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Abstract. A secure two-party computation (S2PC) protocol allows two
parties to compute over their combined private inputs, as if intermediated
by a trusted third party. In the malicious model, this can be achieved
with a cut-and-choose of garbled circuits (C&C-GCs), where some GCs
are verified for correctness and the remaining are evaluated to determine
the circuit output. This paper presents a new C&C-GCs-based S2PC pro-
tocol, with significant advantages in efficiency and applicability. First, in
contrast with prior protocols that require a majority of evaluated GCs
to be correct, the new protocol only requires that at least one evalu-
ated GC is correct. In practice this reduces the total number of GCs to
approximately one third, for the same statistical security goal. This is
accomplished by augmenting the C&C with a new forge-and-lose tech-
nique based on bit commitments with trapdoor. Second, the output of
the new protocol includes reusable XOR-homomorphic bit commitments
of all circuit input and output bits, thereby enabling efficient linkage of
several S2PCs in a reactive manner. The protocol has additional inter-
esting characteristics (which may allow new comparison tradeoffs), such
as needing a low number of exponentiations, using a 2-out-of-1 type of
oblivious transfer, and using the C&C structure to statistically verify the
consistency of input wire keys.

Keywords: secure two-party computation, cut-and-choose, garbled cir-
cuits, forge-and-lose, homomorphic bit-commitments with trapdoor.

1 Introduction

Secure two-party computation is a general cryptographic functionality that al-
lows two parties to interact as if intermediated by a trusted third party [Gol04].
A canonical example is the millionaire’s problem [Yao82], where two parties
∗ c© IACR 2013. This article is the final version submitted by the author to the IACR and to
Springer-Verlag on September 11, 2013. A similar version will be published by Springer-Verlag.
The full version is available at the Cryptology ePrint Archive [Bra13].
† Support for this research was provided by the Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) through the Carnegie Mellon Portugal Program un-
der Grant SFRH/BD/33770/2009, and through the Multiannual Funding Programme (LASIGE),
while the author was a Ph.D. student at FCUL-DI-LaSIGE and CMU-ECE.

Page 1/20

http://www.ul.pt
https://www.fc.ul.pt
https://lasige.di.fc.ul.pt
mailto: lbrandao@fc.ul.pt
https://www.cmu.edu
https://www.ece.cmu.edu
mailto: lbrandao@cmu.edu
https://www.fct.pt
https://www.fct.pt
http://www.cmuportugal.org
https://www.fc.ul.pt
https://www.di.fc.ul.pt
https://lasige.di.fc.ul.pt
https://www.cmu.edu
https://www.ece.cmu.edu


S2PC with Reusable BitComs, via a C&C with F&L technique (Extended abstract 2013-09-11)

find who is the richer of the two, without revealing to the other any additional
information about the amounts they own. Applications of secure computation
can be envisioned in many cases where mutually distrustful parties can benefit
from learning something from their combined data, without sharing their inputs
[Kol09]. For example, two parties may evaluate a data mining algorithm over
their combined databases, in a privacy-preserving manner [LP02]. On a different
example, one party with a private message may obtain a respective message au-
thentication code calculated with a secret key from another party (i.e., a blind
MAC) [PSSW09]. This paper considers secure two-party evaluation of Boolean
circuits, henceforth denoted “S2PC”, which can be used to solve the mentioned
examples. Each party begins the interaction with a private input encoded as a
bit-string, and a public specification of a Boolean circuit that computes an in-
tended function. Then, the two parties interact so that each party learns only the
output of the respective circuit evaluated over both private inputs. Probabilistic
functionalities can be implemented by letting the two parties hold additional
random bits as part of their inputs.

This paper focuses on the malicious model, where parties might maliciously
deviate from the protocol specification in a computationally bounded way. Fur-
thermore, within the standard model of cryptography, adopted herein, it is as-
sumed that some problems are computationally intractable, such as those related
with inverting trapdoor permutations. Security is defined within the ideal/real
simulation paradigm [Can00]; i.e., a protocol is said to implement S2PC if it
emulates an ideal functionality where a trusted third party mediates the com-
munication and computation between the two parties. The trusted party receives
the private inputs from both parties, makes the intended computation locally
and then delivers the final private outputs to the respective parties.

As a starting point, this paper considers the cut-and-choose (C&C) of garbled
circuits (GCs) approach to achieve S2PC. Here, a circuit constructor party (PA)
builds several GCs (cryptographic versions of the Boolean circuit that computes
the intended function), and then the other party, the circuit evaluator (PB),
verifies some GCs for correctness and evaluates the remaining to obtain the
information necessary to finally decide a correct circuit output. Recently, this
approach has had the best reported efficiency benchmark [KSS12; FN13] for
S2PC protocols with a constant number of rounds of communication.

1.1 Contributions. This paper introduces a new bit commitment (BitCom)
approach and a new evaluation technique, dubbed forge-and-lose, and blends
them into a C&C approach, to achieve a new C&C-GCs-based S2PC protocol
with significant improvements in applicability and efficiency.

Applicability. The new protocol achieves S2PC-with-BitComs, as illustrated
in Fig. 1. Specifically, both parties receive random BitComs of all circuit in-
put and output bits, with each party also learning the decommitments of only
her respective circuit input and output bits. This is an augmented version of
secure circuit evaluation. Given the reusability of BitComs, the protocol can
be taken as a building block to achieve other goals, such as reactive linkage of
several S2PCs, efficiently and securely linking the input and output bits of one
execution with the input bits of subsequent executions. Furthermore, given the
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Fig. 1: Secure Two-Party Computation with Committed Inputs and
Outputs. Legend: PA and PB (the names of the two parties); xp, yp and Cp (the
private circuit input, the private circuit output and the public circuit specification of
party Pp, respectively, with p being A or B); and (commitment and decommitment,
respectively, of the variable inscribed inside the dashed square). Colors red, blue and
purple are related with PA, PB and both parties, respectively.

XOR-homomorphic properties of these BitComs, a party may use efficient spe-
cialized zero-knowledge proof s (ZKPs) to prove that her private input bits in
one execution satisfy certain non-deterministic polynomially verifiable relations
with the private input and output bits of previous executions.1 In previous C&C-
GCs-based solutions, without committed inputs and outputs with homomorphic
properties, such general linkage would be conceivable but using more expensive
ZKPs of correct behavior.

