CRS) protocol is possible too but
at a significant higher computational complexity.

We note that the UC formalization of the Verifiable Oblivious PRF function-
ality that is at the core of our security treatment is likely to have applications
beyond this work. Indeed, OPRF’s have been shown to be useful in a variety of
scenarios, including Searchable Symmetric Encryption (SSE) schemes, e.g. [13,
11], and secure two-party computation of Set Intersection [17,20, 21].

PPSS. Our PPSS protocol is password-only in the Common Reference String
(CRS) model, i.e. the user needs no other inputs than her password and a CRS
string defining a non-malleable commitment scheme instance which can be part
of the user’s V-OPRF software. Our PPSS protocol is single-round in the hybrid
model where parties can access the V-OPRF functionality. Given the V-OPRF
instantiations discussed above, this implies three different instantiations of a
single-round (i.e. two-message) PPSS schemes in ROM based on different one-
more type of assumptions, and a four-message PPSS scheme in the CRS model.

Our PPSS construction follows the strategy of the early protocols of Ford
and Kaliski [16] and Jablon [18] who treated the case of ¢ = n: Secret-share the
secret sc into shares (s1, ..., sy,), let each server S; pick key k; for a PRF f, and
let ¢ = (eq,...,e,) where e; is an encryption of s; under p; = fi,(pw). Each
server S; stores (k;,c¢), and in the reconstruction protocol the user re-computes
each p; via an instance of a V-OPRF protocol with each server S; on its input



pw and S;’s input k;. If the user also gets string ¢ from the servers, the user
can decrypt shares s; using the p;’s and interpolate these shares to reconstruct
sc. The first thing to note is that ciphertexts e; must not be committing to
the encryption key p;. Otherwise, an adversary could test a password guess pw*
in an interaction with a single V-OPRF instance (instead of requiring ¢t + 1
interactions with ¢ 4+ 1 different servers as our security notion imposes on the
attacker), by computing p! = fi,(pw*) and testing if decryption of e; under p}
returns a plausible share value. We prevent such tests by sharing sc over a binary
extension field F = GF(2¢), choosing a PRF f which maps onto ¢-bit strings,
and setting e; to s; @ fi,(pw). Secondly, the above simple protocol can allow
a malicious server S; to find the user’s password pw if S; is not forced to use
the same function f,, in each V-OPRF instance. Consider the OPRF protocol
of [17] for the Naor-Reingold PRF fi,(z) = ¢* where v = k¢ - ijzl ki j
for k; = (kio,...,kir) [30]. If in some PPSS instance, a misbehaving S; uses
key k! which differs from k; on one index j, i.e. in one component k; ;, S; can
conclude that the j-th bit of pw is 0 if the user recovers its secret correctly
from such PPSS instance. Note that the adversary can learn whether user’s
secret is reconstructed correctly by observing any higher-level protocol which
uses this secret, e.g. a T-PAKE protocol discussed below. We counter this attack
by using the verifiability property of our V-OPRF functionality, which ensures
that .S; computes the function committed in 7;, and by extending the user-related
information stored by each server to w = (7, ¢, C') where 7 is a vector of function
descriptors my,...,m, of each server, and C' is a non-malleable commitment
to the values 7, ¢ and user’s password pw. This commitment is the basis for
ensuring that the on-line attacker playing the role of the servers can test at
most one password guess per one reconstruction protocol instance. Note that
the described solution requires O(n) storage and bandwidth per server, but it is
straightforward to reduce these to O(logn) using a Merkle tree commitment.

With an instantiation of V-OPRF in ROM we achieve a remarkably efficient
reconstruction protocol without relying on PKI or secure channels. The user
runs an optimal 2-message protocol with ¢+ 1 (or more) servers, and in the case
of our V-OPRF construction based on the one-more Gap DH assumption, the
protocol involves just 2 exponentiations by the server and a total of 2¢ + 3 multi-
exponentiations for the user, employing the optimized ROM-based NIZK for
discrete logarithm equality of [12], plus a few inexpensive operations. The (one-
time) initialization stage is also very efficient, involving 2n + 1 exponentiations
for the user and 3 exponentiations per each server. Note that there is no inter-
server communication in the protocol and that the user can communicate with
each server independently, so it can be done in parallel and/or in any order
without the servers being aware of each other. Moreover, the user can initiate
the V-OPRF protocol with more than ¢+ 1 servers, and it will reconstruct secret
sc as long as t + 1 contacted servers reply with correct triple w = (7, ¢, C') and
complete the V-OPRF instances on function descriptors m; in 7r.

Our PPSS protocol in the password-only setting enjoys the following security
hedging property: While avoiding the need to rely on the authenticity of servers’



public keys held by the user is an important security property, when such public
keys are available they can add significant security, because they render on-line
attacks against a user ineffective and strengthen the security and the soundness
properties of the PPSS scheme. Thus, to get the benefits of both worlds, both
with and without the correctly functioning PKI, running a password-only PPSS
protocol over PKl-authenticated links achieves the following: If the user has
the correct servers’ public keys, she gets the additional security benefits stated
above, otherwise, if some or all of the public keys are either incorrect or missing,
she still enjoys the security of the password-only setting.

T-PAKE. When composed with regular key exchange protocols, our PPSS
scheme leads to the most efficient T-PAKE protocols to date even when com-
pared to protocols that assume that the user carries a public key that it can use
to authenticate the servers. Figure 1 summarizes the state of the art in T-PAKE
protocols and how our protocols compare to this prior work. Interestingly, while
there is a large body of work on single-server PAKE protocols (e.g. [4,23, 24,
5]) that has produced remarkable schemes, including one-round password-only
protocols in the standard model, threshold PAKE has seen less progress, with
most protocols showing disadvantages over a single-server PAKE. In particular,
before our work, no single-round (¢,n)-PAKE protocol was known, not even in
the ROM and assuming PKI. Most protocols assume a public key carried by
the client (making them non password-only) and all assume secure channels (or
PKI) between servers. Even in the n = ¢ = 2 case no one-round protocol was
known, and all previously known protocols for this case require inter-server se-
cure channels. Our work improves on these parameters achieving the best known
properties in all the aspects reflected in the table.

