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Abstract. In the setting of secure multiparty computation, a set of
parties wish to compute a joint function of their inputs, while preserving
properties like privacy, correctness, and independence of inputs. One se-
curity property that has typically not been considered in the past relates
to the length or size of the parties inputs. This is despite the fact that
in many cases the size of a party’s input can be confidential. The rea-
son for this omission seems to have been the folklore belief that, as with
encryption, it is impossible to carry out non-trivial secure computation
while hiding the size of parties’ inputs. However some recent results (e.g.,
Ishai and Paskin at TCC 2007, Ateniese, De Cristofaro and Tsudik at
PKC 2011) showed that it is possible to hide the input size of one of the
parties for some limited class of functions, including secure two-party
set intersection. This suggests that the folklore belief may not be fully
accurate.
In this work, we initiate a theoretical study of input-size hiding secure
computation, and focus on the two-party case. We present definitions
for this task, and deal with the subtleties that arise in the setting where
there is no a priori polynomial bound on the parties’ input sizes. Our
definitional study yields a multitude of classes of input-size hiding com-
putation, depending on whether a single party’s input size remains hid-
den or both parties’ input sizes remain hidden, and depending on who
receives output and if the output size is hidden from a party in the case
that it does not receive output. We prove feasibility and impossibility
results for input-size hiding secure two-party computation. Some of the
highlights are as follows:
– Under the assumption that fully homomorphic encryption (FHE)

exists, there exist non-trivial functions (e.g., the millionaire’s prob-
lem) that can be securely computed while hiding the input size of
both parties.

– Under the assumption that FHE exists, every function can be se-
curely computed while hiding the input size of one party, when both
parties receive output (or when the party not receiving output does
learn the size of the output). In the case of functions with fixed out-
put length, this implies that every function can be securely computed
while hiding one party’s input size.
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– There exist functions that cannot be securely computed while hid-
ing both parties’ input sizes. This is the first formal proof that, in
general, some information about the size of the parties’ inputs must
be revealed.

Our results are in the semi-honest model. The problem of input-size
hiding is already challenging in this scenario. We discuss the additional
difficulties that arise in the malicious setting and leave this extension for
future work.

Keywords: Secure two-party computation; input-size hiding

1 Introduction

Background. Protocols for secure two-party computation enable a pair of par-
ties P1 and P2 with private inputs x and y, respectively, to compute a function f
of their inputs while preserving a number of security properties. The most cen-
tral of these properties are privacy (meaning that the parties learn the output
f(x, y) but nothing else), correctness (meaning that the output received is in-
deed f(x, y) and not something else), and independence of inputs (meaning that
neither party can choose its input as a function of the other party’s input). The
standard way of formalizing these security properties is to compare the output of
a real protocol execution to an “ideal execution” in which the parties send their
inputs to an incorruptible trusted party who computes the output for the par-
ties. Informally speaking, a protocol is then secure if no real adversary attacking
the real protocol can do more harm than an ideal adversary (or simulator) who
interacts in the ideal model [GMW87,GL90,MR91,Bea91,Can00]. In the 1980s,
it was shown that any two-party functionality can be securely computed in the
presence of semi-honest and malicious adversaries [Yao86]. Thus, this stringent
definition of security can actually be achieved.

Privacy and size hiding. Clearly, the security obtained in the ideal model is
the most that one can hope for. However, when looking closer at the formalization
of this notion, it is apparent that the statement of privacy that “nothing but the
output is learned” is somewhat of an overstatement. This is due to the fact that
the size of the parties’ inputs (and thus also the size of the output) is assumed to
be known (see the full version for a discussion on how this is actually formalized
in the current definitions). However, this information itself may be confidential.
Consider the case of set intersection and companies who wish to see if they have
common clients. Needless to say, the number of clients that a company has is
itself highly confidential. Thus, the question that arises is whether or not it is
possible to achieve secure computation while hiding the size of the parties’ inputs.
We stress that the fact that input sizes are revealed is not a mere artifact of the
definition, and all standard protocols for secure computation indeed assume that
the input sizes are publicly known to the parties.



The fact that the input size is always assumed to be revealed is due to the
folklore belief that, as with encryption, the length of the parties’ inputs can-
not be hidden in a secure computation protocol. In particular, the definition
in [Gol04, Sec. 7.2.1.1] uses the convention that both inputs are of the same
size, and states “Observe that making no restriction on the relationship among
the lengths of the two inputs disallows the existence of secure protocols for com-
puting any non-degenerate functionality. The reason is that the program of each
party (in a protocol for computing the desired functionality) must either depend
only on the length of the party’s input or obtain information on the counterpart’s
input length. In case information of the latter type is not implied by the output
value, a secure protocol cannot afford to give it away”. In the same way in [HL10,
Sec. 2.3] it is stated that “We remark that some restriction on the input lengths
is unavoidable because, as in the case of encryption, to some extent such infor-
mation is always leaked.”. It is not difficult to see that there exist functions for
which hiding the size of both inputs is impossible (although this has not been
formally proven prior to this paper). However, this does not necessarily mean
that “non-degenerate” or “interesting” functions cannot be securely computed
without revealing the size of one or both parties’ inputs.

State of the art. The first work to explicitly refer to hiding input size is that
of zero-knowledge sets [MRK03], in which a prover commits to a set S and later
proves statements of the form x ∈ S or x /∈ S to a verifier, without revealing
anything about the cardinality of S. Zero-knowledge sets are an interesting in-
stance of size-hiding reactive functionality, while in this work we only focus on
non-reactive computation (i.e., secure function evaluation).