The main technical description in this paper is focused on a standalone 1-
output protocol, where the two parties, PA and PB, interact so that only PB
learns a circuit output.2 In the new BitCom approach, the two possible decom-
mitments of the BitCom of each circuit input or output bit (independent of the
number of GCs) are connected to the two keys of the respective input or output
wire of each GC, via a new construction dubbed connector. PA commits to these
connectors and then reveals them partially for verification or evaluation. This
ensures, within the C&C, the correctness of circuit input keys and the privacy
of decommitments of BitComs, without requiring additional ZKPs. The BitCom
approach enables particularly efficient extensions of this 1-output protocol into
2-output protocols where both parties learn a respective private circuit-output.

Efficiency. The new protocol requires only an optimal minimum number of
GCs in the C&C, for a certain soundness guarantee (i.e., for an upper bound
on the probability with which a malicious PA can make PB accept an incor-
rect output). Specifically, by only requiring that at least one evaluation GC is
correct, the total number of GCs is reduced asymptotically about 3.1 times,
in comparison with the previously best known C&C-GCs configuration [SS11]
that required a correct majority of evaluation GCs. The significance of this im-

1 For simplicity, “ZKPs” is used hereafter both for ZK proofs and for ZK arguments.
2 The “1-output” characterization refers to only one party learning a circuit output,
though in rigor the protocol implements a probabilistic 2-output functionality (as
both parties receive random BitComs).
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provement stems from the number of GCs being the source of most significant
cost of C&C-GCs-based S2PC protocols, for circuits of practical size. Remark:
two different techniques [Lin13; HKE13] developed in concurrent research also
just require a single evaluation GC to be correct – a brief comparison is made in
§7.1, but the remaining introductory part of this paper only discusses the typical
C&C-GCs approach that requires a correct majority of evaluation GCs.

The reduction in number of GCs is achieved via a new forge-and-lose tech-
nique, providing a path by which PB can recover the correct final output when
there are inconsistent outputs in the evaluated GCs. Assume that PA is able
to forge a GC; i.e., build an incorrect GC that, if selected for evaluation, de-
garbles smoothly into an output that cannot be perceived as incorrect. Then,
PB somehow combines the forged output with a correct output, in a way that
reveals a secret key (a trapdoor) with which the input of PA has previously been
encrypted (committed). In this way, PA loses privacy of her input bits, enabling
PB to compute the intended circuit output in the clear.

The protocol can be easily adjusted to integrate several optimizations in com-
munication and memory, such as random seed checking [GMS08] and pipelining
[HEKM11]. Since the garbling scheme is abstracted, the protocol is also compat-
ible with many garbling optimizations, e.g., point and permute [NPS99], XOR
for free [KS08b], garbled row reduction [PSSW09], dual-key cipher [BHR12].

1.2 Roadmap. The remainder of this paper is organized as follows. Section 2
reviews the basic building blocks of the typical C&C-GCs approach and some
properties of BitCom schemes. Section 3 introduces a new BitCom approach,
explaining how BitComs can be connected to circuit input and output wire keys,
to ensure the consistency of the keys across different GCs. Section 4 describes the
forge-and-lose technique, achieving a major efficiency improvement over the typ-
ical cut-and-choose approach. Section 5 presents the new protocol for 1-output
S2PC-with-BitComs, where only one party learns a private circuit-output, and
both parties learn BitComs of the input and output bits of both parties. Sec-
tion 6 comments on the complexity of the protocol and shows how the BitCom
approach enables efficient linkage of S2PCs. Section 7 compares some aspects
of related work. The full version of this paper [Bra13] includes a more formal
description, analysis and optimization of the protocol and a proof of security.

2 Background

2.1 C&C-GCs-based S2PC

Basic garbled-circuit approach. The theoretical feasibility of S2PC, for func-
tions efficiently representable by Boolean circuits, was initially shown by Yao
[Yao86].3 In the semi-honest model (where parties behave correctly during the
protocol) simplified to the 1-output setting, only one of the parties (PB) intends
to learn the output of an agreed Boolean circuit that computes the desired func-
tion. The basic GC approach starts with the other party (PA) building a GC – a
3 See [BHR12, §1] for a brief historical account of the origin of the garbled-circuit
approach, including references to [GMW87; BMR90; NPS99].
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cryptographic version of the Boolean circuit, which evaluates keys (e.g., random
bit-strings) instead of clear bits. The GC is a directed acyclic graph of garbled
gates, each receiving keys as input and outputting new keys. Each gate output
key has a corresponding underlying bit (the result of applying the Boolean gate
operation to the bits underlying the corresponding input keys), but the bit cor-
respondence is hidden from PB. PA sends the GC and one circuit input key per
each input wire to PB. Then, PB obliviously evaluates the GC, learning only one
key per intermediate wire but not the respective underlying bit. Finally, each
circuit output bit is revealed by a special association with the key learned for
the respective circuit output wire. Lindell and Pinkas [LP09] prove the security
of a version of Yao’s protocol (valid for a 2-output setting).

There are many known proposals for garbling schemes [BHR12]. This paper
abstracts from specific constructions, except for making the typical assumptions
that: (i) with two valid keys per circuit input wire (and possibly some additional
randomness used to generate the GC), PB can verify the correctness of the GC, in
association with the intended Boolean circuit, and determine the bit underlying
each input and output key; and (ii) with a single key per circuit input wire,
PB can evaluate the GC, learning the bits corresponding to the obtained circuit
output keys, but not learn additional information about the bit underlying the
single key obtained for each input wire of PA and for each intermediate wire.

