
Fairness Versus Guaranteed Output Delivery in
Secure Multiparty Computation?

Ran Cohen and Yehuda Lindell

Department of Computer Science, Bar-Ilan University, Israel
cohenrb@cs.biu.ac.il, lindell@biu.ac.il

Abstract. In the setting of secure multiparty computation, a set of
parties wish to compute a joint function of their private inputs. The
computation should preserve security properties such as privacy, correct-
ness, independence of inputs, fairness and guaranteed output delivery. In
the case of no honest majority, fairness and guaranteed output delivery
cannot always be obtained. Thus, protocols for secure multiparty com-
putation are typically of two disparate types: protocols that assume an
honest majority (and achieve all properties including fairness and guar-
anteed output delivery), and protocols that do not assume an honest
majority (and achieve all properties except for fairness and guaranteed
output delivery). In addition, in the two-party case, fairness and guaran-
teed output delivery are equivalent. As a result, the properties of fairness
(which means that if corrupted parties receive output then so do the hon-
est parties) and guaranteed output delivery (which means that corrupted
parties cannot prevent the honest parties from receiving output in any
case) have typically been considered to be the same.
In this paper, we initiate a study of the relation between fairness and
guaranteed output delivery in secure multiparty computation. We show
that in the multiparty setting these properties are distinct and proceed
to study under what conditions fairness implies guaranteed output de-
livery (the opposite direction always holds). We also show the existence
of non-trivial functions for which complete fairness is achievable (with-
out an honest majority) but guaranteed output delivery is not, and the
existence of non-trivial functions for which complete fairness and guar-
anteed output delivery are achievable. Our study sheds light on the role
of broadcast in fairness and guaranteed output delivery, and shows that
these properties should sometimes be considered separately.

1 Introduction

1.1 Background

In the setting of secure multiparty computation, a set of mutually distrusting
parties wish to jointly and securely compute a function of their inputs. This
computation should be such that each party receives its correct output, and none

? This research was supported by the israel science foundation (grant
No. 189/11). The first author was also supported by the Ministry of Science, Tech-
nology and Space and by the National Cyber Bureau of Israel.

of the parties learn anything beyond their prescribed output. In more detail, the
most important security properties that we wish to capture are: privacy (no party
should learn anything more than its prescribed output), correctness (each party is
guaranteed that the output that it receives is correct), independence of inputs (the
corrupted parties must choose their inputs independently of the honest parties’
inputs), fairness1 (corrupted parties should receive their output if and only if
honest parties do), and guaranteed output delivery (corrupted parties should not
be able to prevent honest parties from receiving their output). The standard
definition today, [3, 7] formalizes the above requirements (and others) in the
following general way. Consider an ideal world in which an external trusted party
is willing to help the parties carry out their computation. An ideal computation
takes place in this ideal world by having the parties simply send their inputs to
the trusted party, who then computes the desired function and passes each party
its prescribed output. The security of a real protocol is established by comparing
the outcome of the protocol to the outcome of an ideal computation. Specifically,
a real protocol that is run by the parties (without any trusted party) is secure,
if an adversary controlling a coalition of corrupted parties can do no more harm
in a real execution than in the above ideal execution.

The above informal description is “overly ideal” in the following sense. It
is a known fact that unless an honest majority is assumed, it is impossible to
obtain generic protocols for secure multi-party computation that guarantee out-
put delivery and fairness [4]. The definition is therefore typically relaxed when
no honest majority is assumed. In particular, under certain circumstances, hon-
est parties may not receive any output, and fairness is not always guaranteed.
Recently, it was shown that it is actually possible to securely compute some
(in fact, many) two-party functionalities fairly [11, 1]. In addition, it is possible
to even compute some multiparty functionalities fairly, for any number of cor-
rupted parties; in particular, the majority function may be securely computed
fairly with 3 parties, and the Boolean OR function may be securely computed
for any number of parties [10]. This has promoted interest in the question of
fairness in the setting of no honest majority.

1.2 Fairness versus Guaranteed Output Delivery

The two notions of fairness and of guaranteed output delivery are quite similar
and are often interchanged. However, there is a fundamental difference between
them. If a protocol guarantees output delivery, then the parties always obtain
output and cannot abort. In contrast, if a protocol is fair, then it is only guaran-
teed that if one party receives output then all parties receive output. Thus, it is
possible that all parties abort. In order to emphasize the difference between the
notions, we note that every protocol that provides guaranteed output delivery
can be transformed into a protocol that provides fairness but not guaranteed

1 Throughout this paper, whenever we say “fair” we mean “completely fair”, and so
if any party learns anything then all parties receive their entire output. This is in
contrast to notions of partial fairness that have been studied in the past.

output delivery, as follows. At the beginning every party broadcasts OK; if one
of the parties did not send OK then all the parties output ⊥; otherwise the
parties execute the original protocol (that ensures guaranteed output delivery).
Clearly every party can cause the protocol to abort. However, it can only do so
before any information has been obtained. Thus, the resulting protocol is fair,
but does not guarantee output delivery.

It is immediate to see that guaranteed output delivery implies fairness, since
if all parties must receive output then it is not possible for the corrupted parties
to receive output while the honest do not. However, the opposite direction is
not clear. In the two-party case, guaranteed output delivery is indeed implied
by fairness since upon receiving abort the honest party can just compute the
function on its own input and a default input for the other party. However, when
there are many parties involved, it is not possible to replace inputs with default
inputs since the honest parties do not necessarily know who is corrupted (and
security mandates that honest parties’ inputs cannot be changed; otherwise, this
could be disastrous in an election-type setting). This leads us to the following
fundamental questions, which until now have not been considered at all (indeed,
fairness and guaranteed output delivery are typically used synonymously):

Does fairness imply guaranteed output delivery? Do there exist function-
alities that can be securely computed with fairness but not with guaranteed
output delivery? Are there conditions on the function/network model for
which fairness implies guaranteed output delivery?

The starting point of our work is the observation that the broadcast functionality
does actually separate guaranteed output delivery and fairness. Specifically, let
n denote the overall number of parties, and let t denote an upper bound on the
number of corrupted parties. Then, it is well known that secure broadcast can
be achieved if and only if t < n/3 [14, 13]. However, it is also possible to achieve
weak broadcast (which means that either all parties abort and no one receives
output, or all parties receive and agree upon the broadcasted value) for any t < n
[6]. In our terms, this is a secure computation of the broadcast functionality with
fairness but no guaranteed output delivery. Thus, we see that for t ≥ n/3 there
exist functionalities that can be securely computed with fairness but not with
guaranteed output delivery (the fact that broadcast cannot be securely computed
with guaranteed output delivery for t ≥ n/3 follows directly from the bounds
on Byzantine Generals [14, 13]). Although broadcast does provide a separation,
it is an atypical function. Specifically, there is no notion of privacy, and the
functionality can be computed information theoretically for any t < n given a
secure setup phase [15]. Thus, broadcast is a trivial functionality.2 This leaves
the question of whether fairness and guaranteed output delivery are distinct still
holds for more “standard” secure computation tasks.

