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Abstract. A recent trend in cryptography is to formally prove the leak-
age resilience of cryptographic implementations – that is, one formally
shows that a scheme remains provably secure even in the presence of
side channel leakage. Although many of the proposed schemes are secure
in a surprisingly strong model, most of them are unfortunately rather
inefficient and come without practical security evaluations nor imple-
mentation attempts. In this work, we take a further step towards clos-
ing the gap between theoretical leakage resilient cryptography and more
practice-oriented research. In particular, we show that masking counter-
measures based on the inner product do not only exhibit strong theo-
retical leakage resilience, but moreover provide better practical security
or efficiency than earlier masking countermeasures. We demonstrate the
feasibility of inner product masking by giving a secured implementation
of the AES for an 8-bit processor.
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1 Introduction

Side channel attacks (SCA) are among the most relevant threats for the security
of implementations of cryptographic algorithms. Since the introduction of timing
attacks to the research community in the late 1990s [22], more side channels have
been discovered [13, 23, 25] and more powerful attacks have been developed [4,
6, 14]. It was soon clear that masking, i.e. concealing all sensitive intermediate
values of a computation with random data, is an excellent way to prevent certain
types of attacks [5, 19]. As opposed to other countermeasures aiming at intro-
ducing noise in the side channel, e.g. random delays, random order execution,
dummy operations, etc., one can formally argue the security masking provides.

The idea of dth order masking is to split every sensitive intermediate value
in the implementation into d+ 1 random shares, and to compute the algorithm
on these shares while maintaining that each tuple of d shares is independent of



any sensitive value. The challenge is not to devise the masking scheme itself, i.e.
to determine how a sensitive intermediate value is split, but rather to define the
masked operations that process the independent shares, while still preserving
the correctness of the computation. A dth order masked implementation can, in
theory, always be broken by a d + 1th order side channel attack, i.e. an attack
that exploits side channel leakage of d+1 intermediate values in the masked im-
plementation. However, given a sufficient amount of noise, attacking a dth order
masked implementation becomes exponentially more difficult in d [5]. Motivated
by this result, dth order masking schemes (that can be implemented at any order
d) based on boolean masking [27] and polynomial masking [18, 24] have been re-
cently proposed. Unfortunately, their security has so far been evaluated mainly
by practice-oriented researchers, while a formal proof-driven analysis is either
missing or is given only in a very weak security model.

In the theory community, masking-based countermeasures are analyzed within
the framework of leakage resilient circuit compilers introduced by Ishai et al. [20].
A circuit compiler takes as input an arbitrary circuit C computing over some
finite field and outputs a protected circuit C ′ that has the same functionality as
C but comes with built-in security against certain classes of leakages. For the
circuit compiler of [20] it can be shown that an adversary that learns up to d
intermediate values during the computation of the transformed circuit C ′ does
not learn anything beyond black-box access. That is, for instance, if C is an AES
circuit then its implementation C ′ exhibits the standard black-box security even
in the presence of side-channel leakage (in the given model).

The circuit compiler of Ishai et al. based on boolean masking with d masks
has been recently extended, and a similar compiler (based on any linear secret
sharing scheme) protecting against broader classes of leakages has been intro-
duced [11]. Despite this progress, it has been suggested that masking schemes
with greater algebraic complexity yield better resistance against side channel
attacks. As boolean masking schemes only achieve weak provable security guar-
antees, attempts have been made to seek for alternatives. First examples are
the compilers of Juma and Vahlis [21] and Goldwasser and Rothblum [15] which
use as underlying masking a public key encryption scheme, i.e. every sensitive
variable is encrypted with a suitable public key encryption scheme. While such
compilers achieve strong security guarantees, namely, protection against any
polynomial-time computable leakage function, they suffer from poor efficiency
and rather provide theoretical feasibility results than a way towards a practical
solution.

In two recent works [10, 16], it was shown that such strong theoretical security
guarantees can be achieved without relying on public-key encryption schemes.
Instead, these works propose a purely information theoretic solution based on
the inner product. While asymptotically these constructions are comparable to
schemes based on public key encryption, they have the potential to achieve much
better real-world efficiency as they only require simple algebraic operations. In
this work, we show that this is indeed the case, if one is willing to accept a weaker
security model. In a nutshell, our work shows that advances in leakage resilient



cryptography can indeed have implications to real-world implementations and
may even provide better practical security or efficiency than existing schemes.

Contributions. We rely on ideas of Dziembowski and Faust [10] for the in-
ner product (IP) masking, and adjust the masked operations to improve their
efficiency. As we are particularly interested in a secure implementation of the
Advanced Encryption Standard (AES), we can exploit the linearity of the squar-
ing operation in the underlying finite field F28 . Moreover, we slightly simplify
the masked multiplication operation of [10]. All these changes are done without
affecting the theoretical security analysis. The bulk of our efficiency improve-
ments, however, comes from using a simpler method to refresh a masked secret.
Such a refreshing scheme takes as input a masked secret and outputs a masking
of the same value with completely fresh randomness. The construction that we
use in our implementation is essentially a simple variant of a scheme proposed
in [9]. As such simple schemes only satisfy weaker security properties, we need to
make additional restrictions to get a sound theoretical security analysis. We pro-
vide further details on how our changes affect the security and what additional
assumptions are required in Section 4.