Ishai and Paskin [IP07] also explicitly refer to the problem of hiding input
size, and construct a homomorphic encryption scheme that allows a party to
evaluate a branching program on an encrypted input, so that the length of the
branching program (i.e., the longest path from the initial node to any terminal
node) is revealed but nothing else about its size. This enables partial input-
size hiding two-party computation by having one party encode its input into
the branching program. In particular this implies a secure two-party private set
intersection protocol where the size of of the set of one of the two parties is
hidden.

Ateniese et al. [ACT11] constructed the first (explicit) protocol for private
set-intersection that hides the size of one of the two input sets. The focus of their
work is on efficiency and their protocol achieves high efficiency, in the random or-
acle model. The construction in their paper is secure for semi-honest adversaries,
and for a weaker notion of one-sided simulatability when the adversary may be
malicious (this notion guarantees privacy, but not correctness, for example). In
addition, their construction relies on a random oracle.

Those works demonstrate that interesting, non-degenerate functions can be
computed while at least hiding the input size of one of the parties, and this raises
a number of fascinating and fundamental questions:



Can input-size hiding be formalized in general, and is it possible to se-
curely compute many (or even all) functions while hiding the input size
of one of the parties?
Are there any interesting functions that can be securely computed while
hiding both parties’ inputs sizes?

Before proceeding, we remark that in many cases it is possible to hide the input
sizes by using padding. However, this requires an a priori upper bound on the
sizes of the inputs. In addition, it means that the complexity of the protocol is
related to the maximum possible lengths and is thus inherently inefficient. Thus,
this question is of interest from both a theoretical point of view (is it possible
to hide input size when no a priori upper bound on the inputs is known and so
its complexity depends only on each party’s own input and output), and from
a practical point of view. In this paper we focus on theoretical feasibility, and
therefore we do not consider side-channel attacks that might be used to learn
additional information about a party’s input size e.g., by measuring the response
time of that party in the protocol, but we hope that our results will stimulate
future work on more efficient and practical protocols.

Our results. In this paper, we initiate the theoretical study of the problem of
input-size hiding two-party computation. Our main contributions are as follows:

– Definition and classification: Even though some input-size hiding protocols
have been presented in the literature, no formal definition of input-size hid-
ing generic secure computation has ever been presented. We provide such a
definition and deal with technical subtleties that relate to the fact that no a
priori bound on the parties’ input sizes is given (e.g., this raises an issue as
to how to even define polynomial-time for a party running such a protocol).
In addition, we observe that feasibility and infeasibility depend very much
on which party receives output, whether or not the output-size is revealed to
a party not receiving output, and whether one party’s input size is hidden or
both. We therefore define a set of classes of input-size hiding variants, and
a unified definition of security. We also revisit the standard definition where
both parties’ input sizes are revealed and observe that the treatment of this
case is much more subtle than has been previously observed. (For example,
the standard protocols for secure computation are not secure under a defi-
nition of secure computation for which both parties receive output if their
input sizes are equal, and otherwise both parties receive ⊥. We show how
this can be easily fixed.)

– One-party input-size hiding: We prove that in the case that one party’s input
size is hidden and the other party’s input size is revealed, then every function
can be securely computed in the presence of semi-honest adversaries, when
both parties receive either the output or learn the output size (or when
the output size can be upper bounded as a function of one party’s input
size). This includes the problem of set intersection and thus we show that
the result of [ACT11] can be achieved without random oracles and under
the full ideal/real simulation definition of security. Our protocols use fully



homomorphic encryption [Gen09] (we remark that although this is a very
powerful tool, there are subtleties that arise in attempting to use it in our
setting). This is the first general feasibility result for input-size hiding.
We also prove that there exist functionalities (e.g., unbounded input-length
oblivious transfer) that cannot be securely computed in the presence of semi-
honest adversaries while hiding one party’s input size, if one of the parties
is not supposed to learn the output size. This is also the first formal impos-
sibility result for input-size hiding, and it also demonstrates that the size of
the output is of crucial consideration in our setting. (In the standard defini-
tion where input sizes are revealed, a fixed polynomial upper-bound on the
output size is always known and can be used.)

– Two-party input-size hiding: We prove that there exist functions of interest
that can be securely computed in the presence of semi-honest adversaries
while hiding the input size of both parties. In particular, we show that the
greater-than function (a.k.a., the millionaires’ problem) can be securely com-
puted while hiding the input size of both parties. In addition, we show that
the equality, mean, median, variance and minimum functions can all be com-
puted while hiding the size of both parties’ inputs (our positive result holds
for any function that can be efficiently computed with polylogarithmic com-
munication complexity). To the best of our knowledge, these are the first ex-
amples of non trivial secure computation that hides the size of both parties’
inputs, and thus demonstrate that non-degenerate and interesting functions
can be securely computed in contradiction to the accepted folklore. We also
prove a general impossibility result that it is impossible to hide both parties’
input sizes for any function (with fixed output size) with randomized com-
munication complexity Ω(nε) for some ε > 0. Combined with our positive
result, this is an almost complete characterization of feasibility.

– Separations between size-hiding variants: We prove separations between dif-
ferent variants of size-hiding secure computation, as described above. This
study shows that the issue of size-hiding in secure computation is very del-
icate, and the question of who receives output and so on has a significant
effect on feasibility.

Our results provide a broad picture of feasibility and infeasibility, and demon-
strate a rich structure between the different variants of input-size hiding. We
believe that our results send a clear message that input-size hiding is possible,
and we hope that this will encourage future research to further understand feasi-
bility and infeasibility, and to achieve input-size hiding with practical efficiency,
especially in applications where the size of the input is confidential.