It is well known that for t < n/2 any multiparty functionality can be securely
computed with guaranteed output delivery given a broadcast channel [8, 16].

2 We stress that “trivial” does not mean easy to achieve or uninteresting. Rather, it
means that cryptographic hardness is not needed to achieve it in the setting of no
honest majority [12].

Thus, using the weak broadcast of [6] in the protocols of [8, 16] we have that
any functionality can be securely computed with fairness for t < n/2. This
leaves open the question as to whether there exist functionalities (apart from
broadcast) that cannot be securely computed with guaranteed output delivery
for n/3 ≤ t < n/2.

In [10], they showed that the 3-party majority function and multiparty Boolean
OR function can be securely computed with guaranteed output delivery for any
number of corrupted parties (in particular, with an honest minority). However,
the constructions of [10] use a broadcast channel. This leads us to the following
questions for the range of t ≥ n/3:

1. Can the 3-party majority function and multiparty Boolean OR function be
securely computed with guaranteed output delivery without broadcast?

2. Can the 3-party majority function and multiparty Boolean OR function be
securely computed with fairness without a broadcast channel?

3. Does the existence of broadcast make a difference with respect to fairness
and/or guaranteed output delivery in general?

We remark that conceptually guaranteed output delivery is a stronger notion
of security and that it is what is required in some applications. Consider the
application of “mental poker”; if guaranteed output delivery is not achieved,
then a corrupted party can cause the execution to abort in case it is dealt a bad
hand. This is clearly undesirable.

1.3 Our Results

Separating fairness and guaranteed output delivery. We show that the 3-
party majority function that can be securely computed with fairness [10] cannot
be securely computed with guaranteed output delivery. Thus, there exist non-
trivial functionalities (i.e., functionalities that cannot be securely computed in
the information theoretic setting without an honest majority) for which fairness
can be achieved but guaranteed output delivery cannot. Technically, we show this
by proving that the 3-party majority function can be used to achieve broadcast,
implying that it cannot be securely computed with guaranteed output delivery.

Theorem 1. Consider a model without a broadcast channel and consider any
t ≥ n/3. Then, there exist non-trivial functionalities f (e.g., the majority func-
tion) such that f can be securely computed with fairness but f cannot be securely
computed with guaranteed output delivery.

This proves that fairness and guaranteed output delivery are distinct, at least
in a model without a broadcast channel.

Feasibility of guaranteed output delivery without broadcast. The proto-
cols of [10] for majority and Boolean OR both use a broadcast channel to achieve
guaranteed output delivery. As we have seen in Theorem 1 this is essential for
achieving their result for the majority function. However, is this also the case for
the Boolean OR function? In general, do there exist non-trivial functionalities
for which guaranteed output delivery is achievable without a broadcast channel
and for any number of corrupted parties?

Theorem 2. Consider a model without a broadcast channel and consider any
number of corruptions. Then, there exist non-trivial functionalities f (e.g., the
Boolean OR function) such that f can be securely computed with guaranteed
output delivery.

On the role of broadcast. We show that the existence or non-existence of
broadcast is meaningless with respect to fairness, but of great significance with
respect to guaranteed output delivery. Specifically, we show the following:

Theorem 3. Let f be a multiparty functionality. Then:

1. There exists a protocol for securely computing f with fairness with a broadcast
channel if and only if there exists a protocol for securely computing f with
fairness without a broadcast channel.

2. If there exists a protocol for securely computing f with fairness (with or with-
out a broadcast channel), then there exists a protocol for securely computing
f with guaranteed output delivery with a broadcast channel.

Thus, fairness and guaranteed output delivery are equivalent in a model with
a broadcast channel, and distinct without a broadcast channel. In contrast, by
Theorem 1 we already know that without broadcast it does not hold that fair-
ness implies guaranteed output delivery (otherwise, the separation in Theorem 1
would not be possible). We also show that under black-box reductions, fairness
never helps achieve guaranteed output delivery. That is:

Theorem 4. Let f be a multiparty functionality and consider a hybrid model
where a trusted party computes f fairly for the parties (i.e., either all parties
receive output or none do). Then, there exists a protocol for securely computing
f with guaranteed output delivery in the hybrid model if and only if there exists
a protocol for securely computing f with guaranteed output delivery in the real
model with no trusted party.

Intuitively, Theorem 4 follows from the fact that an adversary can always
cause the result of calls to f to be abort in which case they are of no help. This
does not contradict item (2) of Theorem 3 since given a broadcast channel and
nonblack-box access to the protocol that computes f with fairness, it is possible
to apply a variant of the GMW compiler [8] and detect which party cheated and
caused the abort to occur.

Conditions under which fairness implies guaranteed output delivery.
We have already seen that fairness implies guaranteed output delivery given
broadcast. We also consider additional scenarios in which fairness implies guar-
anteed output delivery. We prove that if a functionality can be securely computed
with fairness and identified abort (meaning that the identity of the cheating party
is detected) then the functionality can be securely computed with guaranteed
output delivery. Finally, we show that in the fail-stop model (where the only
thing an adversary can do is instruct a corrupted party to halt prematurely),
fairness is always equivalent to guaranteed output delivery. This follows from
the fact that broadcast is trivial in the fail-stop model.

Identified abort and broadcast. In the model of identified abort, the identity
of the cheating party is revealed to the honest parties. This definition was explic-
itly used by [2], who remarked that it is met by most protocols (e.g., [8]), but not
all (e.g., [9]). This model has the advantage that a cheating adversary who runs
a “denial of service” attack and causes the protocol to abort cannot go unde-
tected. Thus, it cannot repeatedly prevent the parties from obtaining output. An
interesting corollary that comes out of our work—albeit not related to fairness
and guaranteed output delivery—is that security with identified abort cannot
be achieved in general for t ≥ n/3 without broadcast. This follows from the fact
that if identified abort can be achieved in general (even without fairness), then
it is possible to achieve broadcast. Thus, we conclude:

Corollary 1. Consider a model without a broadcast channel and consider any
t ≥ n/3. Then, there exist functionalities f that cannot be securely computed
with identified abort.