Oblivious transfer. An essential step of the basic GC-based protocol re-
quires, for each circuit input wire of PB (the GC-evaluator), that PA (the GC-
constructor) sends to PB the key corresponding to the respective input bit of PB,
but without PA learning what is the bit value. This is typically achieved with 1-
out-of-2 oblivious transfers (OTs) [Rab81; EGL85; NP01], where the sender (PA)
selects two keys per wire, but the receiver (PB) only learns one of its choice, with-
out the sender learning which one. Some protocols use enhanced variations, e.g.,
committing OT [CGT95], committed OT [KS06], cut-and-choose OT [LP11],
authenticated OT [NNOB12], string-selection OT [KK12]. In practice, the com-
putational cost of OTs is often significant in the overall complexity of protocols,
though asymptotically the cost can be amortized with techniques that allow
extending a few OTs to a large number of them [Bea96; IKNP03; NNOB12].

The new protocol presented in this paper uses OTs at the BitCom level, to
coordinate decommitments between the two parties, as follows. For each circuit
input bit of PB, PB selects a bit encoding (a decommitment) and uses it to
produce the respective BitCom. Then, PA uses a trapdoor to learn two decom-
mitments (i.e., bit-encodings for the two bits) for the same BitCom. These OTs
are herein dubbed 2-out-of-1 OTs, since one party chooses one value and leads
the other party to learn two values. This is in contrast with the typical 1-out-of-2
OT (commonly used directly at the level of wire keys), where PA chooses two
keys and leads PB to learn one of them.

Cut-and-choose approach. Yao’s protocol is insecure in the malicious model.
For example, a malicious PA could construct an undetectably incorrect GC, by
changing the Boolean operations underlying the garbled gates, but maintaining
the correct graph topology of gates and wires. To solve this, Pinkas [Pin03]
proposed a C&C approach, achieving 2-output S2PC via a single-path approach
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where only PB evaluates GCs. A simplified high level description follows. PA
constructs a set of GCs. PB cuts the set into two complementary subsets and
chooses one to verify the correctness of the respective GCs. If no problem is
found, PB evaluates the remaining GCs to obtain, from a consistent majority,
its own output bits and a masked version of the output of PA. PB sends to PA
a modified version of the masked output of PA, without revealing from which
GC it was obtained. Finally, PA unmasks her final output bits. This approach
has two main inherent challenges: (1) how to ensure that input wire keys are
consistent across GCs, such that equivalent input wires receive keys associated
with the same input bits (in at least a majority of evaluated GCs); (2) how to
guarantee that the modified masked-output of PA is correct and does not leak
private information of PB. Progressive solutions proposed across recent years
have solved subtle security issues, e.g., the selective-failure-attack [MF06; KS06],
and improved the practical efficiency of C&C-GC-based methods [LP07; Woo07;
KS08a; NO09; PSSW09; LP11; SS11]. As a third challenge, the number of GCs
still remains a primary source of inefficiency, in these solutions that require a
correct majority of GCs selected for evaluation. For example, achieving 40 bits of
statistical security4 requires at least 123 GCs (74 of which are for verification).
Asymptotically, the optimal C&C partition (three fifths of verification GCs)
leads to about 0.322 bits of statistical security per GC [SS11].

The BitCom approach developed in this paper deals with all these challenges.
First, taking advantage of XOR-homomorphic BitComs, the verification of con-
sistency of input wire keys of both parties is embedded in the C&C, without an
ad-hoc ZKP of consistency of keys across different GCs. Second, PB can directly
learn, from the GC evaluation, decommitments of BitComs of one-time-padded
(i.e., masked) output bits of PA, and then simply send these decommitments to
PA. Privacy is preserved because the decommitments do not vary with the GC
index. Correctness is ensured because the decommitments are verifiable (i.e., au-
thenticated) against the respective BitComs. The BitCom approach also enables
achieving 2-output S2PC via a dual-path execution approach – the parties play
two 1-output S2PCs, with each party playing once as GC evaluator of only her
own intended circuit, using the same BitComs of input bits in both executions.5
Third, the BitCom approach enables the forge-and-lose technique, which reduces
the correctness requirement to only having at least one correct evaluation GC,
thus increasing the statistical security to about 1 bit per GC.

4 The number of bits of statistical security is the additive inverse of the logarithm
base 2 of the maximum error probability, i.e., for which a malicious PA can make
PB accept an incorrect output.

5 This is a concrete C&C-GC-based dual-path solution to 2-output S2PC, where the
circuits evaluated by each party only compute her respective output. [Kir08, §6.6] and
[SS11, §1.2] conceptualized dual-path approaches in high level, but did not explain
how to ensure the same input across the two executions. Other dual-path approaches
have been proposed using a single GC per party (i.e., not C&C-based), but with po-
tential leakage of one bit of information [MF06; HKE12]. A recent method [HKE13]
(see comparison in §7) devised a C&C-based dual-path approach but requiring both
parties to evaluate GCs with the same underlying Boolean circuit (for some 2-output
functionalities this implies that GCs have the double of the size).
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2.2 Bit Commitments

The BitCom approach introduced in this paper is based on several properties of
(some) BitCom schemes, reviewed hereafter. A BitCom scheme [Blu83; BCC88]
is a two-party protocol for committing and revealing individual bits. In a commit
phase, it allows a sender to commit to a bit value, by producing and sending
a BitCom value to the receiver. The BitCom binds the sender to the chosen
bit and, initially, hides the bit value from the receiver. Then, in a reveal phase,
the sender discloses a private bit-encoding (the decommitment), which allows
the receiver to learn the committed bit and verify its correctness. A scheme is
XOR-homomorphic if any pair of BitComs can be combined (under some group
operation) into a new BitCom that commits the XOR of the original committed
bits, and if the same can be done with the respective decommitments.

The following paragraphs describe several properties related with decom-
mitments and trapdoors of practical BitCom schemes. For simplicity, the de-
scription focuses on a scheme based on a square operation with some useful
collision-resistance (i.e., “claw-free” [GMR84; Dam88]) properties.

Unconditionally hiding (UH). A BitCom scheme is called UH if, before
the reveal phase, a receiver with unbounded computational power cannot learn
anything about the committed bit. If there is a trapdoor (known by the receiver),
then it can be used to retrieve, from any BitCom, respective bit-encodings of
both bits. Still, this does not reveal any information about which bit the sender
might have committed to. A practical instantiation was used by Blum for coin
flipping [Blu83]. There, in a multiplicative group modulo a Blum integer with
factorization unknown by the sender, bits 0 and 1 are encoded as group-elements
with Jacobi Symbol 1 or −1, respectively.6 The commitment of a bit is achieved
by sending the square of a random encoding of the bit. The revealing is achieved
by sending the known square-root.

