
Key Recovery Attacks on 3-round
Even-Mansour, 8-step LED-128, and Full AES2

Itai Dinur1, Orr Dunkelman1,2,?, Nathan Keller1,3,??, and Adi Shamir1

1 Computer Science department, The Weizmann Institute, Rehovot, Israel
2 Computer Science Department, University of Haifa, Israel
3 Department of Mathematics, Bar-Ilan University, Israel

Abstract. The Even-Mansour (EM) encryption scheme received a lot
of attention in the last couple of years due to its exceptional simplicity
and tight security proofs. The original 1-round construction was natu-
rally generalized into r-round structures with one key, two alternating
keys, and completely independent keys. In this paper we describe the
first key recovery attack on the one-key 3-round version of EM which is
asymptotically faster than exhaustive search (in the sense that its run-
ning time is o(2n) rather than O(2n) for an n-bit key). We then use the
new cryptanalytic techniques in order to improve the best known attacks
on several concrete EM-like schemes. In the case of LED-128, the best
previously known attack could only be applied to 6 of its 12 steps. In this
paper we develop a new attack which increases the number of attacked
steps to 8, is slightly faster than the previous attack on 6 steps, and uses
about a thousand times less data. Finally, we describe the first attack on
the full AES2 (which uses two complete AES-128 encryptions and three
independent 128-bit keys, and looks exceptionally strong) which is about
7 times faster than a standard meet-in-the-middle attack, thus violating
its security claim.
Keywords: Cryptanalysis, key recovery attacks, iterated Even-Mansour,
LED encryption scheme, AES2 encryption scheme.

1 Introduction

The Even-Mansour (EM) block cipher was first proposed at Asiacrypt’1991 [9].
It uses a single publicly known random permutation P on n-bit values and two
secret n-bit keys K1 and K2, and defines the encryption of the n-bit plaintext
m as E(m) = P (m ⊕ K1) ⊕ K2. The decryption of the n-bit ciphertext c is
similarly defined as D(c) = P−1(c ⊕K2) ⊕K1. It can be naturally generalized
into an r-round iterated EM encryption function (a.k.a. a key-alternating scheme
in [1, 5]), which is defined using r permutations P1, P2, . . . , Pr and r + 1 keys
K1,K2, . . .Kr+1 as E(m) = Pr(. . . P2(P1(m⊕K1)⊕K2)⊕K3 . . .⊕Kr)⊕Kr+1,
where decryption is defined in an analogous way.

? The second author was supported in part by the German-Israeli Foundation for
Scientific Research and Development through grant No. 2282-2222.6/2011.

?? The third author was supported by the Alon Fellowship.

For about 20 years this scheme received very little attention in the crypto-
graphic literature, but in the last couple of years it became a very active research
area: multiple papers about this scheme appeared at Crypto, Eurocrypt, Asi-
acrypt, CHES and FSE [1, 5, 8, 12, 14–16], analyzing its theoretical properties,
generalizing it in various ways, and proposing concrete constructions of block
ciphers which are based on the EM structure.

In this paper we describe several new key recovery attacks on iterated EM
schemes, analyze their complexity, and apply them to some concrete proposals
of block ciphers which have this structure. The origin of the observations used
in our attacks goes back to the first paper which attacked EM, by Daemen [6]
in 1991. Daemen observed that in single-round one-key EM, an attacker can use
the fact that the XOR of the unknown input and output of the permutation P
is equal to the known XOR of the plaintext and the ciphertext. This observation
can be used to break 1-round EM significantly faster than exhaustive search.

At FSE’13, Nicolic et al. [16] extended the basic observation considerably.
They considered the graph of the function P ′(x) = x ⊕ P (x),1 and showed
that vertices with a large in-degree in this graph can be exploited to bypass an
additional round of EM, but at the expense of enlarging the time complexity to
slightly less than exhaustive key search.

In this paper, we develop the techniques one step further, and show that
graphs of the functions P ′1 and P ′3 (corresponding to the permutations P1 and P3)
can be deployed simultaneously, resulting in an attack on 3-round EM. However,
this enhancement is not sufficient by itself, since the time complexity becomes
very close to that of exhaustive key search. Nevertheless, a surprising feature of
our 3 round attack is that it has about the same time complexity as the 2-round
attack. This feature is due to a novel filtering technique based on tailor-made
linear subspaces that we develop in Section 2.2, and allows us to quickly dispose
of data which is useless for our attack. Another novel technique that we develop
in this paper allows us to adapt the differential-based attack of [15] (which was
originally applied to 2-round iterated EM with one key) to 2-round iterated EM
with completely independent keys, and thus to attack the full AES2 scheme.
While the attack of [15] makes use of plaintext pairs with a fixed difference,
we notice that in its original form it cannot improve the standard meet-in-the-
middle attack on this scheme. In our attack, we work on non-standard structures
of plaintext triplets which allow us to filter out wrong guesses for the key more
efficiently.

Throughout the paper we follow the standard conventions in the analysis
of time and memory complexities. Our basic unit of memory is an n-bit block.
Our basic unit of time is a single evaluation of the encryption or the decryption
function, i.e., the full r-round iterated EM scheme. The scheme requires the
evaluation of the r permutations Pi (which are assumed to be heavy operations)
and a small number of simple operations (such as XORs) which are assumed to

1 In [16], the permutation P is actually the full encryption function, and thus x is a
message and P (x) is its corresponding ciphertext.

2

require negligible time.2 Thus, an invocation of a single permutation Pi (or its
inverse) costs 1/r time units. For the sake of convenience, we often partition the
attack into an offline preprocessing phase which analyzes the properties of the
public Pi’s, and an online attack phase which analyzes the given plaintexts and
ciphertexts. However, we always define the time complexity of the attack as the
sum of the complexities of its offline and online phases. This is different from
the model used by Hellman in his time/memory tradeoff attack, which allowed
unlimited free preprocessing and considered only the online complexity (note
that in our model, Hellman’s attack is no better than exhaustive search). To
prevent other types of “cheating”, we always add the time required to generate
the data to the final time complexity, and add the space required to hold the
data to the final space complexity.

All our attacks are only slightly better than exhaustive search, which raises
the natural question whether they should be considered as legitimate attacks.
This is a general problem in cryptanalysis, since it is difficult to decide whether an
attack such as the Biclique attack on AES-128 [4] which requires 2126 time really
“breaks” a scheme whose exhaustive search requires 2128 time. Some researchers
suggested that this issue should be decided by the nature of the attack: If an
attack on an n-bit scheme has an outer loop which tries 2n different possibilities,
but performs for each one of them an operation which is cheaper than a single
encryption, then the attack should be called an “improvement of exhaustive
search” rather than a “real attack”, and the scheme is not said to be “broken” by
it. However, this is a fragile definition since the same attack can be described in
multiple ways, and it is not always clear whether it tries 2n or fewer possibilities.

Fortunately, in cryptographic schemes such as EM which can be naturally
defined for arbitrarily large key sizes n, we can avoid this fragility by analyz-
ing the asymptotic complexity of the attack. As we show in this paper, our
attacks are about n/ log(n) times faster than exhaustive search. Since this ratio
is unbounded when n increases, our attacks are asymptotically better than any
standard or improved version of exhaustive search, and this is a robust state-
ment since it ignores all the multiplicative constants which are associated with
a particular model of computation.