Summary of feasibility. The table below summarizes the state of affairs re-
garding feasibility for secure computation with fairness and guaranteed output
delivery, for different ranges regarding the number of corrupted parties.

Num. of Corrupted With Broadcast Without Broadcast

t < n/3 All f can be securely computed
with guaranteed output delivery

n/3 ≤ t < n/2 All f can be computed with OR can be computed with
guaranteed output delivery guaranteed output delivery

t ≥ n/2 Fairness implies guaran- MAJ cannot be computed with
teed output delivery guaranteed output delivery

- If f can be securely computed fairly with broadcast
then it can be securely computed fairly without broadcast

Preliminaries. Full definitions can be found in the full version [5]. We consider
a number of different ideal models: security with guaranteed output delivery,
with fairness, with abort, with identified abort (meaning that in the case of
abort one of the corrupted parties is identified by the honest parties), and fair-
ness with identified abort. The ideal models for these models are respectively
denoted IDEAL

g.d., IDEAL
fair, IDEAL

abort, IDEAL
id-abort, IDEAL

fair,id-abort. We also con-
sider hybrid model protocols where the parties send regular messages to each
other, and also have access to a trusted party who computes some function f
for them. The trusted party may compute according to any of the specified ideal
model. Letting type ∈ {g.d., fair, abort, id-abort, (fair, id-abort)}, we call this the
(f, type)-hybrid model, and denote it HYBRID

f,type. The security parameter is de-
noted by κ, and the set of corrupted parties by I. Unless stated otherwise, all
adversaries considered are malicious.

2 Separating Fairness from Guaranteed Output Delivery

In this section we prove Theorem 1. As we have mentioned in the Introduction, it
is known that secure broadcast can be t-securely computed with guaranteed out-

put delivery if and only if t < n/3. In addition, secure broadcast can be computed
with fairness, for any t ≤ n, using the protocol of [6]. Thus, broadcast already
constitutes a separation of fairness from guaranteed output delivery; however,
since broadcast can be information theoretically computed (and is trivial in the
technical sense; see Footnote 2), we ask whether or not such a separation also
exists for more standard secure computation tasks.

In order to show a separation, we need to take a function for which fairness
in the multiparty setting is feasible. Very few such functions are known, and
the focus of this paper is not the construction of new protocols. Fortunately, in
[10], it was shown that the 3-party majority function can be securely computed
with fairness. (In [10] they use a broadcast channel. However, as we show in
Section 4.1, this implies the result also without a broadcast channel.) We stress
that the 3-party majority function is not trivial, and in fact the ability to securely
compute it with any number of corruptions implies the existence of oblivious
transfer (this is shown by reducing the 2-party greater-than functionality to it
and applying [12]).

We show that the 3-party majority function fmaj cannot be securely computed
with guaranteed output delivery and any number of corrupted parties in the
point-to-point network model by showing that it actually implies broadcast. The
key observation is that there exists an input (1, 1, 1) for which the output of fmaj

will be 1, even if a single corrupted party changes its input to 0. Similarly, there
exists an input (0, 0, 0) for which the output of fmaj will be 0, even if a single
corrupt party changes its input to 1. Using this property, we show that if fmaj

can be computed with guaranteed output delivery, then there exists a broadcast
protocol for 3 parties that is secure against a single corruption. Given an input
bit β, the sender sends β to each other party, and all parties compute fmaj on
the input they received. This works since a corrupted dealer cannot make two
honest parties output inconsistent values, since fmaj provides the same output to
all parties. Likewise, if there is one corrupted receiver, then it cannot change the
majority value (as described above). Finally, if there are two corrupted receivers,
then it makes no difference what they output anyway.

Theorem 5. Let t be a parameter and let fmaj : {0, 1}3 → {0, 1}3 be the majority
functionality for 3 parties fmaj(x1, x2, x3) = (y, y, y) where y = (x1 ∧ x2) ∨
(x3∧(x1⊕x2)). If fmaj can be t-securely computed with guaranteed output delivery
in a point-to-point network, then there exists a protocol that t-securely computes
the 3-party broadcast functionality for any t.

Proof: We construct a protocol π for securely computing the 3-party broad-
cast functionality fbc(x, λ, λ) = (x, x, x) in the (fmaj, g.d.)-hybrid model (i.e.,
in a hybrid model where a trusted party computes the fmaj functionality with
guaranteed output delivery). Protocol π works as follows:

1. The sender P1 with input x ∈ {0, 1} sends x to P2 and P3.
2. Party P1 sends x to the trusted party computing fmaj. Each party Pi (i ∈
{2, 3}) sends the value it received from P1 to fmaj.

3. Party P1 always outputs x. The parties P2 and P3 output whatever they
receive from the trusted party computing fmaj.

Let A be an adversary attacking the execution of π in the (fmaj, g.d.)-hybrid
model; we construct an ideal model adversary S in the ideal model for fbc with
guaranteed output delivery. S invokes A and simulates the interaction of A with
the honest parties and with the trusted party computing fmaj. S proceeds based
on the following corruption cases:

– P1 alone is corrupted: S receives from A the values x2, x3 ∈ {0, 1} that it
sends to parties P2 and P3, respectively. Next, S receives the value x1 ∈ {0, 1}
that A sends to fmaj. S computes x = fmaj(x1, x2, x3) and sends x to the
trusted party computing fbc. S simulates A receiving x back from fmaj, and
outputs whatever A outputs.

– P1 and one of P2 or P3 are corrupted: the simulation is the same as in the
previous case except that if P2 is corrupted then the value x2 is taken from
what A sends in the name of P2 to fmaj (and not the value that A sends first
to P2); likewise for P3. Everything else is the same.

– P1 is honest: S sends an empty input λ to the trusted party for every cor-
rupted party, and receives back some x ∈ {0, 1}. Next, S simulates P1 sending
x to both P2 and P3. If both P2 and P3 are corrupted, then S obtains from
A the values x2 and x3 that they send to fmaj, computes x′ = fmaj(x, x2, x3)
and simulates the trusted party sending x′ back to all parties. If only one of
P2 and P3 are corrupted, then S simulates the trusted party sending x back
to all parties. Finally, S outputs whatever A outputs.

The fact that the simulation is good is straightforward. If P1 is corrupted, then
only consistency is important, and S ensures that the value sent to fbc is the
one that the honest party/parties would output. If P1 is not corrupted, and both
P2 and P3 are corrupted, then P1 always outputs the correct x as required, and
the outputs of P2 and P3 are not important. Finally, if P1 and P2 are corrupted,
then S sends fbc the value that P3 would output in the real protocol as required;
likewise for P1 and P3 corrupted.

