
Sequential Aggregate Signatures
with Lazy Verification

from Trapdoor Permutations

Extended Abstract

Kyle Brogle1, Sharon Goldberg2, and Leonid Reyzin2

1 Stanford University Department of Computer Science
Stanford, CA 94305 USA
broglek@stanford.edu

Work done while at Boston University
2 Boston University Department of Computer Science

Boston, MA 02215 USA
{goldbe,reyzin}@cs.bu.edu

Abstract. Sequential aggregate signature schemes allow n signers, in
order, to sign a message each, at a lower total cost than the cost of n in-
dividual signatures. We present a sequential aggregate signature scheme
based on trapdoor permutations (e.g., RSA). Unlike prior such propos-
als, our scheme does not require a signer to retrieve the keys of other
signers and verify the aggregate-so-far before adding its own signature.
Indeed, we do not even require a signer to know the public keys of other
signers!

Moreover, for applications that require signers to verify the aggregate
anyway, our schemes support lazy verification: a signer can add its own
signature to an unverified aggregate and forward it along immediately,
postponing verification until load permits or the necessary public keys
are obtained. This is especially important for applications where signers
must access a large, secure, and current cache of public keys in order to
verify messages. The price we pay is that our signature grows slightly
with the number of signers.

We report a technical analysis of our scheme (which is provably secure in
the random oracle model), a detailed implementation-level specification,
and implementation results based on RSA and OpenSSL. To evaluate
the performance of our scheme, we focus on the target application of
BGPsec (formerly known as Secure BGP), a protocol designed for se-
curing the global Internet routing system. There is a particular need
for lazy verification with BGPsec, since it is run on routers that must
process signatures extremely quickly, while being able to access tens of
thousands of public keys. We compare our scheme to the algorithms
currently proposed for use in BGPsec, and find that our signatures are
considerably shorter nonaggregate RSA (with the same sign and verify
times) and have an order of magnitude faster verification than nonaggre-
gate ECDSA, although ECDSA has shorter signatures when the number
of signers is small.

2 K. Brogle, S. Goldberg, L. Reyzin

1 Introduction

Aggregate signatures schemes allow n signers to produce a digital signature that
authenticates n messages, one from each signer. This can be securely accom-
plished by simply concatenating together n ordinary digital signatures, individ-
ually produced by each signer. An aggregate signature is designed to maintain
the security of this basic approach, while having length much shorter than n in-
dividual signatures. To achieve this, many prior schemes e.g., [LMRS04,Nev08]
relied on a seemingly innocuous assumption; namely, that each signer needs to
verify the aggregate signature so far, before adding its own signature on a new
message. In this paper, we argue that this can make existing schemes unviable
for many practical applications, (in particular, for BGPsec [Lep12] / Secure BGP
[KLS00]) and present a new scheme based on trapdoor permutations like RSA
that avoids this assumption. In fact, our scheme remains secure even if a signer
does not know the public keys of the other signers.

1.1 Aggregate signatures from trapdoor permutations

Boneh, Gentry, Lynn, and Shacham [BGLS03] introduced the notion of aggre-
gate signatures, in which individual signatures could be combined by any third
party into a single constant-length aggregate. The [BGLS03] scheme is based on
the bilinear Diffie-Hellman assumption in the random oracle model [BR93]. Sub-
sequent schemes [LMRS04,Nev08] were designed for the more standard assump-
tion of trapdoor permutations (e.g., as RSA [RSA78]), but in a more restricted
framework where third-party aggregation is not possible. Instead, the signers
work sequentially ; each signer receives the aggregate-so-far from the previous
signer and adds its own signature.3

Lysyanskaya, Micali, Reyzin, and Shacham [LMRS04] constructed the first
sequential aggregate signature scheme from trapdoor permutations, with a proof
in the random oracle model.4 However, their scheme has two drawbacks: the
trapdoor permutation must be certified (when instantiating the trapdoor per-
mutation with RSA, this means that each signer must either prove certain
properties of the secret key or else use a long RSA verification exponent), and
each signer needs to verify the aggregate-so-far before adding its own signature.
Neven [Nev08] improved on [LMRS04] by removing the need for certified trap-
door permutations, but the need to verify before signing remained. Indeed, a
signer who adds its own signature to an unverified aggregate in both [LMRS04]
and [Nev08] (or, indeed, in any scheme that follows the same design paradigm)
is exposed to a devastating attack: an adversary can issue a single malformed

3 The need for the random oracle model was removed by Lu, Ostrovsky, Sahai,
Shacham, and Waters [LOS+06], who constructed sequential aggregate signatures
from the bilinear Diffie-Hellman assumption; however, it is argued in [CHKM10]
that this improvement in security comes at a considerable efficiency cost. See
also [RS09,CSC09] for other proposals based on less common assumptions.