Some of the concrete schemes we consider in this paper (such as LED and
AES2) pose the following problem: they use the general EM framework, but
instantiate P with a fixed-key AES-like permutation which is defined only for
a few values of n, and thus it is difficult to define their asymptotic security.
We solve this problem in two ways. First, we observe that all our attacks are
completely generic, and do not exploit any particular properties of P besides
its randomness. We can thus analyze the performance of our attacks assuming
that AES is replaced in these schemes by a random permutation over n-bit

2 This complexity gap is typically large for normal choices of n, and likely to grow
even larger as n increases: the number of 2-bit to 1-bit gates in the Boolean circuit
of Pi which are needed to thoroughly and independently mix the n input bits into n
output bits is expected to grow super-linearly with n, whereas the number of gates
in the Boolean circuit of XOR grows only linearly with n.

3

values, and show that their asymptotic time complexity is o(2n). In addition, we
carefully analyze the exact complexity of our attacks for the particular values
of n recommended for these schemes, and show that they are between 7 and 20
times faster than exhaustive search, depending on which scheme we attack.

We would like to point out that some of the previously published attacks
on these schemes (such as [5]) are distinguishing attacks, and thus they are
incomparable to our key recovery attacks. In addition, our attacks may fail to
find the key or require longer than expected time for a small fraction of “bad”
permutations, since we only analyze their expected behavior when the Pi’s are
randomly chosen permutations.

The paper is organized as follows. In Section 2, we introduce our new crypt-
analytic techniques, and use them to attack the one-key, three-round version of
EM (the best previous attack could only handle the two-round version of EM).
In particular, our new attack influenced the decision of the designers of the Zorro
block cipher [11] to increase its number of steps from 3 to 6. In Section 3, we
consider the LED block cipher, which was proposed at CHES 2011 [12]. It has
two flavors: a one-key version called LED-64, and a two-key version (in which
the two keys are alternately used) called LED-128. In the case of LED-64, the
best previously published attack [13] appeared at ACISP 2012, and could only
handle 2 steps. We increase the number of steps we can attack from 2 to 3. In
the case of LED-128, the best previously published attack [16] appeared at FSE
2013, and could handle 6 steps out of the 12 steps of full LED-128. We increase
this number to 8, using smaller time and data complexities. In Section 4, we
consider the generalized version of EM in which all the keys are completely in-
dependent, and show how to attack the 2-round version of this scheme. We then
use the new techniques in order to describe the first published attack on the full
version of the block cipher AES2, which was presented at Eurocrpyt 2012 by
[5]. The scheme looks exceptionally strong, using two complete AES encryptions
and three independent 128-bit keys. In fact, the designers of AES2 conjectured
that the best attack on their scheme is a meet-in-the-middle attack, but our new
attack disproves this claim since it is about 7 times faster.

2 Attacks on Iterated Even-Mansour with One Key

We first consider iterated EM schemes with one key K and r permutations
P1, P2, . . . , Pr, as shown in Figure 1 (note that if all the permutations are also
the same, the scheme is extremely vulnerable to slide attacks [3]). Our goal is to
use properties of one of the public permutations P ∈ {P1, P2, . . . , Pr} in order to
deduce properties of the associated keyed permutation3 Q(K,x) = K⊕P (x⊕K)
(used inside the EM construction), which hold for any value of K. As Daeman
pointed out in 1991 [6], for any value of K and in any invocation of Q(K,x), the
XOR of its input and output is equal to the XOR of the input and output of the
internal P function in the same invocation, i.e., x⊕Q(K,x) = (x⊕K)⊕P (x⊕K).

3 In general, given some public permutation Pi, we denote Qi(K,x) = K⊕Pi(x⊕K).

4

Another interesting observation is that when K is unknown we cannot determine
x ⊕ K, but the addition of K just renames the input vertices in the bipartite
graph of P ′(x) = x ⊕ P (x), and thus it preserves the distribution of in-degrees
of its output vertices. In particular, if some output values of P ′ are more likely
than expected (i.e., appear more than the average), then we can predict the value
Q(K,x) with a higher probability than expected even when K is unknown. More
specifically, any t-way collision on the value v in P ′, namely x1, x2, . . . , xt such
that x1 ⊕ P (x1) = x2 ⊕ P (x2) = . . . = xt ⊕ P (xt) = v for some value of v,
yields a t-way collision on the value v in the function Q′(K,x) = x⊕Q(K,x) =
x⊕K⊕P (x⊕K). Assume that indeed we manage to find during a preprocessing
phase a large t-way collision in the public P ′(x) on the output value v. Since it
also yields a t-way collision on the value v in the keyed function Q′(K,x), there
are at least t values of x for which Q′(K,x) = v, and thus Q(K,x) = x ⊕ v.
Consequently, we can guess Q(K,x) with a probability which is t times higher
than the expected 1/2n even when we know nothing about K.

m
⊕

P1

⊕
P2

⊕
Pi

⊕
Pr

⊕
c

K K K K K

Fig. 1. An iterated EM with one key

This graph theoretic property is strongly related to the one used in [16], but
we use it in a different way. Whereas we use properties of the public permutations
(which can be observed during a preprocessing phase), [16] exploits properties
of the given plaintext-ciphertext pairs: assume that mj ⊕ cj = v for multiple
plaintext-ciphertext pairs (mj , cj). Then, for all of these pairs, they know that
(mj ⊕ K) ⊕ (cj ⊕ K) = v. Thus, the attack of [16] is based on the property
that the XOR of the inputs to the first and last public permutations P1 and
P−1r attain the value v more than the expected number of times. In particular,
in their attack it is not clear how to compute such a v during a preprocessing
phase, and they have to wait for the actual data in order to search for the best v
in it. Our attacks, on the other hand, are based on the property that the XOR of
the input and output of a single public permutation attains some value v more
than the expected number of times, and thus we can find the best v once and
for all, before any data is given for a particular key.

In order to estimate the highest expected in-degree in the bipartite graph of
P ′(x) = x ⊕ P (x), we assume that for a random choice of the permutation P ,
the function P ′ behaves as a random function. This is not completely true, since
there are some extremely expensive ways to distinguish between such cases (for
example, the XOR of all the 2n values of P ′ is zero, whereas the XOR of all the
outputs of a truly random function is unlikely to be zero). However, it is easy to

5

verify with appropriate simulations that the in-degree distributions of the two
models behave almost identically, which is all we need in our attack.4

The main problem in applying this attack is that going over all the 2n possible
values of x in order to find the most popular v will make our attack slower
than exhaustive search (since we do not allow free preprocessing in our model).
Fortunately, we can find vertices v′ which are almost as popular by trying only
a small subset X ⊆ {0, 1}n of possible inputs. We denote this restricted function
by f|X , and note that it induces a subgraph in the bipartite graph associated
with f , in which the left side of the graph contains only the vertices in X. Our
goal now is to analyze the expected distribution of the in-degrees in random
subgraphs of random functions.