In particular, we achieve single-round password-only protocol in the CRS and
ROM models for arbitrary (t,n) parameters with no PKI requirements for any
party and no inter-server communication (secure communication is only assumed
when a user first registers with the servers). In addition, the protocol is com-
putationally very efficient (and more so than any of the previous protocols,
even for the (2,2) case). We also exhibit a password-only standard-model imple-
mentation of our scheme requiring two rounds of communication (4 messages in
total) between client and servers. Our T-PAKE protocols are built by combining
(existing) suitable key exchange protocols on top of our V-OPRF-based PPSS
scheme. We prove T-PAKE security via a generic composition theorem showing
the security of any such composed protocol.

Organization. In Section 2 we present the formalization of the V-OPRF func-
tionality in the UC setting. In Section 3 we show an efficient realization of this
functionality in the random oracle model (ROM) (further ROM and standard
(CRS) model constructions are presented in the full version [19]). In Section 4
we define and formalize PPSS in the password-only model. In Section 5 we
present an efficient PPSS realization which relies on the V-OPRF functionality.
Finally, in Section 6 we consider T-PAKE schemes obtained by composing a
PPSS scheme with a regular key-exchange protocol, and present a full specifi-
cation of our most efficient instantiation of the PPSS and T-PAKE protocols.



scheme (t+1,n)|ROM/std |client [inter-server|msgs|total comm.| comp. C | S

BJKS [6] | (2,2) | ROM |PKI| PKI o) o)
KMTG [22]| (2,2) |Std/ROM|CRS]| sec.chan. O(1) O(1)
CLN [9] (2,2) |Std/ROM|CRS| PKI 0(1) 0(1)

DRG [14] | t<n/3 Std CRS| sec.chan.
MSJ [27] any ROM | PKI PKI
BJISL 2] any | ROM |PKI| PKI
CLLN [7] any ROM |CRS PKI
Our PPSS1| any ROM |CRS none
Our PPSS2| any Std CRS none

) o) | 0(n?)
o(n?) o) [ O(n)
O(t) 8t+17 | 16
O(t?)  [14t+24 | Tt+28
O(tlogn) 2t4+3 | 2
O(ttlogn) | O(tf) [ O)

(Y2
—
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Fig. 1. Comparison between PPSS/T-PAKE schemes. “PPSS1” and “PPSS2” refer to
our PPSS scheme of Section 5 with V-OPRF instantiated, respectively, with protocol
2HashDH-NIZK of Section 3 (this instantiation is shown in Figure 5) and with proto-
col NR-V-OPRF (deferred to the full version [19]). The “total comm.” column counts
the number of transmitted group elements and other objects of length polynomial in
the security parameter, like public-key signatures. Variable ¢ denotes the length of
the password string (or its hash). The last column counts (multi)exponentiations in a
prime-order group (except for our PPSS2 where exponentiations are modulo a Paillier
modulus) performed by the client and each server in the reconstruction protocol. All
costs in the last four rows refer to an optimistic scenario with no adversarial interfer-
ence. With worst-case adversarial interference, for BJSL and CLLN all costs grow by
the factor of n—t, while for our schemes costs grow by the factor of |n/(t+1)].

This version of the paper omits many details, constructions and proofs; please
refer to the full version [19] for a complete presentation.

2 Functionality Fvoprr

The Fyoprr functionality can be thought of as a collection of tables that are
indexed by “labels” denoted by the function parameters 7. Users may obtain val-
ues from these tables on inputs x of their choice without leaking any information
about these inputs (and corresponding outputs) to the adversary. Fyoprr gen-
erates these tables dynamically and fills them with random values on demand.
Each table is associated by the functionality with a specific sender. In addition
to the tables registered to honest senders, the adversary is allowed to register
with Fyoprr its own tables. Interacting with an adversary-registered table does
not jeopardize the privacy of the user’s input but naturally Fyoprp will provide
no pseudorandomness guarantee for the output derived from such tables. How-
ever, Fyoprr Will ensure that all adversarial tables are completely determined
according to a deterministic function that is committed by the adversary at the
time of the table’s initialization in the form of a circuit M.

A major consideration in our definition of Fyoprr is to avoid the need for
input extractability (from dishonest users) in the real-world realizations of the
functionality. Such need is common in UC-defined functionalities but in our



Functionality Fvoprr

Key generation:
On message (KEYGEN, sid) from S, forward (KEYGEN, sid, S) to adversary A*.
On message (PARAMETER, sid, S, 7, M) from A", ignore this call if param(S) is
already defined. Otherwise, set param(S) = (m) and initialize tickets(7) = 0, and
hist(7) to the empty string. If S is honest send (PARAMETER, sid, ) to party S,
else parse M as a circuit with ¢-bit output and insert (w, M) in CorParams.

V-OPRF evaluation:
On message (EVAL, sid, S, z) from party U for sender S, record (U, z) and forward
(EvAL, sid, U, S) to A*.
On message (SENDERCOMPLETE, sid,S) from A" for some honest S output
(SENDERCOMPLETE, sid) to party S and set tickets(w) = tickets(w) + 1 for 7 s.t.
(m) = param(S).
On message (USERCOMPLETE, sid, U, 7, flag) from A", recover (U, z) and:

— If flag = T and (7) = param(S) for an honest S then: If tickets(7) < 0 ignore
the USERCOMPLETE request of A*. Otherwise: (1) if hist() includes a pair
(z,p'), set p = p’, else sample p at random from {0,1}* and enter (x, p) into
hist(); (2) Set tickets(7) = tickets(7) — 1 and output (EVAL, 7, p) to party U.

— Else, if flag = L then return (EvaL, 7, L) to U.

— Else, if flag = T and 7 is such that (7, M) € CorParams for some circuit M,
compute p = M (z), enter (z, p) in hist(w), output (EVAL, 7, p) to party U.

Fig. 2. Verifiable Oblivious PRF functionality Fvoprr.

case it would disqualify the more efficient instantiations of Fyoprr presented
here. Thus, instead of resorting to input extraction requirements, we define a
“ticket mechanism” that increases a ticket upon function evaluation at a sender
and decreases it when this value is computed at the user (or the adversary).
The functionality guarantees that tickets remain non-negative, namely, for any
function parameter 7 registered with a honest sender S, the number of inputs on
which users compute the function 7 is no more than the number of evaluations
of the function at S.