We also evaluate the security of the IP masking for practical parameters,
i.e. when the number of shares is small. Our practical analysis reveals that the
information leakage of IP masking is more than two orders of magnitude smaller
than that of boolean masking for low levels of noise and the same number of
shares. Finally, we detail how the AES can be implemented in a secure way
using the IP masking scheme, and we provide an implementation and perfor-
mance results to demonstrate its correctness and feasibility. We show that in
particular non-linear operations in the IP masked domain, e.g. multiplication,
clearly outperform polynomial-based masking solutions that enjoy similar alge-
braic complexity.

2 Inner Product Masking

In this section we introduce the circuit model assumed for the execution of
the masked calculations, and we provide a detailed description of the masking
scheme and its building blocks, including a complexity analysis and a comparison
to other masking schemes.

Circuit model. Following the model of Dziembowski and Faust [9, 10], we con-
sider that the target device running the masked computations contains two sep-
arate processors. Each of these processors, in the following referred to as left
processor (PL) and right processor (PR), executes a part of the masked opera-
tions. Communication between processors is performed via a bidirectional data
bus. Such a model is introduced in order to provide a framework to analyze the
security of the masking scheme. As will be further explained in the following
sections, its main purpose is to facilitate the assumption that PL and PR have
completely independent side channel leakage, i.e. an adversary can only retrieve
information specific to each physical processor. Notice that from a practical point



of view, the required independent side-channel leakage can also be obtained by
temporal (rather than physical) separation of the masked computations, e.g. in
the context of sequential software implementations on a single processor.

Overview. The IP masking scheme can be instantiated to secure operations
in any finite field |F| ≥ 2, such that all elements and operations in F can be
mapped to and performed in the masked domain. This feature is extremely
useful in the context of securing cryptographic applications, as the underlying
field of the masking scheme can be adapted according to the characteristics of the
cryptographic algorithm and/or the target platform. Without loss of generality,
and driven by our goal to implement the AES, we provide in the following an
efficient instantiation of the IP masking scheme for the field F28 of characteristic
two.

Notation. We represent field elements with upper-case letters, e.g. X ∈ F28 ,
and we use ⊕ to denote field addition and ⊗ to denote field multiplication.
Vectors are represented with bold upper-case letters, e.g. X ∈ Fn

28 such that
X = (X1, . . . , Xn). For two vectors X,Y ∈ Fn

28 we denote by X ⊕ Y the
vector addition in Fn

28 calculated as (X1 ⊕ Y1, . . . , Xn ⊕ Yn). The inner product
⟨X,Y ⟩ ∈ F28 is calculated as

⊕n
i=1 Xi ⊗ Yi.

Construction. In the IP masking scheme each sensitive variable X ∈ F28 is
split into an even number of 2n shares such that:

X = L1 ⊗R1 ⊕ . . .⊕ Ln ⊗Rn. (1)

We denote L = (L1, . . . , Ln) as left vector and R = (R1, . . . , Rn) as right
vector. A variable X is represented in the masked domain as (L,R), and can be
recovered by calculating the inner product of these two vectors, e.g. X = ⟨L,R⟩.
In order to prevent a practically exploitable bias between the shares and the
masked value, it is required that elements of L belong to F28 \ {0}. We define
n ≥ 2 as the security parameter of our masking scheme.

Note that IP masking is a generalization of previously published masking
schemes. Indeed, one trivially derives boolean masking from Eq. (1) by e.g.
setting all elements in L (resp. R) to one. Multiplicative masking [2] can be
achieved by setting n = 2 and either of the shares L2 and/or R2 (resp. L1

and/or R1) to zero. Affine masking, described in [12] as V = (A⊗X)⊕B, can
be obtained by fixing n = 2, L1 = L2 = A−1, R1 = V , and R2 = B. Finally,
as a secret variable in polynomial masking [18, 24] is given by an interpolation
polynomial in the Lagrange form, such masking scheme can be obtained by
considering all elements in L to be public Lagrange coefficients.

Algorithm 1 depicts the procedure IPMask() to convert a variable X into the
IP masked domain as two vectors (L,R) of size n. The function rand() returns a
random element in F28 , whereas the function randNonZero() returns a random
element in F28 \ {0}. The function IPUnmask() to convert a masked variable
(L,R) of size n back to X consists in calculating the inner product X = ⟨L,R⟩.



