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Abstract. We define a novel notion of quasi-adaptive non-interactive
zero knowledge (NIZK) proofs for probability distributions on parametri-
zed languages. It is quasi-adaptive in the sense that the common reference
string (CRS) generator can generate the CRS depending on the language
parameters. However, the simulation is required to be uniform, i.e., a sin-
gle efficient simulator should work for the whole class of parametrized
languages. For distributions on languages that are linear subspaces of
vector spaces over bilinear groups, we give quasi-adaptive computation-
ally sound NIZKs that are shorter and more efficient than Groth-Sahai
NIZKs. For many cryptographic applications quasi-adaptive NIZKs suf-
fice, and our constructions can lead to significant improvements in the
standard model. Our construction can be based on any k-linear assump-
tion, and in particular under the eXternal Diffie Hellman (XDH) as-
sumption our proofs are even competitive with Random-Oracle based
Σ-protocol NIZK proofs.
We also show that our system can be extended to include integer tags
in the defining equations, where the tags are provided adaptively by
the adversary. This leads to applicability of our system to many applica-
tions that use tags, e.g. applications using Cramer-Shoup projective hash
proofs. Our techniques also lead to the shortest known (ciphertext) fully
secure identity based encryption (IBE) scheme under standard static
assumptions (SXDH). Further, we also get a short publicly-verifiable
CCA2-secure IBE scheme.

Key words: NIZK, Groth-Sahai, bilinear pairings, signatures, dual-
system IBE, DLIN, SXDH.

1 Introduction

In [13] a remarkably efficient non-interactive zero-knowledge (NIZK) proof sys-
tem [3] was given for groups with a bilinear map, which has found many appli-
cations in design of cryptographic protocols in the standard model. All earlier
NIZK proof systems (except [12], which was not very efficient) were constructed



by reduction to Circuit Satisfiability. Underlying this system, now commonly
known as Groth-Sahai NIZKs, is a homomorphic commitment scheme. Each
variable in the system of algebraic equations to be proven is committed to using
this scheme. Since the commitment scheme is homomorphic, group operations
in the equations are translated to corresponding operations on the commitments
and new terms are constructed involving the constants in the equations and the
randomness used in the commitments. It was shown that these new terms along
with the commitments to variables constitute a zero-knowledge proof [13].

While the Groth-Sahai system is quite efficient, it still falls short in compar-
ison to Schnorr-based Σ-protocols [8] turned into NIZK proofs in the Random
Oracle model [2] using the Fiat-Shamir paradigm [10]. Thus, the quest remains to
obtain even more efficient NIZK Proofs. In particular, in a linear system of rank
t, some t of the equations already serve as commitments to t variables. Thus,
the question arises if, at the very least, fresh commitments to these variables as
done in Groth-Sahai NIZKs can be avoided.

Our contributions. In this paper, we show that for languages that are linear
subspaces of vector spaces of the bilinear groups, one can indeed obtain more ef-
ficient computationally-sound NIZK proofs in a slightly different quasi-adaptive
setting, which suffices for many cryptographic applications. In the quasi-adaptive
setting, we consider a class of parametrized languages {Lρ}, parametrized by ρ,
and we allow the CRS generator to generate the CRS based on the language
parameter ρ. However, the CRS simulator in the zero-knowledge setting is re-
quired to be a single efficient algorithm that works for the whole parametrized
class or probability distributions of languages, by taking the parameter as input.
We will refer to this property as uniform simulation.

Many hard languages that are commonly used in cryptography are distri-
butions on class of parametrized languages, e.g. the DDH language based on
the decisional Diffie-Hellman (DDH) assumption is hard only when in the tuple
〈g, f , x · g, x · f 〉, even f is chosen at random (in addition to x · g being chosen
randomly). However, applications (or trusted parties) usually set f , once and
for all, by choosing it at random, and then all parties in the application can
use multiple instances of the above language with the same fixed f . Thus, we
can consider f as a parameter for a class of languages that only specify the last
two components above. If NIZK proofs are required in the application for this
parametrized language, then the NIZK CRS can be generated by the trusted
party that chooses the language parameter f . Hence, it can base the CRS on the
language parameter3.

We remark that adaptive NIZK proofs [3] also allow the CRS to depend on
the language, but without requiring uniform simulation. Such NIZK proofs that
allow different efficient simulators for each particular language (from a paramet-
rized class) are unlikely to be useful in applications. Thus, most NIZK proofs,
including Groth-Sahai NIZKs, actually show that the same efficient simulator

3 However, in the security definition, the efficient CRS simulator does not itself gen-
erate f , but is given f as input chosen randomly.



works for the whole class, i.e. they show uniform simulation. The Groth-Sahai
system achieves uniform simulation without making any distinction between
different classes of parametrized languages, i.e. it shows a single efficient CRS
simulator that works for all algebraic languages without taking any language
parameters as input. Thus, there is potential to gain efficiency by considering
quasi-adaptive NIZK proofs, i.e. by allowing the (uniform) simulator to take
language parameters as input4.

Our approach to building more efficient NIZK proofs for linear subspaces is
quite different from the Groth-Sahai techniques. In fact, our system does not
require any commitments to the witnesses at all. If there are t free variables in
defining a subspace of the n-dimensional vector-space and assuming the subspace
is full-ranked (i.e. has rank t), then t components of the vector already serve as
commitment to the variables. As an example, consider the language L (over a
cyclic group G of order q, in additive notation) to be

L =
{
〈l1, l2, l3〉 ∈ G3 | ∃x1, x2 ∈ Zq : l1 = x1 · g, l2 = x2 · f , l3 = (x1 + x2) · h

}
where g, f , h are parameters defining the language. Then, l1 and l2 are already
binding commitments to x1 and x2. Thus, we only need to show that the last
component l3 is consistent.

