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Abstract. We present a new algorithm for solving the LPN problem.
The algorithm has a similar form as some previous methods, but includes
a new key step that makes use of approximations of random words to
a nearest codeword in a linear code. It outperforms previous methods
for many parameter choices. In particular, we can now solve instances
suggested for 80-bit security in cryptographic schemes like HB variants,
LPN-C and Lapin, in less than 280 operations.

1 Introduction

In recent years of modern cryptography, much effort has been devoted to finding
efficient and secure low-cost cryptographic primitives targeting applications in
very constrained hardware environments (such as RFID tags and low-power
devices). Many proposals rely on the hardness assumption of Learning Parity
with Noise (LPN), a fundamental problem in learning theory, which recently
has also gained a lot of attention within the cryptographic society. The LPN
problem is well-studied and it is intimately related to the problem of decoding
random linear codes, which is one of the most important problems in coding
theory. Being a supposedly hard problem3, the LPN problem is a good candidate
for post-quantum cryptography, where other classically hard problems such as
factoring and the discrete log problem fall short. The inherent properties of LPN
also makes it ideal for lightweight cryptography.

The first time the LPN problem was employed in a cryptographic construc-
tion was in the Hopper-Blum (HB) identification protocol [17]. HB is a mini-
malistic protocol that is secure in a passive attack model. Aiming to secure the
HB scheme also in an active attack model, Juels and Weis [18], and Katz and
Shin [19] proposed a modified scheme. The modified scheme, which was given
the name HB+, extends HB with one extra round. It was later shown by Gilbert
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et al. [14] that the HB+ protocol is vulnerable to active attacks, i.e. man-in-
the-middle attacks, where the adversary is allowed to intercept and attack an
ongoing authentication session to learn the secret. Gilbert et al. [12] subsequent-
ly proposed a variant of the Hopper-Blum protocol called HB#. Apart from
repairing the protocol, the constructors of HB# introduced a more efficient key
representation using a variant of LPN called Toeplitz-LPN.

In [13], Gilbert et al. proposed a way to use LPN in encryption of messages,
which resulted in the cryptosystem LPN-C. Kiltz et al. [22] and Dodis et al. [9]
showed how to construct message authentication codes (MACs) using LPN. The
existence of MACs allows one to construct identification schemes that are prov-
ably secure against active attacks. The most recent contribution to LPN-based
constructions is a two-round identification protocol called Lapin, proposed by
Heyse et al. [16], and an LPN-based encryption scheme called Helen, proposed
by Duc and Vaudenay [10]. The Lapin protocol is based on an LPN variant
called Ring-LPN, where the samples are elements of a polynomial ring.

The two major threats against LPN-based cryptographic constructions are
generic algorithms that decode random linear codes (information set decoding
(ISD)) and variants of the BKW algorithm, originally proposed by Blum et
al. [3]. Being the asymptotically most efficient4 approach, the BKW algorithm
employs an iterated collision procedure on the queries. In each iteration, colliding
entries sum together to produce a new entry with smaller dependency on the
information bits but with an increased noise level. Once the dependency from
sufficiently many information bits are removed, the remaining are exhausted
to find the secret. Although the collision procedure is the main reason for the
efficiency of the BKW algorithm, it leads to a requirement of an immense amount
of queries compared to ISD. Notably, for some cases, e.g., when the noise is very
low, ISD yields the most efficient attack.

Levieil and Fouque [26] proposed to use Fast Walsh-Hadamard Transform
in the BKW algorithm when searching for the secret. In an unpublished paper,
Kirchner [23] suggested to transform the problem into systematic form, where
each information (key) bit then appears as an observed symbol, pertubated by
noise. This requires the adversary to only exhaust the biased noise variables
rather than the key bits. When the error rate is low, the noise variable search
space is very small and this technique decreases the attack complexity. Building
on the work by Kirchner [23], Bernstein and Lange [5] showed that the ring
structure of Ring-LPN can be exploited in matrix inversion, further reducing
the complexity of attacks on for example Lapin. None of the known algorithms
manage to break the 80 bit security of Lapin. Nor do they break the parameters
proposed in [26], which were suggested as design parameters of LPN-C [13] for
80-bit security.

In this paper, we propose a new algorithm for solving the LPN problem based
on [23, 5]. We employ a new technique that we call subspace distinguishing, which
exploits coding theory to decrease the dimension of the secret. The trade-off is
a small increase in the sample noise. Our novel algorithm performs favorably in

4 For a fixed error rate.



Table 1. Comparison of different algorithms for solving LPN with parameters
(512, 1/8).

Algorithm Complexity (log2)

Queries Time Memory

Levieil-Fouque [26] 75.7 87.5 84.8
Bernstein-Lange [5] 68.6 85.7 77.6

New algorithm 66.3 79.9 75.3

comparison to »state-of-the-art« algorithms and we manage to break previously
unbroken parameters of HB variants, Lapin and LPN-C. As an example, we
attack the common (512, 1/8)-instance of LPN and break its 80-bit security
barrier. A comparision of complexity of different algorithms5 is shown in Table
1.

The organization of the paper is as follows. In Section 2, we give some pre-
liminaries and introduce the LPN problem in detail. Moreover, in Section 3 we
give a short description of the BKW algorithm. We briefly describe the general
idea of our new attack in Section 4 and more formally in Section 5. In Section 6,
we analyze its complexity. The results when the algorithm is applied on various
LPN-based cryptosystems are given in Section 7 and in Section 8, we describe
some aspects of the covering-coding technique. Section 9 concludes the paper.