Algorithm 1 Masking a variable: (L,R)← IPMask(X)

Input: variable X ∈ F28

Output: masked variable (L,R)
Ensure: X = ⟨L,R⟩

L1 ← randNonZero()
for i = 2 to n do

Li ← randNonZero();Ri ← rand()
end for
R1 ← (X ⊕

⊕n
i=2 Li ⊗Ri)⊗ L−1

1

2.1 Operations in the masked domain

After introducing how to convert variables between F28 and the IP masked do-
main, we need to provide a set of high-level functions that allows us to operate
directly on the masked variables. In order to fulfill our security requirements,
computations regarding the left vector L of masked variables should be executed
in the left processor PL, whereas calculations regarding R should be carried out
in the right processor PR. Moreover, the condition that elements of the vector
L are different than zero must be inherited by all operations in order to avoid
output masked values from being biased.

In the following we make use of a special operation called IPHalfMask(),
which on input a variable X and a vector L calculates the corresponding vector
R such that X = ⟨L,R⟩. It is thus a simplified version of Algorithm 1 for which
the left vector L is already given and thus elements Li do not need to be sampled.

Another operation that will be often used is IPRefresh(). This operation,
depicted in Algorithm 2, takes as input a masked variable (L,R) and returns
a new one (L′,R′) such that ⟨L,R⟩ = ⟨L′,R′⟩. The purpose of the refreshing
is to pump new randomness into the masking scheme. Algorithm 2 is tailored
particular to work for the field F28 . For a generalization we refer the reader to [9].

Algorithm 2 Refresh vector: (L′,R′)← IPRefresh(L,R)

Input: vector L in processor PL, vector R in processor PR

Output: vector L′ in processor PL, vector R
′ in processor PR

Ensure: ⟨L,R⟩ = ⟨L′,R′⟩
PL PR

A ∈R Fn
28

L′ = L⊕A
A−−−−−−−→ X = IPUnmask(A,R)
X←−−−−−−−

B = IPHalfMask(X,L′)
B−−−−−−−→ R′ = R⊕B

Although not clearly specified in Algorithm 2, it is necessary that the vector
A sampled by PL is such that the resulting elements of L′ are non-zero. In other



words, we need to ensure that Ai ̸= Li for all 1 ≤ i ≤ n. Details on how to
implement this step efficiently, in constant time and flow are given in Section 5.

Addition. The procedure IPAdd() to calculate the addition of two masked vari-
ables is depicted in Algorithm 3. This algorithm requires a three vector ad-
ditions, two joint executions of IPRefresh(), one of IPUnmask(), and one of
IPHalfMask().

Algorithm 3 Masked addition: (X,Y )← IPAdd((L,R), (K,Q))

Input: vectors L and K in processor PL, vectors R and Q in processor PR

Output: vector X in processor PL, vector Y in processor PR

Ensure: ⟨X,Y ⟩ = ⟨L,R⟩ ⊕ ⟨K,Q⟩
PL PR

(A,B)←IPRefresh(K,Q⊕R)⇐===========================⇒
(C,D)←IPRefresh(L⊕K,R)⇐===========================⇒

Z←IPUnmask(C,D)⇐===========================⇒
Y←IPHalfMask(Z,A)⇐===========================⇒

X = A Y = Y ⊕B

Notice that it might be the case that the component L ⊕K in the second
execution of IPRefresh() has elements equal to zero. While this is a source of
first-order leakage in IP masking, i.e. the probability Pr(Z = 0|(Li ⊕Ki) = 0)
is twice than that for any other value of Z, it is in this particular case not
exploitable by an attacker. This is because Pr(⟨X,Y ⟩|Z = 0) is uniformly dis-
tributed, i.e. knowing that the intermediate value Z is zero does not give any
information about the sensitive output value (X,Y ).

Addition of a constant. The procedure IPAddConst() to add a constant
Z ∈ F28 to a masked variable (L,R) can be carried out more efficiently than
Algorithm 3. Let (L,R) and Z be the input operands, and (X,Y ) the out-
put masked variable. Addition of a constant can be simply calculated by letting
X = L and Y = R, except for the first element Y1 = (R1 ⊕ Z)⊗ L−1

1 .

Multiplication. The procedure IPMult() to calculate the multiplication of two
masked variables is depicted in Algorithm 4. This algorithm requires 2n2 initial
field multiplications, one execution of IPRefresh() with input/output vectors
of size n2, one execution of IPUnmask() with input vectors of size n2 − n, one
execution of IPHalfMask(), and one final vector addition.

Multiplication by a constant. The procedure IPMulConst() to multiply a
masked variable (L,R) by a constant Z ∈ F28 is efficiently computed in IP
masking. Let (L,R) and Z be the input operands, and (X,Y ) be the output
masked variable. Multiplication by a constant can be performed by letting X =
L and calculating Y = (R0 ⊗ Z, . . . , Rn ⊗ Z). As will be further explained in
Section 4, it is not necessary to execute IPRefresh() after IPMulConst().