Random functions have been extensively analyzed in the literature (e.g., see
[10]). It is well-known that the in-degree of an element in the range of f|X is
distributed according to the Poisson distribution with an expectation λ, which
is equal to the average in-degree (i.e., λ = |X|/2n, which is the ratio between the
sizes of the domain and range of f|X). Given a parameter t, the probability that

an arbitrary element v will have an in-degree of t is thus (λte−λ)/t!. We have
2n elements in the range, implying that we expect that about (2n · λte−λ)/t!
vertices will have an in-degree of t. If we equate this number to 1 and ignore
low order terms, we can deduce that the largest expected in-degree t satisfies
t · log(t) = n, and thus t is approximately equal to n/ log(n). The crucial point
is that this highest in-degree grows in an unbounded way as n increases, and
thus any complexity of the form O(2n/t) behaves asymptotically as o(2n). If we

reduce this maximal t to t−i for a small i, we expect to find about (t/λ)
i

vertices
which have this reduced in-degree. Since t > 1 and λ < 1, this number grows
exponentially with i, and we can thus find a huge number of vertices which have
almost maximal in-degrees.

To get a sense of the concrete values implied by this distribution, consider
the recommended value of n = 64 in the LED block cipher. If we consider all
the 264 possible inputs, we expect to see 2 or 3 vertices of degree 20, 55 vertices
of degree 19, and 1060 vertices of degree 18. If we reduce the number of possible
inputs to 263, we expect to see 1 vertex of degree 17, 8 vertices of degree 16,
and 260 vertices of degree 15. If we further reduce the number of possible inputs
to 260, we expect to see 4 vertices of degree 10, 695 vertices of degree 9, and
100130 ≈ 216.6 vertices of degree 8.

The attacks in this paper are described in terms of several parameters, and
it is usually possible to obtain various tradeoffs between their time, data and
memory complexities by tweaking the parameter values. However, since there
is no simple formula which describes the exact tradeoff curves, one needs to
determine favorable tradeoff points on the curves by plugging in a few values for

4 In fact, collisions in P’(x) are slightly less likely to occur when P is a random function,
since if P (x) = P (y) (for x 6= y) then P ′(x) 6= P ′(y), whereas if P is random
permutation then x 6= y implies P (x) 6= P (y), and the probability for P ′(x) = P ′(y)
is a bit higher. As a result, our analysis slightly underestimates the highest expected
in-degree, and thus the attacks that we describe are actually (negligibly) faster.

6

the parameters and calculating the resultant complexities of the algorithms. This
is demonstrated in our attacks, where we suggest concrete points on the curves
which minimize the time complexity, but stress that there are other options as
well.

2.1 Attacks on 2-Round Iterated Even-Mansour with One Key

We start by describing a very basic attack, 2Round1KeyBasic. Let S and D be
parameters.
Preprocessing:

PR1. Evaluate P ′1 on an arbitrary subset of inputs X, such that |X| = S, and
store the output values (without their associated input values) in a sorted
list.

PR2. Traverse the sorted list and find the output v1 which occurs the maximal
number of times (in t1 consecutive locations).

Online:

O1. Ask for the encryption of D arbitrary plaintexts.
O2. For each plaintext-ciphertext pair (mi, ci):

(a) Assume that Q1(K,mi) = mi ⊕ v1 , zi and calculate P2(zi).
(b) Test the suggestion for the key K ′ = P2(zi) ⊕ ci by checking whether

indeed Q1(K ′,mi) = mi ⊕ v1. If the test fails, increment i and return
to Step O2. Otherwise, return the suggested key.

The time complexity of the preprocessing phase is S evaluations of P1, and
its memory complexity is also S. Note that the output of the preprocessing
phase is only the value v1 and the corresponding number t1, and we can discard
the rest of the sorted list (In our model, we can ignore the sorting time of
the list, since sorting uses only cheap comparison operations.5). In addition,
since we can execute the online phase in streaming mode by working on each
given plaintext-ciphertext pair independently and discarding it afterwards, its
memory complexity is negligible. The expected time and data complexities of
the online phase depend on the value of t1: we know that there are at least t1
values of x such that Q1(K,x) = x⊕v1. According to the birthday paradox, after
trying about 2n/t1 arbitrary messages we expect that at least one mi will satisfy
Q1(K,mi) = mi ⊕ v1 and suggest the correct value of K. Thus, the expected
data complexity of the online algorithm is 2n/t1, and in order to compute its
time complexity, we need to sum 2n/t1 evaluations of P2 in Step O2.(b), and
2n/t1 encryptions in order to generate the data.

5 One may notice that since sorting requires O(n log(n)) basic operations, then our
algorithm actually requires about 2n basic operations. However, as mentioned before
we expect the circuit size of any reasonable choice of P1 to grow at least as n1+ε

(for some ε > 0) when n increases, and thus the real time complexity of exhaustive
search is in fact O(n1+ε · 2n) basic operations, which is asymptotically larger than
the number of basic operations performed by our algorithm when we take the sorting
time of Õ(2n/n) values into account.

7

Optimizing the Basic Algorithm We now describe several useful optimiza-
tions of the 2Round1KeyBasic algorithm. The first optimization is to use the
freedom to choose the subset X during the preprocessing phase in order to im-
mediately filter out most of the wrong key suggestions that are now filtered only
in Step O2.(b) of the online algorithm, and thus avoid the Q1 evaluations in
these cases. The idea uses a technique that resembles (but is not the same as)
splice-and-cut [2]: assume that we choose the set X of size S as the subspace of
values x in which the n− log(S) LSBs are zero (or any other constant). Then the
value of these n− log(S) LSBs in all the t1 inputs x that satisfy P ′1|X(x) = v1 is
zero. Consequently, we know that for any plaintext mi, if mi⊕K is one of these
t1 inputs, then the n− log(S) LSBs of K are equal to those of mi. Thus, before
testing the suggested key in Step O2.(b), we can check whether its n − log(S)
LSBs are equal to those of mi, and otherwise discard it without evaluating Q1.
We note that in this attack, the saving in time complexity due to this optimiza-
tion is small, however, in Section 2.2 we show that a similar idea yields a more
significant saving in our attacks on 3-round iterated EM. We alert the reader
that even though the values in X are now chosen in a specific way, the attack
remains a known plaintext attack since there is no restriction on the choice of
the mi’s.

The second optimization is to consider ` > 1 outputs of P ′1 with a high
in-degree instead of just one. This allows us to reduce the data complexity of
the attack at the expense of using more memory and slightly more time dur-
ing the online phase of the attack. Since the original online algorithm required
only negligible memory, this tradeoff seems favorable. Our optimized algorithm
2Round1KeyOpt is described below, using S, D and ` as parameters.
Preprocessing:

PR1. Evaluate P ′1 on a subset of S inputs, X, such that the n− log(S) LSBs of
each x ∈ X are zero. Store the output values in a sorted list.

PR2. Traverse the sorted list and store the outputs v1, v2, . . . , v` which have the
highest in-degrees. Denote the in-degrees of the outputs v1, v2, . . . , v` by
t1, t2, . . . , t`, respectively.