Malicious adversaries – future work. In this initial foundational study of
the question of size-hiding in secure computation, we mainly focus on the model
of semi-honest adversaries. As we will show, many subtleties and difficulties arise
already in this setting. In the case of malicious adversaries, it is even more prob-
lematic. One specific difficulty that arises in this setting is due to the fact that
the simulator must run in time that is polynomial in the adversary. This is a
problem since any input-size hiding protocol must have communication com-



plexity that is independent of the parties’ inputs sizes. Thus, the simulator must
extract the corrupted party’s input (in order to send it to the trusted party)
even if it is very long, and in particular even if its length is not a priori poly-
nomially bounded in the communication complexity. In order to ensure that the
simulator is polynomial in the adversary, it is therefore necessary that the sim-
ulator somehow knows how long the adversary would run for. This is a type of
“proof of work” for which rigorous solutions do not exist. We remark that we do
provide definitions for the case of malicious adversaries. However, the problem
of constructing input-size hiding protocols for the case of malicious adversaries
is left for future work.

2 Technical Overview

In this section we provide a brief overview of the results and the techniques
used through the paper. Due to space limitation, much of the technical material
has been removed from this version, but can be found in the full version of this
article [LNO12].

Definitions. In Section 3 we formalize the notion of input-size hiding in secure
two-party computation, following the ideal/real paradigm. As opposed to the
standard ideal model, we define the sizes of the input and output values as
explicit additional input/outputs of the ideal functionality and, by considering
all the combinations of possible output patterns we give a complete classification
of ideal functionalities. The different classes can be found in Figure 6 on the
last page of this submission. We consider three main classes (class 0,1 and 2)
depending on how many input sizes are kept hidden (that is, in class 2 the size
of both parties input is kept hidden, in class 1 the size on party’s input is kept
hidden, and in class 0 neither parties inputs are hidden). Even for class 0, where
both input sizes are allowed to leak, we argue that our definition of the ideal
world is more natural and general than the standard one. This is due to the
fact that in standard definitions, it is assumed that the parties have agreed on
the input sizes in some “out of band” method. As we show, this actually leads
to surprising problems regarding the definition of security and known protocols.
Each of the classes is then divided into subclasses, depending on what kind
of information about the output each party receives (each party can learn the
output value, the output size or no information about the output). As we will
see, the information about the output that is leaked, and to which party, has
significant ramifications on feasibility and infeasibility.

The next step on the way to providing a formal definition is to redefine the
notion of a protocol that runs in polynomial time.In order to see why this is
necessary, observe that there may not exist any single polynomial that bounds
the length of the output received by a party, as a function of its input. This is
because the length of the output may depend on the length of the other party’s
input, which can vary. Due to space limitations all formal definitions are deferred
to the full version.



Class 1 – positive and negative results. In Section 4.1 we show how every
function can be computed while hiding the input size of one party, if both parties
are allowed to learn the size of the output (or its actual value). The idea behind
our protocol is very simple, and uses fully homomorphic encryption (FHE) with
circuit privacy: One party encrypts her input x under her public key and sends
it to the other party, who then uses the homomorphic properties in order to
compute an encryption of the output f(x, y) and sends the encrypted result back.
Due to circuit privacy, this does not reveal any information about the length of
|y| and therefore size-hiding is achieved. Despite its conceptual simplicity, we
observe that one subtle issue arises. Specifically, the second party needs to know
the length of the output (or an upper bound on this length) since it needs to
construct a circuit computing f on the encrypted x and on y. Of course, given
|x| and |y| it is possible to compute such an upper bound, and the ciphertext
containing the output can be of this size. Since P2 knows |x| and y it can clearly
compute this bound, but when P1 receives the encrypted output it would learn
the bound which could reveal information about |y|. We solve this problem by
having the parties first compute the exact size of the output, using FHE. Then,
given this exact size, they proceed as described above.

It turns out that this simple protocol is in fact optimal for class 1 (even though
P2 learns the length of the output f(x, y)), since it is in general impossible
to hide the size of the input of one party and the size of the output at the
same time. In the full version we prove that two natural functions (oblivious
transfer with unbounded message length and oblivious pseudorandom-function
evaluation) cannot be securely computed in two of the subclasses of class 1 where
only one party receives output, and the party not receiving output is not allowed
to learn the output size. The intuition is that the size of the transcript of a size-
hiding protocol must be independent of the size of one of the inputs (or it will
reveal information about it). But, as the length of the output grows with the size
of the input, we reach a contradiction with incompressibility of (pseudo)random
data.

Class 2 – positive and negative results. In this class, both of the parties’
input sizes must remain hidden; as such, this is a much more difficult setting and
the protocol described above for class 1 cannot be used. Nevertheless, we present
positive results for this class and show that every function that can be computed
insecurely using a protocol with low communication complexity can be compiled
into a size-hiding secure two party protocol. The exact requirements for the
underlying (insecure) protocol are given in Definition 3 and the compilation uses
FHE and techniques similar to the one discussed for class 1 above. Interesting
examples of functions that can be securely computed while hiding the size of
both parties input using our technique include statistical computations on data
such as computing the mean, variance and median. With some tweaks, known
protocols with low communication complexity for equality or the greater-than
function can also be turned into protocols satisfying our requirements

As opposed to class 1, we do not have any general positive result for class 2.
Indeed, in Theorem 6 we show that there exist functions that cannot be securely



computed while hiding the input size of both parties. Intuitively, in a size-hiding
protocol the communication complexity must be independent of the input sizes
and therefore we reach a contradiction with lower-bounds in communication
complexity. Examples of interesting functions that cannot be computed in class
2 include the inner product, hamming distance and set intersection functions.

Separations between classes. In the full version we show that even in class
2, the output size plays an important role. Specifically, we show that there exist
functions that can be computed in class 2 only if both parties are allowed to learn
the output size. Furthermore we highlight that, perhaps surprisingly, class 2 is
not a subset of class 1. That is, there exist functions that cannot be computed
in some subclasses of class 1 that can be securely computed in class 2. These
results demonstrate that the input-size hiding landscape is rich, as summarized
in Table 1 in Section 6.