Algorithm 4 Masked multiplication: (X,Y )← IPMult((L,R), (K,Q))

Input: vectors L and K in processor PL, vectors R and Q in processor PR

Output: vector X in processor PL, vector Y in processor PR

Ensure: ⟨X,Y ⟩ = ⟨L,R⟩ ⊗ ⟨K,Q⟩
PL PR

for i = 1 to n do for i = 1 to n do
for j = 1 to n do for j = 1 to n do

Ũi∗n+j ← Li ⊗Kj Ṽi∗n+j ← Ri ⊗Qj

(U ,V )←IPRefresh(Ũ,Ṽ )⇐==============================⇒
A = (U1, . . . , Un) B = (V1, . . . , Vn)
C = (Un+1, . . . , Un2) D = (Vn+1, . . . , Vn2)

Z←IPUnmask(C,D)⇐===============================⇒
Y←IPHalfMask(Z,A)⇐===============================⇒

X = A Y = Y ⊕B

Squaring. The procedure IPSquare() can be carried out quite efficiently in
the masked domain given that we work over a field of characteristic 2. Let the
input masked variable be (L,R). The output masked variable (X,Y ) can be
calculated by squaring all elements of each vector independently, i.e. Xi = (Li)

2

and Yi = (Ri)
2. The masked squaring operation does not require refreshing the

masks, and can be thus carried out with only 2n field squarings.

2.2 Complexity of operations

The complexity of the main operations in the IP masked domain, namely ad-
dition and multiplication, is given in Table 1. We also provide a comparison
with some masked operations that can be implemented at any order d, recently
published in the literature for boolean and polynomial masking schemes, namely
[18, 24, 27]. The complexity numbers are given in terms of d for all the schemes,
where d indicates the number of random values in each masked variable. Recall
that in IP masking, this number of random values is given by d = 2n− 1, with
n ≥ 2.

As shown in Table 1, the complexity of the addition operation in IP masking
is slightly larger than in the other proposed methods. This is mainly due to
the internal use of the IPRefresh() operation which, as opposed to the other
masking schemes, involves several field multiplications. However, the results ob-
tained for the multiplication operation are favourable for IP masking. In partic-
ular, both polynomial masked multiplications have complexity O(d3) while IP
masked multiplications have complexity O(d2). The boolean masked multipli-
cation has a similar complexity but, as we will show in the next sections, the
masking scheme itself provides considerable less security from both practical and
theoretical points of view.



Table 1. Complexity of IP masked operations and comparison to dth order boolean
masked operations and polynomial masked operations in the literature.

Masked Operations in F28

Operation Scheme ⊕ ⊗ x−1 Rand

ADDITION

Boolean [27] d + 1 - - -

Polynomial [18] d + 1 - - -

Polynomial [24] d + 1 - - -

Inner Product (13d + 1)/2 3d + 3 3 (7d + 3)/2

MULTIPLICATION

Boolean [27] d2 + d + 1 2d2 + 2d - (d2 + d)/2

Polynomial [18] 2d3 + 7d2 + d 2d3 + 5d2 + 5d - 2d2 + d

Polynomial [24] 4d3 + 8d2 + 7d + 2 4d3 + 8d2 + 3d - 2d2 + d

Inner Product (5d2 + 12d − 9)/4 (5d2 + 10d + 5)/4 2 (3d2 + 8d − 3)/4

3 Security Evaluation

In this section we evaluate the SCA resistance of IP masking and compare it
to that of other masking schemes that can be implemented at any order, e.g.
boolean masking and polynomial masking. We focus the analysis on the masking
schemes themselves, i.e. we analyze the leakage of the shares of one masked
value. We will show in the next section that the security relevant properties of
IP masking carry over to the basic operations in the masked domain.

Attack order. We begin the evaluation by deriving the minimum order for an
attack against IP masking. For this we need the following definitions:

Definition 1: We say that a variable is sensitive, if it is an intermediate result
in an implementation that leaks through side channels, and if it is a function
of the input (resp. output), the key and possibly other constants that is not
constant with respect to the key [27].

Definition 2: We say that a masking scheme is dth order SCA secure, if every
tuple of d or less shares is independent of the variable that is masked. Accord-
ingly, a masked implementation of an algorithm is dth order SCA secure, if every
tuple of d or less intermediate variables is independent of any sensitive variable.

1st order SCA resistance. Clearly, IP masking with n ≥ 2 is 1st order SCA
secure. This is a simple consequence of the fact that, even if the value of one of
the shares in L or R is known (in the worst case one Ri is known to be zero such
that Li ⊗ Ri = 0), the value of the variable that is masked is still information
theoretically hidden by the ⊕ with n−1 terms that are all uniformly distributed
over F28 .

2nd order SCA resistance. IP masking with n = 2 is not 2nd order SCA secure.
This is because the product of two values is determined to be zero if one of the
values is zero. Multiplicative masking [2] suffers from the same problem [17].
Suppose that the values of R1 and R2 are known to be zero. Then, L1⊗0⊕L2⊗
0 = s = 0. This leads to a bias in the distribution p(S = s|R1 = r1, R2 = r2),
and the mutual information I(s; (R1, R2)) is non-zero.

dth order SCA resistance. IP masking with 2n = d + 1 is SCA secure up

to n − 1th (or d+1
2 − 1th) order, but not secure against nth (or d+1

2

th
) or-



der SCA. Following the above examples, as long as the product of one pair
(Li, Ri), i ∈ {1, . . . , n} is unknown, the value of the variable s that is masked
is still information theoretically hidden. On the other hand, if ∀i ∈ {1, . . . , n}
the value of Ri is known to be zero, then the value of s is known to be zero.
However, the probability that this case occurs is small and decreases rapidly
with increasing n. More precisely, it is (2−8n).