4 Bellare, Namprempre, and Neven [BNN07] showed how the schemes of [BGLS03]
and [LMRS04] can be improved through better proofs and slight modifications.

Sequential Aggregate Signatures with Lazy Verification 3

aggregate to the signer, and use the signature on that malformed message to
generate a valid signature on a message that the signer never intended to sign
(we describe the attack in the full version of the paper [BGR11b]).

The nonsequential scheme of [BGLS03] does not, of course, require verifica-
tion before signing. The only known sequential aggregate scheme to not require
verification before signing is the history-free construction of Fischlin, Lehmann,
and Schröder [FLS11] (concurrent with our work), but it, like [BGLS03], requires
bilinear Diffie-Hellman.

Thus, the advantages of basing the schemes on trapdoor permutations (par-
ticularly a more standard security assumption and fast verification using low-
exponent RSA) are offset by the disadvantage of requiring verification before
signing. We argue below that this disadvantage is serious.

1.2 The need for lazy verification

In applications with a large number of possible signers, the need to verify before
signing can introduce a significant bottleneck, because each signer must retrieve
the public keys of the previous signers before it can even begin to run its signing
algorithm. Worse yet, signers need to keep their large caches of public keys secure
and current: if a public key is revoked and a new one is issued, the signer must
first obtain the new key and verify its certificate before adding its own signature
to the aggregate.

A key application: BGPsec. Sequential aggregate signatures are particu-
larly well-suited for the BGPsec [Lep12] (formerly known as the Secure Border
Gateway Protocol (S-BGP) [KLS00]), a protocol being developed to improve
the security of the global Internet routing system. (This application was men-
tioned in several works, including [BGLS03,LOS+06,Nev08], and explored fur-
ther in [ZSN05].) In BGPsec, autonomous systems (ASes) digitally sign routing
announcements listing the ASes on the path to a particular destination. An an-
nouncement for a path that is n hops long will contain n digital signatures,
added in sequence by each AS on the path. (Notice that the length of the BG-
Psec message even without the signatures increases at every hop, as each AS
adds its name to the path, as well as extra information to the material in the
routing message like its “subject key identifier” — a cryptographic fingerprint
that is used to lookup its public key in the PKI [Lep12].) The BGPsec protocol
is faced with two key performance challenges:

1. Obtaining public keys. BGPsec naturally requires routers to have access to
a large number of public keys; indeed, a routing announcement can contain
information from any of the 41,000 ASes in the Internet [COZ08] (this num-
ber is according to the dataset retrieved in 2012). Certificates for public keys
are regularly rolled over to maintain freshness, and must be retrieved from
a distributed PKI infrastructure [Hus12]. Caching more than 41,000 public
keys is expensive for a memory-constrained device like a router (which often
does not have a hard drive or other secondary storage [KR06]). Furthermore,
whenever a router sees a BGPsec message containing a key that is not in

4 K. Brogle, S. Goldberg, L. Reyzin

its cache, it incurs non-trivial delay on certificate retrieval (from a distant
device that hosts the PKI) and verification.

2. Dealing with routing table “dumps”. When a link from a router to its neigh-
boring router fails, the router receives a dump of the full routing table,
often containing more than 300, 000 routes [CID], from it neighbors. Be-
cause routers are CPU- and memory-constrained devices, dealing with these
huge routing table dumps incurs long delays (up to a few minutes, even
with plain, insecure BGP [BHMT09]!). The delays are exacerbated if cryp-
tographic signing and verifying is added to the process, and even more so
when a router comes online for the first time (or after failure) and needs to
also retrieve and authenticate public keys for all the ASes on the Internet.