3 Definitions – Size-Hiding Secure Two-Party
Computation

In this section, we formalize the notion of input-size hiding in secure two-party
computation. Our formalization follows the ideal/real paradigm for defining se-
curity due to [Can00,Gol04]. Thus, we specify the security goals (what is learned
by the parties and what is not) by describing appropriate ideal models where
the parties send their inputs to an incorruptible trusted party who sends each
party exactly what information it is supposed to learn. The information sent to
a party can include the function output (if it is supposed to receive output), the
other party’s input-length (if it is supposed to learn this), and/or the length of
the function output (this can make a difference in the case that a party does
not learn the actual output). We will define multiple ideal models, covering the
different possibilities regarding which party receives which information. As we
will see, what is learned and by whom makes a big difference to feasibility. In
addition, in different applications it may be important to hide different infor-
mation (in some client/server “secure set intersection” applications it may be
important to hide the size of both input sets, only the size of one the input sets,
or it may not be important to hide either). Our definitions are all for the case of
static adversaries, and so we consider only the setting where one party is honest
and the other is corrupted; the identity of the corrupted party is fixed before the
protocol execution begins.

The function and the ideal model: We distinguish between the function f
that the parties wish to compute, and the ideal model that describes how the
parties and the adversary interact and what information is revealed and how.
The ideal model type expresses the security properties that we require from our
cryptographic protocol, including which party should learn which output, what
information is leaked to the adversary, which party is allowed to learn the output
first and so on. In our presentation, we focus on the two-party case only; the
extension to the multiparty setting is straightforward.



In the full version, we review the standard way that input sizes are dealt with
and observe that there are important subtleties here which are typically ignored.
We present the different classes of size-hiding here. The formal definitions of
security based on these classes, including the ideal and real model descriptions,
and the definitions for security in the presence of semi-honest and malicious
adversaries, are deferred to the full version. We stress that a number of technical
subtleties do arise when formalizing these notions.

3.1 Classes of Size Hiding

We define three classes of size hiding, differentiated by whether neither party’s
input size is hidden, one party’s input size is hidden or both parties input sizes
are hidden (note that the class number describes how many input sizes are kept
hidden: 0, 1 or 2):

1. Class 0: In this class, the input size of both parties is revealed (See the full
version);

2. Class 1: In this class, the input size of one party is hidden and the other is
revealed. There are a number of variants in this class, depending on whether
one or both parties receive output, and in the case that one party receives
output depending on whose input size is hidden and whether or not the
output size is hidden from the party not receiving output.

3. Class 2: In this class, the input size of both parties’ inputs are hidden. As
in Class 1 there are a number of variants depending on who receives output
and if the output size is kept hidden to a party not receiving output.

We now turn to describe the different variants/subclasses to each class. Due to
the large number of different subclasses, we only consider the more limited case
that when both parties receive output, then they both receive the same out-
put f(x, y). When general feasibility results can be achieved, meaning that any
function can be securely computed, then this is without loss of generality [Gol04,
Prop. 7.2.11]. However, as we will see, not all classes of input-size hiding yield
general feasibility; the study of what happens in such classes when the parties
may receive different outputs is left for future work.

Subclass definitions:

0. Class 0: We formalize both the f ′ and f ′′ formulations (that can be found in
the full version). In both formulations, we consider only the case that both
parties receive the function output f(x, y). There is no need to consider
the case that only one party receives f(x, y) separately here, since general
feasibility results hold and so there is a general reduction from the case
that both receive output and only one receives output. In addition, we add a
strictly weaker formulation where both parties receive f(x, y) if |x| = |y|, and
otherwise receive only the input lengths. We include this since the standard
protocols for secure computation are actually secure under this formulation.
The subclasses are:



(a) Class 0.a: if |x| = |y| then both parties receive f(x, y), and if |x| 6= |y|
then both parties receive ⊥

(b) Class 0.b: if |x| = |y| then both parties receive f(x, y), and if |x| 6= |y|
then P1 receives 1|y| and P2 receives 1|x|

(c) Class 0.c: P1 receives (1|y|, f(x, y)) and P2 receives (1|x|, f(x, y))
In the full version,it is shown that every functionality can be securely com-
puted in classes 0.a, 0.b and 0.c.

1. Class 1: We consider five different subclasses here. In all subclasses, the
input-size 1|x| of P1 is revealed to P2, but the input-size of P2 is hidden from
P1. The different subclasses are:
(a) Class 1.a: both parties receive f(x, y), and P2 learns 1|x| as well
(b) Class 1.b: only P1 receives f(x, y), and P2 only learns 1|x|
(c) Class 1.c: only P1 receives f(x, y), and P2 learns 1|x| and the output

length 1|f(x,y)|

(d) Class 1.d: P1 learns nothing at all, and P2 receives 1|x| and f(x, y)
(e) Class 1.e: P1 learns 1|f(x,y)| only, and P2 receives 1|x| and f(x, y)

2. Class 2: We consider three different subclasses here. In all subclasses, no
input-sizes are revealed. The different subclasses are:
(a) Class 2.a: both parties receive f(x, y), and nothing else
(b) Class 2.b: only P1 receives f(x, y), and P2 learns nothing
(c) Class 2.c: only P1 receives f(x, y), and P2 learns the length of the output

1|f(x,y)|

See Figure 6 (at the last page of this submission) for a graphic description of
the above (we recommend referring back to the figure throughout). We stress
that the question of whether or not the output length 1|f(x,y)| is revealed to
a party not receiving f(x, y) is of importance since, unlike in standard secure
computation, a party not receiving f(x, y) or the other party’s input size cannot
compute a bound on 1|f(x,y)|. Thus, this can make a difference to feasibility.
Indeed, as we will see, when 1|f(x,y)| is not revealed, it is sometimes impossible
to achieve input size-hiding.