Theorem 5 implies that fmaj cannot be securely computed with guaranteed
output delivery for any t < 3 in a point-to-point network; this follows immedi-
ately from the fact that the broadcast function can be securely computed if and
only if t < n/3. Furthermore, by [10], fmaj can be securely computed fairly given
oblivious transfer (and as shown in Section 4.1 this also holds in a point-to-point
network). Thus, we have:

Corollary 2. Assume that oblivious transfer exists. Then, there exist non-trivial
functionalities f such that f can be securely computed with fairness but cannot
be securely computed with guaranteed output delivery, in a point-to-point network
and with t ≥ n/3.

Three-party functionalities that imply broadcast. It is possible to gener-
alize the property that we used to show that fmaj implies broadcast. Specifically,
consider a functionality f with the property that there exist inputs (x1, x2, x3)
and (x′1, x

′
2, x
′
3) such that f(x1, x2, x3) = 0 and f(x′1, x

′
2, x
′
3) = 1, and such that

if either of x2 or x3 (resp., x′2 or x′3) are changed arbitrarily, then the output of

f remains the same. Then, this function can be used to achieve broadcast. We
describe the required property formally inside the proof of the theorem below.
We show that out of the 256 functions over 3-bit inputs, there are 110 of them
with this property. It follows that none of these can be securely computed with
guaranteed output delivery in the presence of one or two corrupted parties. We
prove the following:

Theorem 6. There are 110 functions from the family of all 3-party Boolean
functions {f : {0, 1}×{0, 1}×{0, 1} → {0, 1}} that cannot be securely computed
with guaranteed output delivery in a point-to-point network with t = 1 or t = 2.

Proof: We provide a combinatorial proof of the theorem, by counting how many
functions have the property that arbitrarily changing one of the inputs does not
effect the output, and there are inputs that yield output 0 and inputs that yield
output 1. As we have seen in the proof of Theorem 5, it is possible to securely
realize the broadcast functionality given a protocol that securely computes any
such functionality with guaranteed output delivery.

We prove that there are 110 functions f : {0, 1}3 → {0, 1} in the union of
the following sets F1, F2, F3:

1. Let F1 be the set of all functions for which there exist (a, b, c), (a′, b′, c′) ∈
{0, 1}3 such that f(a, b, ·) = f(a, ·, c) = 1 and f(a′, b′, ·) = f(a′, ·, c′) = 0.

2. Let F2 be the set of all functions for which there exist (a, b, c), (a′, b′, c′) ∈
{0, 1}3 such that f(a, b, ·) = f(·, b, c) = 1 and f(a′, b′, ·) = f(·, b′, c′) = 0.

3. Let F3 be the set of all functions for which there exist (a, b, c), (a′, b′, c′) ∈
{0, 1}3 such that f(·, b, c) = f(a, ·, c) = 1 and f(·, b′, c′) = f(a′, ·, c′) = 0.

Observe that any function in one of these sets can be used to achieve broadcast, as
described above. Based on the inclusion-exclusion principle and using Lemma 2
proven below, it follows that:

|F1 ∪ F2 ∪ F3| = 3 · 50− 3 · 16 + 8 = 110,

as required. We first prove the following lemma:

Lemma 1. If f ∈ F1, then a 6= a′, if f ∈ F2 then b 6= b′ and if f ∈ F3 then c 6= c′.

Proof: Let f ∈ F1 and let a, a′, b, b′, c, c′ ∈ {0, 1} be inputs fulfilling the
condition for set F1. Assume by contradiction that a = a′. Thus,

f(a, b, c) = f(a, b̄, c) = f(a, b, c̄) = 1 and f(a, b′, c′) = f(a, b̄′, c′) = f(a, b′, c̄′) = 0.

If b = b′ then f(a, b, c′) = f(a, b′, c′) = 0. However, f(a, b, c) = f(a, b, c̄) = 1
and so f(a, b, c′) = 1 for any c′, in contradiction. Thus b 6= b′. Similarly, c 6= c′.
Therefore, b′ = b̄ and c′ = c̄ and by the condition, f(a, b, c) = 1 and f(a, b̄, c̄) = 0.

Consider f(a, b̄, c). From the condition, f(a, b, c) = f(a, b̄, c) = 1. However,
changing the c coordinate to c̄ gives us f(a, b̄, c̄) which by the condition equals 0
(because b′ = b̄ and c′ = c̄). We therefore derive a contradiction, and so conclude
that a′ = ā.

It remains to prove the following lemma, to derive the theorem.

Lemma 2. The following hold:

1. |F1| = |F2| = |F3| = 50.
2. |F1 ∩ F2| = |F1 ∩ F3| = |F2 ∩ F3| = 16.
3. |F1 ∩ F2 ∩ F3| = 8.

Proof: Let f : {0, 1}3 → {0, 1} be a function represented by the Boolean string
(β0β1β2β3β4β5β6β7) as shown in Table 1:

0 0 0 β0

0 0 1 β1

0 1 0 β2

0 1 1 β3

1 0 0 β4

1 0 1 β5

1 1 0 β6

1 1 1 β7

Table 1. Representation of a Boolean function {0, 1}3 → {0, 1}

1. Assume f ∈ F1 (the proof for F2, F3 is similar). The first quadruple (β0β1β2β3)
corresponds to a = 0 and the second quadruple (β4β5β6β7) corresponds to
a = 1. There exists b, c such that f(a, b, c) = f(a, b̄, c) = f(a, b, c̄) and
b′, c′ such that f(ā, b′, c′) = f(ā, b̄′, c′) = f(ā, b′, c̄′), in addition, f(a, b, c) 6=
f(ā, b′, c′). Therefore, in each such quadruple there must be a triplet of 3
identical bits, and the two triplets have opposite values.
Denote β = f(a, b, c), there are 5 options for (β0β1β2β3) in which 3 of the
bits equal β:

(ββββ), (ββββ̄), (βββ̄β), (ββ̄ββ), (β̄βββ).

For each such option, there are 5 options for (β4β5β6β7) in which 3 of the
bits equal β̄:

(β̄β̄β̄β̄), (β̄β̄β̄β), (β̄β̄ββ̄), (β̄ββ̄β̄), (ββ̄β̄β̄).

There are 2 options for the value of β, so in total |F1| = 2 · 5 · 5 = 50.
2. Assume f ∈ F1 ∩ F2 (the proof for F1 ∩ F3, F2 ∩ F3 is similar). In this case
a′ = ā and b′ = b̄ and the constraints are

f(a, b, c) = f(ā, b, c) = f(a, b̄, c) = f(a, b, c̄)

6= f(ā, b̄, c′) = f(a, b̄, c′) = f(ā, b, c′) = f(ā, b̄, c̄′).