Henceforth, a XOR-homomorphic UH BitCom scheme is suggestively dubbed
a 2-to-1 square scheme if it also has the following three useful properties:

– Proper square-roots. Any BitCom (dubbed square) has exactly two de-
commitments (dubbed proper square-roots), encoding different bits. In the
Blum integer example, each square has four square-roots, two per bit, but it
is possible to define a single proper square-root per bit (e.g., the square-root
whose least significant bit is equal to the encoded bit). The multiplicative
group (set of residues and respective multiplication operation) can be easily
adjusted to consider only proper square-roots, since the additive inverse of
a non-proper square root is a proper square-root encoding the same bit.

– From trapdoor to decommitments. There is a trapdoor whose knowl-
edge allows extracting a pair of proper square-roots (the two decommitments)
from any square (the BitCom). Such pair is dubbed a non-trivially correlated
pair, in the sense that the two proper square-roots are related but cannot

6 A Blum integer is the product of two prime powers, where each prime is congruent
with 3 modulo 4, and each power has an odd exponent. For a fixed Blum integer, the
Jacobi Symbol is a completely multiplicative function that maps any group element
into 1 or −1 (more detailed theory can be found, for example, in [NZM91]).
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be simultaneously found (except with the help of a trapdoor). This property
allows a 2-out-of-1 OT: PB selects a proper square-root and sends its square
to PA, who then uses the trapdoor to obtain the two proper square-roots.
In the Blum integer example, the trapdoor is its factorization.

– From decommitments to trapdoor. Any non-trivially correlated pair is
a trapdoor. This is useful for the forge-and-lose technique, as the discovery
(by PB) of such a pair (a trapdoor of PA), in case PA acted maliciously, is the
condition that allows PB to decrypt the input bits of PA. In the Blum integer
example, its factorization can be found from any pair of proper square-roots
of the same square.

Unconditionally binding (UB). A BitCom scheme is called UB if a sender
with unbounded computational power cannot make the receiver accept an in-
correct bit value in the reveal phase. If there is a trapdoor known by some party,
then the party can use it to efficiently retrieve (i.e., decrypt) the committed
bit from any BitCom value. A practical instantiation is the Goldwasser-Micali
probabilistic encryption scheme [GM84], assuming that modulo a Blum integer
it is intractable for the receiver to decide quadratic residuosity (of residues with
Jacobi Symbol 1). A bit 1 or 0 is committed by selecting a random group element
and sending its square, or sending the additive inverse of its square, respectively.7
To decommit 1 or 0, the sender reveals the bit and the respective random group
element, letting the receiver verify that its square or additive-inverse of the
square, respectively, is equal to the BitCom value. The factorization of the Blum
integer is a trapdoor that enables efficient decision of quadratic residuosity.

Remark. The basis of the forge-and-lose technique (§4) is a combination of UB
and UH BitCom schemes, with the sender in the UB scheme being the receiver
in the UH scheme, and knowing a common trapdoor for both schemes. For
the Blum integer examples, and assuming intractability of deciding quadratic
residuosity (without a trapdoor), this would mean using the same Blum integer
in both schemes, with its factorization as trapdoor. There are known protocols
to prove correctness of a Blum integer (e.g., [vdGP88]).

The two exemplified schemes are XOR-homomorphic under modular multi-
plication. For the purpose of the new S2PC-with-BitComs protocol (§5), this ho-
momorphism is useful in enabling efficient ZKPs of knowledge (ZKPoKs) related
with committed bits, and efficient negotiation of random bit-encodings and re-
spective BitComs (emulating an ideal functionality where the trusted third party
would select the BitComs randomly). The property is also useful for linking sev-
eral S2PC executions, via ZKPs about relations between the input bits of one
execution and the input and output bits of previous executions (§6).

3 The BitCom approach

This section introduces a BitCom approach that combines a BitCom setting
(where there is a BitCom for each circuit input and output bit) and a C&C struc-
7 The additive inverse of a square is necessarily a non-quadratic residue with Jacobi
Symbol 1, modulo a Blum integer, because −1 has the same property.
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ture (where there are several GCs, each with two keys for each input and output
wire). In this approach, based on the XOR-homomorphism of UH BitComs, the
consistency of input and output wire keys across different GCs is statistically
ensured within the C&C, rather than using a ZKP of consistency.8

3.1 Cut-and-choose stages. The S2PC-with-BitComs protocol to be defined
in this paper is built on top of a C&C approach with a Commit-Challenge-
Respond-Verify-Evaluate structure. In a Commit stage, PA builds and
sends several GCs, as well as complementary elements (dubbed connectors) re-
lated with BitComs and with the circuit input and output wire keys of GCs. At
this stage, PA does not yet reveal the circuit input keys that allow the evalua-
tion of each GC. Then, in the Challenge stage, PA and PB jointly decide a
random partition of the set of GCs into two subsets, one for verification and the
other for evaluation. Possibly, the subsets may be conditioned to a predefined
restriction about their sizes (e.g., a fixed proportion of verification vs. evaluation
GCs, or simply not letting the number of evaluation GCs exceed some value). In
the subsequent Respond stage, PA sends to PB the elements that allow PB to
fully verify the correctness of the GCs selected for verification, to partially verify
the connectors of all the GCs (in different ways, depending on whether they
are associated with verification or evaluation challenges), and to evaluate the
GCs (and respective connectors) selected for evaluation. In the Verify stage, if
any verification step fails, then PB aborts the protocol execution; otherwise, PB
establishes that there is an overwhelming probability that at least one GC (and
respective connectors) selected for evaluation is correct. PB finally proceeds to
an Evaluate stage, evaluating the evaluation GCs and respective connectors,
and using their results to determine the final circuit output bits and respec-
tive decommitments of output BitComs. Notice that between the Verify and
Evaluate stages there is no response stage that could let PA misbehave.