To deal with these issues, the BGPsec protocol gives a router the option to
perform lazy verification: that is, to immediately sign the routing announcement
with its own public key, and to delay verification until a later time, e.g., when
(a) it has time to retrieve the public keys of the other signers, or (b) when the
router itself is less overloaded and can devote resources to verification [DHS]. It
is important to note that lazy verification by one router need not hurt others: if
a router has not verified a given announcement, routers further in the chain can
verify it for themselves.

While there is legitimate concern that permitting lazy verification may cause
routers to temporarily adopt unverified paths, the alternative may be worse: for-
bidding lazy verification can lead to problems with global protocol convergence
(agreement on routes in the global Internet), because of routers that delay their
announcements significantly until they can verify signatures (e.g., during rout-
ing table dumps, or while waiting to retrieve a missing certificate). Such delays
create their own security issues, enabling easier denial of service attacks and
traffic hijacking during the long latency window. Thus, even though BGPsec
recommends that every router eventually verifies BGPsec messages, requiring
that routers always verify before signing and re-announcing BGPsec messages is
considered a nonstarter by the BGPsec working group [Sri12, Section 8.2.1]. Lazy
verification is written into the BGPsec protocol specification as follows [Lep12,
Section 7]:

...it is important to note that when a BGPSEC speaker signs an outgoing
update message, it is not attesting to a belief that all signatures prior to
its are valid.

Requirement: No public keys in the signing algorithm! Note that
the primary obstacle here is not only verification time (which can perhaps be
improved through batching and, anyway, can be considerably faster than signing
time when using low-exponent RSA), but also the need to obtain public keys.
Thus, lazy verification also requires that prior signers’ public keys are not used
in the signing algorithm (e.g., hashed with the message as in [LMRS04,Nev08]).

Requirement: No security risk from signing unverified aggregates! As
we already mentioned, a signer who adds its own signature to an unverified

Sequential Aggregate Signatures with Lazy Verification 5

aggregate in the schemes of [LMRS04] and [Nev08] is exposed to a devastating
attack. We already discussed how lazy verification may cause a signer to do so.
Moreover, even without lazy verification, BGPsec may sometimes require a signer
to add its own signature to an aggregate that is invalid. One such situation is
when a router knowingly adopts a path that fails verification—for example, if it
is the only path to a particular destination (the specification allows this [Lep12,
Section 5]). It will then add its own signature to the invalid one, because a
“BGPSEC router should sign and forward a signed update to upstream peers if
it selected the update as the best path, regardless of whether the update passed
or failed validation (at this router)” [Sri12, Section 8.2.1]. The need to sign a
possibly invalid aggregate also arises in the case each message is signed by two
different signature schemes (as will happen during transition times from one
signature algorithm to another), and “one set of signatures verifies correctly and
the other set of signatures fails to verify.” In such a case the signer should still
“add its signature to each of the [chains] using both the corresponding algorithm
suite” [Lep12, Section 7]. Even if all BGPsec adopters avoid lazy verification
and always verify before signing, these guidelines make it impossible to adopt an
aggregate signature scheme that does not permit signing unverified aggregates,
because of the possibility of attack. In other words, lazy verification is still needed
for security even if no one uses it for efficiency!

Our goal. We note that lazy verification is permitted by the trivial solution
of concatenating individual ordinary signatures, by aggregate signature schemes
defined in [BGLS03], and by history-free aggregate signature schemes defined
in [FLS11]. All of the above schemes do not require the current signer to know
anything about the previous signers: neither their public keys nor the messages
they signed. 5 Our goal is to obtain the same advantages, while relying on a more
basic security assumption than the bilinear Diffie-Hellman of [BGLS03,FLS11]
and saving space as compared to the trivial solution.

5 Identity-based aggregate signatures [YCK04], [XZF05], [CLW05], [CLGW06],
[Her06], [GR06], [BGOY07], [HLY09], [SVSR10], [BJ10] also remove the need for
obtaining public keys and have been proposed for use in BGPsec. However, agreeing
on the secret-key-issuing authority for the global Internet seems politically infeasi-
ble. Moreover, on a technical level, the proposals either require interaction among
signers or are based on bilinear pairings. Interactive signatures would significantly
complicate the protocol. And if we are willing to rely on bilinear pairings, [BGLS03]
already gives us an excellent choice that allows for lazy verification.