Online:

O1. Ask for the encryption of D arbitrary plaintexts.
O2. For each plaintext-ciphertext pair (mi, ci):

(a) For j ∈ {1, 2, . . . , `}:
i. Assume that Q1(K,mi) = mi ⊕ vj , zij and calculate P2(zij).
ii. Let K ′ = P2(zij) ⊕ ci. If the n − log(S) LSBs of K ′ are different

from those of ci, discard it and return to Step O2.(a) (if j = ` return
to Step O2). Otherwise, test K ′ by checking whether Q1(K ′,mi) =
mi ⊕ vj . If the test succeeds, return K ′, otherwise, if j < ` return
to Step O2.(a) and if j = ` return to Step O2.

As in the 2Round1KeyBasic, the time complexity of the preprocessing phase
is S evaluations of P1, and its memory complexity is also S. However, in 2Round1KeyOpt,

8

a bigger list of size ` is carried over to the online algorithm, and thus its memory
complexity is increased to `. In order to calculate the time and data complexities,
we denote by t̄ the average value of t1, t2, . . . , t`, and thus there are t̄` values of
x for which Q1(K,x) = x ⊕ vj for j ∈ {1, 2, . . . , `}. According to the birthday
paradox, after trying about 2n/(t̄`) arbitrary messages, we expect that at least
one mi will satisfy Q1(K,mi) = mi ⊕ vj and suggest the correct value of K.
Thus, the expected data complexity of the attack is 2n/(t̄`). Since we perform `
evaluations of P2 per given message, the expected time complexity of the online
algorithm is about ` ·D = 2n/t̄ evaluations of P2, S/2n · 2n/t̄ = S/t̄ evaluations
of P1 in Step O2.(a).ii, and 2n/(t̄`) time to generate the data.

Concrete Parameters For n = 64, let S = 260, which implies λ = 260/264 =
2−4. As shown before, by using the formula (2n ·λte−λ)/t! = 264 · (2−4te−1/16)/t!
with t = 10, it is easy to check that in such an evaluated subgraph of a random
function we expect to see at least ` = 4 vertices with an in-degree of 10. With
these parameters, the time complexity of the preprocessing phase is 260 evalua-
tions of P1 (which is equivalent to 259 evaluations of the 2-round scheme), and
its memory complexity is 260. The memory complexity of the online algorithm
is negligible, its data complexity is 264/(10 · 4) = 258.7 known plaintexts and
its time complexity is 264/10 evaluations of P2 and 260/10 evaluations of P1,
which is equivalent to about 259.8 time units. Adding the 258.7 time required to
generate the data, we obtain a total time complexity of about 260.4, which is
about 12 times faster than exhaustive search.

We can significantly reduce the data complexity by considering all the vertices
with an in-degree of at least 8, whose number ` is expected to exceed 216 . This
does not affect the time and memory complexities of the preprocessing phase.
The memory complexity of the online algorithm is now 216 (which is still quite
small), its data complexity is 264/(8 · 216) = 245 known plaintexts and its time
complexity is now 264/8 evaluations of P2 and 260/8 evaluations of P1, which
is equivalent in total to about 260.1 time units, or about 15 times faster than
exhaustive search (note that we actually gain in time complexity since we use
significantly less data).

2.2 Attacks on 3-Round Iterated Even-Mansour with One Key

In the attacks on 2-round iterated EM with one key, we use properties of P1 in
order to guess a value of Q1(K,x) with a higher probability than expected. We
then apply to this guess the public permutation P2, which immediately gives us
a suggestion for the key by XORing the obtained value with the ciphertext. In
order to attack 3-round iterated EM with one key, we start with the same idea.
However, after the evaluation of P2, we cannot immediately get a suggestion for
the key, as we still have to apply the complex operation of XOR’ing the unknown
key, applying P3, and XOR’ing the unknown key again, before we can compare
the result to the ciphertext. Nevertheless, we notice that given the value at the
output of P2, we reduce the key recovery problem to attacking a single-round

9

EM scheme with one key, to which we can apply the simple attack of [8]. Thus,
we run an additional preprocessing step which evaluates and stores in a sorted
list of values of P ′3(x) = x ⊕ P3(x) for various inputs x. The sorted list is used
in the online algorithm in order to obtain suggestions for the key, as described
in the basic algorithm 3Round1KeyBasic below, which uses S1, S3 and D as
parameters.
Preprocessing:

PR1. Evaluate P ′1 on an arbitrary subset of inputs X1 such that |X1| = S1, and
store the output values in a sorted list.

PR2. Traverse the sorted list and find an output v1 with a maximal in-degree,
denoted by t1.

PR3. Evaluate P ′3 on an arbitrary subset of inputs X3, such that |X3| = S3, and
store the output values P ′3(x) in a sorted list L3 next to the corresponding
value of P3(x).

Online:

O1. Ask for the encryption of D arbitrary plaintexts.
O2. For each plaintext-ciphertext pair (mi, ci):

(a) Assume that Q1(K,mi) = mi ⊕ v1 , zi and calculate P2(zi).
(b) Look for the value of P2(zi) ⊕ ci in L3. If there is no match, return to

Step O2 and increment i.
(c) For each match of P2(zi) ⊕ ci, obtain the value of P3(x) (for which

P2(zi) ⊕ ci = P ′3(x) = x ⊕ P3(x)), and test the key suggestion K ′ =
P3(x)⊕ ci by checking whether Q1(K ′,mi) = mi ⊕ v1. If the test fails,
continue with the next match (if none remain, return to Step O2). Oth-
erwise, return the key.

The time complexity of the preprocessing phase is S1 evaluations of P1 and
S3 evaluations of P3, and its memory complexity is max(S1, S3). Note that we do
not need to store any of the values generated in the first step of the preprocessing
after Step PR2 terminates. The memory complexity of the online algorithm is
S3. In order to calculate the expected time and data complexities of the online
algorithm, we notice that after we process D pairs (mi, ci), we expect that at
least (t1 ·D)/2n of them satisfy Q1(K,mi) = mi⊕ v1, and consequently at least
(t1 ·D · S3)/22n pairs will be matched and suggest the correct value for the key
in Step O2.(c). Thus, in order to obtain a correct suggestion for the key, we
require (t1 ·D · S3)/22n = 1, implying that the data complexity of the attack is
D = 22n/(t1 · S3). We expect a match in Step O2.(c) for a fraction of S3/2

n of
the (mi, ci) pairs. Thus, we estimate the time complexity of the online algorithm
as D = 22n/(t1 · S3) evaluations of P2, S3/2

n · 22n/(t1 · S3) = 2n/t1 evaluations
of P1, and 22n/(t1 · S3) time required to generate the data.

Optimizing the Basic Algorithm Similarly to our 2Round1KeyOpt attack,
we would like to use the freedom to choose the subset X1 during preprocessing
in order to reduce the time complexity of the attack. However, in this attack we

10

will use this freedom in a different way: we “synchronize” the sets X1 and X3

such that we can instantly rule out most pairs (mi, ci) (just by comparing bits
of mi and ci) that do not simultaneously satisfy both Q1(K,mi) = mi ⊕ v1 and
P−13 (ci ⊕K) ∈ X3. Thus, we can discard most pairs (mi, ci) which will suggest
a wrong key (or suggest no key at all) with negligible computation.