3.2 Connectors. This section develops the idea of connectors – structures
used to sustain the integration between BitComs and the C&C structure. They
are built on top of a setup where one initial UH-BitCom has been defined for
each input and output wire of each party, independently of the number of GCs.
Then, for each input and output wire in each GC, a connector is built to provide
a (statistically verifiable) connection between the two BitCom decommitments
and the respective pair of wire keys. The functionality of connectors varies with
the type of wire they refer to (input of PA, input of PB, output of PB), as
illustrated in high level in Fig. 2.

Connectors are used in a type of commitment scheme (i.e., with commit and
reveal phases) that takes advantage of the C&C substrate. First, each connector
is committed in the C&C Commit stage, hiding the respective two wire keys,
but binding PA to them and to their relation with BitCom decommitments.
Then, each connector is partially revealed during the C&C Respond stage, in
one of two possible complementary modes: a reveal for verification, related with
verification GCs; or a reveal for evaluation, related with evaluation GCs. All
8 The protocol still includes several efficient ZKPs related with BitComs, but they are
not about the consistency of wire keys across different GCs.
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Fig. 2: Connectors. Legend: PA (GC constructor); PB (GC evaluator); JV and JE

(subsets of verification and evaluation GC indices, respectively); c (group-element
encoding bit c); key[c] (wire key with underlying bit c).

verifications associated with these two reveal modes are performed in the C&C
Verify stage, when PB can still, immune to selective failure attacks, complain
and abort in case it finds something wrong. PA never executes simultaneously the
two reveal modes for the same wire of the same GC, because such action would
reveal the input bits (in case of wires of PA) or both BitCom decommitments
(i.e., the trapdoor of PA, in case of wires of PB). Nonetheless, since the commit-
ment to the connector binds PA to the answers that it can give in each type of
reveal phase, an incorrect connector can pass undetectably at most through one
type of reveal mode. Thus, within the C&C approach, there is a negligible prob-
ability that PA manages to build incorrect connectors for all evaluation indices
and go by undetected. The specific constructions follow:

For each input wire of PA:
– Commit. PA selects a random permutation bit and a respective random

encoding (a group-element dubbed multiplier) using the same 2-to-1 square
scheme used to commit the input bits of PA. PA uses the homomorphic group
operation to obtain a new encoding (dubbed inner encoding) that encodes
the permuted version of her input bit, and sends its square (a new inner UH
BitCom) to PB. PA then builds a commitment of each of the two wire input
keys (using some other commitment scheme), one for bit 0 and the other
for bit 1, and sends them to PB in the form of a pair with the respective
permuted order.

– Reveal for verification. PA decommits the two wire input keys (using
the reveal phase of the respective commitment scheme), and decommits the
permutation bit (by revealing the multiplier). PB uses the two wire input
keys (obtained for all input wires) to verify the correctness of the GC and
simultaneously obtain the underlying bit of each input key. Then, PB verifies
that the ordering of the bits underlying the pair of revealed input keys is
consistent with the decommitted permutation bit.

– Reveal for evaluation. PA decommits the input key that corresponds to
her input bit, and decommits the permuted input bit (by revealing the inner
encoding), thus allowing PB to verify that it is consistent with the position of
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the opened key commitment. As the value of the permuted bit is independent
of the real input bit, nothing is revealed about the bit underlying the opened
key. If PA would instead reveal the other key, PB would detect the cheating
in a time when it is still safe to abort the execution and complain.

For each input wire of PB:

– Commit. PA selects a pair of random encodings of bit 0 (dubbed multipli-
ers) and composes them homomorphically with the two known decommit-
ments of the original input BitCom of PB (which PA has extracted using
the trapdoor), thus obtaining two new independent encodings (dubbed in-
ner encodings, one for bit 0 and one for bit 1). PA then sends to PB the
respective squares (dubbed inner squares). For simplicity, it is assumed here
that the inner encodings can be directly used as input wire keys of the GC
(the full version of this paper shows how to relax this assumption).

– Reveal for verification. PA reveals the two inner encodings. PB verifies
that they are the proper square-roots of the received inner squares, and that
they encode bits 0 and 1, respectively. Then, PA uses them as the circuit
input keys in the GC verification procedure, verifying their correctness. A
crucial point is that the two inner encodings are proper square-roots of in-
dependent BitComs and thus do not constitute a trapdoor.

– Reveal for evaluation. PA reveals the two multipliers. PB verifies that
both encode bit 0, and homomorphically verifies that they are correct (their
squares lead the original BitCom into the two received inner squares). Since
PB knows one (and only one) decommitment of the input BitCom, it can
multiply it with the respective multiplier to learn the respective inner en-
coding and use it as an input wire key. This procedure is resilient to selective
failure attack, because both multipliers are verified for correctness, and be-
cause the two inner encodings (of which PB only learns one) are statistically
correct input keys (i.e., they would be detected as incorrect if they had been
associated with a verification GC).

For each output wire of PB: The construction is essentially symmetric to
the case of input wires of PB. Again for simplicity, it is assumed here that the
output keys can directly be group-elements (dubbed inner encodings) that are
proper square-roots of independent squares. The underlying bit of each output
key is thus the bit encoded by it (in the role of inner encoding). PA commits by
initially sending the two inner squares to PB. Then, for verification challenges,
from the GC verification procedure PB learns 2 keys and respective underlying
bits. PB can verify that they are respective proper square-roots of the inner
squares and that they encode the respective bits. For evaluation challenges, PA
sends only the two multipliers, and PB verifies homomorphically that they are
correct. Then, PB learns one output key from the GC evaluation procedure,
which is an inner encoding, and uses the respective multiplier to obtain the
respective decommitment of the output BitCom.

The overall construction requires a number of group elements (multipliers
and inner encodings) proportional to the number of input and output wires, but
independent of the number of intermediate wires in the circuit.
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4 The forge-and-lose technique

This section introduces a new technique, dubbed forge-and-lose, to improve the
typical C&C-GCs-based approach, by using the BitCom approach to provide a
new path for successful computation of final circuit output. More precisely, if in
the Evaluate stage there is at least one GC and respective connectors leading
to a correct output (i.e., decommitments of the UH BitComs, for the correct
circuit output bits), and if a malicious P∗A successfully forges some other output,
then P∗A loses the privacy of her input bits to PB, allowing PB to directly use
a Boolean circuit to compute the intended output. This loss of privacy is not a
violation of security, but rather a disincentive against malicious behavior by P∗A.