Another important aspect of our Fyoprr formalism is the way we handle
the 1-1 relationship between a sender S and its function parameter m, where S
is used to identify a sender and 7 describes this sender’s committed function.
The unique sender-function binding that is known to the functionality cannot
be enforced in a real-world setting where users cannot validate such a binding
as is the case when no authenticated channels (or other forms of authenticated
information) are available to the user. Since these settings are common in our
applications, we define Fyoprr so that the user can provide a name of a sender
whose function it intends to compute but the result returned to the user applies a
function 7 determined by the attacker, and is possibly different than the function
associated to the requested S.



Parameters:

Generator g of cyclic group of order m, hash functions H1(-), H2(-), H3(:).
Key Generation:

On (KEYGEN, sid), pick k €g Zm, set y = g*, return (PARAMETER, sid, ).
V-OPRF Evaluation:

On message (EVAL, sid, S, x), pick r €g Z, and send a = H1(z)" to S.

On message a from network entity U, check if a € (g), compute b = ¢* and

¢ = NIZK]f;é3 [9,9,a,b], and send (y,b,¢) to U.

On message (y, b, () from party S, verify the NIZK ¢ and b € (g). If the tests

pass return (EVAL, y, Hg(y,:c,bl/r)), else return (EvaL,y, 1).

Fig. 3. Protocol 2HashDH-NIZK.

In spite of the above, note that if Fyoprr is used in a context where the user
knows a-priori a correspondence between S and 7, the user can reject responses
that are not consistent with it. We make essential use of this capability in our
applications. Finally, note that Fyvoprr guarantees that value p obtained by the
user is in the table 7 even though such table may not have been the user’s original
target. This provides Fyoprr with a verifiability property which is verifier-
dependent and may not be transferable to others; in particular, it is a weaker
guarantee than the verifiability propery of verifable random functions [29].

3 Efficient Realization of Fvoprr

We present a class of constructions for realizing Fyopgrr in the random ora-
cle model. Our constructions share the following general structure: the receiver
hashes and blinds her input and requests the sender’s secret-key application on
this blinded value. The receiver verifies the sender’s response and then obtains
the V-OPRF output by applying a second hash function. Due to the double hash-
ing (which is essential in the security proof) we term the constructions with the
“2Hash” prefix. For lack of space we present here only a single instance of this de-
sign methodology, protocol 2HashDH-NIZK in Figure 3, while our further ROM
constructions, based on RSA or a group with a bilinear map, are presented in the
full version [19]. Protocol 2HashDH-NIZK uses a non-interactive zero-knowledge
proof NIZK,{;S3 lg,y,a,b] of discrete logarithm equality DL(g,y) = DL(a,b). This
NIZK has to be straight-line simulatable and simulation sound, and it can be
implemented with one multi-exponentiation for both the prover and the verifier
using hash function H3 modeled as a random oracle [12].

We will argue the security of the construction employing the following as-
sumption: the (N, Q) One-more Gap DH assumption, states that for any PPT
A it holds that the following probability is negligible:

.k e e
Prob[ A" PPHC9 (g gk g1 ogn) = {(g5.,95) [ s=1,...,Q + 1}]



where @ is the number of queries that A poses to the (-)* oracle. The probability
is taken over all choices of g*, g1,..., gn which are assumed to be random ele-
ments of (g). We denote by €omdh,¢(V, @) the maximum advantage of any PPT
adversary against the assumption.

Theorem 1. The 2HashDH-NIZK protocol over group G of order m UC-realizes
Fvoprr per Fig. 2 in ROM assuming (i) the existence of PRF functions, (ii) the
(N, Q) One-More Gap DH assumption on G where Q is the number of V-OPRF
executions and N = Q + g1 where q1 is the number of Hi(-) queries.

More precisely, for any adversary against 2HashDH-NIZK there is an ideal-
world adversary (simulator) that produces a view that no environment can distin-
guish with advantage better than qs - €omdh.c (N, Q) +q3/m*+2-qu /m+ N?/m+
eprr(q2) where gg is the number of senders, qu the number of users, qa2,qs are
the number of queries to oracles Ha, H3, and epre(q2) is the security of the PRF
function against adversaries executing in comparable time and posing q2 queries.

Proof. See full version [19].

Remark. We note that in the construction of Figure 3, the outgoing message
that is constructed given an (EVAL, sid, S, 2) command is independent of S. It is
easy to see that security is preserved even if the user employs the same outgoing
message for any sequence of consecutive (EVAL, sid, S1,x),. .., (EVAL, sid, Sy, x)
commands for any n > 1. We make essential use of this feature in the optimized
protocol of Figure 5 where the user uses the same blinded input with all servers.

V-OPRF Constructions in the Standard Model. A 4-message realization
of V-OPRF in the standard model based on the Strong RSA and DCR assump-
tions is presented in the full version [19].

4 Password-Protected Secret Sharing: Definitions

Our definition of PPSS adapts the PPSS notion of [2] to the CRS model, but
also re-defines PPSS in terms of a key derivation mechanism rather than an
encryption-style notion used in [2]. In other words, rather than used directly to
semantically protect any message, a PPSS will generate and protect a random
key. This change allows for better modularity, because the resulting key can
be used not only for message encryption (and authentication), but also e.g. for
an Authenticated Key Exchange. A Password-Protected Secret Sharing (PPSS)
scheme in the CRS model is a protocol involving n + 1 parties, a user U, and n
servers Sq,...,S,. A PPSS scheme is a tuple (ParGen, SKeyGen, Init, Rec), where
ParGen and SKeyGen are randomized algorithms and Init and Rec are multi-paty
protocols with the following syntax:

1) Algorithm ParGen generates string CRS for a given security parameter 7.

2) Each S; runs SKeyGen(CRS) to generate private state o; and public param. ;.
3) Protocol Init is executed by U and servers Sq,...,S,, where U runs algorithm
Uit on inputs a password pw € {0,1}7, global parameters CRS, and a vector of
server’s public parameters w = (1, ..., 7, ), while each S; runs algorithm Sj;; on



input (CRS, o;,7;). The outputs of Init is a 7-bit key K for U and a user-specific
information w; for each server S;.