When considering symmetric functions (where f(x, y) = f(y, x) for all x, y),
the above set of subclasses covers all possible variants for classes 1 and 2 re-
garding which parties receive output or output length. This is due to the fact
that when the function is symmetric, it is possible to reverse the roles of the
parties (e.g., if P2’s input-length is to be revealed to P1, then by symmetry the
parties can just exchange roles in class 1). We focus on symmetric functions in
this paper1.
1 The non-symmetric case is not so different with respect to feasibility: e.g., the
greater-than function is not symmetric (recall that a function f is symmetric if
f(x, y) = f(y, x) for all x, y). Nevertheless, it can be made symmetric by defining
f((x, b1), (y, b2)) to equal GT(x, y) if b1 = 0 and b2 = 1, and to equal GT(y, x) if
b1 = 1 and b2 = 0, and to equal (⊥, b1) if b1 = b2. Since b1 and b2 are always revealed,
it is possible for the parties to simply exchange these bits, and then to run the pro-
tocol for GT in the “appropriate direction”, revealing the output as determined by
the class. We leave the additional complexity of non-symmetric functions for future
work.



We remark that P1’s input-length and the output-length are given in unary,
when revealed; this is needed to give the simulator enough time to work in the
case that one party’s input is much shorter than the other party’s input and/or
the output length.

4 Feasibility Results
4.1 General Constructions for Class 1.a/c/e Input-Size Hiding

Protocols

In this section, we prove a general feasibility result that any function f can be
securely computed in classes 1.a, 1.c and 1.e (recall that in class 1, the size of
P2’s input is hidden from P1, but the size of P1’s input is revealed to P2). In
Section 5, we will see that such a result cannot be achieved for classes 1.b and
1.d, and so we limit ourselves to classes 1.a/c/e. We begin by proving the result
for class 1.c, where P1 obtains the output f(x, y), and P2 obtains P1’s input
length 1|x| and the output length 1|f(x,y)|, and then show how a general protocol
for class 1.c can be used to construct general protocols for classes 1.a and 1.e.

The idea behind our protocol is very simple, and uses fully homomorphic
encryption (FHE) with circuit privacy (see the full version for the definition).
Party P1 begins by choosing a key-pair for an FHE scheme, encrypts its input
under the public key, and sends the public key and encrypted input to P2. This
ciphertext reveals the input length of P1, but this is allowed in class 1.c. Next,
P2 computes the function on the encrypted input and its own input, and obtain
an encryption of f(x, y). Finally, P2 sends the result to P1, who decrypts and
obtains the output. Observe that this also reveals the output length to P2, but
again this is allowed in class 1.c.

Despite its conceptual simplicity, we observe that one subtle issue arises.
Specifically, party P2 needs to know the length of the output f(x, y), or an
upper bound on this length, since it needs to construct a circuit computing f on
the encrypted x and on y. Of course, given |x| and |y| it is possible to compute
such an upper bound, and the ciphertext containing the output can be of this
size (the actual output length may be shorter, and this can be handled by having
the output of the circuit include the actual output length). Since P2 knows |x|
and y it can clearly compute this bound. However, somewhat surprisingly, having
P2 compute the upper bound may actually reveal information about P2’s input
size to P1. In order to see this, consider the set union functionality. Clearly, the
output length is upper bounded by the sum of the length of P1’s input and P2’s
input, but if P2 were to use this upper bound then P1 would be able to learn
the length of P2’s input which is not allowed. We solve this problem by having
the parties first compute the exact size of the output, using FHE. Then, given
this exact size, they proceed as described above. The protocol is presented in
Figure 1, and uses an FHE scheme (Gen,Enc,Dec,Eval). We denote by n the
length |x| of P1’s input, and by m the length |y| of P2’s input. In addition, we
denote x = x1, . . . , xn and y = y1, . . . , ym.

Theorem 2 Let f : {0, 1}∗×{0, 1}∗ → {0, 1}∗ be a polynomial-time computable
function. If (Gen,Enc,Dec,Eval) constitutes a fully homomorphic encryption with



PROTOCOL 1 (Class 1.c Size-Hiding for Any Functionality – Semi-Honest)

– Inputs: P1 has x, and P2 has y. Both parties have security parameter 1κ.
– The protocol:

1. P1 chooses (pk, sk) ← Gen(1κ), computes c1 = Encpk(x1), . . . , cn =
Encpk(xn) and sends (pk, c1, . . . , cn) to P2.

2. P2 receives c1, . . . , cn, and constructs a circuit Csize,y(·) that computes
the output length of f(·, y) in binary (i.e., Csize,y(x) = |f(x, y)|),
padded with zeroes up to length log2 κ. Then, P2 computes csize =
Evalpk(Csize,y, 〈c1, . . . , cn〉), and sends csize to P1.

3. P1 receives csize and decrypts it using sk; let ` be the result. Party
P1 sends ` to P2.

4. P2 receives ` from P1 and constructs another circuit Cf,y(·) that com-
putes f(x, y) (i.e., Cf,y(x) = f(x, y)), and has ` output wires. Then,
P2 computes cf = Evalpk(Cf,y, 〈c1, . . . , cn〉), and sends cf to P1.

5. P1 receives cf and decrypts it using sk to obtain a string z.
– Outputs: P1 outputs the string z obtained in the previous step; P2 out-

puts nothing.

circuit privacy, then Protocol 1 securely computes f in class 1.c, in the presence
of a static semi-honest adversary.

Proof: Recall that in order to prove security in the presence of semi-honest ad-
versaries, it suffices to present simulators S1 and S2 that receive the input/output
of parties P1 and P2, respectively, and generate their view in the protocol. The
requirement is that the joint distribution of the view generated by the simu-
lator and the honest party’s output be indistinguishable from the view of the
corrupted party and the honest party’s output.