We now assume that |X1| = |X3| = S. Similarly to the 2Round1KeyOpt
algorithm, we choose X1 as a subspace of values x in which the n− log(S) LSBs
are zero (or any other constant). This implies that for any plaintext mi, if mi⊕K
is one of the t1 inputs that satisfy P ′1|X1

(x) = v1, then the n− log(S) LSBs of K

are equal to those of mi. As for x ∈ X3, we store the values of P ′3(x) = x⊕P3(x),
and set the additional condition that the n− log(S) LSBs of P3(x) are zero (or
any other constant). In fact, during preprocessing, we do not evaluate P3(x) on
x ∈ X3, but rather evaluate P−13 (y) for each y ∈ Y3, where Y3 contains all n-bit
vectors whose n− log(S) LSBs are zero. Thus, we know that if ci⊕K ∈ Y3, then
the n − log(S) LSBs of K are equal to those of ci. Combining the conditions
on mi and ci, we know that a pair (mi, ci) will suggest a correct key in our
algorithm only if the n− log(S) LSBs of mi and ci are equal.

Similarly to the 2Round1KeyOpt attack, the second optimization is to con-
sider ` > 1 outputs of P ′1 with a high in-degree (instead of just one), which
allows us to reduce the data complexity of the attack. Our optimized algorithm
3Round1KeyOpt is described below, and Figure 2 illustrates its online part. Let
S, D and ` be parameters.
Preprocessing:

PR1. Evaluate P ′1 on a subset of S inputs, X, such that the n− log(S) LSBs of
each x ∈ X are zero. Store the output values in a sorted list.

PR2. Traverse the sorted list and store the outputs v1, v2, . . . , v` with the highest
in-degrees. Denote the in-degrees of outputs v1, v2, . . . , v` by t1, t2, . . . , t`,
respectively.

PR3. Let Y3 be the subspace of the |S| n-bit vectors in which the n − log(S)
LSBs are zero. For each y ∈ Y3, store P−13 (y)⊕y = P ′3(P−13 (y)) in a sorted
list L3 next to y.

Online:

O1. Ask for the encryption of D arbitrary plaintexts.
O2. For each plaintext-ciphertext pair (mi, ci), if the n− log(S) LSBs of mi and

ci are not equal, discard it. Otherwise:
(a) For j ∈ {1, 2, . . . , `}:

i. Assume that Q1(K,mi) = mi ⊕ vj , zij and calculate P2(zij).
ii. Look for the value of P2(zij)⊕ci in L3. If there is no match: if j < `

return to Step O2.(a), otherwise (j = `) return to Step O2.
iii. For each match of P2(zij) ⊕ ci, obtain the value of y (such that

P2(zi)⊕ci = P−13 (y)⊕y = P ′3(P−13 (y))), and test the key suggestion
K ′ = y ⊕ ci by checking whether Q1(K,mi) = mi ⊕ vj . If the test
succeeds, return K ′, otherwise, if j < ` return to Step O2.(a), and
if j = ` return to Step O2.

11

The time complexity of the preprocessing phase is S evaluations of P1 and
P−13 , and its memory complexity is S+ `. The memory complexity of the online
algorithm is also S + `. We denote by t̄ the average value of t1, t2, . . . , t`, and
thus there are t̄` values of x for which Q1(K,x) = x ⊕ vj for j ∈ {1, 2, . . . , `}.
Consequently, in order to obtain a correct suggestion for the key, we require
that (t̄` · D · S)/22n = 1, implying that the data complexity of the attack is
D = 22n/(t̄` · S). We process a pair (mi, ci) (i.e., we do not discard it in step
2) with probability S/2n, and for each such pair we perform ` evaluations of P2

and for a S/2n fraction of those we also evaluate Q1 (or P1). The expected time
complexity of the online algorithm is thus ` · S/2n ·D = 2n/t̄ evaluations of P2,
S/t̄ evaluations of P1, and 22n/(t̄` · S) time required to generate the data.

Thus, the attack has about the same time complexity as the 2Round1KeyOpt
attack, and for ` = 1 it is more efficient than the 3Round1KeyBasic attack by
a factor of about 2n/S.

Concrete Parameters For n = 64, let S = 260, i.e., λ = 260/264 = 2−4. Again,
we use the formula (2n ·λte−λ)/t! = (264 ·2−4te−1/16)/t! with t = 8, such that we
expect at least ` = 216 vertices with an in-degree of 8. With these parameters, the
time complexity of the preprocessing phase is 260 evaluations of P1 (equivalent
to about 258.5 evaluations of the 3-round scheme), and its memory complexity
is 260. The memory complexity of the online algorithm is 260, its expected data
complexity is 2128/(8 · 216 · 260) = 249 known plaintexts and its expected time
complexity is 264/8 evaluations of P2 and 260/8 evaluations of P1, whose sum
is equivalent to about 259.6 time units (the time required to generate the data
is negligible). Note that it is possible to reduce the data complexity further at
the expense of increasing the time complexity by considering vertices of a lower
in-degree.6

mi
⊕

P1

⊕
P2

⊕
P3

⊕
ci

K K K K

O2: Compare n− log(S) LSBs

⊕
vj

zij ⊕
O2.(ii):

?∈ L3

yes
Test K ′ = y ⊕ ci

Fig. 2. The online algorithm of 3Round1KeyOpt

6 For example, we expect more than 223 vertices with an in-degree of at least 7, and
thus if we use only 2128/(8 ·223 ·260) = 242 known plaintexts for the attack, the time
complexity of the online algorithm slightly increases from 259.6 to about 259.8.

12

3 Applications to Step-Reduced LED

LED is a 64-bit block cipher designed for resource-constrained environments,
proposed by Guo et al. at CHES 2011 [12]. The two main variants of LED
are LED-64 (which supports 64-bit keys) and LED-128 (which supports 128-
bit keys). The design of LED can be viewed as a special case of iterated EM
schemes: LED-64 is in fact an 8-step iterated EM scheme7 with one key and
LED-128 is a 12-step iterated EM scheme with alternating keys K1 and K2. The
inner permutations of LED are based on the AES design framework, however,
since our attacks do not exploit any properties of these permutations, we do not
specify them here and refer the reader to [12] for further details.

In the single-key model, the best attack published so far on reduced LED-64
breaks 2 steps of this cipher [13]. For LED-128, the largest number of attacked
steps was 6 (see [16]). In this paper, we use our generic attacks in order to im-
prove the data complexity of the attack on 6-step LED-128 from 259 to 245, while
keeping the time and memory complexities similar to the original attack. More
significantly, we present the first single-key attacks which are faster than exhaus-
tive search on 3-step LED-64 and on 8-step LED-128. The previous attacks on
LED (which are in the single-key rather than in the related-key model) and our
new attacks are summarized in Table 1. Note in particular that our new attack
on 8-step LED-128 actually has a slightly better time complexity and requires
about a thousand times less data than the best previous attack which could only
be applied to 6 steps of LED-128, out of the full 12.