4) Protocol Rec is executed by U and servers Sy, ...,S,,, where U runs algorithm
Ugrec on (CRS, pw), and each S; runs algorithm Sgec on (CRS, 0, 7;, w; ). Protocol
Rec generates no output for the servers, while U outputs K’ which is either a
T-bit string or a rejection symbol 1.

The correctness requirement is that Rec returns the same key K which was
generated in Init, i.e. that for any 7, any CRS output by ParGen(17), any (o, 7;)
output by n instances of SKeyGen(CRS), and any pw € {0,1}7, if (K, wy,...,wy)
is the vector of outputs of Init executed on inputs (pw, CRS, 7) for U and (CRS, o3,
m;) for each S;, then U’s local output in an instance of Rec executed on inputs
(CRS, pw) for U and (CRS, 0, 7;,w;) for each S;, is equal to K.

Server’s User-Related State. We stress that the state (o, 7;,w;) of each server S;
is stored for each user separately, and the PPSS security notion we define below
assumes that each S; stores a separate (o;,m;,w;) tuple for each user account.
Indeed, the security of the PPSS protocol we present in Section 5 would be
decreased if S; re-uses the same OPRF key, stored in o; in this PPSS protocol,
across multiple user accounts. (Technically, the adversary would get additional
oracle access to the same Sg.. oracle, see below, for each user account on which
the server re-uses the same (o;, ;) pair.) Consequently, if S; wants to provide
PPSS service to multiple users, it has to generate a separate (o;, ;) pair for
each user (these per-user keys can be derived internally by S; using a PRF and
a global PRF key applied to a user’s identifier).

Security. We define security of a PPSS scheme in terms of adversary’s advantage
in distinguishing the key K output by U from a random string. We assume that
the adversary sees CRS and the vector of server’s public parameters 7 used
in the initialization instance, as well as the private states og = {0i}ie and
wp = {w;}iep for some set B of corrupted servers, and that it has concurrent
oracle access to instances of Ugrec(CRS, pw) and Sgec(CRS, 0, 75, w;), for 4 in B £
{1,...,n} \ B. We denote as U}..(CRS, pw, b, K©) an oracle which executes the
interactive algorithm Ugec(CRS, pw), and when this algorithm terminates with
a local output K, the Ug._ oracle (re-)sets K to K(© if b = 0 and K #1, and
then returns K to the caller. However, if b = 1 or K =_1 then the caller receives
the unmodified value K (to which we will refer as K1) as it was output by the
URec instance. We denote as Sg..(CRS, g, 7, wg) an oracle which on input i € B
executes the interactive algorithm Sgec(CRS, 0y, 7, w;).

Intuitively, we should call an (¢, n)-threshold PPSS scheme secure if for any
password dictionary D, if pw is randomly chosen in D then the adversary’s
advantage in distinguishing the PPSS-protected key K from a random string
(i.e., guessing b) is at most negligibly above 1/|D|, the probability of guessing
the password, times ¢, + |gs/(t —t' + 1)], where g, and g; are the numbers,
respectively, of the Ugec and Sgec protocol instances the adversary can interact
with, and ¢’ < ¢ is the number of corrupted servers. Factor 1/|D|- |gs/(t—t' +1)]
corresponds to an inherent vulnerability due to on-line dictionary attacks: An



adversary who learns the shares of ¢’ < t servers can test any password pw in
D by running the user’s protocol on pw interacting with ¢ — ¢’ + 1 uncorrupted
servers. Factor 1/|D| - g, corresponds to an inherent vulnerability of password-
authenticated protocols in the CRS model, because the adversary can run the
initialization protocol Init on a password guess pw and then run the servers’
protocol interacting with the user: If the user does not reject (by outputting L),
the adversary can conclude that pw = pw.

To make the PPSS notion easier to use in applications it is important that
the adversary sees the key-pseudorandomness challenge, either a real key or a
random key, already after the initialization protocol Init, rather than only when
this key is reconstructed in protocol Rec. (E.g. our T-PAKE constructions rely
on this property.) To make sure that the PPSS-protected key remains pseudo-
random in each key usage, whether after the initialization or after each recon-
struction instance, we let the adversary see the key generated by Init as well as
the key(s) output by every Rec instance. That is, at the end of Init and after each
Rec instance the attacker is given K9 if b = 0, but if b = 1 then the attacker
is given the actual value of the key output by, respectively, Ui or Ugec. Note
that K does not change across different reconstructions because it is fixed at
the start of the experiment, while K is determined by the actual outputs of
Uit and Ugec instances. Importantly, note that this definition implies that in
the real execution the reconstruction instances must output the same key that
was created in the initialization or the attacker can trivially guess b. We further
discuss this soundness property below.

Definition 1. A PPSS scheme is (T, qu, qs, €)-secure (for fized threshold param-
eters (t,n) if for any D C {0,1}", any set B C {1,...,n} of size t’ < t, and any
algorithm A with running time T, we have

1
AdvPPs < qs L 1
vA —<%+L_t/+1J> D] " M)

where Adv™ = |pfi)—p52)| and pff) = Pr[t/ = 1] in a game below, forb € {0,1}:
(1) Choose pw at random in D, generate CRS <+ ParGen(17) and (o;,m;) +
SKeyGen(CRS) fori € B. Give CRS and {m;},.g to A and let A generate {m;}icg.
(2) Run an instance of Init between U, which executes protocol Ui (CRS, pw, 71, ...,
7n), and the servers, where each S; for i € B ewecutes protocol Siit(CRS, 0y, 7;),
while servers S; for i € B are controlled by adversary A. The protocol proceeds
on public channels, with A playing a man-in-the-middle on all communications.
Denote U’s output in this Init instance as KN, and denote S;’s output, fori € B,
as w;. Choose KO at random in {0,1}7. Give key K® to A.

(3) Let A interact with g, instances of Ug..(CRS, pw, b, K(©)) and ¢, instances
0f Sgec (CRS, 05, ™, wg). Let b be the final output of A.