In summary, IP masking with 2n = d+ 1 can, in theory, be broken by a nth

order SCA. On the other hand, similar to polynomial masking, it creates a much
more complex relation between the shares than boolean masking, which is known
to be more difficult to exploit. Hence, we expect IP masking with 2n = d+ 1 to
provide much higher security in practice than boolean masking of order d+1, i.e.
with the same number of random masks. Following this line, we opt to consider
the leakage of all 2n or d + 1 shares in the following analysis, since an attack
exploiting all shares is more powerful in an information theoretic sense, unless
the noise levels are extremely high.

In polynomial masking half of the shares are non-zero public constants and
the other half are random and secret masks. In particular, there is no direct
correspondence to the notion of a masked variable. In the rest of the paper we
refer only to the random and secret shares, and their number determines the
masking order. For example, polynomial masking of order d− 1 uses d random
and secret shares, and can theoretically be broken by a dth order SCA. We will
compare polynomial masking of order d − 1 with boolean masking of order d
(d+ 1 shares, d masks) and with IP masking of order 2n = d+ 1 (d+ 1 shares,
d masks). One could expect IP masking with 2n = d + 1 to provide a similar
level of security as polynomial masking of order d− 1, i.e. both schemes should
provide similar security when they use the same number of random and secret
masks.

Information Leakage. As motivated and done in previous works [12, 24,
28, 29], we use the mutual information between a variable and the leakage of
all shares of its masked representation as a figure of merit. We estimate it
using simulations. For IP masking, we set n = 2 and let R2 ∈R F28 and
L1, L2 ∈R F28 \ {0} such that S = L1 ⊗ R1 ⊕ L2 ⊗ R2. Boolean masking uses
d+1 shares (M1, . . . ,Md, V ) where the Mi ∈R F28 and V is computed such that
S = M1 ⊕ . . . ⊕Md ⊕ V holds. We evaluate boolean masking for d ∈ {1, 2, 3}.
Polynomial masking uses d shares (Y1, . . . , Yd) with Yi ∈R F28 and d public La-
grange coefficients (β1, . . . , βd) with βi ∈R F28 \ {0} and pairwise distinct [18].
We evaluate polynomial masking for d ∈ {2, 3}.

To quantify the amount of information leaked, we need to model the relation
between the value of a variable and its physical leakage. We follow the approach
that is usual in the literature [12, 24, 29]: we model that a variable leaks its
Hamming weight, that each share leaks independently of all other shares, and
that the leakage of each share is affected by independent Gaussian noise. The
latter serves to mimic the noise effects that affect physical measurements. Putting
this together, we model the leakage of IP masking as

Leak(L,R) = (HW(L1) + n1,HW(R1) + n2,HW(L2) + n3,HW(R2) + n4) ,



the leakage of boolean masking as

Leak(M1, . . . ,Md, V ) = (HW(M1) + n1, . . . ,HW(Md) + nd,HW(V ) + nd+1)

and the leakage of polynomial masking as

Leak(Y1, . . . , Yd) = (HW(Y1) + n1, . . . ,HW(Yd) + nd)

where the ni are independent Gaussian variables with mean zero and standard
deviation σ. The mutual information is then I(S; Leak(L,R)), I(S; Leak(M1, . . . ,
Md, V ) resp. I(S; Leak(Y1, . . . , Yd)). The number of measurements that a Tem-
plate Attack [6], i.e. the worst case scenario of a profiled attack, requires to
achieve a given success probability is directly related to this mutual information
via c · I(·; ·)−1, where the constant c is related to the success probability [29].

Figure 1 shows plots of the mutual information (log10) between S and the
information leaked by all shares of its masked representation, over increasing
noise levels σ, for all masking schemes considered3 4.
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Fig. 1. Mutual information (log10) over increasing noise standard deviation σ for dif-
ferent masking schemes.

The figure shows that IP masking with n = 2 leaks consistently less than
boolean masking with d ∈ {1, 2, 3} across the range of tested noise levels, which
confirms our expectation. The advantage is more pronounced for low noise levels,
where e.g. for σ = 0.2 the information leakage of IP masking is about 2.5 orders
of magnitude(!) smaller than that of boolean masking. As expected, polynomial

3 Note that the mutual information values we computed for boolean masking are
consistent with Figure 1 in [12] and Figure 3 in [24]. One has to take into account
that the Y-axis in those figures is erroneously labeled log10 while it should be logn [1].