The main idea underlying our construction can be summarized as follows.
Suppose the CRS can be set to be a basis for the null-space L⊥ρ of the language

Lρ. Then, just pairing a potential language candidate with L⊥ρ and testing for

all-zero suffices to prove that the candidate is in Lρ, as the null-space of L⊥ρ
is just Lρ. However, efficiently computing null-spaces in hard bilinear groups is
itself hard. Thus, an efficient CRS simulator cannot generate L⊥ρ , but can give a
(hiding) commitment that is computationally indistinguishable from a binding
commitment to L⊥ρ . To achieve this we use a homomorphic commitment just
as in the Groth-Sahai system, but we can use the simpler El-Gamal encryption
style commitment as opposed to the more involved Groth-Sahai commitments,
and this allows for a more efficient verifier5. As we will see later in Section 5,
a more efficient verifier is critical for obtaining short identity based encryption
schemes (IBE).

In fact, the idea of using the null-space of the language is reminiscent of
Waters’ dual-system IBE construction [24], and indeed our system is inspired
by that construction6, although the idea of using it for NIZK proofs, and in
particular the proof of soundness is novel. Another contribution of the paper is
in the definition of quasi-adaptive NIZK proofs.

4 It is important to specify the information about the parameter which is supplied as
input to the CRS simulator. We defer this important issue to Section 2 where we
formally define quasi-adaptive NIZK proofs.

5 Our quasi-adaptive NIZK proofs are already shorter than Groth-Sahai as they require
no commitments to variables, and have to prove lesser number of equations, as
mentioned earlier.

6 In Section 5 and in the Appendix, we show that the design of our system leads to a
shorter SXDH assumption based dual-system IBE.



For n equations in t variables, our quasi-adaptive computationally-sound
NIZK proofs for linear subspaces require only k(n − t) group elements, under
the k-linear decisional assumption [23, 5]. Thus, under the XDH assumption for
bilinear groups, our proofs require only (n− t) group elements. In contrast, the
Groth-Sahai system requires (n+ 2t) group elements. Similarly, under the deci-
sional linear assumption (DLIN), our proofs require only 2(n−t) group elements,
whereas the Groth-Sahai system requires (2n + 3t) group elements. These pa-
rameters are summarized in Table 1. While our CRS size grows proportional to
t(n− t), more importantly there is a significant comparative improvement in the
number of pairings required for verification. Specifically, under XDH we require
at most half the number of pairings, and under DLIN we require at most 2/3 the
number of pairings. The Σ-protocol NIZK proofs based on the Random Oracle
model require n group elements, t elements of Zq and 1 hash value. Although
our XDH based proofs require less number of group elements, the Σ-protocol
proofs do not require bilinear groups and have the advantage of being proofs of
knowledge (PoK). We remark that the Groth-Sahai system is also not a PoK
for witnesses that are Zq elements. A recent paper by Escala et al [9] has also
optimized proofs of linear subspaces in a language dependent CRS setting. Their
system also removes the need for commitment to witnesses but still implicitly
uses Groth Sahai proofs. In comparison, our proofs are still much shorter.

Table 1. Comparison with Groth-Sahai NIZKs for Linear Subspaces. Parameter t is
the number of unknowns or witnesses and n is the dimension of the vector space, or in
other words, the number of equations.

XDH DLIN
Proof CRS #Pairings Proof CRS #Pairings

Groth-Sahai n+ 2t 4 2n(t+ 2) 2n+ 3t 9 3n(t+ 3)
This paper n− t 2t(n− t) + 2 (n− t)(t+ 2) 2n− 2t 4t(n− t) + 3 2(n− t)(t+ 2)

Thus, for the language L above, which is just a DLIN tuple used ubiqui-
tously for encryption, our system only requires two group elements under the
DLIN assumption, whereas the Groth-Sahai system requires twelve group el-
ements (note, t = 2, n = 3 in L above). For the Diffie-Hellman analogue of
this language 〈x · g, x · f〉, our system produces a single element proof under the
XDH assumption, which we demonstrate in Section 3 (whereas the Groth-Sahai
system requires (n+ 2t =) 4 elements for the proof with t = 1 and n = 2).

Our NIZK proofs also satisfy some interesting new properties. Firstly, the
proofs in our system are unique for each language member. This has interesting
applications as we will see later in a CCA2-IBE construction. Secondly, the CRS
in our system, though dependent on the language parameters, can be split into
two parts. The first part is required only by the prover, and the second part
is required only by the verifier, and the latter can be generated independent
of the language. This is surprising since our verifier does not even take the
language (parameters) as input. Only the randomization used in the verifier
CRS generation is used in the prover CRS to link the two CRSes. This is in



sharp contrast to Groth-Sahai NIZKs, where the verifier needs the language as
input. This split-CRS property has interesting applications as we will see later.

Extension to Linear Systems with Tags. Our system does not yet extend nat-
urally to quadratic or multi-linear equations, whereas the Groth-Sahai system
does7. However, we can extend our system to include tags, and allow the defining
equations to be polynomially dependent on tags. For example, our system can
prove the following language:

L′ =

{
〈l1, l2, l3,tag〉 ∈ G3 × Zq | ∃x1, x2 ∈ Zq :

l1 = x1 · f , l2 = x2 · g, l3 = (x1 + tag · x2) · h

}
.

Note that this is a non-trivial extension since the tag is adaptively provided by
the adversary after the CRS has been set.

The extension to tags is very important, as we now discuss. Many applications
require that the NIZK proof also be simulation-sound. However, extending NIZK
proofs for bilinear groups to be unbounded simulation-sound requires handling
quadratic equations (see [5] for a generic construction). On the other hand, many
applications just require one-time simulation soundness, and as has been shown
in [14], this can be achieved for linear subspaces by projective hash proofs [7].
Projective hash proofs can be defined by linear extensions, but require use of
tags. Thus, our system can handle such equations. Many applications, such as
signatures, can also achieve implicit unbounded simulation soundness using pro-
jective hash proofs, and such applications can utilize our system (see Section 5).

Applications. While the cryptographic literature is replete with NIZK proofs,
we will demonstrate the applicability of quasi-adaptive NIZKs, and in particular
our efficient system for linear subspaces, to a few recent applications such as
signature schemes [5], UC commitments [11], password-based key exchange [16,
14], key-dependent encryption [5]. For starters, based on [11], our system yields
an adaptive UC-secure commitment scheme (in the erasure model) that has
only four group elements as commitment, and another four as opening (under
the DLIN assumption; and 3+2 under SXDH assumption), whereas the original
scheme using Groth-Sahai NIZKs required 5 + 16 group elements.