We begin with the case that P1 is corrupted. Simulator S1 receives (x, f(x, y))
and prepares a uniformly distributed random tape for P1. Then, S1 uses that ran-
dom tape to sample (pk, sk)← Gen(1κ). Then, S1 computes csize = Encpk(|f(x, y)|)
padded with zeroes up to length log2 κ, and cf = Encpk(f(x, y)). Finally, S1 out-
puts the input x, the random tape chosen above, and the incoming messages csize
and cf . The only difference between the view generated by S1 and that of P1 in a
real execution is that csize and cf are generated by directly encrypting |f(x, y)|
and f(x, y), rather than by running Eval. However, the circuit privacy require-
ment guarantees that the distributions over these ciphertexts are statistically
close.

Next, consider a corrupted P2. Simulator S2 receives (y, (1|x|, 1|f(x,y)|)), and
generates (pk, sk) ← Gen(1κ) and c1 = Encpk(0), . . . , c|x| = Encpk(0). Then, S2
outputs y, a uniform random tape, and incoming messages (pk, c1, . . . , c|x|, |f(x, y)|)
as P2’s view. The indistinguishability of the simulated view from a real view fol-
lows immediately from the regular encryption security of the fully homomorphic
encryption scheme.



Extensions. It is not difficult to see that given protocols for class 1.c, it is
possible to obtain protocols for classes 1.a and 1.e (for class 1.a just have P1

send the output to P2, and the compute in class 1.e by computing a function
in class 1.a that masks the output from P1 so that only P2 can actually obtain
it). In addition, we show that with the function has a bounded output length
(meaning that it is some fixed polynomial in the length of P1’s input), then any
function can be securely computed in classes 1.b and 1.e as well. An important
application of this is the private set intersection problem (observe that the size
of the output is upper bounded by the size of P1’s input). We therefore obtain
an analog to the result of [ACT11] without relying on random oracles. These
extensions appear in the full version.

4.2 Feasibility for Some Functions in Class 2

In this section we prove that some non-trivial functions can be securely computed
in class 2. This is of interest since class 2 protocols reveal nothing about either
party’s input size, beyond what is revealed by the output size. In addition, in
class 2.b, nothing at all is revealed to party P2. We start by presenting protocols
for class 2.c and then discuss how these can be extended to class 2.a, and in
what cases they can be extended to class 2.b.

There are functionalities that are impossible to securely compute in any
subclass of class 2; see Section 5. Thus, the aim here is just to show that some
functions can be securely computed; as we will see, there is actually quite a
large class of such functions. We leave the question of characterizing exactly
what functions can and cannot be computed for future work.

Class 2.c. We begin by considering class 2.c, where party P1 receives the
output f(x, y) and P2 receives 1|f(x,y)|, but nothing else is revealed. Intuitively
this is possible for functions that can be computed efficiently by two parties
(by an insecure protocol), with communication that can be upper bounded by
some fixed polynomial in the security parameter. In such cases, it is possible
to construct size-hiding secure protocols by having the parties run the insecure
protocol inside fully homomorphic encryption. We formalize what we require
from the insecure protocol, as follows.

Definition 3 (size-independent protocols) Let f : {0, 1}∗×{0, 1}∗ → {0, 1}∗,
and let π be a probabilistic protocol. We say that π is size independent if it sat-
isfies the following properties:

– Correctness: For every pair of polynomials q1(·), q2(·) there exists a negligible
function µ such that for every κ ∈ N, and all x ∈ {0, 1}q1(κ), y ∈ {0, 1}q2(κ):
Pr[π(x, y) 6= f(x, y)] ≤ µ(κ).

– Computation efficiency: There exist polynomial-time interactive probabilistic
Turing Machines π1, π2 such that for every pair of polynomials q1(·), q2(·),
all sufficiently large κ ∈ N, and every x ∈ {0, 1}q1(κ), y ∈ {0, 1}q2(κ), it holds
that (π1(1κ, x), π2(1κ, y)) implements π(x, y).



– Communication efficiency: There exists a polynomial p(·) such that for every
pair of polynomials q1(·), q2(·), all sufficiently large κ ∈ N, and every x ∈
{0, 1}q1(κ), y ∈ {0, 1}q2(κ), the number of rounds and length of every message
sent in π(x, y) is upper bounded by p(κ).

Observe that by computation and communication efficiency, given x, κ and a
random tape r, it is possible to efficiently compute a series of circuits C1P1,κ,x,r

, . . . , Cp(κ)−1P1,κ,x,r

that compute the next message function of π1(1κ, x; r) (i.e., the input to the cir-
cuit CiP1,κ,x,r

is a vector of i− 1 incoming messages of length p(κ) each, and the
output is the response of P1 with input x, security parameter κ, random coins
r, and the incoming messages given in the input). Likewise, given y, κ and s,
it is possible to efficiently compute analogous C1P2,κ,y,s

, . . . , Cp(κ)P2,κ,y,s
. We stress

that since the length of each message in π is bounded by p(κ), the circuits can
be defined with input length as described above. For simplicity, we assume that
in each round of the protocol the parties exchange messages that are depen-
dent only on messages received in the previous rounds (this is without loss of
generality).

In addition, it is possible to generate a circuit CoutputP1,κ,x,r
for computing the

output of P1 given its input and all incoming messages. As in Protocol 1, in
order to generate CoutputP1,κ,x,r

we need to know the exact output size (recall that
using an upper bound may reveal information). Therefore, we also use a circuit
CsizeP1,κ,x,r

that computes the exact output length given all incoming messages; this
circuit has output length log2 κ (and so any polynomial output length can be
encoded in binary in this number of bits) and can also be efficiently generated.