Therefore, the string is balanced (there are 4 zeros and 4 ones), where 3 of
the bits (β0β1β2β3) are equal to β and one to β̄, and 3 of the bits (β4β5β6β7)
are equal to β̄ and one to β.
There are 4 options to select 3 bits in (β0β1β2β3), and 2 options to select one
bit in (β4β5β6β7). These two options correspond either to (ā, b, c) or (ā, b̄, c̄).
Hence, |F1 ∩ F2| = 2 · 4 · 2 = 16.

3. Assume f ∈ F1 ∩ F2 ∩ F3. In this case a′ = ā, b′ = b̄ and c′ = c̄ and the
constraints are

f(a, b, c) = f(ā, b, c) = f(a, b̄, c) = f(a, b, c̄)

6= f(ā, b̄, c̄) = f(a, b̄, c̄) = f(ā, b, c̄) = f(ā, b̄, c).

Therefore, the string is of the form (β0β1β2β3β̄0β̄1β̄2β̄3), where 3 of the bits
(β0β1β2β3) are equal to β and one to β̄.
There are 4 options to select 3 bits in (β0β1β2β3), and setting them to the
same value determines the rest of the string. Hence, |F1∩F2∩F3| = 2 ·4 = 8.

This completes the proof of Theorem 6.

As we have mentioned in the Introduction, in the case that t = 1 (i.e., when
there is an honest majority), all functions can be securely computed with fairness
in a point-to-point network. Thus, we have that all 110 functions of Theorem 6
constitute a separation of fairness from guaranteed output delivery. That is,
in the case of n/3 ≤ t < n/2, we have that many functions can be securely
computed with fairness but not with guaranteed output delivery. In addition, 8
out of these 110 functions reduce to 3-majority and so can be computed fairly
for any t ≤ n. Thus, these 8 functions form a separation for the range of t ≥ n/2.

3 Fairness Implies Guaranteed Output Delivery For
Default-Output Functionalities

In this section we prove Theorem 2. In fact, we prove a stronger theorem, stating
that fairness implies guaranteed output delivery for functions with the property
that there exists a “default value” such that any single party can fully determine
the output to that value. For example, the multiparty Boolean AND and OR
functionalities both have this property (for the AND functionality any party
can always force the output to be 0, and for the OR functionality any party can
always force the output to be 1). We call such a function a default-output func-
tionality. Intuitively, such a function can be securely computed with guaranteed
output delivery if it can be securely computed fairly, since the parties can first
try to compute it fairly. If they succeed, then they are done. Otherwise, they all
received abort and can just output their respective output in the default value
for the functionality. This can be simulated since any single corrupted party in
the ideal model can choose an input that results in the default output value.

Definition 1. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-ary functionality. f is
called a default-output functionality with default output (ỹ1, . . . , ỹn), if for every
i ∈ {1, . . . , n} there exists a special input x̃i such that for every xj with j 6= i it
holds that f(x1, . . . , x̃i, . . . , xn) = (ỹ1, . . . , ỹn).

Observe that (0, . . . , 0) is a default output for the Boolean AND function,
and (1, . . . , 1) is a default output for the Boolean OR function. We now prove
that if a functionality f has a default output value, then the existence of a fair
protocol for f implies a protocol with guaranteed output delivery for f .

Theorem 7. Let f : ({0, 1}∗)n → ({0, 1}∗)n be a default-output functionality. If
f can be t-securely computed with fairness (with or without a broadcast channel),
then f can be t-securely computed with guaranteed output delivery, in a point-
to-point network.

Proof: Let f be as in the theorem statement, and let the default output be
(ỹ1, . . . , ỹn). Assume that f can be securely computed with fairness with or
without a broadcast channel. By Theorem 9, f can be securely computed with
fairness without a broadcast channel. We now construct a protocol π that se-
curely computes f with guaranteed output delivery in the (f, fair)-hybrid model:

1. Each Pi sends its input xi to the trusted party computing f .
2. Denote by yi the value received by Pi from the trusted party.
3. If yi 6= ⊥, Pi outputs yi, otherwise Pi outputs ỹi.

Let A be an adversary attacking the execution of π in the (f, fair)-hybrid model.
We construct an ideal model adversary S in the ideal model with guaranteed
output delivery. Let I be the set of corrupted parties, let i ∈ I be one of the
corrupted parties (if no parties are corrupted then there is nothing to simulate),
and let x̃i be the input guaranteed to exist by Definition 1. Then, S invokes A
and simulates the interaction of A with the trusted party computing f (note that
there is no interaction between A and honest parties). S receives the inputs that
A sends to f . If any of the inputs equal abort then S sends x̃i as Pi’s input to its
own trusted party computing f (with guaranteed output delivery), and arbitrary
inputs for the other parties. Then, S simulates the corrupted parties receiving
⊥ as output from the trusted party in π, and outputs whatever A outputs. Else,
if none of the inputs equal abort, then S sends its trusted party the inputs that
A sent. S then receives the outputs of the corrupted parties from its trusted
party, and internally sends these to A as the corrupted parties’ outputs from the
trusted party computing f in π. Finally, S outputs whatever A outputs.

If A sends abort, then in the real execution every honest party Pj outputs
ỹj . However, since S sends the input x̃i to the trusted party computing f , by
Definition 1 we have that the output of every honest party Pj in the ideal
execution is also ỹj . Furthermore, if A does not send abort, then S just uses
exactly the same inputs that A sent. It is clear that the view of A is identical
in the execution of π and the simulation with S. We therefore conclude that π
securely computes f with guaranteed output delivery, as required.

We have proven that fairness implies guaranteed output delivery for default-
output functionalities; it remains to show the existence of fair protocols for some
default-output functionalities. Fortunately, this was already proven in [10]. The
only difference is that [10] uses a broadcast channel. Noting that the multiparty
Boolean OR functionality is non-trivial (in the sense of Footnote 2), and that it
has default output (1, . . . , 1) as mentioned above, we have the following corollary.

Corollary 3. Assume that oblivious transfer exists. Then, there exist non-trivial
functionalities f that can be securely computed with guaranteed output delivery
in a point-to-point network, for any t < n.

Feasibility of guaranteed output delivery. In Theorem 8, we prove that
16 non-trivial functionalities can be securely computed with guaranteed output
delivery in a point-to-point network (by showing that they are default-output

functionalities). Thus, guaranteed output delivery can be achieved for a signifi-
cant number of functions.