2 The LPN Problem

We will now give a more thorough description of the LPN problem. Let Berη be
the Bernoulli distribution and let X ∼ Berη be a random variable with alphabet
X = {0, 1}. Then, Pr [X = 1] = η and Pr [X = 0] = 1−Pr [X = 1] = 1−η. The
bias ε of X is given from Pr [X = 0] = 1/2 (1 + ε). Let k be a security parameter
and let x be a binary vector of length k.

Definition 1 (LPN oracle) An LPN oracle ΠLPN for an unkown vector x ∈
{0, 1}k with η ∈ (0, 12 ) returns pairs of the form(

g
$← {0, 1}k, 〈x,g〉+ e

)
,

where e← Berη. Here, 〈x,g〉 denotes the scalar product of vectors x and g.

We also write 〈x,g〉 as x · gT, where gT is the transpose of the row vector g.
We receive a number n of noisy versions of scalar products of x from the oracle
ΠLPN, and our task is to recover x.
5 The Bernstein-Lange algorithm is originally proposed for Ring-LPN, and by a s-
light modification [5], one can apply it to the LPN instances as well. It shares the
beginning steps (i.e., the steps of Gaussian elimination and the collision procedure)
with the new algorithm, so for a fair comparison, we use the same implementation
of these steps when computing their complexity.



Problem 1 (LPN) Given an LPN oracle ΠLPN, the (k, η)-LPN problem con-
sists of finding the vector x. An algorithm ALPN(t, n, δ) using time at most t
with at most n oracles queries solves (k, η)-LPN if

Pr
[
ALPN(t, n, δ) = x : x

$← {0, 1}k
]
≥ δ.

Let y be a vector of length n and let yi = 〈x,gi〉. For known random vec-
tors g1,g2, . . . ,gn, we can easily reconstruct an unknown x from y using lin-
ear algebra. In the LPN problem, however, we receive instead noisy versions of
yi, i = 1, 2, . . . , n. Writing the noise in position i as ei, i = 1, 2, . . . , n we obtain
zi = yi + ei = 〈x,gi〉 + ei. In matrix form, the same is written as z = xG + e,
where z =

[
z1 z2 · · · zn

]
, and the matrix G is formed as G =

[
gT
1 gT

2 · · · gT
n

]
.

This shows that the LPN problem is simply a decoding problem, where G is a
random k×n generator matrix, x is the information vector and z is the received
vector after transmission of a codeword on the binary symmetric channel with
error probability η.

2.1 Piling-up Lemma

We recall the piling-up lemma, which is frequently used in analysis of the LPN
problem.

Lemma 1 (Piling-up lemma). Let X1, X2, ...Xn be independent binary ran-
dom variables where each Pr [Xi = 0] = 1

2 (1 + εi), for 1 ≤ i ≤ n. Then,

Pr [X1 +X2 + · · ·+Xn = 0] =
1

2

(
1 +

n∏
i=1

εi

)
.

3 The BKW Algorithm

The BKW algorithm is due to Blum, Kalai and Wasserman [3]. In the spirit of
generalized birthday algorithms, their approach uses an iterative sort-and-match
procedure on the columns of the generator matrix G, which iteratively reduces
the dimension of G.

Initially, one searches for all combinations of two columns in G that add to
zero in the last b entries. Assume that one finds two columns gT

i1
,gT
i2

such that

gi1 + gi2 = [∗ ∗ · · · ∗ 0 0 · · · 0︸ ︷︷ ︸
b symbols

],

where ∗ means any value. Then a new vector g
(2)
1 = gi1 + gi2 is formed. An

“observed symbol” is also formed, corresponding to this new column by forming
z
(2)
1 = zi1 + zi2 . If y

(2)
1 =

〈
x,g

(2)
1

〉
, then z

(2)
1 = y

(2)
1 + e

(2)
1 , where now e

(2)
1 =

ei1 + ei2 . It can be verified that Pr
[
e
(2)
1 = 0

]
= 1/2(1 + ε2).



There are two approaches to realize the above merging procedure. One, raised
by Blum et al. [3], called LF1 type by Levieil and Fouque [26], and later adopted
by Bernstein and Lange [5], is choosing one sample in each partition with the
same last b entries, and then adding it to the remaining samples in the same
partition. Thus, the number of samples reduces by about 2b after this operation.
The other method is a heuristic called LF2 in [26], which computes any pair
with the same last b entries. It produces more samples at the cost of increased
dependency, thereby gaining more efficiency in practice but losing rigorous anal-
ysis in theory. We will use the LF1 setting throughout the remaining part of the
paper.

Put all such new columns in a matrix G2,

G2 =
[
g
(2)T
1 g

(2)T
2 . . . g

(2)T

n−2b

]
.

If n is the number of columns in G, then the number of columns in G2 will
be n − 2b. Note that the last b entries of every column in G2 are all zero. In
connection to this matrix, the vector of observed symbols is

z2 =
[
z
(2)
1 z

(2)
2 · · · z(2)

n−2b

]
,

where Pr
[
z
(2)
i = y

(2)
i

]
= 1/2(1 + ε2), for 1 ≤ i ≤ n− 2b.

We now iterate the same, picking one column and then adding it to another
suited column inGi giving a sum with an additional b entries being zero, forming
the columns of Gi+1. Repeating the same procedure an additional t − 2 times
will reduce the number of unknown variables to k−bt in the remaining problem.