Due to lack of space in this abstract, we describe protocol here informally and
refer to the full version for a formal description and proof. We start with class 2.c
and show that if a function has a size-independent protocol, then we can securely
compute the function in class 2.c. In more detail, a size-independent protocol
has communication complexity that can be bound by a fixed polynomial p(κ),
for inputs of any length (actually, of length at most κlog κ and so for any a priori
unbounded polynomial-length inputs)2. Then, we can run this protocol inside
fully homomorphic encryption; by padding all messages to their upper bound
(and likewise the number of messages), we have that nothing is revealed by the
size of the ciphertexts sent. We note, however, that unlike in the protocols for
class 1, in this case neither party is allowed to know the secret key of the fully
homomorphic encryption scheme (since both parties must exchange ciphertexts,
as in the communication complexity protocol). This is achieved by using thresh-
old key generation and decryption, which can be obtained using standard secure
computation techniques (observe that no size hiding issues arise regarding this).
In the full version, we formally prove the following corollary:

Corollary 4 Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a function. If there exists
a size-independent protocol for computing f , and fully homomorphic encryption
2 Note that upper bounding the input sizes to κlog κ is not a real restriction: if the
adversary has enough time to read an input of this size, then it has time to break
the underlying computational assumption and no secure protocol exists.



schemes exist, then f can be securely computed in classes 2.a and 2.c in the
presence of static semi-honest adversaries. Furthermore, if in addition to the
above the output-size of f is fixed for all inputs, then f can be securely computed
in class 2.b in the presence of static semi-honest adversaries.

In addition, we show the following applications of the above corollary:

Corollary 5 Assuming the existence of fully homomorphic encryption, the greater-
than, equality, mean, variance and median functions can be securely computed
in classes 2.a, 2.b and 2.c, in the presence of static semi-honest adversaries. In
addition, the min function can be securely computed in classes 2.a and 2.c, in
the presence of static semi-honest adversaries.

5 Negative Results And Separations Between Classes

In this section, we deepen our understanding of the feasibility of achieving input-
size hiding by proving impossibility results for all classes where general secure
computation cannot be achieved (i.e., for classes 1.b, 1.d, 2.a, 2.b and 2.c). In
addition, we show that the set of functions computable in class 2.b is a strict
subset of the set of functions computable in 2.a and 2.b, and that classes 1.b
and 1.d are incomparable (they are not equal and neither is a subset of the
other). Finally, we consider the relations between subclasses of class 1 and class
2, and show that class 2.b is a strict subset of class 1.b, but class 2.c is not (and
so sometimes hiding both parties’ inputs is easier than hiding only one party’s
input).

Due to lack of space, we present only the proof of impossibility for class 2;
this provides the flavor of all of our impossibility results. All the other results
can be found in the the full version.

5.1 Not All Functions can be Securely Computed in Class 2

In this section we show that there exist functions for which it is impossible
to achieve input-size hiding in any subclass of class 2 (where neither parties’
input sizes are revealed). In order to strengthen the result, we demonstrate this
on a function which has fixed output size. Thus, the limitation is not due to
issues related to revealing the output size (as in class 2.b), but is inherent to the
problem of hiding the size of the input from both parties.

The following theorem is based on the communication complexity of a func-
tion. Typically, communication complexity is defined for functions of equal sized
input. We therefore generalize this definition, and measure the communication
complexity of a function, as a function of the smaller of the two inputs. That is,
a function f has randomized communication complexity Ω(g(n)) if any proba-
bilistic protocol for computing f(x, y) with negligible error requires the parties
to exchange Ω(g(n)) bits, where n = min{|x|, |y|}.3

3 Even more formally, we say that a probabilistic protocol π computes f if there exists
a negligible function µ such that for every x, y ∈ {0, 1}∗ the probability that the



Theorem 6 Let R be a range of constant size, and let f : {0, 1}∗ × {0, 1}∗ →
R be a function. If there exists a constant ε > 0 such that the randomized
communication complexity of f is Ω(nε), then f cannot be securely computed in
class 2.a, 2.b or 2.c, in the presence of static semi-honest adversaries.

Proof: The idea behind the proof of the theorem is as follows. On the one
hand, if a function has Ω(nε) communication complexity, then the length of the
transcript cannot be independent of the input lengths, and must grow as the
inputs grow. On the other hand, in class 2 the input lengths are never revealed
and since the output range is constant, the output says almost nothing about
the input lengths. Thus, we can show that the length of the transcript must
actually be independent of the input lengths, in contradiction to the assumed
communication complexity of the function. We now prove this formally.

Let f be a family of functions as in the theorem statement, and assume by
contradiction that there exists a protocol π that securely computes f in class 2.a.
(We show impossibility for class 2.a since any protocol for class 2.b or 2.c can be
converted into a protocol for class 2.a by simply having P1 send P2 the output
at the end. Thus, impossibility for class 2.a implies impossibility for classes 2.b
and 2.c as well.)

We claim that there exists a polynomial p(·) such that the communication
complexity of π is at most p(κ). Intuitively, this is due to the fact that the
transcript cannot reveal anything about the input size and so must be bound by a
fixed polynomial. Proving this formally is a little bit more tricky, and we proceed
to do this now. Let α ∈ R be an output value, and let Iα ⊆ {0, 1}∗ × {0, 1}∗ be
the set of all string pairs such that for every (x, y) ∈ Iα it holds that f(x, y) = α.
Now, by the definition of class 2.a, there exist simulators S1 and S2 that generate
P1 and P2’s views from (x, f(x, y)) and (y, f(x, y)), respectively. Thus, for every
(x, y) ∈ Iα, the simulators S1 and S2 must simulate given only (x, α) and (y, α),
respectively.