The forge-and-lose path significantly reduces the probabilistic gap available
for malicious behavior by PA that might lead PB to accept an incorrect out-
put. The technique provides up to 1 bit of statistical security per GC, which
constitutes an improvement factor of about 3.1 (either in reduction of number
of GCs or in increase of number of bits of statistical security) in comparison
with C&C-GCs that require a majority of correct evaluation GCs. As noted
by Lindell [Lin13], in this setting the optimal C&C partition corresponds to an
independent selection of verification and evaluation challenges. Still, for some
efficiency tradeoffs it may be preferable to impose some restrictions on the num-
ber of verification and evaluation challenges (e.g., ensure that there are more
verification than evaluation challenges). The full version of this paper shows the
error probabilities associated with different C&C partition methods.

The forge-and-lose technique is illustrated in high level in Fig. 3. It can be
merged into the C&C and BitCom approach as follows:

– Encryption scheme. PA encrypts her own input bits using as key the
trapdoor (known by PA) of the UH-BitCom scheme used (by PA) to produce
BitComs of the output bits of PB. Then, PA gives a ZKP that her encrypted
input is the same as that used in the S2PC protocol, i.e., the one committed
by PA with an UH-BitCom scheme with trapdoor known by PB. If both
schemes are XOR-homomorphic (see practical example in §2.2), the ZKP can
be achieved efficiently with standard techniques, namely with a statistical
combination across input wires, requiring communication linear with the
statistical security parameter.

– Forge-and-lose evaluation. In the Evaluate stage, if a connector leads
an output key to an invalid decommitment, then the respective GC is ig-
nored altogether. If for the remaining GCs all connectors lead to consistent
decommitments across all GCs, i.e., if for each output wire index the same
valid bit-encoding (proper square-root of the output BitCom) is obtained,
then PB accepts them as correct. However, if PA acted maliciously, there
may be a forged GC and connector leading to a valid (verifiable) decommit-
ment that is different from the decommitment obtained from another correct
GC and connector, for the same output wire index. If PB obtains any such
pair of decommitments, i.e., a non-trivially correlated pair of square-roots of
the same square, then PB gets the trapdoor with which PA encrypted her
input, and follows to decrypt the input bits of PA and use them directly to
compute the correct final circuit output in the clear.
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Fig. 3: Forge-and-lose. Evaluation path followed by PB, the evaluator of garbled
circuits (GCs), if different GCs built by a malicious PA and selected for evaluation (e.g.,
with indices j′, j′′) lead to valid but different decommitments of the same uncondition-
ally hiding (UH) BitCom (e.g., with index i).

5 Protocol for 1-output S2PC-with-BitComs

This section describes the new C&C-GCs-based protocol for 1-output S2PC-
with-BitComs, enhanced with a forge-and-lose technique. The BitComs are XOR-
homomorphic, so the mentioned ZKPoKs are efficient using standard techniques.

0. Setup. The parties agree on the protocol goal, namely on a specification of
a Boolean circuit whose evaluation result is to be learned privately by PB,
on the necessary security parameters, on a C&C partitioning method, and
on the necessary sub-protocols. Each party selects a 2-to-1 square scheme,
and proposes it to the other party, without revealing the trapdoor but giving
a respective ZKPoK that proves the correctness of the public parameters.

1. Produce initial BitComs.
(a) UH Commit Input Bits. Each party selects an initial UH BitCom for

each of its own circuit input bits, using the 2-to-1 square scheme with
trapdoor known by the other party, and sends it to the other party. PB
gives a ZKPoK of a valid decommitment of the respective BitComs.

(b) UB Commit Input Bits of PA. PA commits again to each of her input
bits, now using an UB-BitCom scheme with trapdoor equal to the trap-
door (known by PA) of the UH-BitCom scheme used by PB to commit
the input bits of PB. PA gives a ZKPoK of equivalent decommitments
between the UH BitComs of the input of PA (with trapdoor known by
PB) and the UB BitComs of the input of PA (with trapdoor known by
PA), i.e., a proof that the known decommitments encode the same bits.

(c) UH Commit Output Bits of PB. For each output wire index of PB,
PA selects a random encoding of bit 0 (using the UH BitCom scheme
with trapdoor known by PA) and sends its square to PB. (PB will find
a respective decommitment only later, in the Evaluate stage.)

2. Commit. PA uses her trapdoor to extract a non-trivially correlated pair of
proper square-roots from each UH BitCom of the input bits (this is the so
called 2-out-of-1 OT, which replaces the typical 1-out-of-2 OT used in other
S2PC protocols) and output bits of PB. Then, PA builds several GCs (in
number consistent with the agreed parameters) and respective connectors
to each input and output wire, and sends the GCs and commitments to the
connectors (as specified in §3) to PB.
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3. Challenge. The two parties use a coin-tossing sub-protocol to determine a
random challenge bit for each GC, conditioned to the agreed C&C method
(e.g., same number of challenges of each type, or more verification than
evaluation challenges, or independent selection).9

4. Decide UH-BitCom Permutations. In order to emulate a trusted third
party deciding the UH BitCom of each circuit input and output bit, both
parties interact in a fully-simulatable coin-tossing sub-protocol to decide a
random encoding of bit 0 for each wire index.10 Later, each party will locally
use these encodings to permute the encodings of her respective private bits,
and use the square of the encodings to permute the respective UH BitComs
of both parties. Given the XOR-homomorphism, the initial and the final UH
BitComs commit to the same bits.

5. Respond. For each C&C challenge bit, PA makes either the reveal for veri-
fication or the reveal for evaluation of the connectors, as specified in §3.

6. Verify. For verification indices, PB obtains two keys per input wire, veri-
fies the correctness of the GC and makes the respective partial verification of
connectors (without learning the decommitments of the BitComs of output
bits of PB). For evaluation indices, PB makes the respective partial verifica-
tion of the connectors and obtains one key per input wire. If something is
found wrong, PB aborts and outputs Fail.