For each iteration the noise level is squared. By the piling-up lemma we have
that

Pr

 2t∑
j=1

ei = 0

 =
1

2

(
1 + ε2

t
)
.

Hence, the bias decreases quickly to low levels. The remaining unknown key
variables are guessed and for each guess we check whether the bias is present or
not. The procedure is summarized in Algorithm 1.

4 Essential Idea

In this section we try to give a very basic description of the idea used to give a
new and more efficient algorithm for solving the LPN problem. A more detailed
analysis will be provided in later sections, and a graphical interpretation of the
key step is given in Appendix A.

Assume that we have an initial LPN problem described byG =
[
gT
1 gT

2 · · · gT
n

]
and z = xG+ e, where z =

[
z1 z2 · · · zn

]
, where zi = yi + ei = 〈x,gi〉+ ei.

As previously shown in [23] and [5], we may through Gaussian elimination
transform G into systematic form. Assume that the first k columns are linearly



Algorithm 1 BKW Algorithm

Input: Matrix G with k rows and n columns and received vector z, algorithm
parameters b, t

Put the received word as a first row in the matrix, G1 ←
[
z
G

]
;

1

for i = 1 to t do2
For Gi, partition the columns by the last b · i bits;3
Form pairs of columns from each partition and form Gi+1;4

for x ∈ {0, 1}k−bt do5
Find the vector

[
1 x 0

]
such that

[
1 x 0

]
Gt+1 has minimal weight;6

independent and forms the matrix D. With a change of variables x̂ = xD−1

we get an equivalent problem description with Ĝ =
[
I ĝT

k+1 ĝT
k+2 · · · ĝT

n

]
. We

compute
ẑ = z+

[
z1, z2, . . . , zk

]
Ĝ =

[
0, ẑk+1, ẑk+2, . . . , ẑn

]
.

In this situation, one may start performing a number of BKW steps on
columns k + 1 to n, reducing the dimension k of the problem to something
smaller. This will result in a new problem instance where noise in each posi-
tion is larger, except for the first systematic positions. We may write the prob-
lem after performing t BKW steps in the form G′ =

[
I g′1

T
g′2

T · · · g′m
T] and

z′ =
[
0, z′1, z

′
2, . . . z

′
m

]
, where nowG′ has dimension k′×m with k′ = k−bt andm

is the number of columns remaining after the BKW step. We have z′ = x′G′+e′,
Pr [x′i = 0] = 1/2(1 + ε) and Pr

[
x′ · g′i

T
= zi

]
= 1/2(1 + ε2

t

).
Now we will explain the basics of the new idea proposed in the paper. In a

problem instance as above, we may look at the random variables y′i = x′ · g′i
T.

The bits in x′ are mostly zero but a few are set to one. Let us assume that c
bits are set to one. Furthermore, x′ is fixed for all i. We usually assume that
g′i is generated according to a uniform distribution. However, assume that every
column g′i would be biased, i.e., every bit in a column position is zero with
probability 1/2(1 + ε′). Then we observe that the variables y′i will be biased, as

y′i = 〈x′,g′i〉 =
c∑
j=1

[g′i]kj ,

where k1, k2, . . . kc are the bit positions where x′ has value one (here [x]y denotes
bit y of vector x). In fact, variables y′i will have bias (ε′)c.

So how do we get the columns to be biased in the general case? We could
simply hope for some of them to be biased, but if we need to use a larger
number of columns, the bias would have to be small, giving a high complexity
for an algorithm solving the problem. We propose instead to use a covering code
to achieve something similar to what is described above. Vectors g′i are of length



k′, so we consider a code of length k′ and some dimension l. Let us assume that
the generator matrix of this code is denoted F. For each vector g′i, we now find
the codeword in the code spanned by F that is closest (in Hamming sense) to
g′i. Assume that this codeword is denoted ci. Then we can write

g′i = ci + e′i,

where e′i is a vector with biased bits. It remains to examine exactly how biased
the bits in e′i will be, but assume for the moment that the bias is ε′. Going back
to our previous expressions we can write

y′i = 〈x′,g′i〉 = x′ · (ci + e′i)
T

and since ci = uiF for some ui, we can write

y′i = x′FT · uT
i + x′ · e′i

T
.

We may introduce x′′ = x′FT as a length l vector of unknown bits (linear
combinations of bits from x′) and again

y′i = x′′ · uT
i + x′ · e′i

T
.

Since we have Pr [y′i = z′i] = 1/2(1 + ε2
t

), we get

Pr [x′′ · uT
i = z′i] =

1

2
(1 + ε2

t

(ε′)c),

where ε′ is the bias determined by the expected distance between g′i and the
closest codeword in the code we are using, and c is the number of positions in x′

set to one. The last step in the new algorithm now selects about m = 1/(ε2
t

ε′c)2

samples z′1, z′2, . . . , z′m and for each guess of the 2l possible values of x′′, we
compute how many times x′′ ·uT

i = z′i when i = 1, 2, . . . ,m. As this step is similar
to a correlation attack scenario, we know that it can be efficiently computed
using Fast Walsh-Hadamard Transform. After recovering x′′, it is an easy task
to recover remaining unknown bits of x′.

4.1 An Example Using Dimension k = 160

In order to illustrate the ideas and convince the reader that the proposed al-
gorithm can be more efficient than previously known methods, we consider an
example. We assume an LPN instance of dimension k = 160, where we allow
at most 224 received samples and we allow at most around 224 vectors of length
160 to be stored in memory. Furthermore, the error probability is η = 0.1.