Let x be the smallest string for which there exists a y so that (x, y) ∈ Iα,
and let p′(·) be the polynomial that bounds the running-time of S1. Define
pα(κ) = p′(|x| + |α| + κ); note that this is a polynomial in κ since |x| and |α|
are constants. We claim that the polynomial pα(·) is an upper bound on the
length of the transcript for every (x, y) ∈ Iα. This follows immediately from
the fact that S1 runs in time that is polynomial in its input plus the security
parameter. Thus, it cannot write a transcript longer than this when given input
(x, α). If the transcript upon input (x, y) ∈ Iα is longer than pα(κ) with non-
negligible probability, then this yields a trivial distinguisher, in contradiction to
the assumed security with simulator S1.

Repeating the above for every α ∈ R, we have that there exists a set
P = {pα(κ)}α∈R of polynomials so that any function upper bounding these poly-
nomials is an upper bound on the transcript length for all inputs (x, y) ∈ {0, 1}∗.

output of π(x, y) does not equal f(x, y) is at most µ(n), where n = min{|x|, |y|}.
Next, we say that f has communication complexity Ω(g(n)) if for every protocol for
computing f (as defined above) there exists a constant c and an integer N ∈ N such
that for every n > N , the number of bits sent by the parties is at least c · g(n).



Since R is of constant size, we have that there exists a single polynomial p(κ)
that upper bounds all the polynomials in P , for every κ.4 We conclude that
there exists a polynomial p(κ) that upper bounds the size of the transcript, for
all (x, y) ∈ {0, 1}∗.

Now, let c be a constant such that p(κ) < κc, for all large enough κ. We
construct a protocol π′ for f as follows. On input (x, y) ∈ {0, 1}∗ × {0, 1}∗,
execute π with security parameter κ = nε/2c, where n = min{|x|, |y|}. By the
correctness of π, we have that the output of π(x, y) equals f(x, y) except with
negligible probability. This implies that the output of π′(x, y) also equals f(x, y)
except with negligible probability (the only difference is that we need to consider
larger inputs (x, y), but in any case correctness only needs to hold for all large
enough inputs). Thus, π′ computes f ; see Footnote 3. The proof is finished by
observing that the communication complexity of protocol π′ is upper bounded
by p(κ) < (nε/2c)c = nε/2, in contradiction to the assumed lower bound of Ω(nε)
on the communication complexity of f .

Impossibility. From results on communication complexity [KN97], we have
that:

– The inner product function IP(x, y) =
∑min(|x|,|y|)
i=1 xi ·yi mod 2 has commu-

nication complexity Ω(n).
– The set disjointness function defined by DISJ(X,Y ) = 1 if X ∩ Y = ∅, and

equals 0 otherwise has communication complexity Ω(n).5 This implies that
INTERSECT(X,Y ) = X ∩ Y also has communication complexity Ω(n).

– The Hamming distance function HAM(x, y) =
∑min(|x|,|y|)
i=1 (xi−yi)2 has com-

munication complexity Ω(n).

Thus:

Corollary 7 The inner product, set disjointness, set intersection and Hamming
distance functions cannot be securely computed in classes 2.a, 2.b or 2.c, in the
presence of static semi-honest adversaries.

Thus our protocol for set intersection (see the full version) that hides only
one party’s input size is “optimal” in that it is impossible to hide both parties’
input sizes.

We conclude by observing that by combining Corollary 4 and Theorem 6,
we obtain an almost complete characterization of the functions with constant
output size that can be securely computed in class 2. This is because any function
with fixed output length that can be efficiently computed with polylogarithmic
communication complexity has a size-independent protocol by Definition 3, and
so can be securely computed in all of class 2. We therefore conclude:
4 This argument is not true if R is not of a constant size. This is because it is then
possible that the set of polynomials bounding the transcript sizes is P = {ni}i∈N.
Clearly each member of P is a polynomial; yet there is no polynomial that upper
bounds all of P .

5 The disjointness function is not symmetric. However, it can be made symmetric
using the method described in Footnote 1.



Corollary 8 Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a function. If f can be effi-
ciently computed with polylogarithmic communication complexity, then it can be
securely computed in all of class 2 in the presence of static semi-honest and ma-
licious adversaries, assuming the existence of collision-resistant hash functions
and fully homomorphic encryption schemes. In contrast, if there exists an ε > 0
such that the communication complexity of f is Ω(nε) then f cannot be securely
computed in any subclass of class 2.

The above corollary is not completely tight since f may have communication
complexity that is neither polylogarithmic, nor Ω(nε). In addition, our lower
and upper bounds do not hold for functions that can be inefficiently computed
with polylogarithmic communication complexity.

Additional results. In the full version, we prove a series of impossibility
results and study the relations between the different classes. Amongst other
things, we show that the oblivious transfer function with strings of unbounded
length cannot be securely computed in classes 1.b and 2.b, but can be securely
computed in classes 2.a,2.c and 1.d (it can be computed in classes 1.a/c/e since
all functions can be securely computed in these classes).

6 Summary

Our work provides quite a complete picture of feasibility, at least on the level
of in which classes can all functions be securely computed and in which not. In
addition, we show separations between many of the subclasses, demonstrating
that the input-size hiding landscape is rich. In Table 1 we provide a summary of
what functions can and cannot be computed in each class. This is in no terms a
full characterization, but rather some examples that demonstrate the feasibility
and infeasibility in the classes.

All f All f (even GT
vecxor Intersection OT omprf(bounded output) unbounded output) (x > y)

2.a × × X X × X X
2.b × × X × × × X
2.c × × X X × X X
1.a X X X X X X X
1.b X × X X X × X
1.c X X X X X X X
1.d X × X X X X ×
1.e X X X X X X X

Fig. 1. Summary of feasibility
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Fig. 2. Classification of Input-Size Hiding Ideal Models