We also obtain one of the shortest signature schemes under a static standard
assumption, i.e. SXDH, that only requires five group elements. We also show
how this signature scheme can be extended to a short fully secure (and perfectly
complete) dual-system IBE scheme, and indeed a scheme with ciphertexts that
are only four group elements plus a tag (under the SXDH assumption). This is
the shortest IBE scheme under the SXDH assumption, and is technically even
shorter than a recent and independently obtained scheme of [6] which requires
five group elements as ciphertext. Table 2 depicts numerical differences between
the parameter sizes of the two schemes. The SXDH-IBE scheme of [6] uses the
concept of dual pairing vector spaces (due to Okamoto and Takashima [19, 20],

7 However, since commitments in Groth-Sahai NIZKs are linear, there is scope for
mixing the two systems to gain efficiency.



and synthesized from Waters’ dual system IBE). However, the dual vector space
and its generalizations due to others [17] do not capture the idea of proof ver-
ification. Thus, one of our main contributions can be viewed as showing that
the dual system not only does zero-knowledge simulation but also extends to
provide a computationally sound verifier for general linear systems.

Table 2. Comparison with the SXDH-based IBE of Chen et al. [6]. The notation | · |
denotes the bit length of an element of the given group.

Public Key Secret Key Ciphertext #Pairings Anonymity

CLLWW12 [6] 8|G1|+ |GT | 4|G2| 4|G1|+ |GT | 4 yes
This paper 5|G1|+ |GT | 5|G2| 3|G1|+ |GT |+ |Zq| 3 yes

Finally, using our QA-NIZKs we show a short publicly-verifiable CCA2-secure
IBE scheme. Public verifiability is an informal but practically important notion
which implies that one can publicly verify if the decryption will yield “invalid
ciphertext”. Thus, this can allow a network gateway to act as a filter. Our scheme
only requires two additional group elements over the basic IBE scheme.

Organization of the paper. We begin the rest of the paper with the definition
of quasi-adaptive NIZKs in Section 2. In Section 3 we develop quasi-adaptive
NIZKs for linear subspaces under the XDH assumption. In Section 4, we extend
our system to include tags, define a notion called split-CRS QA-NIZKs and
extend our system to construct split-CRS NIZKs for affine spaces. Finally, we
demonstrate applications of our system in Section 5. We defer detailed proofs
and descriptions to the full paper [15]. We also describe our system based on the
k-linear assumption in [15].

Notations. We will be dealing with witness-relations R that are binary rela-
tions on pairs (x,w), and where w is commonly referred to as the witness. Each
witness-relation defines a language L = {x| ∃w : R(x,w)}. For every witness-
relation Rρ we will use Lρ to denote the language it defines. Thus, a NIZK proof
for a witness-relation Rρ can also be seen as a NIZK proof for its language Lρ.

Vectors will always be row-vectors and will always be denoted by an arrow
over the letter, e.g. ~r for (row) vector of Zq elements, and ~d as (row) vector of
group elements.

2 Quasi-Adaptive NIZK Proofs

Instead of considering NIZK proofs for a (witness-) relation R, we will consider
Quasi-Adaptive NIZK proofs for a probability distribution D on a collection of
(witness-) relations R = {Rρ}. The quasi-adaptiveness allows for the common
reference string (CRS) to be set based on Rρ after the latter has been chosen
according to D. We will however require, as we will see later, that the simulator



generating the CRS (in the simulation world) is a single probabilistic polynomial
time algorithm that works for the whole collection of relations R.

To be more precise, we will consider ensemble of distributions on witness-
relations, each distribution in the ensemble itself parametrized by a security
parameter. Thus, we will consider ensemble {Dλ} of distributions on collection of
relations Rλ, where each Dλ specifies a probability distribution on Rλ = {Rλ,ρ}.
When λ is clear from context, we will just refer to a particular relation as Rρ,
and write Rλ = {Rρ}.

Since in the quasi-adaptive setting the CRS could depend on the relation, we
must specify what information about the relation is given to the CRS generator.
Thus, we will consider an associated parameter language such that a member of
this language is enough to characterize a particular relation, and this language
member is provided to the CRS generator. For example, consider the class of
parametrized relations R = {Rρ}, where parameter ρ is a tuple g, f,h of three
group elements. Suppose, Rρ (on 〈l1, l2, l3〉, 〈x1, x2〉) is defined as

R〈g,f,h〉(〈l1, l2, l3〉, 〈x1, x2〉)
def
=

(
x1, x2 ∈ Zq, l1, l2, l3 ∈ G and

l1 = x1 · g, l2 = x2 · f, l3 = (x1 + x2) · h

)
.

For this class of relations, one could seek a quasi-adaptive NIZK where the CRS
generator is just given ρ as input. Thus in this case, the associated parameter
language Lpar will just be triples of group elements8. Moreover, the distribution
D can just be on the parameter language Lpar, i.e. D just specifies a ρ ∈ Lpar.
Again, Lpar is technically an ensemble.

We call (K0,K1,P,V) a QA-NIZK proof system for witness-relations Rλ =
{Rρ} with parameters sampled from a distribution D over associated parameter
language Lpar, if there exists a probabilistic polynomial time simulator (S1,S2),
such that for all non-uniform PPT adversaries A1,A2,A3 we have:

Quasi-Adaptive Completeness:

Pr[λ← K0(1m); ρ← Dλ;ψ ← K1(λ, ρ); (x,w)← A1(λ, ψ, ρ);

π ← P(ψ, x,w) : V(ψ, x, π) = 1 if Rρ(x,w)] = 1

Quasi-Adaptive Soundness:

Pr[λ← K0(1m); ρ← Dλ;ψ ← K1(λ, ρ);

(x, π)← A2(λ, ψ, ρ) : V(ψ, x, π) = 1 and ¬(∃w : Rρ(x,w))] ≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr[λ← K0(1m); ρ← Dλ;ψ ← K1(λ, ρ) : AP(ψ,·,·)
3 (λ, ψ, ρ) = 1] ≈

Pr[λ← K0(1m); ρ← Dλ; (ψ, τ)← S1(λ, ρ) : AS(ψ,τ,·,·)3 (λ, ψ, ρ) = 1],

8 It is worth remarking that alternatively the parameter language could also be discrete
logarithms of these group elements (w.r.t. to some base), but a NIZK proof under
this associated language may not be very useful. Thus, it is critical to define the
proper associated parameter language.



where S(ψ, τ, x, w) = S2(ψ, τ, x) for (x,w) ∈ Rρ and both oracles (i.e. P and
S) output failure if (x,w) 6∈ Rρ.