Reference Cipher Steps Time Data Memory

[13] LED-64 2 256 28 CP 211

This paper LED-64 3 260.2 249 KP 260

[13] LED-128 4 2112 216 CP 219

[15] LED-128 4 296 264 KP 264

[16] LED-128 4 296 232 KP 232

[16] LED-128 6 2124.4 259 KP 259

This paper LED-128 6 2124.5 245 KP 260

This paper LED-128 8 2123.8 249 KP 260

The data complexity is given in chosen plaintexts (CP), or in known plaintexts (KP).

Table 1. Single-Key Attacks of Step-Reduced LED

7 In the design of LED, the term “step” is used in order to describe what we refer to
as a “round” of an iterated EM scheme. On the other hand, a “round” of LED is
used in order to describe a smaller component of its internal permutation. Thus, in
order to avoid confusion, we will use the term “step” in this section.

13

3.1 An attack on 6 Steps of LED-128

As was pointed out in [15, 16], it is easy to reduce 2r+ 2-steps of LED-128 (with
its alternating use of two keys) into an iterated EM scheme variant with one key
by guessing K1 and combining consecutive pairs of permutations (along with the
XOR’ed key between them) into a single known permutation. In particular, [16]
reduced 6-step LED-128 into a 2-step iterated EM, which was relatively easy
to attack. Similarly, we guess K1, and for each guess, we partially encrypt and
decrypt the given plaintext-ciphertext pairs and remain with a 2-step iterated
EM scheme with a single key (K2). Thus, we can apply our 2-step iterated EM
attack (presented in Section 2.1) for each guess of K1. However, we note that
the preprocessing phase of our 2Round1KeyOpt attack should be executed for
each guess of K1, and it is thus now a part of the online algorithm of the attack
on LED-128. Moreover, the algorithm can no longer be performed in streaming
mode, as we need to reuse each plaintext-ciphertext pair for each guess of K1.
The general framework of the algorithm is given below.

1. Ask for the encryption of D arbitrary plaintexts and store them.
2. For each value of K1:

(a) Apply the 2Round1KeyOpt attack (including the preprocessing steps)
on the resultant scheme, with plaintext-ciphertext pairs (P1(mi⊕K1), P−16 (ci⊕
K1)). Test each returned key using another pair (mj , cj).

Using the parameters of our 2Round1KeyOpt attack (presented in Section
2.1), the expected data complexity of the attack is 245 known plaintexts and
its memory complexity is 260 (required for preprocessing, which is now part of
the online algorithm). We calculate the expected time complexity of the algo-
rithm as follows: adding the preprocessing and online time complexities, the
main procedure of the attack performed for each guess of K1 requires about
260.1 +260 ≈ 261.1 evaluations of 4 out of the 6 permutations, which is equivalent
to about 260.5 evaluations of the full scheme. Compared to this complexity, the
partial encryption and decryption of each (mj , cj) pair, and the trial encryptions
using (mj , cj) (performed on average once per guess of K1) are negligible. Thus,
the expected time complexity of the attack is about 264+60.5 = 2124.5, which is
about 11 times better than exhaustive search.

3.2 An Attack on 3 Steps of LED-64

We can attack 3-step LED-64 by directly applying 3Round1KeyOpt attack with
n = 64, presented in Section 2.2. Thus, the preprocessing phase has a time
complexity of about 258.5 and memory complexity of 260. The online algorithm
has a memory complexity of 260, data complexity of 249 known plaintexts and
time complexity of 259.6. Since in this paper we consider the preprocessing time
as part of the attack (i.e., we assume that we are trying to attack the scheme for
the first time), the total time complexity of the algorithm is about 260.2, which
is about 14 times better than exhaustive search.

14

3.3 An Attack on 8 Steps of LED-128

We use the same framework of our 6 step attack on LED-128 in order to attack 8
steps of LED-128 (shown in Figure 3). Namely, we guess K1, and for each guess,
we partially encrypt and decrypt the given plaintext-ciphertext pairs and remain
with a 3-step iterated EM scheme with a single key (K2). We then apply our
3Round1KeyOpt attack (presented in Section 2.2) for each guess of K1. Thus,
the memory complexity of the attack is 260 and its data complexity is 249 known
plaintexts. We calculate the expected time complexity of the algorithm as follows:
adding the preprocessing and online time complexities, the main procedure of
the algorithm performed for each guess of K1 requires about 258.5 +259.6 ≈ 260.2

evaluations of 6 out of the 8 permutations, equivalent to about 259.8 evaluations
of the full scheme. Thus, the expected time complexity of the attack is about
264+59.8 = 2123.8, which is about 18 times better than exhaustive search.

m
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

P1 P2 P3 P4 P5 P6 P7 P8 c

K1 K2 K1 K2 K1 K2 K1 K2 K1

Fig. 3. 8-step LED-128

4 Attacks on 2-Round Iterated Even-Mansour with
Independent Keys

The best known generic attack on 2-Round iterated EM with independent keys
(see Figure 4) is a MITM attack. This attack is described in the full version of
this paper [7] and it requires 2n memory and has a time complexity of about
2n+1.6 full cipher evaluations.

m
⊕

P1

⊕
P2

⊕
c

K1 K2 K3

Fig. 4. A 2-round iterated EM with independent keys

In this attack, we use a property of the permutation Pi, which is shared by
the keyed permutation Qi(Ki,Ki+1, x) = Pi(x ⊕ Ki) ⊕ Ki+1 for any value of
Ki and Ki+1: these permutations have the same difference distribution table.
In order to demonstrate this, consider an entry with the value of t in the dif-
ference distribution table of Pi, and denote its input and output differences by

15

∆1 and ∆2, respectively. Let us denote the t corresponding input-output pairs8

by ((x1, y1), (x1 ⊕ ∆1, y1 ⊕ ∆2)), . . . , ((xt, yt), (xt ⊕ ∆1, yt ⊕ ∆2)). Then, the t
input-output pairs ((x1⊕K1, y1⊕K2), (x1⊕K1⊕∆1, y1⊕K2⊕∆2)), . . . , ((xt⊕
K1, yt ⊕ K2), (xt ⊕ K1 ⊕ ∆1, yt ⊕ K2 ⊕ ∆2)) correspond to the same entry in
the difference distribution table of Qi (i.e., the entry with input and output
differences ∆1 and ∆2, respectively).

Using the property above, if we find an entry [∆1, ∆2] in the difference distri-
bution table of Pi with a large value, then we can use a similar attack to the one
given in [15] on 2-round iterated EM,9 in order to break the scheme. However,
our main observation is that we can find such an entry by preprocessing the
public function Pi, which does not need to admit any special property in order
to attack the scheme. Thus, our attack adds a preprocessing algorithm to the
online algorithm of the attack of [15] (which assumes that we have an entry in
the difference distribution table of Pi with a large value). In addition (as we will
see later), in the case of independent keys, the basic attack of [15] is not better
than exhaustive search, and we will need to add another non-trivial component
to this attack. The details of our unoptimized attack 2Round3KeyBasic are
given below, where S1, S2, D are parameters:

Preprocessing:

PR1. Choose an arbitrary input difference ∆1 6= 0 and evaluate P1 on S1 arbi-
trary input pairs with input difference ∆1. For each pair (x, P1(x)), (x ⊕
∆1, P1(x⊕∆1)), store the output difference P1(x)⊕P1(x⊕∆1) in a sorted
list, next to x.