7. Evaluate. For each evaluation index, PB uses the one key per input wire
to evaluate the GC, obtain one key per output wire and use the respective
revealed part of the connector (namely, one of the two received multipliers)
to obtain a decommitment (bit encoding) of the respective output BitCom.
There is an overwhelming probability that there is at least one evaluation
GC whose connectors lead to valid decommitments in all output wires. If
all obtained valid decommitments are consistent across different GCs, then
PB accepts them as correct. Otherwise, PB proceeds into the forge-and-lose
path as follows. It finds a non-trivially correlated pair of square-roots and
uses it as a trapdoor to decrypt the input bits of PA, from the respective
UB BitComs. In possession of the input bits of both parties, PB directly
evaluates the final circuit output. Then, from within the decommitments
already obtained from the evaluation connectors, PB finds the output bit
encodings that are consistent with the circuit output bits, and accepts them
as the correct ones. This marks the end of the forge-and-lose path.

8. Apply BitCom Permutations. Each party applies the previously decided
random permutations to the encodings of the respective circuit input and
output bits, and applies the square of the random encodings as permutations
to the UH BitComs of the circuit input and output bits of both parties.

9 The standalone coin-tossing does not need to be fully simulatable, but the proof of
security takes advantage of the ability of the simulated PA (with rewinding access to
a possibly malicious P∗B) to decide the outcome of the coin-toss. Subtle alternatives
would be possible, depending on some changes related with the remaining stages.

10 To achieve simulability of the overall protocol under each possible malicious party
(P∗A and P∗B), the simulator of this coin-tossing needs to be able to induce the final
BitComs in the real world to be equal to those decided by the trusted third party in
the ideal world, and at the same time deal with a probabilistic possibility of abort
dependent on those final BitCom values (e.g., see [Lin03]).
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9. Final Output. Each party privately outputs her circuit input and out-
put bits and the respective final encodings, and also outputs the (commonly
known) final UH BitComs of the circuit input and output bits of both par-
ties. PA outputs even if PB aborts at any time after the Apply BitCom
Permutations stage.

Remark. When using the 1-output protocol within larger protocols, care needs
to be taken so that PA cannot distinguish between PB having learned his output
via the normal evaluation path vs. via the forge-and-lose path.

6 Discussion

6.1 Complexity. Besides the computation and communication related with
(the reduced number of) GCs, the new S2PC-with-BitComs protocol requires
instantiating the connectors (which brings a cost proportional to the number of
input and output wires, multiplied by the number of GCs), performing ZKPoKs
related with BitComs and to prove correctness of the BitCom scheme parameters,
and performing secure two-party coin-tossing (which is significant for the decision
of random BitComs values). Based on the XOR-homomorphism, the ZKPoKs
related with input wires can be parallelized efficiently with standard techniques,
with a communication cost linear in a statistical parameter but independent of
the number of input wires, though with computational cost proportional to the
product of the statistical parameter and the number of input wires.

With an instantiation based on Blum integers, the inversion of an UH BitCom
using the trapdoor (i.e., computing a modular square-root) is approximately
computationally equivalent to one exponentiation modulo each prime factor.
Thus, besides proving correctness of the Blum integer (which can be achieved
with a number of exponentiations that is linear in the statistical parameter),
and performing a fully-simulatable coin-tossing sub-protocol to decide random
BitCom permutations (which can be instantiated with a number of exponentia-
tions that is linear in the number of input and output wires, and performed in a
group of smaller order), the 1-output S2PC-with-BitComs protocol only requires
a number of exponentiations that is linear in the number of input wires of PB,
and only computed by PA. This is in contrast with other protocols whose re-
quired number of exponentiations by both parties is proportional to the number
of GCs multiplied by the number of input wires (e.g., [LP11]), though in com-
pensation those exponentiations are supported in groups with smaller moduli
length and sub-groups of smaller order.

The protocol can be optimized in several ways. For example, with a random
seed checking (RSC) technique [GMS08] the communication of elements (includ-
ing GCs and connectors) associated with verification challenges can be replaced
by the sending and verification of small random seeds (used to pseudo-randomly
generate the elements) and a commitment (to the elements). The technique can
be applied independently to GCs and connectors, and can also be used to reduce
some of the communication corresponding to connectors associated with evalu-
ation challenges. As another example, some group elements used in connectors
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of PA can be reduced in size, since their binding properties only need to hold
during the execution of the protocol.

Concrete results. An analytic estimation of communication complexity is
made in the full version of this paper (ignoring overheads due to communication
protocols), for two different circuits: an AES-128 circuit with 6,800 multiplicative
gates [Bri13] and 128 wires for the input of each party and for the output of PB;
and a SHA-256 circuit with 90,825 multiplicative gates [Bri13] and 256 wires for
the input of each party and output of PB.

An interesting metric is the proportional overhead of communicated elements
beyond GCs (i.e., connectors, BitComs and associated proofs) in comparison
with the size occupied only by the GCs. For 128 bits of cryptographic security,
instantiated with 3,072-bit Blum integers [BBB+12], and 40 bits of statistical
security achieved using 41 GCs of which at most 20 are for evaluation, the
estimated overhead is about 55% and 8%, for the AES-128 and SHA-256 circuits,
respectively, without the RSC technique applied to the GCs. This metric gives an
intuition about the communication cost inherent to the BitCom approach, but
is not good enough on its own. For example, when applying the RSC technique
also at the level of GCs, the overall communication is reduced significantly, but
(because the size corresponding to GCs is reduced) the proportional overhead
increases to 158% and 23%, respectively. Nonetheless, even these overheads are
low when compared to the cost associated with the additional GCs needed in
a C&C that requires a majority of correct evaluation GCs (i.e., on its own an
overhead of about 200%, and asymptotically up to about 210%). Clearly, the
proportional overhead decreases with the ratio given by the number of input
and output wires divided the number of multiplicative gates.