Note that ψ is the CRS in the above definitions.

3 QA-NIZK for Linear Subspaces under the XDH
Assumption

Setup. Let G1,G2 and GT be cyclic groups of prime order q with a bilinear
map e : G1 × G2 → GT chosen by a group generation algorithm. Let g1 and
g2 be generators of the group G1 and G2 respectively. Let 01, 02 and 0T be
the identity elements in the three groups G1,G2 and GT respectively. We use
additive notation for the group operations in all the groups.

The bilinear pairing e naturally extends to Zq-vector spaces of G1 and G2

of the same dimension n as follows: e(~a, ~b
>

) =
∑n
i=1 e(ai,bi). Thus, if ~a =

~x · g1 and ~b = ~y · g2, where ~x and ~y are now vectors over Zq, then e(~a, ~b
>

) =

(~x · ~y>) · e(g1,g2). The operator “>” indicates taking the transpose.

Linear Subspace Languages. To start off with an example, a set of equations
l1 = x1 · g, l2 = x2 · f, l3 = (x1 + x2) · h will be expressed in the form ~l = ~x · A
as follows:

~l =
[
l1 l2 l3

]
=
[
x1 x2

]
·
[

g 01 h
01 f h

]
where ~x is a vector of unknowns and A is a matrix specifying the group constants
g, f,h.

The scalars in this system of equations are from the field Zq. In general, we
consider languages that are linear subspaces of vectors of G1 elements. These
are just Zq-modules, and since Zq is a field, they are vector spaces. In other
words, the languages we are interested in can be characterized as languages
parameterized by A as below:

LA = {~x · A ∈ Gn1 | ~x ∈ Ztq}, where A is a t× n matrix of G1 elements.

Here A is an element of the associated parameter language Lpar, which is all
t × n matrices of G1 elements. The parameter language Lpar also has a corre-
sponding witness relation Rpar, where the witness is a matrix of Zq elements :
Rpar(A,A) iff A = A · g1.

Robust and Efficiently Witness-Samplable Distributions. Let the t × n dimen-
sional matrix A be chosen according to a distribution D on Lpar. We will call
the distribution D robust if with probability close to one the left-most t columns
of A are full-ranked. We will call a distribution D on Lpar efficiently witness-
samplable if there is a probabilistic polynomial time algorithm such that it out-
puts a pair of matrices (A,A) that satisfy the relation Rpar (i.e., Rpar(A,A)
holds), and further the resulting distribution of the output A is same as D. For



example, the uniform distribution on Lpar is efficiently witness-samplable, by
first picking A at random, and then computing A. As an example of a robust dis-

tribution, consider a distribution D on (2× 3)-dimensional matrices

[
g 01 h
01 f h

]
with g, f and h chosen randomly from G1. It is easy to see that the first two
columns are full-ranked if g 6= 01 and f 6= 01, which holds with probability
(1− 1/q)2.

QA-NIZK Construction. We now describe a computationally sound quasi-adap-
tive NIZK (K0,K1,P,V) for linear subspace languages {LA} with parameters
sampled from a robust and efficiently witness-samplable distribution D over the
associated parameter language Lpar.
Algorithm K0: K0 is same as the group generation algorithm for which the XDH

assumption holds. λ
def
= (q,G1,G2,GT , e,g1,g2)← K0(1m), with (q,G1,G2,GT ,

e,g1,g2) as described above.
We will assume that the size t×n of the matrix A is either fixed or determined

by the security parameter m. In general, t and n could also be part of the
parameter language, and hence t, n could be given as part of the input to CRS
generator K1.
Algorithm K1: The algorithm K1 generates the CRS as follows. Let At×n be

the parameter supplied to K1. Let s
def
= n − t: this is the number of equations

in excess of the unknowns. It generates a matrix Dt×s with all elements chosen
randomly from Zq and a single element b chosen randomly from Zq. The common
reference string (CRS) has two parts CRSp and CRSv which are to be used by
the prover and the verifier respectively.

CRSt×sp := A ·
[

Dt×s

b−1 · Is×s
]

CRS(n+s)×s
v :=

 b · D
Is×s

−b · Is×s

 · g2

Here, I denotes the identity matrix. Note that CRSv is independent of the pa-
rameter.
Prover P: Given candidate ~l = ~x ·A with witness vector ~x, the prover generates
the following proof consisting of s elements in G1:

~p := ~x · CRSp

Verifier V: Given candidate ~l , and a proof ~p, the verifier checks the following:

e
([
~l ~p

]
,CRSv

)
?
= 01×sT

The security of the above system depends on the DDH assumption in group
G2. Since G2 is a bilinear group, this assumption is known as the XDH assump-
tion. These assumptions are standard and are formally described in [15].

Theorem 1. The above algorithms (K0,K1,P,V) constitute a computationally
sound quasi-adaptive NIZK proof system for linear subspace languages {LA} with



parameters A sampled from a robust and efficiently witness-samplable distribu-
tion D over the associated parameter language Lpar, given any group generation
algorithm for which the DDH assumption holds for group G2.

Remark. For language members, the proofs are unique as the bottom s rows of
CRSv are invertible.

Proof Intuition. A detailed proof of the theorem can be found in [15]. Here we
give the main idea behind the working of the above quasi-adaptive NIZK, and
in particular the soundness requirement which is the difficult part here. We first
observe that completeness follows by straightforward bilinear manipulation. Zero
Knowledge also follows easily: the simulator generates the same CRS as above
but retains D and b as trapdoors. Now, given a language candidate ~l , the proof

is simply ~p := ~l ·
[

D
b−1 · Is×s

]
. If ~l is in the language, i.e., it is ~x ·A for some ~x,

then the distribution of the simulated proof is identical to the real world proof.
We now focus on the soundness proof which we establish by transforming the

system over two games. Let Game G0 be the original system. SinceD is efficiently
witness samplable, in Game G1 the challenger generates both A and A = A ·g1.