PR2. Traverse the sorted list and find the most common output difference ∆2

(if there are several options for ∆2, choose one arbitrarily). Keep only the
entries of the list which correspond to pairs with the output difference of
∆2 (assume that we have t such pairs). For each such entry, recalculate
and store the full pair (x, P1(x)), (x⊕∆1, P1(x⊕∆1)).

PR3. Evaluate P2 on S2 arbitrary input pairs with input difference ∆2. For each
pair (y, P2(y)), (y ⊕∆2, P2(y ⊕∆2)), store the output difference P2(y) ⊕
P2(y ⊕∆2) in a sorted list L2, next to y.

Online:

O1. Ask for the encryption of D arbitrary input pairs with difference ∆1.
O2. For each pair of plaintext-ciphertext pairs ((m1

i , c
1
i), (m

2
i = m1

i ⊕∆1, c
2
i)):

(a) Search for the output difference c1i ⊕ c2i in L2, (if there is no match,
discard the pair and return to Step O2).

(b) For each match (y, P2(y)), (y ⊕∆2, P2(y ⊕∆2)), we have 2 candidates
for K3: P2(y)⊕c1i and P2(y)⊕c2i . We also have 2t candidates for K1: the
candidates x⊕m1

i and x⊕m2
i for each of the t values of x. As each pair

of values for K1 and K3 suggests a value for K2, we have 4t suggestions
of the full key to test using another plaintext-ciphertext pair.

8 In this paper, we consider unordered pairs, i.e., ((x, y), (u, v)) and ((u, v), (x, y)) are
considered the same pair.

9 Although the attack of [15] was previously applied to 2-round iterated EM with one
key, it can be adapted to work for the case of independent keys.

16

Similarly to our analysis of random functions, assuming that P1 is a random
permutation, then each entry in its difference distribution table is distributed
according to the Poisson distribution [17].10 This will allow us to easily determine
the expected value of t and use it in order to analyze the expected complexity
of our algorithm.

The memory complexity of the preprocessing phase is max(S1, S2), and its
time complexity is 2 ·S1 evaluations of P1 and 2 ·S2 evaluations of P2, or S1 +S2

evaluations of the full scheme. The memory complexity of the online algorithm is
S2. Using the birthday paradox, out of the D plaintext-ciphertext pairs evaluated
in the online phase, at least (D · t)/2n−1 are expected to have a difference of ∆2

after P1 (note that we have 2n−1 unordered pairs with a given difference). Using
the same argument, we expect that (D·t·S2)/22(n−1) of them will match the pairs
evaluated for P2 during proprocessing. Thus, we require that (D ·t·S2)/22(n−1) =
1, or D = 22(n−1)/(t ·S2) in order to find the key with high probability. Without
going into the details of the time complexity analysis, note that we are using
only two plaintext-ciphertext pairs to filter the key suggestions, tested in Step
O2.(b). As we have 3n bits of key and 2n bits of filtering, we need to test at
least 2n keys in Step O2.(b), and thus the attack is not faster than the simple
MITM attack on this scheme.

4.1 A Time-Optimized Attack on 2-Round Iterated Even-Mansour

In order to improve the attack, we need to add more filtering conditions, and thus
we actually work on triplets, as described in the improved algorithm 2Round3KeyOpt:

Preprocessing:

PR1. Choose an arbitrary input difference ∆1 6= 0 and evaluate P1 on S1 arbi-
trary input pairs with input difference ∆1. For each pair (x, P1(x)), (x ⊕
∆1, P1(x⊕∆1)), store the output difference P1(x)⊕P1(x⊕∆1) in a sorted
list, next to x.

PR2. Traverse the sorted list and find the most common output difference ∆2

(if there are several options for ∆2, choose one arbitrarily). Keep only the
entries of the list which correspond to pairs with the output difference of
∆2 (assume that we have t such pairs). For each such entry recalculate
and store the full pair (x, P1(x)), (x⊕∆1, P1(x⊕∆1)) in a list L1.

PR3. Choose another non-zero input difference ∆′1. For each value x stored in
L1, evaluate P1 an additional time to obtain the pair (x⊕∆′1, P1(x⊕∆′1)).
Store the (total of) additional t output differences P1(x)⊕ P1(x⊕∆′1) in
a separate sorted list of differences, L′1.

PR4. Evaluate P2 on S2 arbitrary input pairs with input difference ∆2. For each
pair (y, P2(y)), (y ⊕∆2, P2(y ⊕∆2)), store the output difference P2(y) ⊕
P2(y ⊕∆2) in a sorted list L2, next to y.

10 However, we note that since we consider unordered pairs, then we have only 2n−1

possible pairs of a given difference, and each pair can attain (almost) all 2n output
differences

17

Online:

O1. Ask for the encryption of D arbitrary input triplets of the form m, m⊕∆1

and m⊕∆′1 (for D arbitrary values of m).
O2. For each pair of plaintext-ciphertext pairs ((m1

i , c
1
i), (m

2
i = m1

i ⊕∆1, c
2
i)):

(a) Search for the output difference c1i ⊕ c2i in the list L2 (if there is no
match, discard the pair and return to Step O2).

(b) For each match (y, P2(y)), (y ⊕∆2, P2(y ⊕∆2)), compute the 2 candi-
dates for K3: K ′3 = P2(y)⊕ c1i and K ′′3 = P2(y)⊕ c2i .

(c) Denote the third plaintext-ciphertext pair in the triplet by (m3
i = m1

i ⊕
∆′1, c

3
i). Compute y′ = P−12 (c3i ⊕K ′3) and y′′ = P−12 (c3i ⊕K ′′3).

(d) Search L′1 for the four possibilities of the third difference obtained at
this stage: y′⊕ y, y′⊕∆2⊕ y, y′′⊕ y, y′′⊕∆2⊕ y (if there is no match,
discard the pair and return to Step O2).

(e) Test the 4t suggestions of the full key using (m3
i , c

3
i). If the test succeeds,

return the key.

The time and memory complexities of the preprocessing phase are sim-
ilar to those of the 2Round3KeyBasic attack (the additional t evaluations
of P1 and t units of storage are negligible). Using the calculation done for
2Round3KeyBasic, the online algorithm requires D = 22(n−1)/(t ·S2) plaintext-
ciphertext triplets. For each processed triplet, we expect to find a match in L2

with probability S2/2
n. For each such matched triplet, we need to compute P2(y)

(in order to compute K ′3 and K ′′3) and evaluate P−13 twice in order to compute
y′ and y′′. Once we do so, the probability of a match in L′1 in Step O2.(d) is
proportional to t/2n. This is a negligible probability, and thus we can neglect the
complexity of the trial encryptions in Step O2.(e). Thus, the online time com-
plexity (without counting the data) is about 3 ·D ·S2/2

n = 0.75 ·2n/t evaluations
of P2, or 0.375 · 2n/t evaluations of the full scheme.