4 For polynomial masking with d = 3, reasonably accurate estimation of the mutual
information values for high noise levels is beyond our computational budget.



masking with d = 2 leaks consistently more than IP masking with n = 2. Poly-
nomial masking with d = 3 provides a level of security very similar to IP masking
with n = 2 for low noise levels. However, contrary to what one could expect,
for high noise levels, polynomial masking with d = 3 leaks less than IP masking
with n = 2. There are several possible explanations for this observation. For
instance, IP masking with n = 2 involves two field multiplications while poly-
nomial masking with d = 3 involves three field multiplications, i.e. the algebraic
complexity of the masking is greater. Furthermore, IP masking with n = 2 is 1st

order SCA secure while polynomial masking with d = 3 is 2nd order SCA secure.
It is known that leakage of lower order is easier to exploit, in particular with
increasing noise [29]. We leave the careful analysis of the observed difference in
information leakage as an open question for future research.

Discussion. Our evaluation shows that IP masking with n = 2 provides high
security even if there is little noise. However, although the simulated scenario
(Hamming weight leakage, independent leakage of each share, Gaussian noise)
is standard in the practice-oriented literature, it is synthetic and in particular
meets the requirement of the masking schemes for independent leakage perfectly.
It can be hard to achieve this for real-world implementations that are affected
by effects such as coupling (we show in the extended version [3] that glitches do
not affect the security of IP masking). Clearly, our evaluation does not allow to
blindly assume that an implementation of IP masking is secure. What it shows
is the level of security that a secure implementation of IP masking can provide.
An interesting topic for future research is to analyze the security provided by
a real-world implementation, and to analyze how violating a requirement, e.g.
independent leakage, affects practical security.

4 Theoretical Security Analysis

In this section, we review some formal security properties of the IP masking. We
give the basic security properties of the masking scheme itself, including very
strong security guarantees with respect to non-adaptive leakages, and argue that
these properties carry over to the basic operations in the masked domain. In the
full version [3] we discuss further relaxations, and argue that our construction
provides security against glitches similar to the results given in [24].

Notation. In the following we let F be a finite field, and we typically consider
row vectors. We define the statistical distance between two random variables
A,B over some set X as

∆(A;B) :=
∑
x∈X

1/2 |Pr[A = x]− Pr[B = x]| .

4.1 Security properties of IP masking

We have argued in Section 3 that even for small n, IP masking is robust to
(noisy) Hamming weight leakage from the different shares of the masking. In



this section, we back up these observations with a theoretical analysis showing
strong security properties for IP masking that cannot be achieved, e.g. by linear
masking schemes such as Boolean masking or masking schemes based on Shamir
secret sharing. The analysis strongly relies on techniques and results from [10,
11]. We repeat here part of the arguments where changes to the construction and
model are required to get practical constructions. For a more formal analysis and
full proof details the reader is referred to [10]. We emphasize that the theoretical
analysis will typically require n > 130 to get meaningful security bounds.

As mentioned in Sect. 2, we assume that the device that runs the masked
computation has two processors, PL and PR, leaking independently. Let SL de-
note the state of processor PL and SR the state of processor PR (resp.), then the
adversary may interact with Ω(SL,SR) by sending functions fL and fR to the
oracle and getting back fL(SL) and fR(SR). The only additional requirement
that we make is that an adversary will not learn more than λ bits from each
processor PL and PR. We call such an adversary λ-limited and denote the pro-
cess of the adversary interacting with the leakage oracle by (A� Ω(L,R)). For
simplicity, we always assume that the output of A in the above leakage game
is f1

L(SL), f
2
L(SL), . . . , f

1
R(SR), f

2
R(SR), . . .. We emphasize that by modeling leak-

age in this way, we allow it to depend on any intermediate value that may be
computed during the computation of the two processors.

To analyze the security of an IP masked value S from some finite field F, we
set SL := L and SR := R, where (L,R)←IPMaskn(S), and let the adversary
interact with theΩ(L,R) leakage oracle. The following lemma was proven in [10].

Lemma 1. Let n ∈ N and let F be such that n ≥ log(|F|). For any 1/2 > δ >
0, γ > 0, any two secrets S, S′ ∈ F and any (unbounded) λ-limited adversary A
we have

∆((A� Ω(IPMaskn(S))) , (A� Ω(IPMaskn(S
′))) ≤ ϵ,

where λ = (1/2− δ)n log |F| − log γ−1 − 1 and ϵ = 2(|F|3/2−nδ + |F|γ).

Informally, the lemma says that for any two (different) secrets S, S′ no adversary
can distinguish between leakage from a masking of S and a masking of S′.

As a special case, this gives us the following corollary when the underlying
field is F28 , namely:

Corollary 1. Let n ∈ N, then for any two secrets S, S′ ∈ F28 and any λ-limited
adversary A, we have

∆((A� Ω(IPMaskn(S))) , (A� Ω(IPMaskn(S
′))) ≤ ϵ,

where λ = 3n and ϵ ≤ 213−0.1n + 2−n.

Proof. Set δ := 0.1 and γ := 2−0.2n, then we get λ = 3.2n− 0.2n− 1 = 3n and
ϵ ≤ 213−0.1n + 2−n. ⊓⊔



Corollary 1 says that for sufficiently large n an adversary may learn up to 3n
bits from each processor without being able to distinguish between a masking
of S and S′. We notice that the bound on the statistical distance only gets
meaningful, when n > 130, which, of course, is impractical.