For this particular case, we propose the following algorithm. The first step is
to compute the systematic form, Ĝ =

[
I ĝT

k+1 ĝT
k+2 · · · ĝT

n

]
and

ẑ = z+
[
z1 z2 . . . zk

]
Ĝ =

[
0 ẑk+1 ẑk+2 . . . ẑn

]
.

Here Ĝ has dimension 160 and ẑ has length at most 224.



In the second step we perform t = 4 steps of BKW (using the LF1 approach),
the first step removing 22 bits and the remaining three each removing 21 bits.
This results in G′ =

[
I g′1

T
g′2

T · · · g′m
T] and z′ =

[
0 z′1 z

′
2 . . . z

′
m

]
, where now

G′ has dimension 75×m andm is about 3·221. We have z′ = x′G′, Pr [x′i = 0] =
1/2(1 + ε), where ε = 0.8 and Pr

[
x′ · g′i

T
= zi

]
= 1/2(1 + ε16). So the resulting

problem has dimension 75 and the bias is ε2
t

= (0.8)16.
In the third step we then select a suitable code of length 75. In this example

we choose a block code which is a direct sum of 25 [3, 1, 3] repetition codes6, i.e.,
the dimension is 25. We map every vector g′i to the nearest codeword by simply
selecting chunks of three consecutive bits and replace them by either 000 or 111.
With probability 3/4 we will change one position and with probability 1/4 we will
not have to change any position. In total we expect to change (3/4 ·1+1/4 ·0) ·25
positions. The expected weight of the length 75 vector e′i is 75/4, so the expected
bias is ε′ = 1/2. As Pr [x′i = 1] = 0.1, the expected number of nonzero positions
in x′ is 7.5. Assuming we have only c = 6 nonzero positions, we get

Pr [x′′ · uT
i = z′i] =

1

2

(
1 + 0.816

(
1

2

)6
)

=
1

2
(1 + 2−11.15).

In the last step we then run through 225 values of x′′ and for each of them
we compute how often x′′ ·uT

i = z′i for i = 1, . . . , 3 · 221. Again since we use Fast
Walsh-Hadamard Transform, the cost of this step is not much more than 225

operations. The probability of having no more than 6 ones in x′ is about 0.37,
so we need to repeat the whole process a few times.

In comparison with other algorithms, the best approach we can find is the
Kirchner, Bernstein, Lange approach [23, 5], where one can do up to 5 BKW
steps. Removing 21 bits in each step leaves 55 remaining bits. Using Fast Walsh-
Hadamard Transform with 0.8−64 = 220.6 samples, we can include another 21
bits in this step, but there are still 34 remaining variables that needs to be
guessed.

Overall, the simple algorithm sketched above is outperforming the best pre-
vious algorithm using optimal parameter values7.

Simulation We have verified in simulation that the proposed algorithm works
in practice. We use a rate R = 1/3 concatenated repetition code and query the
oracle for 224 samples. Simple pruning of the samples with too large distance from
the codeword was used to approximate the behaviour of an optimal distinguisher.
6 In the sequel, we denote this code construction as concatenated repetition code.
For this [75, 25, 3] linear code, the covering radius is 25, but we could see from this
example that what matters is the average weight of the error vector, which is much
smaller than 25.

7 Adopting the same method to implement their overlapping steps, for the (160, 1/10)
LPN instance, the Bernstein-Lange algorithm and the new algorithm cost 235.70

and 233.83 bit operations, respectively. Thus, the latter offers an improvement with
a factor roughly 4 to solve this small-scale instance.



Algorithm 2 New attacking algorithm

Input: Matrix G with k rows and n columns, received length n vector z and
algorithm parameters t, b, k′′, l, w0, c

repeat1
Pick random column permutation π;2
Perform Gaussian elimination on π(G) resulting in G0 = [I|L0];3
for i = 1 to t do4

Partition the columns of Li−1 by the last b · i bits;5
Denote the set of columns in partition s by Ls;6
Pick a vector ais ∈ Ls;7
for (a ∈ Ls) and (a 6= ais) do8

Li ← [Li|(a+ ais)];9

Pick a [k′′, l] linear code with good covering property;10
Partition the columns of Lt by the middle non-all-zero k′′ bits and11
group them by their nearest codewords;
Set k1 = k − ab− k′′;12

for x′2 ∈ {0, 1}k1 with wt(x′2) ≤ w0 do13
Update the observed samples;14

for y ∈ {0, 1}l do15
Use Fast Walsh-Hadamard Transform to compute the16
numbers of 1s and 0s observed respectively;
Perform hypothesis testing whose threshold is defined as a17
function of c;

until acceptable hypothesis is found18

The average execution time is ∼ 1.86 seconds on an Apple iMac 3.06 GHz Intel
Core 2 Duo with 4 GB ram running OS X 10.9 (13A603).

5 Algorithm Description

Having introduced the key idea in a simplistic manner, we now formalize it by s-
tating a new five-step LPN solving algorithm (see Algorithm 2) in detail. Its first
three steps combine several well-known techniques on this problem, i.e., chang-
ing the distribution of secret vector [23], sorting and merging to make the length
of samples shorter [3], and partial secret guessing [5], together. The efficiency
improvement comes from a novel idea introduced in the last two subsections—if
we employ a linear covering code and rearrange samples according to their near-
est codewords, then the columns in the matrix subtracting their corresponding
codewords lead to sparse vectors desired in the distinguishing process. We later
propose a new distinguishing technique—subspace hypothesis testing, to remove
the influence of the codeword part using Fast Walsh-Hadamard Transform. The
algorithm consists of five steps, each described in separate subsections.