Then it computes a rank s matrix

[
Wt×s

Is×s

]
of dimension (t+s)×s whose columns

form a complete basis for the null-space of A, which means A ·
[
Wt×s

Is×s

]
= 0t×s.

Now statistically, the CRS in Game G0 is indistinguishable from the one where
we substitute D′+b−1 ·W for D, where D′ itself is an independent random matrix.
With this substitution, the CRSp and CRSv can be represented as

CRSt×sp = A ·
[

D′

0s×s

]
, CRS(n+s)×s

v =

 b · [ D′

0s×s

]
+

[
W

Is×s

]
−b · Is×s

 · g2

Now we show that if an efficient adversary can produce a “proof” ~p for which
the above pairing test holds and yet the candidate ~l is not in LA, then it implies
an efficient adversary that can break DDH in group G2. So consider a DDH game,
where a challenger either provides a real DDH-tuple 〈g2, b ·g2, r ·g2,χ = br ·g2〉
or a fake DDH tuple 〈g2, b ·g2, r ·g2,χ = br′ ·g2〉. Let us partition the Zq matrix

A as
[
At×t0 At×s1

]
and the candidate vector ~l as

[
~l

1×t
0

~l
1×s
1

]
. Note that, since

A0 has rank t, the elements of ~l0 are ‘free’ elements and ~l0 can be extended to
a unique n element vector ~l ′, which is a member of LA. This member vector ~l ′

can be computed as ~l ′ :=
[
~l0 −~l0 ·W

]
, where W = −A−10 A1. The proof of ~l ′

is computed as ~p′ := ~l0 · D′. Since both (~l , ~p) and (~l ′, ~p′) pass the verification

equation, we obtain: ~l
′
1 − ~l1 = b(~p′ − ~p), where ~l

′
1 = −~l0 · W. In particular

there exists i ∈ [1, s], such that, l ′1i − l1i = b(p′i − pi) 6= 01. This gives us a

straightforward test for the DDH challenge: e(l ′1i − l1i, r · g2)
?
= e(p′i − pi,χ).

This leads to a proof of soundness of the QA-NIZK.



Remark. Observe from the proof above that the soundness can be based on
the following computational assumption which is implied by XDH, which is a
decisional assumption:

Definition 1. Consider a generation algorithm G taking the security parameter
as input, that outputs a tuple (q,G1,G2,GT , e,g1,g2), where G1,G2 and GT
are groups of prime order q with generators g1,g2 and e(g1,g2) respectively and
which allow an efficiently computable Zq-bilinear pairing map e : G1×G2 → GT .

The assumption asserts that the following problem is hard: Given f, fb
$←− G2,

output h,h′ ∈ G1, such that h′ = hb 6= 01.

Example: QA-NIZK for a DH tuple. In this example, we instantiate our general
system to provide a NIZK for a DH tuple, that is a tuple of the form (x ·g, x · f)
for an a priori fixed base (g, f) ∈ G2

1. We assume DDH for the group G2.
As in the setup described before, we have A =

[
g f
]
. The language is: L =

{[x] · A | x ∈ Zq}.
Now proceeding with the framework, we generate D as [d] and the element b

where d and b are random elements of Zq. With this setting, the NIZK CRS is:

CRSp := A·
[

D
b−1 · I1×1

]
=
[
d · g + b−1 · f

]
, CRSv :=

 b · D
I1×1

−b · I1×1

·g2 =

 bd · g2

g2

−b · g2


The proof of a tuple (r, r̂) with witness r, is just the single element r · (d ·

g + b−1 · f). In the proof of zero knowledge, the simulator trapdoor is (d, b) and
the simulated proof of (r, r̂) is just (d · r + b−1 · r̂).

4 Extensions

In this section we consider some useful extensions of the concepts and construc-
tions of QA-NIZK systems. We show how the previous system can be extended
to include tags. The tags are elements of Zq, are included as part of the proof and
are used as part of the defining equations of the language. We define a notion
called split-CRS QA-NIZK system, where the prover and verifier use distinct
parts of a CRS and we construct a split-CRS system for affine systems.

Tags. While our system works for any number of components in the tuple (ex-
cept the first t) being dependent on any number of tags, to simplify the pre-
sentation we will focus on only one dependent element and only one tag. Also
for simplicity, we will assume that this element is an affine function of the tag
(the function being defined by parameters). We can handle arbitrary polynomial
functions of the tags as well, but we will focus on affine functions here as most
applications seem to need just affine functions. Then, the languages we handle
can be characterized as

LA,~a1,~a2
=
{〈
~x ·
[
A (~a>1 + tag · ~a>2 )

]
,tag

〉
| ~x ∈ Ztq,tag ∈ Zq

}



where At×(n−1), ~a1×t
1 and ~a1×t

2 are parameters of the language. A distribution is
still called robust (as in Section 3) if with overwhelming probability the first t

columns of A are full-ranked. Write A as [At×tl | At×(n−1−t)r ], where without loss
of generality, Al is non-singular. While the first n− 1− t components in excess
of the unknowns, corresponding to Ar, can be verified just as in Section 3, for
the last component we proceed as follows.
Algorithm K1: The CRS is generated as:

CRSt×1p,0 :=
[
Al ~a>1

]
·
[
D1

b−1

]
CRSt×1p,1 :=

[
Al ~a>2

]
·
[
D2

b−1

]
CRS

(t+2)×1
v,0 :=

 b · D1

1
−b

 · g2 CRS
(t+2)×1
v,1 :=

 b · D2

0
0

 · g2

where D1 and D2 are random matrices of order t× 1 independent of the matrix
D chosen for proving the other components. The Zq element b can be re-used
from the other components.

Prover: Let~l ′
def
= ~x ·

[
Al (~a>1 + tag · ~a>2 )

]
. The prover generates the following

proof for the last component:

~p := ~x · (CRSp,0 + tag · CRSp,1)

Verifier: Given a proof ~p for candidate ~l ′ the verifier checks the following:

e
([
~l ′ ~p

]
,CRSv,0 + tag · CRSv,1

)
?
= 0T

The size of the proof is 1 element in the group G1. The proof of completeness,
soundness and zero-knowledge for this quasi-adaptive system is similar to proof
in Section 3 and a proof sketch can be found in [15].