One may ask if we can get stronger security guarantees for the masking
scheme if we restrict our focus to certain special cases. To this end consider the
case that the adversary cannot query adaptively the leakage oracle, i.e. he may
learn only fL(L) and fR(R). In this case, it is easy to show that from the fact
that the inner product is a strong randomness extractor [7, 26], we can give to
the adversary the entire L and up to 3n bits of R, and still it will be hard to
decide whether (L,R) was sampled from IPMaskn(S) or IPMaskn(S

′).

Comparison with linear masking schemes. We notice that linear masking
schemes, such as the additive masking over finite fields [20, 27], cannot achieve
such strong security properties in our security model. Consider a secret S ∈ F
that is masked by vectors (L,R) such that (L,R) are uniformly random in F2n

subject to the constraint that S =
∑

i Li +
∑

i Ri. If we consider an adversary
that can interact with Ω(L,R) then already a single field element of leakage
entirely breaks the security: f(L) may reveal

∑
i Li, while g(R) reveals

∑
i Ri,

which together reveal S completely.
For fields of characteristic 2 such as F28 already a single bit of leakage suffices

to learn information about the secret! Recall that in characteristic 2 fields addi-
tion works bit-wise. Similar arguments work for the polynomial masking based
on Shamir secret sharing introduced in [18], as Lagrange polynomial interpola-
tion is linear. Hence, such masking schemes can be broken in our model.

We emphasize that our leakage model includes certain classes of leakages
that are very frequently used in practice, e.g. to model power consumption. One
example is the Hamming weight leakage model. Of course, our theoretical anal-
ysis includes Hamming weight leakages as an adversary can learn the Hamming
weight of a masked value and still the masked value remains information theo-
retically hidden. More precisely, as shown in Corollary 1 the IP masking remains
provably secure even if an adversary learns L completely and 3n bits of R. As
Hamming weight is a linear function we can compute the Hamming weight of
(L,R) from just the Hamming weight of L and R separately. Notice that the
Hamming weight of R can be compressed to < 4 log n bits, while according to
Corollary 1 we are allowed to learn 3n bits of R. We emphasize that an adver-
sary may even learn the individual Hamming weight of each share R1, . . . Rn of
the right vector and still the IP masking remains secure. This is easy to see as
we can describe the Hamming weight of the n shares for sufficiently large n by
at most n log(8) = 3n bits, which according to Corollary 1 an adversary may
learn from R. We emphasize that for additive masking schemes, such as Boolean
masking, it is not known whether such strong security guarantees hold.

4.2 Security of masked operations

So far, we looked at the robustness of the IP masking scheme in the presence
of independent leakage, when we mask a secret value (or several secret values)



and store the left part L on processor PL, while R is stored on processor PR. In
the following, we “lift” the security analysis from just masking the secret state,
e.g. the key of the AES, to arbitrary computation with masked values. More
precisely, we describe why leakage from operations on masked values will not
help to learn more about the masked value than just the leakage from a single
masking. This can be viewed as a reduction from the security of “complicated”
masked computation, to the security of a single masked value. The details of this
analysis can be found in the full version.

In the security proof, we follow Dziembowski and Faust [10] and show two
simple properties for the basic masked operations. These properties were in-
troduced in [11] and are called rerandomizing and reconstructability. The first
guarantees that for a masked operation the encoded output of the operation is
distributed as a uniformly and independently sampled encoding. We show in the
full version that all our masked operations satisfy this property. We notice that
the algorithms for squaring and multiplication by a constant require only local
computation, and hence do not require a refreshing.

To show reconstructability for a masked operation, we need to build a recon-
structor. A reconstructor is a simulator that given the operations’s masked inputs
and outputs can reproduce the internal computation of the operation. The main
requirement is that leakage from the reconstructor’s output distribution (namely
the internal computation) is indistinguishable from the leakage obtained from a
real execution of the operation. At an intuitive level, this property guarantees
that leakage from the internals of a masked operation will not reveal “more”
information about the underlying secret than just the leakage from the masked
inputs and outputs itself.

For practical reasons, we slightly adapt the construction of [10]. The three
main differences are as follows: (1) the way in which we refresh masked secrets,
(2) dedicated efficient masked operations for squaring and multiplication by a
constant, and (3) a simplified masked multiplication operation (instead of a
NAND we only build a simple multiplication). We discuss some details below.
A more thorough discussion is deferred to the full version.

In the implementation, we use Algorithm 2 to refresh a masking of (L,R),
which is a simple variant of the scheme given in [10]. To enable a security proof,
we will in the following assume that the refreshing does not leak. This is re-
quired as Dziembowski and Faust show a theoretical attack on a similar refresh-
ing scheme in [9]. Unfortunately, their attack also applies on the refreshing from
Algorithm 2. The attack presented in [9] recovers the masked secret and requires
an adversary to learn for n consecutive rounds the exact value of 3 field ele-
ments. While in theory such an attack completely breaks the masking scheme,
we emphasize that for a real-world adversary it is very hard to learn the ex-
act value of field elements. If learning the exact value of 3 field elements over
n consecutive rounds is possible, then from a practical point of view it seems
hard to argue why the adversary should not be able to learn the exact value
of all 2n shares in one round of the refreshing. Notice also that practical SCA
attacks typically require some knowledge of the inputs/outputs of the algorithm.