Theorem 8. There are 16 non-trivial functions from the family of all 3-party
Boolean functions {f : {0, 1} × {0, 1} × {0, 1} → {0, 1}} that can be securely
computed with guaranteed output delivery in a point-to-point network for any
number of corrupted parties.

Proof: When represented using its truth table as a Binary string (see Table 1),
the 3-party Boolean OR function is (01111111), similarly, the Boolean AND
function is (00000001). Every function (β0β1β2β3β4β5β6β7) such that there ex-
ists i for which βi = β and for every j 6= i βj = β̄ can be reduced to computing
Boolean OR. Since there are 8 ways to choose i and 2 ways to choose β, we
conclude that there are 16 such functions.

4 The Role of Broadcast

In this section, we prove Theorem 3, and show that a functionality can be se-
curely computed fairly with broadcast if and only if it can be securely computed
fairly without broadcast. In addition, we show that if a functionality can be se-
curely computed with fairness, then with a broadcast channel it can be securely
computed with guaranteed output delivery.

4.1 Fairness is Invariant to Broadcast

Gordon and Katz construct two fair multiparty protocols in [10], both of them
require a broadcast channel. In this section we show that fairness holds for both
even without a broadcast channel. More generally, fairness can be achieved with
a broadcast channel if and only if it can be achieved without a broadcast channel.

It is immediate that fairness without broadcast implies fairness with broad-
cast. The other direction follows by using the protocol of [6] for detectable broad-
cast. In the first stage, the parties execute a protocol that establishes a public key
infrastructure. This protocol is independent of the parties’ inputs and is com-
puted with abort. If the adversary aborts during this phase, it learns nothing
about the output and fairness is retained. If the adversary does not abort, the
parties can use the public key infrastructure and execute multiple (sequential)
instances of authenticated broadcast, and so can run the original protocol with
broadcast that is fair.

One subtlety arises since the composition theorem replaces every ideal call
to the broadcast functionality with a protocol computing broadcast. However,
in this case, each authenticated broadcast protocol relies on the same public key
infrastructure that is generated using a protocol with abort. We therefore define
a reactive ideal functionality which allows abort only in the first “setup” call.
If no abort was sent in this call, then the functionality provides a fully secure
broadcast (with guaranteed output delivery) from there on. The protocol of [6]
securely computes this functionality with guaranteed output delivery, and thus
constitutes a sound replacement of the broadcast channel (unless an abort took
place).

Theorem 9. Let f be an n-ary functionality and let t ≤ n. Then, f can be
t-securely computed with fairness assuming a broadcast channel if and only if f
can be t-securely computed with fairness in a point-to-point network.

Proof Sketch: If f can be t-securely computed with fairness in a point-to-
point network, then it can be t-securely computed with fairness with a broadcast
channel by just having parties broadcast messages and stating who the intended
recipient is. (Recall that in the point-to-point network we assume authenticated
but not private channels.)

Next, assume that f can be t-securely computed with fairness assuming a
broadcast channel. We now show that it can be t-securely computed with fairness
in a point-to-point network. We define the reactive functionality for conditional
broadcast fcondbc. In the first call to fcondbc, the functionality computes the AND
function, i.e., each party has an input bit bi and the functionality returns b =
b1 ∧ . . . ∧ bn to each party. In addition, the functionality stores the bit b as its
internal state for all future calls. In all future calls to fcondbc, if b = 1 it behaves
exactly like fbc, whereas if b = 0 it returns ⊥ to all the parties in the first
call and halts. By inspection, it is immediate that the protocol of [6] securely
computes fcondbc with guaranteed output delivery, for any t ≤ n in a point-to-
point network.

Let π be the protocol that t-securely computes f assuming a broadcast chan-
nel; stated differently, π t-securely computes f in the (fbc, g.d.)-hybrid model.
We construct a protocol π′ for t-securely computing f in the (fcondbc, fair)-hybrid
model. π′ begins by all parties sending the bit 1 to fcondbc and receiving back out-
put. If a party receives back b = 0, it aborts and outputs ⊥. Else, it runs π with
the only difference that all broadcast messages are sent to fcondbc instead of to
fbc. Since fcondbc behaves exactly like fbc as long b = 1 is returned from the first
call, we have that in this case the output of π and π′ is identical. Furthermore,
π′ is easily simulated by first invoking the adversary A′ for π′ and obtaining the
corrupted parties’ inputs to fcondbc in the first call. If any 0 bit is sent, then the
simulator S ′ for π′ sends abort to the trusted party, outputs whatever A′ outputs
and halts. Otherwise, it invokes the simulator S that is guaranteed to exist for
π on the residual adversary A that is obtained by running A′ until the end of
the first call to fcondbc (including A′ receiving the corrupted parties’ output bits
from this call). Then, S ′ sends whatever S wishes to send to the trusted party,
and outputs whatever S outputs. Since fcondbc behaves exactly like fbc when
b = 1 in the first phase, we have that the output distribution generated by S ′ is
identical to that of S when b = 1. Furthermore, when b = 0, it is clear that the
simulation is perfect.

4.2 Fairness With Identified Abort Implies Guaranteed Output
Delivery

Before proceeding to prove that fairness implies guaranteed output delivery in a
model with a broadcast channel, we first show that fairness with identified abort
implies guaranteed output delivery. Recall that a protocol securely computes a

functionality f with identified abort, if when the adversary causes an abort all
honest parties receive ⊥ as output along with the identity of a corrupted party.
If a protocol securely computes f with fairness and identified abort, then it is
guaranteed that if the adversary aborts, it learns nothing about the output and
all honest parties learn an identity of a corrupted party. In this situation, the
parties can eliminate the identified corrupted party and execute the protocol
again, where an arbitrary party emulates the operations of the eliminated party
using a default input. Since nothing was learned by the adversary when an abort
occurs, the parties can rerun the protocol from scratch (without the identified
corrupted party) and nothing more than a single output will be revealed to
the adversary. Specifically, given a protocol π that computes f with fairness
and identified abort, we can construct a new protocol π′ that computes f with
guaranteed output delivery. In the protocol π′, the parties iteratively execute π,
where in each iteration, either the adversary does not abort and all honest parties
receive consistent output, or the adversary aborts without learning anything and
the parties identify a corrupted party, who is eliminated from the next iteration.

Theorem 10. Let f be an n-ary functionality and let t ≤ n. If f can be t-
securely computed with fairness and identified abort, then f can be t-securely
computed with guaranteed output delivery.