Split-CRS QA-NIZK Proofs. We note that the QA-NIZK described in Section 3
has an interesting split-CRS property. In a split-CRS QA-NIZK for a distri-
bution of relations, the CRS generator K1 generates two CRS-es ψp and ψv, such
that the prover P only needs ψp, and the verifier V only needs ψv. In addition,
the CRS ψv is independent of the particular relation Rρ. In other words the CRS
generator K1 can be split into two PPTs K11 and K12, such that K11 generates
ψv using just λ, and K12 generates ψp using ρ and a state output by K11. The
key generation simulator S1 is also split similarly. The formal definition is given
in [15].

In many applications, split-CRS QA-NIZKs can lead to simpler constructions
(and their proofs) and possibly shorter proofs.

Split-CRS QA-NIZK for Affine Spaces. Consider languages that are affine spaces

LA,~a = {(~x · A + ~a) ∈ Gn1 | ~x ∈ Ztq}

The parameter language Lpar just specifies A and ~a. A distribution over Lpar is
called robust if with overwhelming probability the left most t×t sub-matrix of A



is non-singular (full-ranked). If ~a is given as part of the verifier CRS, then a QA-
NIZK for distributions over this class follows directly from the construction in
Section 3. However, that would make the QA-NIZK non split-CRS. We now show
that the techniques of Section 3 can be extended to give a split-CRS QA-NIZK
for (robust and witness-samplable) distributions over affine spaces.

The common reference string (CRS) has two parts ψp and ψv which are to
be used by the prover and the verifier respectively. The split-CRS generator K11

and K12 work as follows. Let s
def
= n− t: this is the number of equations in excess

of the unknowns.
Algorithm K11: The verifier CRS generator first generates a matrix Dt×s with
all elements chosen randomly from Zq and a single element b chosen randomly

from Zq. It also generates a row vector ~d
1×s

at random from Zq. Next, it com-
putes

CRS(n+s)×s
v :=

 b · D
Is×s

−b · Is×s

 · g2
~f
1×s

:= e(g1, b · ~d · g2)

The verifier CRS ψv is the matrix CRSv and ~f.
Algorithm K12: The prover CRS generator K12 generates

CRSt×sp =

[
At×n

~a1×n

]
·
[

D
b−1 · Is×s

]
−

[
0t×s

~d
1×s

]
· g1

The (prover) CRS ψp is just the matrix CRSp.
Prover: Given candidate (~x ·A+~a) with witness vector ~x, the prover generates
the following proof:

~p :=
[
~x 1

]
· CRSp

Verifier: Given a proof ~p of candidate ~l , the verifier checks the following:

e
([
~l ~p

]
,CRSv

)
?
=~f

We provide a proof sketch in [15]. The split-CRS QA-NIZK for affine spaces
also naturally extends to include tags as described before in this section.

5 Applications

In this section we mention several important applications of quasi-adaptive NIZK
proofs. Before we go into the details of these applications, we discuss the general
applicability of quasi-adaptive NIZKs. Recall in quasi-adaptive NIZKs, the CRS
is set based on the language for which proofs are required. In many applications
the language is set by a trusted party, and the most obvious example of this is
the trusted party that sets the CRS in some UC applications, many of which
have UC realizations only with a CRS. Another obvious example is the (H)IBE



trusted party that issues secret keys to various identities. In many public key
applications, the party issuing the public key is also considered trusted, i.e.
incorruptible, as security is defined with respect to the public key issuing party
(acting as challenger). Thus, in all these settings if the language for which proofs
are required is determined by a incorruptible party, then that party can also
issue the QA-NIZK CRS based on that language. It stands to reason that most
languages for which proofs are required are ultimately set by an incorruptible
party (at least as far as the security definitions are concerned), although they may
not be linear subspaces, and can indeed be multi-linear or even quadratic. For
example, suppose a potentially corruptible party P wants to (NIZK) prove that
x ∈ Lρ, where Lρ is a language that it generated. However, this proof is unlikely
to be of any use unless it also proves something about Lρ, e.g., that ρ itself is in
another language, say L′. In some applications, potentially corruptible parties
generate new linear languages using random tags. However, the underlying basis
for these languages is set by a trusted party, and hence the NIZK CRS for the
whole range of tag based languages can be generated by that trusted party based
on the original basis for these languages.

Adaptive UC Commitments in the Erasure Model. The SXDH-based commit-
ment scheme from [11] requires the following quasi-adaptive NIZK proof (see [15]
for details)

{〈R,S, T 〉 | ∃r : R = r · g, S = r · h, T = r · (d1 + tag · e1)}

with parameters h,d1, e1 (chosen randomly), which leads to a UC commitment
scheme with commitment consisting of 3 G1 elements, and a proof consisting of
two G2 elements. Under DLIN, a similar scheme leads to a commitment consist-
ing of 4 elements and an opening of another 4 elements, whereas [11] stated a
scheme using Groth-Sahai NIZK proofs requiring (5+16) elements. More details
can be found in [15].

One-time (Relatively) Simulation-Sound NIZK for DDH and others. In [14] it
was shown that for linear subspace languages, such as the DDH or DLIN lan-
guage, or the language showing that two El-Gamal encryptions are of the same
message [18, 22], the NIZK proof can be made one-time simulation sound using a
projective hash proof [7] and proving in addition that the hash proof is correct.
For the DLIN language, this one-time simulation sound proof (in Groth-Sahai
system) required 15 group elements, whereas the quasi-adaptive proof in this
paper leads to a proof of size only 5 group elements.

Signatures. We will now show a generic construction of existentially unforgeable
signature scheme (against adaptive adversaries) from labeled CCA2-encryption
schemes and split-CRS QA-NIZK proof system (as defined in Section 4) for
a related language distribution. This construction is a generalization of a sig-
nature scheme from [5] which used (fully) adaptive NIZK proofs and required
constructions based on groups in which the CDH assumption holds.