5.1 Gaussian Elimination

Recall that our LPN problem is given by z = xG + e, where z and G are
known. We can apply an arbitrary column permutation π without changing
the problem (but we change the error locations). A transformed problem is
π(z) = xπ(G)+π(e). This means that we can repeat the algorithm many times
using different permutations.

Continuing, we multiply by a suitable k × k matrix D to bring the matrix
G to a systematic form, Ĝ = DG. The problem remains the same, except that
the unknowns are now given by the vector x̃ = xD−1. This is just a change
of variables. As a second step, we also add the codeword

[
z1 z2 · · · zk

]
Ĝ to

our known vector z, resulting in a received vector starting with k zero entries.
Altogether, this corresponds to the change x̂ = xD−1 +

[
z1 z2 · · · zk

]
.

Our initial problem has been transformed and the problem is now written as

ẑ =
[
0 ẑk+1 ẑk+2 · · · ẑn

]
= x̂Ĝ+ e, (1)

where now Ĝ is in systematic form. Note that these transformations do not affect
the noise level. We still have a single noise variable added in every position.

Schoolbook implementation of the above Gaussian elimination procedure re-
quires about nk2/2 bit-operations; we propose however to reduce its complexity
by using a more sophisticated space-time trade-off technique. We store interme-
diate results in tables, and then derive the final result by adding several items
in the tables together. The detailed description is as follows.

For a fixed s, divide the matrixD in a = dk/se parts, i.e.,D =
[
D1,D2, . . . ,Da

]
,

where Di is a sub-matrix with s columns(except possibly the last matrix Da).
Then store all possible values of Dix

T for x ∈ Fs2 in tables indexed by i, where
1 ≤ i ≤ a. For a vector g =

[
g1,g2, . . . ,ga

]
, the transformed vector is

DgT = D1g
T
1 +D2g

T
2 + . . .+Dag

T
a ,

where Dig
T
i can be read directly from the table.

The cost of constructing the tables is about O (2s), which can be negligible
if memory in the BKW step is much larger. Furthermore, for each column, the
transformation costs no more than k · a bit operations; so, this step requires

C1 = (n− k) · ka < nka

bit operations in total if 2s is much smaller than n.

5.2 Collision Procedure

This next step contains the BKW part. The input to this step is ẑ and Ĝ.
We write Ĝ =

[
I L0

]
and process only the matrix L0. As the length of L0 is

typically much larger than the systematic part of Ĝ, this is roughly no restriction
at all. We then use the a sort-and-match technique as in the BKW algorithm,



operating on the matrix L0. This process will give us a sequence of matrices
denoted L0,L1,L2, . . . ,Lt.

Let us denote the number of columns of Li by r(i), with r(0) = n − k.
Adopting the LF1 type technique, every step operating on columns will reduce
the number of samples by 2b, yielding that m = r(t) = r(0) − t2b. Apart from
the process of creating the Li matrices, we need to update the received vector
in a similar fashion. A simple way is to put ẑ as a first row in the representation
of Ĝ.

This procedure will end with a matrix
[
I Lt

]
, where Lt will have all tb last

entries in each column all zero. By discarding the last tb rows we have a given
matrix of dimension k − tb that can be written as G′ =

[
I Lt

]
, and we have

a corresponding received vector z′ =
[
0 z′1 z

′
2 · · · z′m

]
. The first k′ = k − tb

positions are only affected by a single noise variable, so we can write

[0, z′] = x′Ĝ+
[
e1 e2 · · · ek′ ẽ1 ẽ2 · · · ẽm

]
, (2)

for some unknown x′ vector, where ẽi =
∑
ij∈Ti,|Ti|≤2t eij and Ti contains the

positions that have been added up to form the (k′ + i)th column of G′. By the
piling-up lemma, the bias for ẽi increases to ε2

t

.
We denote the complexity of this step C2, where

C2 =

t∑
i=1

(k + 1− ib)(n− i2b) ≈ (k + 1)tn.

5.3 Partial Secret Guessing Procedure

The previous procedure outputsG′ with dimension k′ = k−tb andm = n−k−t2b
columns. We removed the bottom tb bits of x̂ to form the length k′ vector x′,
with z′ = x′G′ + ẽ.

We now divide x′ into two parts: x′ =
[
x′1 x′2

]
, where x′1 is of length k′′.

In this step, we simply guess all vectors x2 ∈ Fk
′−k′′

2 such that wt(x2) ≤ w0

for some w0 and update the observed vector z′ accordingly. This transforms the
problem to that of attacking a new smaller LPN problem of dimension k′′ with
the same number of samples. Firstly, note that this will only work if wt(x2) ≤ w0,
and we denote this probability by P (w0, k

′ − k′′). Secondly, we need to be able
to distinguish a correct guess from incorrect ones and this is the task of the
remaining steps. The complexity of this step is

C3 = m

w1∑
i=0

(
k′ − k′′

i

)
i.

5.4 Covering-Coding Method

In this step, we use a [k′′, l] linear code C with covering radius dC to group the
columns. That is, we rewrite

g′i = ci + e′i,



where ci is the nearest codeword in C, and wt(e′i) ≤ dC . The employed linear
code is characterized by a systematic generator matrix F =

[
I F′

]
l×k′′ ; we thus

obtain a corresponding parity-check matrix H =
[
F′T I

]
(k′′−l)×k′′ .