Secure Initialization. Note that in the above definition we assume that in the
initalization protocol U rumns the Uj,; procedure on input a vector of public

parameters w = (my,...,7,) where m; for each i € B is the true output of



SKeyGen executed by server S;. In other words, we assume that the user runs
the initialization procedure on correct (i.e. authentic) values m; for the honest
servers. This is equivalent to assuming that the user can authenticate, e.g. via
the PKI, the servers with whom it wants to initialize the PPSS scheme. The
requirement of authenticated channels between the user and the honest servers
during the initialiation protocol is indeed necessesary, or otherwise the adversary
would be able to pose as t+ 1 servers among Sy, ..., S,, and recover U’s secret sc
from the initialization protocol. (A similar assumption on authenticity of servers’
public keys in the initialization is also made in [8].)

Soundness. The above definition captures also a soundness property of a PPSS
scheme, because it implies an upper-bound on the probability that an adversary
causes any Ugec instance to output K’ ¢ {K, 1} where K was an output of Uy.
Assume algorithm A4 which outputs 0 if every key returned by Ug.. oracle is
either equal to K () which was output by Ui, or to L. Note that in the security
experiment with b = 0, oracle U}, always returns KO or 1, so pfg) = 0. The

security definition implies that pfi) < (qu + Lt*?ﬁD . ﬁ +¢, hence this is also

an upper-bound on the probability that any Ugec instance outputs K’ which is
neither | nor K output in Ujp.

Robustness. Another desirable property of a PPSS scheme is robustness, which
we define as the requirement that the user reconstructs the key created in Init
as long as it communicates without obstructions with at least ¢ + 1 non-corrupt
servers and with at most ¢ corrupt ones. This property is distinct from soundness
in that it assumes that the adversary lets the user communicate with ¢ + 1 non-
corrupt servers without interference. Note that this implies that the number ¢
number of corrupt servers satisfies ¢ < n/2, a restriction which is not imposed
by either the security or the soundness properties.

5 A PPSS protocol in the Fyoprp-hybrid world

We show a PPSS protocol based on any realization of the Fyvopgrr functionality.
The protocol is shown in Figure 4 in the Fyoprr-hybrid model (a specific in-
stantiation based on the 2HashDH-NIZK V-OPRF of Fig. 3 is shown in Fig. 5).
The protocol is secure in the CRS model and it assumes a pseudorandom gener-
ator and a computationally hiding, computationally binding, and non-malleable
(with respect to decommitment) commitment scheme, which can be realized e.g.
by a CCA-secure public key encryption, or by hashing the message together
with a random nonce in ROM. To provide rationale for our design we first con-
sider a subset of the protocol in Figure 4 and then show the necessity of some
additional elements. In SKeyGen, each server S; picks its public parameter m;
as the V-OPRF function descriptor, which in all our V-OPRF instantiations
is a commitment to the private key of the underlying PRF (see Section 2). In
protocol Init, on U’s inputs a password pw and a vector of function descriptors
7 = (m,...,T), which are authentically delivered to the user, user U picks a



random key K, secret-shares it into shares s1, ..., s,, and then encrypts each s;
using one-time pad encryption under key p; = Fr, (pw), computed in a V-OPRF
instance with server S;. The vector of function descriptors = = (7y,...,m,) and
the ciphertexts ¢ = (c1,...,¢y,), where ¢; = s; ® Fyr, (pw), is public, and given to
each server. At reconstruction the servers send these two vectors to U, who can
recover t + 1 shares s;, and interpolate them to recover K, after t +1 V-OPRF
instances in which U recomputes the values p; = Fy, (pw) for ¢ + 1 different ¢’s.

This simplified protocol, however, is not secure. As we explain in the intro-
duction, if the attacker learns whether the receiver recovers the shared key K
correctly, the above protocol would enable a malicious server S; to get informa-
tion about user’s password pw (including recovering it completely using binary
search in an OPRF based on the Naor-Reingold PRF), by manipulating the
function descriptor 7; in each OPRF instance executed by S; in this reconstruc-
tion protocol. In fact, in the PPSS security model defined in section 4, the above
simplified protocol allows a malicious server to recover 7 through an off-line
dictionary search after a single instance of PPSS reconstruction. Note that our
PPSS security model reveals the whole key K output in a PPSS reconstruction
to the adversary, which models putting this key to an arbitrary usage by the
higher-level protocol, e.g. by the T-PAKE scheme built from PPSS in Section
6. Now, if A sends to Ugec a vector of function descriptors «} which correspond
to PRF keys k! which A creates, and if A learns the key K output by this
URrec instance, then A can stage an off-line dictionary attack running the user’s
reconstruction algorithm for every guess pw in the password dictionary D, and
locally computing values Fi+(pw) using the PRF keys k;. This is yet another
reason why we need to extend the above protocol by adding a non-malleable
commitment C' that binds user’s password pw to the reconstructed secret K. We
accomplish this binding as follows: The CRS string will include an instance of
a non-malleable commitment scheme COM. In the initialization procedure, the
user secret-shares not the key K directly, but a random value s, and then it uses
s as a PRG seed to derive the key K together with the commitment randomness
r, and sets each state w; given to S; to (7, ¢, C") where C' = COM((pw, m,c);r).
By the binding property of commitment COM, the adversary playing the role
of the servers must commit to a password guess pw in value C it sends to the
user, and the reconstruction procedure rejects unless the guess was right, i.e.
unless pw = pw, disabling the off-line dictionary attack above. We need the
non-malleability of the commitment scheme to forestall the possibility that the
adversary modifies either the vector of function descriptors 7 or the ciphertexts
¢, and hence in particular modifies the reconstructed key K, without guessing
the password.

Communication Complexity, Robustness. In Figure 4 we show a PPSS
scheme whose communication complexity is O(n? - poly(7)) where 7 is a security
parameter, because the protocol starts with each server S; sending to U a tuple
w which contains n function descriptors m; and n field elements ¢;. The reason
we do this is simplicity, plus we suspect that in most applications the number of
servers n will be small enough that the O(n?) cost of this communication will not



Parameters: Security parameters 7 and ¢, binary extension field F = GF (22),
session ID sid = (S1,...,Sn), threshold parameters ¢,n € N.