Let E = (KeyGen,Enc,Dec) be a labeled CCA-encryption scheme on mes-
sages. Let Xm be any subset of the message space of E such that 1/|Xm| is
negligible in the security parameter m. Consider the following class of (paramet-
rized) languages {Lρ}:

Lρ = {(c,M) | ∃r : c = Encpk(u; r;M)}

with parameter ρ = (u, pk). The notation Encpk(u; r;M) means that u is en-

crypted under public key pk with randomness r and label M . Consider the
following distribution D on the parameters: u is chosen uniformly at random
from Xm and pk is generated using the probabilistic algorithm KeyGen of E on
1m (the secret key is discarded). Note we have an ensemble of distributions, one
for each value of the security parameter, but we will suppress these details.

Let Q = (K0, 〈K11,K12〉,P,V) be a split-CRS QA-NIZK for distribution D
on {Lρ}. Note that the associated parameter language Lpar is just the set of
pairs (u, pk), and D specifies a distribution on Lpar.

Now, consider the following signature scheme S.
Key Generation: On input a security parameter m, run K0(1m) to get λ. Let
E .pk be generated using KeyGen of E on 1m (the secret key sk is discarded).
Choose u at random from Xm. Let ρ = (u, E .pk). Generate ψv by running K11

on λ (it also generates a state s). Generate ψp by running K12 on (λ, ρ) and state
s. The public key S.pk of the signature scheme is then ψv. The secret key S.sk
consists of (u, E .pk, ψp).
Sign: The signature onM just consists of a pair 〈c, π〉, where c is an E-encryption
of u with label M (using public key E .pk and randomness r), and π is the QA-
NIZK proof generated using prover P of Q on input (ψp, (c,M), r). Recall r is
the witness to the language member (c,M) of Lρ (and ρ = (u, E .pk)).
Verify: Given the public key S.pk (= ψv), and a signature 〈c, π〉 on message M ,
the verifier uses the verifier V of Q and outputs V(ψv, (c,M), π).

Theorem 2. If E is a labeled CCA2-encryption scheme and Q is a split-CRS
quasi-adaptive NIZK system for distribution D on class of languages {Lρ} de-
scribed above, then the signature scheme described above is existentially unforge-
able under adaptive chosen message attacks.

The theorem is proved in [15]. It is worth remarking here that the reason
one can use a quasi-adaptive NIZK here is because the language Lρ for which
(multiple) NIZK proof(s) is required is set (or chosen) by the (signature scheme)
key generator, and hence the key generator can generate the CRS for the NIZK
after it sets the language. The proof of the above theorem can be understood
in terms of simulation-soundness. Suppose the above split-CRS QA-NIZK was
also unbounded simulation-sound. Then, one can replace the CCA2 encryption
scheme with just a CPA-encryption scheme, and still get a secure signature
scheme. A proof sketch of this is as follows: an Adversary B is only given ψv
(which is independent of parameters, including u). Further, the simulator for the
QA-NIZK can replace all proofs by simulated proofs (that do not use witness r
used for encryption). Next, one can employ CPA-security to replace encryptions



of u by encryptions of 1. By unbounded simulation soundness of the QA-NIZK
it follows that if B produces a verifying signature then it must have produced
an encryption of u. However, the view of B is independent of u, and hence its
probability of forging a signature is negligible.

However, the best known technique for obtaining efficient unbounded simu-
lation soundness itself requires CCA2 encryption (see [5]), and in addition NIZK
proofs for quadratic equations. On the other hand, if we instantiate the above
theorem with Cramer-Shoup encryption scheme, we get remarkably short sig-
natures (in fact the shortest signatures under any static and standard assump-
tion). The Cramer-Shoup encryption scheme PK consists of g, f ,k,d, e chosen
randomly from G1, along with a target collision-resistant hash function H (with
a public random key). The set X from which u is chosen is just the whole group
G1. Then an encryption of u is obtained by picking r at random, and obtaining
the tuple

〈R = r · g, S = r · f , T = u + r · k, H = r · (d + tag · e)〉

where tag = H(R,S, T,M). It can be shown that it suffices to hide u with the
hash proof H (although one has to go into the internals of the hash-proof based
CCA2 encryption; see Appendix in [14]). Thus, we just need a (split-CRS) QA-
NIZK for the tag-based affine system (it is affine because of the additive constant
u). There is one variable r, and three equations (four if we consider the original
CCA-2 encryption) Thus, we just need (3−1)∗1(= 2) proof elements, leading to
a total signature size of 5 elements (i.e. R,S,u+H, and the two proof elements)
under the SXDH assumption.

Dual-System Fully Secure IBE. It is well-known that Identity Based Encryption
(IBE) implies signature schemes (due to Naor), but the question arises whether
the above signature scheme using Cramer-Shoup CCA2-encryption and the re-
lated QA-NIZK can be converted into an IBE scheme. To achieve this, we take
a hint from Naor’s IBE to Signature Scheme conversion, and let the signatures
(on identities) be private keys of the various identities. The verification of the

QA-NIZK from Section 3 works by checking e
([
~l ~p

]
,CRSv

)
?
= 01×sT (or more

precisely, e
([
~l ~p

]
,CRSv

)
?
=~f for the affine language). However, there are two

issues: (1) CRSv needs to be randomized, (2) there are two equations to be veri-
fied (which correspond to the alternate decryption of Cramer-Shoup encryption,
providing implicit simulation-soundness). Both these problems are resolved by
first scaling CRSv by a random value s, and then taking a linear combination
of the two equations using a public random tag. The right hand side s ·~f can
then serve as secret one-time pad for encryption. Rather than being a provable
generic construction, this is more a hint to get to a really short IBE. We give
the construction in Appendix A and a complete proof in [15]. It shows an IBE
scheme under the SXDH assumption where the ciphertext has only four group



(G1) elements plus a Zq-tag, which is the shortest IBE known under standard
static assumptions9.