There are several ways to select a code. One way of realizing the above
grouping idea is by a table-based syndrome decoding technique. The procedure is
as follows: 1) We construct a constant query time table containing 2k

′′−l items, in
each of which stores the syndrome and its corresponding minimum weight error
vector. 2) If the syndrome Hg′i

T is computed, we then find its corresponding
error vector e′i by checking in the table; adding them together yields the nearest
codeword ci.

The remaining task is to calculate the syndrome efficiently. We, according to
the first l bits, sort the vectors g′i, where 0 ≤ i ≤ m, and group them into 2l

partitions denoted by Pj for 1 ≤ j ≤ 2l. Starting from the partition P1 whose
first l bits are all zero, we can derive the syndrome by reading its last k′′ − l
bits without any additional computational cost. If we know one syndrome in Pj ,
then we can compute another syndrome in the same partition within 2(k′′ − l)
bit operations, and another in a different partition whose first l-bit vector has
Hamming distance 1 from that of Pj within 3(k′′ − l) bit operations. Therefore,
the complexity of this step is

C4 = (k′′ − l)(2m+ 2l).

Notice that the selected linear code determines the syndrome table, which
can be pre-computed within complexity O(k′′2k′′−l). The optimal parameter
suggests that this cost is acceptable compared with the total attacking complex-
ity.

The expected distance to the nearest codeword determines the bias ε′ in e′i.
This plays important roles in the later hypothesis testing step: if we rearrange
the columns e′i as a matrix, then it is sparse; therefore, we can view the ith value
in one column as a random variable Ri distributed according to Ber d

k′′
, where d

is the expected distance. We can bound it by the covering radius8. Moreover, if
the bias is large enough, then it is reasonable to consider Ri, for 1 ≤ i ≤ i1, as
independent variables.

5.5 Subspace Hypothesis Testing

Group the samples (g′i, z
′
i) in sets L(ci) according to their nearest codewords

and define the function fL(ci) as

fL(ci) =
∑

(g′
i,z

′
i)∈L(ci)

(−1)z
′
i .

8 In the sequel, we replace the covering radius by the sphere-covering bound to estimate
the expected distance d, i.e., d is the smallest integer, s.t.

∑d
i=0

(
k′′

i

)
> 2k

′′−l. We
give more explanation in Section 8.



The employed systematic linear code C describes a bijection between the
linear space Fl2 and the set of all codewords in Fk′′2 , and moreover, due to its
systematic feature, the corresponding information vector appears explicitly in
their first l bits. We can thus define a new function

g(u) = fL(ci),

such that u represents the first l bits of ci and exhausts all the points in Fl2.
The Walsh transform of g is defined as

G(y) =
∑
u∈Fl

2

g(u)(−1)〈y,u〉.

Here we exhaust all candidates of y ∈ Fl2 by computing the Walsh transform.
The following lemma illustrates the reason why we can perform hypothesis

testing on the subspace Fl2.

Lemma 2. There exits a unique vector y ∈ Fl2 s.t.,

〈y,u〉 = 〈x′, ci〉 .

Proof. As ci = uF, we obtain

〈x′, ci〉 = x′FTuT = 〈x′FT,u〉 .

Thus, we construct the vector y = x′FT that fulfills the requirement. On the
other hand, the uniqueness is obvious.

Given the candidate y,G(y) is the difference between the number of predicted
0 and the number of predicted 1 for the bit z′i+ 〈x′, ci〉. If y is the correct guess,
then it is distributed according to Ber 1

2 (1−ε2
t ·(ε′)w), where ε

′ = 1− 2d
k′′ and w is the

weight of x′; otherwise, it is considered random. Thus, the best candidate y0 is
the one that maximizes the absolute value of G(y), i.e. y0 = argmaxy∈F l

2
|G(y)|,

and we need approximately 1/(ε2
t+1 · (ε′)2w) samples to distinguish these two

cases. Note that false positives are quickly detected in an additional step and
this does not significantly increase complexity.

Since the weight w is unknown, we assume that w ≤ c and then query for
samples. If the assumption is valid, we can distinguish the two distributions
correctly; otherwise, we obtain a false positive which can be recognized without
much cost, and then choose another permutation to run the algorithm again.
The procedure will continue until we find the secret vector x.

We use the Fast Walsh-Hadamard Transform technique to accelerate the
distinguishing step. As the hypothesis testing runs for every guess of x′2, the
overall complexity of this step is

C5 = l2l
w0∑
i=0

(
k′ − k′′

i

)
.



6 Analysis

In the previous section we already indicated the complexity of each step. We now
put it together in a single complexity estimate. We first formulate the formula
for the possibility of having at most w errors in m positions P (w,m) as follows,

P (w,m) =

w∑
i=0

(1− η)m−iηi
(
m

i

)
.

Therefore, the success probability in one iteration is P (w0, k
′ − k′′)P (c, k′′). In

each iteration, the complexity accumulates step by step, hence revealing the
following theorem.