ParGen(7): Sets CRS as an instance of a non-malleable commitment COM.

SKeyGen(CRS): S; sends (KEYGEN, sid) to Fvoprr and sets 7; to 7 it receives in
the response (PARAMETER, sid, ) from Fvoprr. The private state o; of S; is the
unique handle “S;” has to the V-OPRF function Fr, implemented by the ideal
Fvoprr functionality. (In all our V-OPRF instantiations o; is a PRF key and the
function descriptor ; is a commitment to it.)

U|nit(CRS, pw, 1, ... ,TI'n) =5 {S|nit(CRS, i, Wi)}?:li

Step 1. User U picks s < F and generates (s1,...,5,) as a (t,n) Shamir’s secret-
sharing of s over field F. (Indices 0,1,...,n used in Shamir’s secret-sharing are
encoded as some distinct field elements (0)g, (1)F,...,{(n)r.) For ¢ = 1 to n, U
sends (EVAL, sid, S;, pw) to FvOPRF.

Step 2. User U collects Fvoprr responses (71, p1), .-, (71, pn), and aborts if 7} #
m; for any i. If all parameters 7, match those in the inputs, U computes ¢; <
si®pifori=1ton,c+ (c1,...,¢n), ® < (mw1,...,m), [7||K] + G(s), C +

COM((pw, 7, c); 1), sends w = (7, ¢, C) to each S;, and outputs K as a local output.

URec(CRS, pW) — {SRec(CRS, ai, ﬂ'z‘,wi)}iesi

For each ¢ = 1,...,n, user U sends (EVAL, sid,S;, pw) to Fvoprr and initiates a
run of the protocol Rec with S;.

Each S; responds by sending w; to U and (SENDERCOMPLETE, sid, S;) to FvopPRF,
and U collects Fvoprr responses (71'27 pi) and w; for each ¢ € S.

Let S be a subset of servers such that: (i) |S| = ¢+ 1; (ii) there exists w = (m, ¢, C)
with # = (m1,...,7) and ¢ = (c1,. .., ¢n) such that w; = w for all S; € S; (iii) for
all S; € S, mj = m; and p; #L. If no such subset exists output L and halt.
Reconstruction: Set u; < ¢; @ p; for all ¢ € S. Interpolate points {({(i)r, u;)}ics
with a polynomial U € F[z], and set s <— U({(0)r). Compute [r||K] + G(s). If
COM((pw, 7, c);r) = C then output K, else output L.

Fig. 4. A PPSS scheme in the Fyoprr-hybrid-model.

be significant in practice. However, for large n we can reduce the communication
to O(nlogn) using a Merkle Tree hash [28]. Each server S; would then send only
its own 7;, ¢; values together with the co-path in the hash tree which allows U to
agree on the set of ¢t + 1 servers whose tree co-paths hash to the same root value.
In practice U could also cash the w vector as it does not change between Rec
protocol instances, in which case the communication cost becomes O(n). The
communication cost can be decreased even further, to O(t) group elements, at
the cost of reducing robustness. The user could instigate V-OPRF instances with
only t+ ¢ servers instead of with all n, for any ¢ between 1 and n — t¢. This would
reduce bandwidth at the price of increasing the protocol costs in the case of an
active attack: If just ¢ among the ¢+ ¢ servers U contacts are either corrupted or
connected to U over corrupted links, the reconstruction attempt fails, and the
user needs to instigate V-OPRF instances with the remaining servers.



Theorem 2. (PPSS Security) Assuming commitment scheme COM is com-
putationally hiding, computationally binding, and non-malleable (with respect to
decommitment), and that G is a pseudorandom generator, the PPSS scheme in
Figure 4 is (T, qu,qs,€)-secure for € = eg + €p + qu - enm + 4eg, where epy,
€, enm and eg are the bounds implied by, respectively, computational hiding of
COM, copmutational binding of COM, non-malleability of COM with respect to
decommitment, and the pseudorandomness of G, on input sizes implied by the
usage of COM and G in the PPSS scheme, for adversaries whose time is bounded
by T plus the time taken by a single instance of Init, q, instances of Urec, and
qs instances of Sgec.

Proof. See full version [19].

6 From PPSS to Single-Round T-PAKE

Composition of a PPSS scheme with a (regular) key-exchange protocol allows
us to obtain very efficient one-round T-PAKE protocols with arbitrary thresh-
old parameters and in the password-only CRS model, i.e. no PKI or secure
channels are assumed. For lack of space we refer to the full version [19] for a
general composition theorem proving the security of T-PAKE protocols built by
this methodology. Here we only present examples of T-PAKE schemes obtained
through this approach, and illustrate them with the most efficient T-PAKE
instantiation, presented in Figure 5, resulting from our single-round PPSS of
Section 5 implemented with the 2Hash-DH OPRF shown of Section 3.

T-PAKE via PPSS and symmetric-key KE. Let P be a (t,n)-PPSS pro-
tocol in the CRS model. To bootstrap a (¢,n)-TPAKE protocol using P, each
server S;, i = 1,...,n, generates its state pair (o;, 7;) and runs with client C' the
Init procedure of protocol P. As a result a user’s secret, which we call K¢, is
(t, n)-secret-shared among these servers under the protection of the PPSS scheme
and the client’s password pw. Next, client C' uses key K¢ to compute n keys
K; = fk.(i),i =1,...,n, where f is a pseudorandom function, and transmits
each K; (protected under the secure communication assumed at initialization) to
the corresponding S; who stores K; in its client-specific (;(C') state. Later, when
a T-PAKE session at C'is invoked, C' runs the Rec procedure of protocol P with
a sufficient number of servers to obtain K¢. C uses K¢ to compute K, ..., K,
and uses these keys as shared keys with the corresponding servers to exchange
a session key. Any KE protocol that assumes pre-shared keys between pairs of
parties can be used for this purpose. For example, C and S; can compute their
session key as fx,(nc,ns,,idc,ids,) where idc,ids, stand for the identities of
C and S; respectively, and nc, ns, are nonces exchanged between these parties
that also serve as session identifiers. Note that when using a one-round PPSS
scheme, the exchange of nonces can be piggybacked on top of the PPSS messages
hence preserving the single round complexity of the protocol (with one additional
message from C' to S; if key confirmation is desired). A full specification of this
protocol based on the 2HashDH-NIZK V-OPREF is presented in Figure 5. One



can also add forward secrecy to the protocol by using the shared key to au-
thenticate a Diffie-Hellman exchange (also piggybacked on top of the two PPSS
messages to preserve the single-round complexity).