For the refreshing algorithm this is not possible as both inputs and outputs are
unknown and random. This makes attacking the refreshing a hard target. One
may ask why we do not use alternative approaches of provably secure refreshing
as presented in [9] and [16]. Our choice is motivated by practical limitations as
existing refreshing schemes result in a quadratic blow-up.

5 Performance Evaluation

In this section we evaluate the performance and correctness of IP masking. We
provide a general overview on how to implement the IP masking building blocks
on an 8-bit embedded platform, and describe how to use them to protect an
implementation of the AES.

5.1 Implementation of masked operations

The 8-bit Atmel AVR ATMega128 [8] is chosen as target platform. This device
provides an advanced RISC architecture with 133 low-level instructions and it
offers 128 kBytes of flash program memory and 4 kBytes of internal SRAM. The
independent side channel leakage required by our model is in our implementation
achieved by temporal separation, i.e. instead of using two physically separated
processors PL and PR, we use a single 8-bit processor and we ensure independent
leakage by not overlapping their respective operations.

For the sake of optimization, we have implemented all operations in assembly
language. The ATMega128 does not provide an internal random number genera-
tor to implement the rand() and randNonZero() functionalities. Therefore, and
only for the purposes of evaluating the implementation, the required random
bytes are provided to the microcontroller externally previous to the encryption
process. We note that modern devices with built-in TRNG or PRNG elements
running in parallel would allow to generate such randomness internally.

Addition in F28 is carried out in a single clock cycle via the available XOR in-
struction, whereas the rest of field operations (multiplication, inversion, raisings
to the power of 2) are implemented via lookup tables, requiring a total of 1,536
bytes in program memory. Besides the squaring, we have also implemented as
lookup tables the rising to the powers of 4 and 16 required in the power function
of the AES SubBytes step (see extended version for more details [3]). On devices
with limited program memory these raisings can be alternatively carried out by
consecutive squarings, effectively saving 512 bytes of program memory.

Special care has been taken in order to make the implementation not only
time-constant, but flow-constant i.e. conditional execution paths, which can be a
potential source of side channel leakage, have been avoided. A typical example of
a function with conditional execution is the multiplication in F28 using log/alog
tables. This method only works when both input operands are different than zero;
otherwise, the result of the multiplication must be equal to zero. Implementing
this routine in constant flow requires to calculate the potential outputs of all
conditional paths, and thus it ends up requiring 22 clock cycles.



Worth mentioning is the implementation of the first part of Algorithm 2 for
mask refreshing, namely sampling a vector A such that Ai ̸= Li for 1 ≤ i ≤ n.
This step is carried out as follows for each element Ai. First, we sample two
elements A′

i ∈ F28 and A′′
i ∈ F28 \ {0}. If A′

i ̸= Li we simply set Ai = A′
i;

otherwise, we assign Ai = A′
i⊕A′′

i . Independently of the sampled values A′
i and

A′′
i , this conditional statement ensures that i) the final value Ai is different than

Li, and ii) the final value of Ai is uniformly distributed over F28 . Needless to
say, such implementation is also performed in constant flow execution to prevent
conditional execution branches.

5.2 Application to the AES

We have implemented and verified the correctness of a protected instance of
AES using the IP masking scheme with n = 2. Due to space restrictions, we
provide a high-level description about how to apply IP masking to the AES in
the extended version of this work [3]. As shown in Table 2, our implementation
requires around 1.9 · 106 clock cycles to perform a protected AES encryption
(including on-the-fly key schedule calculation).

Table 2. Performance evaluation (in clock cycles) of AES round transformations and
AES encryption with IP masking scheme with n = 2.

AddRoundKey
SubBytes SubBytes

ShiftRows MixColumns Full AES
(Inverse) (Aff.Transf.)

8,796 45,632 72,128 200 27,468 1,912,000

We stress that these results should not be simply taken as an indicator to
judge the practicality of IP masking, as they are obtained using a legacy general-
purpose device without any type of hardware enhancements. If multiplication in
F28 was available in the instruction set of the controller our timing for AES
encryption would be instantly reduced to less than a million cycles. This could
be achieved e.g. by providing instruction set extensions to the target device.

6 Conclusion

This work narrows the gap between the fields of theoretical leakage resilient
cryptography and practice-oriented research, and it represents a first joint step
towards the development and evaluation of common masking schemes. Although
the levels of security required for each model differ considerably, we expect tighter
bounds that allow to lower the value of the security parameters as the theory of
leakage resilient cryptography advances. At the same time, technology advances
steadily and what was impractical yesterday will be “normal” tomorrow. As a
consequence one might expect that schemes such as IP masking can become
practical for higher security levels.
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