Proof: We prove the theorem by constructing a protocol π that t-securely com-
putes f with guaranteed output delivery in the (f, fair-id-abort)-hybrid model.
For every party Pi, we assign a default input value x̃i and construct the protocol
π as follows:

1. Let P1 = {1, . . . , n} denote the set of indices of all participating parties.
2. For i = 1, . . . , t+ 1

(a) All parties in Pi send their inputs to the trusted party computing f ,
where the party with the lowest index in Pi simulates all parties in
P1 \ Pi, using their predetermined default input values.
For each j ∈ Pi, denote the output of Pj from f by yj .

(b) For every j ∈ Pi, party Pj checks if yj is a valid output, if so Pj outputs
yj and halts. Otherwise all parties receive (⊥, i∗) as output, where i∗

is an index of a corrupted party. If i∗ /∈ Pi (and so i∗ is a previously
identified corrupted party), then all parties set i∗ to be the party with
the lowest index in Pi.

(c) Set Pi+1 = Pi \ {i∗}.

First note that there are at most t + 1 iterations; therefore π terminates in
polynomial time. Let A be an adversary attacking π and let I be the set of
corrupted parties. We construct a simulator S for the ideal model with f and
guaranteed output delivery, as follows. S invokes A and receives its inputs to
f in every iteration. If an iteration contains an abort, then S simulates sending
the response (⊥, i∗) to all parties, and proceeds to the next iteration. In the
first iteration in which no abort is sent (and such an iteration must exist since
there are t+ 1 iterations and in every iteration except for the last one corrupted
party is removed), S sends the inputs of the corrupted parties that A sent to the

trusted party computing f . In addition, S sends the values for any corrupted
parties that were identified in previous iterations: if the lowest index remaining
is honest, then S sets these values to be the default values; else, it sets these
values to be the values sent by A for these parties. Upon receiving the output
from its trusted party, S hands it to A as if it were the output of the corrupted
parties in the iteration of π, and outputs whatever A outputs.

The simulation in the (f, fair-id-abort)-hybrid model is perfect since S can
perfectly simulate the trusted party for all iterations in which an abort is sent.
Furthermore, in the first iteration for which an abort is not sent, S sends f the
exact inputs upon which the function f is computed in the protocol. Thus, the
view of A and the output of the honest parties in the simulation with S are
identical to their view and output in an execution of π in the (f, fair-id-abort)-
hybrid model.

4.3 Fairness With Broadcast Implies Guaranteed Output Delivery

In Section 4.2, we saw that if a functionality can be securely computed with
fairness and identified abort, then it can be securely computed with guaran-
teed output delivery. In this section, we show that assuming the existence of a
broadcast channel, there is a protocol compiler that given a protocol computing
a functionality f with fairness, outputs a protocol computing f with fairness
and identified abort. Therefore, assuming broadcast, fairness implies guaranteed
output delivery.

The protocol compiler we present is a modification of the GMW compiler,
which relies on the code of the underlying fair protocol and requires non-black-
box access to the protocol. (Therefore, this result does not contradict the proof
in Section 5 that black box access to an ideal functionality that computes f with
fairness does not help to achieve guaranteed output delivery.) The underlying
idea is to use the GMW compiler [8, 7]. However, instead of enforcing semi-
honest behaviour, the compiler is used in order to achieve security with identified
abort. This is accomplished by tweaking the GMW compiler so that first only
public-coin zero-knowledge proofs are used, and second if an honest party detects
dishonest behaviour—i.e., if some party does not send a message or fails to
provide a zero knowledge proof for a message it sent—the honest parties record
the identity i∗ of the cheating party. We stress that the parties do not abort the
protocol at this point, but rather continue until the end to see if they received
⊥ or not. If they received ⊥, then they output (⊥, i∗) and halt. Else, if they
received proper output, then they output it. Note that if the parties were to halt
as soon as they detected a cheating party, then this would not be secure since
it is possible that some of the corrupted parties already received output by that
point. Thus, they conclude the protocol to determine whether they should abort
or not.

The soundness of this method holds because in the GMW compiler with
public-coin zero-knowledge proofs, a corrupted party cannot make an honest
party fail, and all parties can verify if the zero-knowledge proof was successful

or not. A brief description of the GMW compiler appears in full version [5]. We
prove the following:

Theorem 11. Assume the existence of one way functions and let t ≤ n. If a
functionality f can be t-securely computed with fairness assuming a broadcast
channel, then f can be t-securely computed with guaranteed output delivery.

Proof: We begin by proving that fairness with a broadcast channel implies
fairness with identified abort.

Lemma 3. Assume the existence of one way functions and let t ≤ n. Then,
there exists a polynomial-time protocol compiler that receives any protocol π,
running over a broadcast channel, and outputs a protocol π′, such that if π t-
securely computes a functionality f with fairness then π′ t-securely computes f
with fairness and identified abort.

Proof Sketch: Since the protocol is run over a single broadcasts channel, if
at any point a party does not broadcast a message when it is suppose to, then
all the parties detect it and can identify this party as corrupted, in case the
protocol outputs ⊥. Therefore, we can assume that no party halts the protocol
by not sending messages.

We consider a tweaked version of the GMW compiler. The input commit-
ment phase and the coin generation phase are kept the same. In the protocol
emulation phase, when a sender transmits a message to a receiver, they execute
a strong zero knowledge proof of knowledge with perfect completeness, in which
the sender acts as the prover and the receiver as the verifier. The statement is
that the message was constructed by the next message function, based on the
sender’s input, random coins and the history of all the messages the sender re-
ceived in the protocol. However, if the prover fails to prove the statement, unlike
in the GMW compiler, the verifier does not immediately broadcast the verifica-
tion coins, but stores the verification coins along with the identity of the sender
in memory, and resumes the protocol.

At the end of the protocol emulation, each party checks if it received an
output, if so it outputs it and halts. If a party did not receive an output and it
received a message for which the corresponding zero knowledge proof failed, it
broadcasts the verification coins it used during the zero knowledge proof. In this
case, the other parties verify if this is a justified reject, and if so they output
⊥ along with the identity of the prover. If the reject is not justified, the parties
output ⊥ along with the identity party that sent the false verification coins.

Since the zero knowledge proof has perfect completeness, a corrupted party
cannot produce verification coins that will falsely reject an honest party. Hence,
only parties that deviate from the protocol can be identified as corrupted.

It case each honest party finishes the execution of the compiled protocol with
some output, the compiled protocol remains secure, based on the security of the
underlying protocol and of the zero knowledge proof.