T-PAKE via PPSS and public-key KE. The above scheme provides a full
T-PAKE protocol with very little extra cost over the PPSS scheme. Its relative
drawback is (as in any pre-shared key scheme) that the server needs to keep
a per-client secret and also that it requires secrecy for the transmission of key
K; to S; (otherwise, our PPSS scheme only needs authenticated channels during
initialization). To avoid these secrecy requirements, key exchange protocols based
on public keys of the parties can be accommodated on top of a PPSS as follows.
At initialization, the client generates a pair of private and public keys, and
obtains public keys for all its servers. C' then generates a file (we call it a keystore
in our formal treatment [19]) that includes its own key pair (with the private
key encrypted under a key derived from K¢) and the servers’ public keys. The
keystore is stored at each server authenticated with a MAC computed by C' using
a key derived from K. In addition, each server stores C’s public key. When a
T-PAKE session is invoked at C', the client retrieves keystore from the servers
and, after reconstructing K¢, uses this key to check the integrity of keystore
and to decrypt its private key. With this information and the (authenticated)
public keys of the servers contained in keystore, C' is ready to perform the key
exchange protocol. Similarly, the servers can use C’s public key that they stored
to bootstrap the public-key based key exchange. In particular, using a two-
message KE protocol whose messages are independent of the parties private-
and public-keys. (such as HMQV [26]), one obtains a single-round T-PAKE by
piggy-backing the two KE messages on top of the two PPSS ones.

DH-based Instantiation of PPSS and T-PAKE. For illustration and for
the reader’s convenience we describe in Figure 5 the specific instantiation of the
PPSS and T-PAKE protocols based on the 2HashDH-NIZK V-OPRF, with the
NIZK for DL equality implemented as in [12], and a symmetric-key KE scheme.
We comment on some of our choices for this illustration. The initialization is
presented for the case in which the client generates the servers’ V-OPRF keys
and computes all the values in the w vector by itself. Another option, more in line
with the formal description of the PPSS protocol from Figure 4, is for the servers
to choose their own V-OPRF keys and engage in an V-OPRF computation with
the client for generating the pads used to encrypt the shares s;. One advantage
of the latter option is that servers can save in the amount of secret memory and
derive the V-OPRF keys for each user U using a single key MK and a PRF
F,ie., as ky = Farr(U) (we are abusing the symbols U and S; to denote the
identities of these parties). This option is more useful with a PK-based KE,
where servers do not need to store user-specific secrets (in contrast, the protocol
from Figure 5 requires the server storing the session key with each user). User
performance during reconstruction is improved by choosing a common value p
for blinding the H; (pw) value sent to all servers. We stress that while we specifiy
the actions of honest servers, corrupted ones can deviate from the protocol in any
way they choose to. Finally, note that the protocol as presented does not include



Parties: User U, Servers S1,...,S,.

Public parameters and components: Security parameters 7 and ¢, thresh-
old parameters t,n € Nt < n, field F = GF(2%, cyclic group of
prime order m with generator g¢; hash functions Hi, Hs, Hs, Hy, Hs with
ranges (g),{0,1}%,{0,1}", Zy, Zm, respectively; pseudorandom generator G and
’ pseudorandom function family f ‘

Initialization (secure channels between U and each server S; are assumed only
through initialization): User U performs the following steps:

1. Chooses s €r F and generates shares (s1,...,s,) as a (t,n) Shamir’s secret-
sharing of s over field F.
2. For i = 1,...,n, U chooses value k; €r Z,, and sets m; = gki and

ci = s @ Ha(mi, pw, (Hi(pw))").
3. Setsc = (c1,...,¢n), = (m1,...,70), [r||K] = G(s), C = Hs(r, pw, 7, c);
’ Fori=1,...,n, sets K; = fr(S:)

4. For i =1,...,n, sends to server S; the values w; = (7, ¢, C), ki,.
5. U memorizes pw and erases all other information.

Each server S;, i = 1,...,n, stores w;, ki, y; = gk"i, in its U-specific storage (;.

Reconstruction/Key Exchange
— User U initiates a key exchange session with servers Sq,...,S, by sending to
each S; the value a = (H1(pw))” with p €g Zm, ’and a nonce p; €g {0,1}7 ‘

— Upon receiving (a,), server S; checks that a € (g) and if so, S; retrieves k; and
yi = ¢g" from its U-specific storage ¢;i(U), picks z €x Z,,, and computes b; = a*i,

v = Ha(g,9i,0,b:), vi = Hs5(g,9i,a,bi, (g - a”)*), and u; = z + v; - ky mod m. S;

sends to U the values y;, b;, u;, v; as well as ’ a nonce j; €g {0,1}" and ‘the value w;

stored in ¢; (V). ’Si computes the session key with U as SK; = fx, (1, i3, U, Si).

— Upon receiving values b;, u;, v;, wi, from S;, U proceeds as follows:

U chooses a subset of servers S for which the following conditions hold: (i)
there is a value w = (7, ¢,C) with @ = (71,...,7,) and ¢ = (c1, ..., ¢,) such
that w; = w for all S; € S; (ii) y; = m; for all S; € S; (iii) b; € (g) and the
equality v; = Hs(g,ys,a,bi, (g-a”)* - (y; -b;7) ") for v = Ha(g,ys, a, b;) holds
for all S, € S; (iv) |S|=t+ 1.
— If no such subset exists U aborts. Else, set s; = ¢; & Ha(yi, pw, b;/”)7 for each
S; € S, and reconstruct s from these s; shares using polynomial interpolation.
— Compute [r||K] = G(s). If C' # Hs(r,pw, 7, c) then U aborts.