Publicly-Verifiable CCA2 Fully-Secure IBE. We can also extend our IBE scheme
above to be publicly-verifiable CCA2-secure [21, 1]. Public verifiability is an in-
formal but practical notion: most CCA2-secure schemes have a test of well-
formedness of ciphertext, and on passing the test a CPA-secure scheme style
decryption suffices. However, if this test can be performed publicly, i.e. without
access to the secret key, then we call the scheme publicly-verifiable. While there
is a well known reduction from hierarchical IBE to make an IBE scheme CCA2-
secure [4], that reduction does not make the scheme publicly-verifiable CCA2
in a useful manner. In the IBE setting, publicly-verifiable also requires that it
be verifiable if the ciphertext is valid for the claimed identity. This can have
interesting applications where the network can act as a filter. We show that our
scheme above can be extended to be publicly-verifiable CCA2-fully-secure IBE
with only two additional group elements in the ciphertext (and two additional
group elements in the keys). We give the construction in Appendix B and a com-
plete proof in [15]. The IBE scheme above has four group elements (and a tag),
where one group element serves as one-time pad for encrypting the plaintext.
The remaining three group elements form a linear subspace with one variable
as witness and three integer tags corresponding to: (a) the identity, (b) the tag
needed in the IBE scheme, and (c) a 1-1 (or universal one-way) hash of some
of the elements. We show that if these three group elements can be QA-NIZK
proven to be consistent, and given the unique proof property of our QA-NIZKs,
then the above IBE scheme can be made CCA2-secure - the dual-system already
has implicit simulation-soundness as explained in the signature scheme above,
and we show that this QA-NIZK need not be simulation-sound. Since, there are
three components, and one variable (see the appendix for details), the QA-NIZK
requires only two group elements under SXDH.
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A Dual System IBE under SXDH Assumption

For ease of reading, we switch to multiplicative group notation in the following.

Setup: The authority uses a group generation algorithm for which the SXDH
assumption holds to generate a bilinear group (G1,G2,GT ) with g1 and g2 as
generators of G1 and G2 respectively. Assume that G1 and G2 are of order q, and
let e be a bilinear pairing on G1 ×G2. Then it picks c at random from Zq, and
sets f = gc2. It further picks ∆1, ∆2, ∆3, ∆4, b, d, e, u from Zq, and publishes
the following public key PK:

g1, gb1, v1 = g−∆1·b+d
1 , v2 = g−∆2·b+e

1 , v3 = g−∆3·b+c
1 , and k = e(g1,g2)−∆4·b+u.

The authority retains the following master secret key MSK: g2, f = (gc2), and
∆1, ∆2, ∆3, ∆4, d, e, u.

Encrypt(PK, i , M): the encryption algorithm chooses s and tag at random
from Zq. It then blinds M as C0 = M · ks, and also creates

C1 = gs1, C2 = gbs1 , C3 = vs1 · vi ·s
2 · vtag·s

3

and the ciphertext is C = 〈C0, C1, C2, C3,tag〉.

KeyGen(MSK, i): The authority chooses r at random from Zq and creates

R = gr2, S = gr·c2 , T = g
u+r·(d+i ·e)
2 , W1 = g

−∆4−r·(∆1+i ·∆2)
2 ,W2 = g−r·∆3

2

as the secret key Ki for identity i .

Decrypt(Ki , C): Let tag be the tag in C. Obtain

κ =
e(C1, S

tag · T ) · e(C2,W1 ·W tag
2 )

e(C3, R)

and output C0/κ.

Theorem 3. Under the SXDH Assumption, the above scheme is a fully-secure
IBE scheme.



B Publicly Verifiable CCA2-IBE under SXDH
Assumption

Setup: The authority uses a group generation algorithm for which the SXDH
assumption holds to generate a bilinear group (G1,G2,GT ) with g2 and g1 as
generators of G1 and G2 respectively. Assume that G1 and G2 are of order q,
and let e be a bilinear pairing on G1 ×G2. Then it picks c at random from Zq,
and sets f = gc2. It further picks ∆1, ∆2, ∆3, ∆4, ∆5, b, d, e, u, z from Zq, and
publishes the following public key PK:
g1, gb1, v1 = g−∆1·b+d

1 , v2 = g−∆2·b+e
1 , v3 = g−∆3·b+c

1 , v4 = g−∆4·b+z
1 , and k =

e(g1,g2)−∆5·b+u.
Consider the language:

L = {〈C1, C2, C3, i,tag, h〉 | ∃s : C1 = gs1, C2 = gbs1 , C3 = vs1 ·vi ·s
2 ·vtag·s

3 ·vh·s4 }

It also publishes the QA-NIZK CRS for the language L (which uses tags
i,tag and h). It also publishes a 1-1, or Universal One-Way Hash function
(UOWHF) H. The authority retains the following master secret key MSK: g2,
f (= gc2), and ∆1, ∆2, ∆3, ∆4, ∆5, d, e, u, z.

Encrypt(PK, i , M): the encryption algorithm chooses s and tag at random
from Zq. It then blinds M as C0 = M · ks, and also creates

C1 = gs1, C2 = gb·s1 , C3 = vs1 · vi ·s
2 · vtag·s

3 · vh·s4 ,

where h = H(C0, C1, C2,tag, i). The ciphertext is then C = 〈C0, C1, C2, C3,
tag, p1,p2〉, where 〈p1,p2〉 is a QA-NIZK proof that 〈C0, C1, C2, C3, i,tag, h〉 ∈
L.

KeyGen(MSK, i): The authority chooses r at random from Zq and creates

R = gr2, S1 = gr·c2 , S2 = gr·z2 , T = g
u+r·(d+i ·e)
2 ,

W1 = g
−∆5−r·(∆1+i ·∆2)
2 ,W2 = g−r·∆3

2 ,W3 = g−r·∆4
2

as the secret key Ki for identity i .

Decrypt(Ki , C): Let tag be the tag in C. Let h = H(C0, C1, C2,tag, i). First
(publicly) verify that the ciphertext satisfies the QA-NIZK for the language
above. Then, obtain

κ =
e(C1, S

tag
1 · Sh2 · T ) · e(C2,W1 ·W tag

2 ·Wh
3 )

e(C3, R)

and output C0/κ. If the QA-NIZK does not verify, output ⊥.
This public-verifiability of the consistency test is informally called the publicly-

verifiable CCA2 security.

Theorem 4. Under the SXDH Assumption, the above scheme is a CCA2 fully-
secure IBE scheme.