The data complexity of the attack is D triplets, or 3D chosen plaintexts.
However, we can easily reduce it to 2D by requesting encryptions of structures
containing the messages m, m⊕∆1, m⊕∆′1 and m⊕∆1⊕∆′1. Each such structure
of 4 plaintexts contains two triplets which we can exploit, implying that the data
complexity of the attack is indeed 2D. If we add the time to generate the data to
the time complexity, we get that the total time complexity of the online attack
is about 2D + 0.375 · 2n/t evaluations of the full scheme.

4.2 Applications to Full AES2

AES2 is a 128-bit block cipher presented at Eurocrpyt 2012 [5]. The cipher is a
2-round iterated EM construction, where each of the public permutations P1 and
P2 is based on an invocation of full AES-128 with a pre-fixed and publicly known
key. The designers of the scheme claim that its security is 2128. However, the best
attack known to the designers (as claimed in [5]) is the MITM attack presented
in [7], and based on our analysis, it has a slightly higher time complexity of
3 · 2128 ≈ 2129.6 and a memory complexity of 2128.

18

In order to attack AES2, we use our 2Round3KeyOpt attack with S1 = 2124

and S2 = 2125.4. This implies that the memory complexities of both the pre-
processing and online phases is 2125.4. The time complexity of the preprocessing
phase is S1 + S2 = 2124 + 2125.4 ≈ 2125.9 evaluations of the full scheme. Using
the formula (2n · λt · e−λ)/t! with λ = 2124/2128 = 1/16 and t = 18, it is easy
to check that we expect to find at least 10 entries in the difference distribution
table with a value of 18 (we need only one). Plugging in these values into the
formula D = 22(n−1)/(t · S2), we obtain D ≈ 2124.4, implying that the data
complexity of the attack is 2125.4 chosen plaintexts. The time complexity of the
online attack is 2D+0.375·2n/t ≈ 2125.6, and adding the preprocessing time, the
total time complexity of the algorithm is about 2125.9 + 2125.6 ≈ 2126.8. This is
better than the 2129.6 time complexity of the MITM attack by a factor of about
7, and clearly violates the 128-bit security claimed for AES2 in [5]. We also note
that the memory complexity is improved from 2128 to about 2125.4, however the
data complexity is greatly increased to 2125.4.

5 Conclusions

In this paper we considered several schemes which are based on the iterated
Even-Mansour scheme, and improved their best known attacks. For the recom-
mended values of n our attacks are between 7 and 20 times faster than exhaustive
search, but they differ from other improvements of exhaustive search since their
improvement factor is about n/ log(n), which increases to infinity as n grows.
In particular, we described the first attack on the full AES2, and improved the
number of steps which can be attacked in the well known LED-128 block cipher
from 6 to 8. Even though our attacks are not likely to be practically signifi-
cant, they indicate that block ciphers based on the EM scheme with one key
should have at least 4 rounds, regardless of how strong we make the internal
permutations.

References

1. Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and John P.
Steinberger. On the Indifferentiability of Key-Alternating Ciphers. In Ran Canetti
and Juan A. Garay, editors, CRYPTO (1), volume 8042 of Lecture Notes in Com-
puter Science, pages 531–550. Springer, 2013.

2. Kazumaro Aoki and Yu Sasaki. Preimage Attacks on One-Block MD4, 63-Step
MD5 and More. In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica,
editors, Selected Areas in Cryptography, volume 5381 of Lecture Notes in Computer
Science, pages 103–119. Springer, 2008.

3. Alex Biryukov and David Wagner. Slide Attacks. In Lars R. Knudsen, editor,
FSE, volume 1636 of Lecture Notes in Computer Science, pages 245–259. Springer,
1999.

4. Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique
Cryptanalysis of the Full AES. In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages 344–371.
Springer, 2011.

19

5. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, François-Xavier Standaert,
John P. Steinberger, and Elmar Tischhauser. Key-Alternating Ciphers in a Prov-
able Setting: Encryption Using a Small Number of Public Permutations - (Ex-
tended Abstract). In Pointcheval and Johansson [18], pages 45–62.

6. Joan Daemen. Limitations of the Even-Mansour Construction. In Hideki Imai,
Ronald L. Rivest, and Tsutomu Matsumoto, editors, ASIACRYPT, volume 739 of
Lecture Notes in Computer Science, pages 495–498. Springer, 1991.

7. Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Key Recovery Attacks
on 3-round Even-Mansour, 8-step LED-128, and Full AES2. IACR Cryptology
ePrint Archive, 2013:391, 2013.

8. Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in Cryptography:
The Even-Mansour Scheme Revisited. In Pointcheval and Johansson [18], pages
336–354.

9. Shimon Even and Yishay Mansour. A Construction of a Cipher from a Single
Pseudorandom Permutation. J. Cryptology, 10(3):151–162, 1997.

10. Philippe Flajolet and Andrew M. Odlyzko. Random Mapping Statistics. In Jean-
Jacques Quisquater and Joos Vandewalle, editors, EUROCRYPT, volume 434 of
Lecture Notes in Computer Science, pages 329–354. Springer, 1989.

11. Benôıt Gérard, Vincent Grosso, Maŕıa Naya-Plasencia, and François-Xavier Stan-
daert. Block Ciphers That Are Easier to Mask: How Far Can We Go? In Guido
Bertoni and Jean-Sébastien Coron, editors, CHES, volume 8086 of Lecture Notes
in Computer Science, pages 383–399. Springer, 2013.

12. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED Block Cipher. In Bart Preneel and Tsuyoshi Takagi, editors, CHES, volume
6917 of Lecture Notes in Computer Science, pages 326–341. Springer, 2011.

13. Takanori Isobe and Kyoji Shibutani. Security Analysis of the Lightweight Block
Ciphers XTEA, LED and Piccolo. In Willy Susilo, Yi Mu, and Jennifer Seberry,
editors, ACISP, volume 7372 of Lecture Notes in Computer Science, pages 71–86.
Springer, 2012.

14. Rodolphe Lampe, Jacques Patarin, and Yannick Seurin. An Asymptotically Tight
Security Analysis of the Iterated Even-Mansour Cipher. In Wang and Sako [19],
pages 278–295.

15. Florian Mendel, Vincent Rijmen, Deniz Toz, and Kerem Varici. Differential Anal-
ysis of the LED Block Cipher. In Wang and Sako [19], pages 190–207.

16. Ivica Nikolić, Lei Wang, and Shuang Wu. Cryptanalysis of Round-Reduced LED.
In FSE, 2013. To appear in Lecture Notes in Computer Science.

17. Luke O’Connor. On the Distribution of Characteristics in Bijective Mappings. In
Tor Helleseth, editor, EUROCRYPT, volume 765 of Lecture Notes in Computer
Science, pages 360–370. Springer, 1993.

18. David Pointcheval and Thomas Johansson, editors. Advances in Cryptology - EU-
ROCRYPT 2012 - 31st Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Pro-
ceedings, volume 7237 of Lecture Notes in Computer Science. Springer, 2012.

19. Xiaoyun Wang and Kazue Sako, editors. Advances in Cryptology - ASIACRYPT
2012 - 18th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Beijing, China, December 2-6, 2012. Proceedings,
volume 7658 of Lecture Notes in Computer Science. Springer, 2012.

20