— ’For each S; € S, set K; = fx(S;) and compute SK; = fx, (i, i, U, Si). ‘

Fig. 5. DH-based PPSS and T-PAKE Protocols (boxed text indicates key-exchange
specific operations on top of PPSS).



an explicit authentication mechanism. This can be easily added, for example, by
server S; adding the value fx, (0, u;, f4})) to its message and by U adding a third
message with value fk, (1, 1}, ;) (in this case, the session key could be derived
as SK; = fKi (27 i, ﬂgv U, SZ))

Acknowledgements. The second author was partly supported by ERC grant CO-
DAMODA.

References

1.

10.

11.

12.

13.

M. Abe and M. Ohkubo. A framework for universally composable non-committing
blind signatures. In M. Matsui, editor, ASTACRYPT, volume 5912 of Lecture Notes
in Computer Science, pages 435-450. Springer, 2009.

. A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu. Password-protected secret

sharing. In ACM Conference on Computer and Communications Security, 2011.
M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-
rsa-inversion problems and the security of chaum’s blind signature scheme. J.
Cryptology, 16(3):185-215, 2003.

M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In B. Preneel, editor, Advances in Cryptology — EURO-
CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 139-155.
Springer, May 2000.

F. Benhamouda, O. Blazy, C. Chevalier, D. Pointcheval, and D. Vergnaud. New
techniques for sphfs and efficient one-round pake protocols. In Crypto’2013.

J. Brainard, A. Juels, B. Kaliski, and M. Szydlo. A new two-server approach for
authentication with short secrets. In 12th USENIX Security Symp, 2003.

J. Camenisch, A. Lehmann, A. Lysyanskaya, and G. Neven. Memento: How to
reconstruct your secrets from a single password in a hostile environment. In
CRYPTO’2014, pages 256275, 2014.

J. Camenisch, A. Lehmann, A. Lysyanskaya, and G. Neven. Memento: How to
reconstruct your secrets from a single password in a hostile environment. In J. A.
Garay and R. Gennaro, editors, CRYPTO (2), volume 8617 of Lecture Notes in
Computer Science, pages 256—275. Springer, 2014.

J. Camenisch, A. Lysyanskaya, and G. Neven. Practical yet universally compos-
able two-server password-authenticated secret sharing. In ACM Conference on
Computer and Communications Security, pages 525-536, 2012.

R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science, pages
136-145. IEEE Computer Society Press, Oct. 2001.

D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-
scalable searchable symmetric encryption with support for Boolean queries.
Crypto’2013. Cryptology ePrint Archive, Report 2013/169, Mar. 2013.

S. Chow, C. Ma, and J. Weng. Zero-knowledge argument for simultaneous discrete
logarithms. In Computing and Combinatorics, volume 6196 of Lecture Notes in
Computer Science, pages 520-529. Springer Berlin Heidelberg, 2010.

R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric
encryption: improved definitions and efficient constructions. In A. Juels, R. N.
Wright, and S. Vimercati, editors, ACM CCS 06: 13th Conference on Computer
and Communications Security, pages 79-88. ACM Press, Oct. / Nov. 2006.



14. M. Di Raimondo and R. Gennaro. Provably secure threshold password-
authenticated key exchange. J. Comput. Syst. Sci., 72(6):978-1001, 2006.

15. M. Fischlin. Round-optimal composable blind signatures in the common reference
string model. In C. Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in
Computer Science, pages 60-77. Springer, 2006.

16. W. Ford and B. S. K. Jr. Server-assisted generation of a strong secret from a
password. In WETICE, pages 176-180, 2000.

17. M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivi-
ous pseudorandom functions. In J. Kilian, editor, TCC 2005: 2nd Theory of Cryp-
tography Conference, volume 3378 of Lecture Notes in Computer Science, pages
303-324. Springer, Feb. 2005.

18. D. Jablon. Password authentication using multiple servers. In CT-RSA’01: RSA
Cryptographers’ Track, pages 344-360. Springer-Verlag, 2001.

19. S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-protected secret
sharing and t-pake in the password-only model. Cryptology ePrint Archive, Report
2014/650, 2014. http://eprint.iacr.org/.

20. S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In O. Reingold, editor,
TCC 2009: 6th Theory of Cryptography Conference, volume 5444 of Lecture Notes
in Computer Science, pages 577-594. Springer, Mar. 2009.

21. S. Jarecki and X. Liu. Fast secure computation of set intersection. In SCN 10: 7th
International Conference on Security in Communication Networks, Lecture Notes
in Computer Science, pages 418-435. Springer, 2010.

22. J. Katz, P. Mackenzie, G. Taban, and V. Gligor. Two-server password-only au-
thenticated key exchange. In Proc. Applied Cryptography and Network Security
ACNS05, 2005.

23. J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key ex-
change using human-memorable passwords. In Advances in Cryptology - EURO-
CRYPT 2001, International Conference on the Theory and Application of Cryp-
tographic Techniques, 2001.

24. J. Katz and V. Vaikuntanathan. Round-optimal password-based authenticated key
exchange. J. Cryptology, 26(4):714-743, 2013.

25. A. Kiayias and H.-S. Zhou. Equivocal blind signatures and adaptive uc-security.
In R. Canetti, editor, TC'C, volume 4948 of Lecture Notes in Computer Science,
pages 340-355. Springer, 2008.

26. H. Krawczyk. Hmqv: A high-performance secure diffie-hellman protocol. In
CRYPTO, pages 546-566, 2005.

27. P. D. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-
authenticated key exchange. J. Cryptology, 19(1):27-66, 2006.

28. R. Merkle. A digital signature based on a conventional encryption function. In
C. Pomerance, editor, Advances in Cryptology CRYPTO 87, volume 293 of Lecture
Notes in Computer Science, pages 369-378. Springer Berlin Heidelberg, 1988.

29. S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In 40th
Annual Symposium on Foundations of Computer Science, pages 120-130. IEEE
Computer Society Press, Oct. 1999.

30. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In FOCS, pages 458-467. IEEE Computer Society, 1997.

31. New York Times. Russian Hackers Amass Over a Billion Internet Passwords.
http://www.nytimes.com/2014/08/06/technology/russian-gang-said-to-amass-—
more-than-a-billion-stolen-internet-credentials.html? r=0, Aug. 5, 2015.