Theorem 1 (The complexity of Algorithm 2) Let n be the number of sam-
ples required and a, t, b, w0, c, l, k

′′ be algorithm parameters. For the LPN in-
stance with parameter (k, η), the number of bit operations required for a successful
run of the new attack is equal to 2f(k,n,a,t,b,w0,c,l,k

′′,η), where f(k, n, a, t, b, w0, c, l, k
′′, η)

is a function9 defined as follows,

f(k, n, a, t, b, w0, c, l, k
′′, η) =

log2

(
ank + b2b

t(t+ 1)(2t+ 1)

6
− ((k + 1)2b + nb)

(
t

2

)
+ (k + 1)tn

+(k′′ − l)(2(n− t2b) + 2l) + l2l
w0∑
i=0

(
k1
i

)
+ (n− t2b)

w0∑
i=0

(
k1
i

)
i

)

− log2

( w0∑
i=0

(1− η)k1−iηi
(
k1
i

))
− log2

( c∑
i=0

(1− η)k
′′−iηi

(
k′′

i

))
(3)

under the condition that

n− t2b > 1/(ε2
t+1

· (ε′)2c), (4)

where ε = 1 − 2η, ε′ = 1 − 2d
k′′ and d is the smallest integer, s.t.,

∑d
i=0

(
k′′

i

)
>

2k
′′−l.

Proof. The complexity in one iteration is C1+C2+C3+C4+C5, and the expected
number of iterations is the inverse of P (w0, k1)P (c, k

′′); the overall complexity,
therefore, is C∗, where

C∗ =
C1 + C2 + C3 + C4 + C5

P (w0, k1)P (c, k′′)
.

Substituting the detailed formulas into the above expression will end the proof.
The condition (4) ensures that we have enough samples to determine the right
guess with high probability. ut
9 The symbol k1 denotes k − tb− k′′ for notational simplicity.



7 Results

We now present numerical results of the new algorithm attacking three key
LPN instances, as shown in Table 2. All aiming for achieving 80-bit security,
the first one is with parameter (512, 1/8), widely accepted in various LPN-
based cryptosystems (e.g., HB+ [18], HB# [12], LPN-C [13]) after the suggestion
from Levieil and Fouque [26]; the second one is with increased length (532, 1/8),
adopted as the parameter of the irreducible Ring-LPN instance employed in
Lapin [16]; and the last one is a new design parameter10 we recommend to use
in the future. The attacking details on different protocols will be given later. We
note that the new algorithm has significance not only on the above applications
but also on some LPN-based cryptosystems without explicit parameter settings
(e.g., [9, 22]).

Table 2. The complexity for solving different LPN instances.

LPN instance Parameters log2 C
∗

t a b l k′′ w0 c log2 n

(512, 1/8) 6 9 63 64 124 2 16 66.3 79.92
(532, 1/8) 6 9 65 66 130 2 17 68.0 81.82
(592, 1/8) 6 10 70 64 137 3 18 72.7 88.07

7.1 HB+

In [26], Levieil and Fouque proposed an active attack on HB+ by choosing the
random vector a from the reader to be 0. To achieve 80-bit security, they sug-
gested to adjust the lengths of secret keys to 80 and 512, respectively, instead of
being both 224. Its security is based on the assumption that the LPN instance
with parameter (512, 1/8) can resist attacks in 280 bit operations. But we break
it in 279.9 bit operations, thereby yielding an active attack on 80-bit security of
HB+ authentication protocol straightforwardly.

7.2 LPN-C and HB#

Using similar structures, Gilbert et al. proposed two different cryptosystems, one
for authentication (HB#) and the other for encryption (LPN-C). By setting
the random vector from the reader and the message vector to be both 0, we
obtain an active attack on HB# authentication protocol and a chosen-plaintext-
attack on LPN-C, respectively. As their protocols consist of both secure version
(random-HB# and LPN-C) and efficient version (HB# and Toeplitz LPN-C),
we need to analyze separately.
10 This instance requires 282.3 bits memory using the new algorithm, and could with-

stand all existing attacks on the security level of 280 bit operations.



Using Toeplitz Matrices Toeplitz matrix is a matrix in which each ascend-
ing diagonal from left to right is a constant. Thus, when employing a Toeplitz
matrix as the secret, if we attack its first column successively, then only one
bit in its second column is unknown. So the problem is transformed to that of
solving a new LPN instance with parameter (1, 1/8). We then deduce the third
column, the fourth column, and so forth. The typical parameter settings of the
number of the columns (denoted by m) are 441 for HB#, and 80 (or 160) for
Toeplitz LPN-C. In either case, the cost for determining the vectors except for
the first column is bounded by 240, negligible compared with that of attacking
one (512, 1/8) LPN instance. Therefore, we break the 80-bit security of these
»efficient« versions that use Toeplitz matrices.

Random Matrix Case If the secret matrix is chosen totally at random, then
there is no simple connection between different columns to exploit. One strategy
is to attack column by column, thereby deriving an algorithm whose complexity
is that of attacking a (512, 1/8) LPN instance multiplied by the number of the
columns. That is, if m = 441, then the overall complexity is about 279.9× 441 ≈
288.7. We may slightly improve the attack by exploiting that the different columns
share the same random vector in each round.

7.3 Lapin with an Irreducible Polynomial

In [16], Heyse et al. use a (532, 1/8) Ring-LPN instance with an irreducible
polynomial to achieve 80-bit security. We show here that this parameter setting
is not secure enough for Lapin to thwart attacks on the level of 280. Although the
new attack on a (532, 1/8) LPN instance requires 281.8 bit operations, larger than
280, there are two key issues to consider: 1) the Ring-LPN problem is believed
to be not harder than the standard LPN problem11; 2) we perform BKW steps
using LF1 setting in the new algorithm, but may obtain a more efficient attack
in practice when adopting the LF2 heuristic, whose effectiveness has been stated
and proven in the implementation part of [26]. We suggest to increase the size
of the employed irreducible polynomial in Lapin for 80-bit security.