There are other optimizations and C&C configurations that reduce the com-
munication even more, with tradeoffs with computational complexity. For exam-
ple, by restricting the number of evaluation GCs to be at most 8, but increasing
the overall number of GCs to 123 (this was the minimal number of GCs required
by the typical C&C to achieve 40 bits of statistical security), the estimated
communication complexity is approximately of the order of 62 million bits and
418 million bits, respectively for the exemplified circuits. A pipelining technique
[HEKM11] could also be considered, such that the garbled-gates are not all stored
in memory at the same time. This would increase the computation by PA, but
not affect the amount of communicated elements.

6.2 Linked executions. A simple example of linked executions is the men-
tioned dual-path execution approach, where each party reuses the same input
bits (and BitComs) in two different executions. Furthermore, it may be use-
ful to achieve more general linkage, such as proving that the private input
bits of a S2PC satisfy certain non-deterministic polynomial verifiable relations
with the private input and output bits of previous S2PCs. Based on the XOR-
homomorphism of BitComs, this can be proven with efficient ZKPs. For example,
proving that a certain BitCom commits to the NAND of the bits committed by
two other BitComs can be reduced to a simple ZKP that there are at least
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two 1’s committed in a triplet of BitComs, with the triplet being built from a
XOR-homomorphic combination of the original three BitComs.11

For example, since Boolean circuits can be implemented with NAND gates
alone, it is possible to prove, outside of the GCs, those transformations and
relations that involve only the bits of one party. For example, for protocols
defined as a recursion of small GC-based S2PC sub-protocols in the semi-honest
model (e.g., [LP02]), security can be enhanced to resist also the malicious model,
by simply (1) replacing each GC with a C&C-GCs with BitComs, and (2) by
naturally using the input and output of previous executions (or transformations
thereof) as the input of the subsequent executions.

6.3 Security. The protocol can be proven secure in the plain model (i.e.,
without hybrid access to ideal functionalities), assuming the simulator has black-
box access with rewindable capability to a real adversary. The simulator is able
to extract the input of the malicious party in the real world from the respective
ZKPoKs of decommitments, and thus hand it over to the trusted third party in
the ideal world. The two-party coin tossing used to select random permutations
of group-elements needs to be fully-simulatable, because the final BitComs and
decommitments are also part of the final output of honest parties. Subtle changes
are needed to the ideal functionality when the protocol is adjusted to the 2-
output case where each party learns a private circuit output. Achieving security
in the universal composability model [CLOS02] is left for future work.

7 Related work

7.1 Two other optimal C&C-GCs

Two recently proposed C&C-GCs-based protocols [Lin13; HKE13] also minimize
the number of GCs, requiring only that at least one evaluation GC is correct.

Lindell [Lin13] enhances a typical C&C-GCs-based protocol by introducing
a second C&C-GCs, dubbed secure-evaluation-of-cheating (SEOC), where PB
recovers the input of PA in case PB can provide two different garbled output
values from the first C&C-GCs. The concept of input-recovery resembles the
forge-and-lose technique, but the methods are quite different. For example, the
SEOC phase requires interaction between the parties after the first GC evalua-
tion phase, whereas in the forge-and-lose the input-recovery occurs offline.

Huang, Katz and Evans [HKE13] propose a method that combines the C&C-
GCs approach with a verifiable secret sharing scheme (VSSS). The parties play
different roles in two symmetric C&C-GCs, and then securely compare their out-
puts. This requires the double of GCs, but in parallel across the two parties. By
requiring a predetermined number of verification challenges, the necessary num-
ber of GCs is only logarithmically higher than the optimal that is achieved with
an independent selection of challenges. In their method, the deterrent against

11 The first bit is the NAND of the two last if and only if there are at least two 1’s in
the triplet composed of the first bit and of the XOR of the first bit with each of the
other two bits [Bra06]. A different method can be found in [BDP00].
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optimal malicious GCs construction does not involve the GC constructor party
having her input revealed to the GC evaluator.

In the SEOC and VSSS descriptions, the method of ensuring input consis-
tency across different GCs is supported on discrete-log based intractability as-
sumptions. The descriptions do not consider general linkage of S2PC executions
related with output bits, but their input bits are also committed using XOR-
homomorphic BitComs. In contrast, the S2PC-with-BitComs described in this
paper, with an instantiation based on Blum integers, is based on intractability of
deciding quadratic residuosity and requires a lower number of exponentiations,
though with each exponentiation being more expensive due to the larger size of
group elements and group order, for the same cryptographic security parameter.
Future work may better clarify the tradeoffs between the three techniques.

7.2 Other related work

Jarecki and Shmatikov [JS07] described a S2PC protocol with committed
inputs, using a single verifiably-correct GC, but with the required number of
exponentiations being linear in the number of gates. In comparison, the protocol
in this paper allows garbling schemes to be based on symmetric primitives (e.g.,
block-ciphers, whose greater efficiency over-compensates the cost of multiple
GCs in the C&C), and the required number of exponentiations to be linear in
the number of circuit input and output bits and in the statistical parameter.

Nielsen and Orlandi proposed LEGO [NO09], and more recently Frederiksen
et al. proposed Mini-Lego [FJN+13], a fault-tolerant circuit design that computes
correctly even if some garbled gates are incorrect. Their protocol, which uses a
cut-and-choose at the garbled-gate level (instead of at the GC level) to ensure
that most garbled gates used for evaluation are correct, requires a single GC but
of larger dimension. It would be interesting to explore, in future work, how to
integrate a forge-and-lose technique into their cut-and-chose at the gate level.

Kolesnikov and Kumaresan [KK12] described a S2PC slice-evaluation proto-
col, based on information theoretic GCs, allowing the input of one GC to directly
use the output of a previous GC. Their improvements are valid if the linked GCs
are shallow, and if one party is semi-honest and the other is covert. In contrast,
the S2PC-with-BitComs protocol in this paper allows any circuit depth and any
party being malicious.

Nielsen et al. [NNOB12] proposed an OT-based approach for S2PC, poten-
tially more efficient than a C&C-GCs if network latency is not an issue. However,
the number of communication rounds of their protocol is linear in the depth of
the circuit, thus being outside of the scope of this paper (restricted to C&C-
GCs-based protocols with a constant number of communication rounds).
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