In case one of the honest parties did not get an output, there must be at
least one message that does not meet the protocol’s specification, hence at least

one honest party received a message without a valid proof. Therefore, all the
honest parties output ⊥ along with an identity of a corrupted party. However,
in this situation, the adversary does not learn anything about the output, since
otherwise there exists an attack violating the fairness of the underlying protocol
π. Hence, the compiled protocol retains fairness.

Applying Theorem 10 to Lemma 3 we have that f can be t-securely computed
with guaranteed output delivery, completing the proof of the theorem.

5 Black-Box Fairness Does Not Help For Guaranteed
Output Delivery

In this section we show that the ability to securely compute a functionality with
complete fairness does not assist in computing the functionality with guaranteed
output delivery, at least in a black box manner. More precisely, a functionality f
can be securely computed with guaranteed output delivery in the (f, fair)-hybrid
model if and only if f can be securely computed with guaranteed output delivery
in the plain model.

The idea is simply that any protocol that provides guaranteed output delivery
in the (f, fair)-hybrid model has to work even if the output of every call to the
trusted party computing f fairly concludes with an abort. This is because a
corrupted party can always send abort to the trusted party in every such call.

Proposition 1. Let f be an n-ary functionality and let t ≤ n. Then, f can be
t-securely computed in the (f, fair)-hybrid model with guaranteed output delivery
if and only if f can be t-securely computed in the real model with guaranteed
output delivery.

Proof Sketch: If f can be t-securely computes f in the real model with
guaranteed output delivery, then clearly it can be t-securely computed in the
(f, fair)-hybrid model with guaranteed output delivery by simply not sending
anything to the trusted party.

For the other direction, let π be a protocol that t-securely computes f in the
(f, fair)-hybrid model with guaranteed output delivery. We construct a protocol
π′ in the real model which operates exactly like π, except that whenever there
is a call in π to the ideal functionality f , the parties in π′ emulate receiving ⊥
as output. It is immediate that for every adversary A′ for π′, there exists an
adversary A for π so that the output distributions of the two executions are
identical (A just sends abort to every ideal call in π, and otherwise sends the
same messages that A′ sends). By the assumption that π is secure, there exists
a simulator S for the ideal model for f with guaranteed output delivery. This
implies that S is also a good simulator for A′ in π′, and so π′ t-securely computes
f with guaranteed output delivery in the real model.

6 Additional Results

In this section we prove two additional results. First, there exist functionali-
ties for which identified abort cannot be achieved (irrespective of fairness), and
fairness and guaranteed output delivery are equivalent for fail-stop adversaries.

6.1 Identified Abort Cannot Be Achieved Without Broadcast

We show that security with identified abort cannot be achieved in general with-
out assuming a broadcast channel.

Proposition 2. Assume the existence of one-way functions. There exist func-
tionalities that cannot be securely computed with identified abort, in the point-
to-point network model and with t ≥ n/3.

Proof Sketch: Assume by contradiction that the PKI setup functionality
defined by

fPKI(λ, . . . , λ) = ((pk, sk1), . . . , (pk, skn)),

can be t-securely computed with identified abort for some t = n/3, where pk =
(pk1, . . . , pkn) and each (pki, ski) are a public/private key pair for secure digital
signature scheme (that exists if one-way function exists). Then, we can t-securely
compute fbc by running the protocol π that is assumed to exist for fPKI, where
π is t-secure with identified abort. As in the proof of Theorem 10, if π ends with
abort then the party who is identified as corrupted is removed (unless the dealer
is identified as corrupted, in which case all parties just output 0 and halt). This
continues iteratively until the π terminates without abort, in which case a valid
PKI is established between all remaining parties. Given this PKI, the parties can
run authenticated broadcast in order to securely compute fbc. Since fbc cannot
be securely computed for t = t/3, we have a contradiction.

6.2 Fairness Implies Guaranteed Output Delivery For Fail Stop
Adversaries

In the presence of malicious adversaries, fairness and guaranteed output delivery
are different notions, since there exist functionalities that can be computed with
complete fairness but cannot be computed with guaranteed output delivery. In
the presence of semi-honest adversaries, it is immediate that both notions are
equivalent, since the adversary cannot abort. In this section, we show that in
the presence of the fail-stop adversaries, i.e., when the corrupted parties follow
the protocol with the exception that the adversary is allowed to abort, fairness
implies guaranteed output delivery.

The underlying idea is that if a corrupted party does not send a message to an
honest party during the execution of a fair protocol, the honest party can inform
all parties that it identified a corrupted party. Since the adversary is fail-stop,
corrupted parties cannot lie and falsely incriminate an honest party. Similarly to

the proof of Theorem 11, the parties do not halt if a party is detected cheating
(i.e., halting early). Rather, the parties continue to the end of the protocol: if the
protocol ended with output then they take the output and halt; otherwise, they
remove the cheating party and begin again. Since the original protocol is fair,
this guarantees that nothing is learned by any party if anyone receives abort;
thus, they can safely run the protocol again. As in the proof of Theorem 10, this
process is repeated iteratively until no abort is received. We conclude that:

Theorem 12. Let f be a, n-ary functionality and let t ≤ n. Then, f can be
t-securely computed with fairness in the presence of fail-stop adversaries, if and
only if f can be t-securely computed with guaranteed output delivery in the pres-
ence of fail-stop adversaries.

References

1. Asharov, G.: Towards characterizing complete fairness in secure two-party compu-
tation. In: TCC. pp. 291–316 (2014)

2. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols
for realistic adversaries. In: TCC. pp. 137–156 (2007)

3. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143–202 (2000)

4. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: STOC. pp. 364–369 (1986)

5. Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure
multiparty computation. Cryptology ePrint Archive, Report 2014/668 (2014),
http://eprint.iacr.org/

6. Fitzi, M., Gottesman, D., Hirt, M., Holenstein, T., Smith, A.: Detectable byzantine
agreement secure against faulty majorities. In: PODC. pp. 118–126 (2002)

7. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press (2004)

8. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC. pp. 218–229
(1987)

9. Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement.
Journal of Cryptology 18(3), 247–287 (2005)

10. Gordon, D., Katz, J.: Complete fairness in multi-party computation without an
honest majority. In: TCC. pp. 19–35 (2009)

11. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. In: STOC. pp. 413–422 (2008)

12. Kilian, J.: A general completeness theorem for two-party games. In: STOC. pp.
553–560 (1991)

13. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

14. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

15. Pfitzmann, B., Waidner, M.: Unconditional byzantine agreement for any number
of faulty processors. In: STACS. pp. 339–350 (1992)

16. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC. pp. 73–85 (1989)