8 More on the Covering-Coding Method

We in this section describe more aspects of the covering-coding technique, thus
emphasizing the most novel and essential step in the new algorithm.

Sphere-Covering Bound We use sphere-covering bound, for two reasons, to
estimate the bias ε′ contributed by the new technique. Firstly, there is a well-
known conjecture [7] in coding theory, i.e., the covering density approaches 1

11 For the instance in Lapin using a quotient ring modulo the irreducible polynomial
x532 + x + 1, it is possible to optimize the procedure for inverting a ring element,
thereby resulting in a more efficient attack than the generic one.



asymptotically if the code length goes to infinity. Thus, it is sensible to assume
for a »good« code, when the code length k′′ is relatively large. Secondly, we
could see from the previous example that the key feature desired is a linear code
with low average error weights, which is smaller than its covering radius. From
this perspective, the covering bound brings us a good estimation.

By concatenating five [23, 12] Golay codes, we construct a [115, 60] linear
code12 with covering radius 15. Its expected weight of error vector is quite close
to the sphere-covering bound for this parameter (with gap only 1). We believe
in the existence of linear codes with length around 125, rate approximately 1/2
and average error weight that reaches the sphere-covering bound. For explicit
code construction, see [15] for details.

Using Soft Information The weight of the error vector e′i is different for
different values of i, causing the confidence level to vary on different samples.
However, the inherent assumption when using Fast Walsh-Hadamard Transfor-
m is a constant confidence level over all samples; thus, Fast Walsh-Hadamard
Transform is not an optimal distinguishing method. For optimal distinguishing,
soft information methods such as likelihood ratio tests are required. We show
how to fully exploit soft distinguishing in the longer version of the paper[15].

Attacking Public-Key Cryptography We know various decodable covering
codes that could be employed in the new algorithm, e.g., rate about 1/2 lin-
ear codes that are table-based syndrome decodable, concatenated codes built
on Hamming codes, Golay codes and repetition codes, etc.. For the aimed cryp-
tographic schemes in this paper, i.e., HB variants, LPN-C, and Lapin with an
irreducible polynomial, the first three are efficient; but in the realm of public-
key cryptography (e.g., schemes proposed by Alekhnovich [1], Damgård and
Park [8], Duc and Vaudenay [10]), the situation alters. For these systems, their
security is based on LPN instances with huge secret length (tens of thousands)
and extremely low error probability (less than half a percent), so due to the
competitive average weight of the error vector shown by the previous exam-
ple in Section 4.1, the concatenation of repetition codes with much lower rate
seems more applicable—by low-rate codes, we remove more bits when using the
covering-coding method.

Alternative Collision Procedure Although the covering-coding method is
employed only once in the new algorithm, we could derive numerous variants,
and among them, one may find a more efficient attack. For example, we could
replace one or two steps in the later stage of the collision procedure by adding
two vectors decoded to the same codeword together. This alternative technique is
similar to that invented by Lamberger et al. in [24, 25] for finding near-collisions
of hash function. By this procedure, we could eliminate more bits in one step
12 Using this code, we stand at the margin of breaking the 80-bit security of (512, 1/8)

LPN instances, with time complexity only 280.5 and query complexity 266.2.



at the cost of increasing the error rate; this is a trade-off, and the concrete
parameter setting should be analyzed more thoroughly later.

9 Conclusions

In this paper we have described a new algorithm for solving the LPN problem
that employs an approximation technique using covering codes together with a
subspace hypothesis testing technique to determine the value of linear combina-
tions of the secret bits. Complexity estimates show that the algorithm beats all
the previous approaches, and in particular, we can present academic attacks on
instances of LPN that has been suggested in different cryptographic primitives.

The new technique has only been described in a rather simplistic manner,
due to space limitations. There are a few obvious improvements, one being the
use of soft decoding techniques and another one being the use of more powerful
constructions of good codes. There are also various modified versions that need
to be further investigated. One such idea is to use the new technique inside a
BKW step, thereby removing more bits in each step at the expense of introducing
another contribution to the bias. An interesting open problem is whether these
ideas can improve the asymptotic behavior of the BKW algorithm.
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A Illustrating the Procedure

In this section, we give an intuitive illustration of subspace hypothesis test per-
formed as follows,



∗
...
∗
z′i
∗
...


=



x0
...
xk′′

0
...



T

︸ ︷︷ ︸
Secret x



∗ ∗ g0 ∗
...
...

...
...

∗ ∗ gk′′ ∗
0
...


︸ ︷︷ ︸
Query matrix

=



x0
...
xk′′

0
...



T 

∗ ∗ (u′F+ e′i)0 ∗
...
...

...
...

∗ ∗ (u′F+ e′i)k′′ ∗
0
...

 .

Rewrite gi as codeword ci = u′F and discrepancy e′
i

We can separate the discrepancy e′i from uF, which yields



x0
...
xk′′

0
...



T 

∗ ∗ (u′F)0 ∗
...
...

...
...

∗ ∗ (u′F)k′′ ∗
0
...

 =



∗
...
∗

z′i + 〈x, e′i〉
∗
...


.

Finally, we note that x′1FT ∈ Fl2, where l < k′′. A simple transformation yields

(x′1F
T)0

...
(x′1F

T)l
0
...



T 

∗ ∗ u′0 ∗
...
...

...
...

∗ ∗ u′l ∗
0
...

 =



∗
...
∗

z′i + 〈x′1, e′i〉
∗
...


.

Since wH (e′i) ≤ w, the contribution from 〈x′1, e′i〉 is very small.