Synchronized aggregate signatures (identity-based ones of [GR06] and regular ones
of [AGH10]) also allow for lazy verification, but require a common nonce for all
signers that, if repeated, breaks the security of the scheme. Implementing such a
nonce in BGPsec presents its own challenges, because each signer has to ensure it
never reuses a nonce, or else its secret key is at risk. The schemes are also pairing-
based.

6 K. Brogle, S. Goldberg, L. Reyzin

1.3 Overview of our contributions

We present a sequential aggregate signature scheme that is secure even with lazy
verification, based on any trapdoor permutation (such as RSA). Moreover, as in
the nonsequential scheme of [BGLS03] and the history-free scheme of [FLS11],
our signers do not need to know anything about each other—not even each
other’s public keys. To achieve this, we modify Neven’s scheme [Nev08] by ran-
domizing the H-hash function with a fresh random string per signer, which
becomes a part of the signature, similarly to Coron’s PFDH [Cor02] (Section 3).
Our modification allows each signer to sign without verifying, and without even
needing to know the public keys of all the signers that came before him, avoiding,
in particular, the attack on [LMRS04,Nev08].

Although the ultimate goal in aggregate signatures is to produce schemes
whose signature length is independent of the number of signers, signatures in
our scheme grow slightly with the number of signers. However (as also pointed
out by [Nev08]), while a constant-length aggregate signature is a theoretically
interesting goal, what usually matters in practice is the combined length of sig-
natures and messages, because that’s what verifiers receive: signatures rarely
live on their own, separately from the messages they sign. And the combined
length of messages, if they are distinct, grows linearly with the number of sign-
ers, so the total growth of the amount of information received by the verifier is
anyway linear. What matters, then, is how fast this linear growth is; below we
derive parameters that show it to be much smaller than when ordinary trapdoor-
permutation-based signatures are used as in the trivial solution.

We make the following contributions:

Generic randomized scheme. We present the basic version of our scheme,
which requires each signer to append a truly random string to the aggregate
(Section 3). Our scheme is as efficient for signing and verifying (per signer)
as ordinary trapdoor-permutation based signatures, like the Full-Domain-Hash
(FDH, [BR93, Section4]). We prove security (Section 4) in the random oracle
model, based on the same assumption of trapdoor permutations (or claw-free
permutations for a tighter security reduction) as in [Nev08]. Our security proof
is more involved, because the reduction cannot know the public keys of other
(adversarial) signers during the signature queries. We should note that our proof
technique also shows that Neven’s scheme need not hash other signer’s public
keys in the signing algorithm (however, Neven’s scheme still fails under lazy
verification).

Shortening the randomness. We show that the per-signer random string can
be shorter if it is made input-dependent (Section 5), ensuring that a given signer
never produces two different signatures on the same input. The idea of input-
dependent randomness has been used before in signature schemes (e.g., [KW03,
Section 4]); however, our application requires a new combinatorial argument to
show security.

Instantiating with RSA. In the full version of the paper [BGR11b] we show
how to instantiate our schemes with practical trapdoor permutations like RSA,
which have slightly different domains for different signers.

Sequential Aggregate Signatures with Lazy Verification 7

Detailed specification. We provide a full, parameterized step-by-step speci-
fication of the truly-random and input-dependent-random versions of our signa-
ture when instantiated with RSA (see the full version of the paper [BGR11b],
where we also provide guidelines on choosing parameters such as bit lengths).

Implementation, benchmarking and practical considerations. We im-
plement our specification as a module in OpenSSL (Section 6); the implementa-
tion is available from [BGR11a]. We compare our implementation’s performance
to other potential solutions that allow for lazy verification; namely, [BGLS03],
and the “trivial” solution of using n RSA or ECDSA signatures (the two algo-
rithms currently proposed for use in implementations of BGPsec [DHS]). When
evaluating signatures schemes for use with BGPsec, we consider compute time
as well as signature length. Thus, we show that our signature is shorter than
trivial RSA when there are n > 1 signers and shorter than trivial ECDSA when
there are n > 6 signers. (While our signature is longer than the constant-length
[BGLS03] signature, it benefits from relying on the better-understood security
assumption of RSA.) Moreover, our scheme enjoys the same extremely fast verify
times as RSA.

2 Preliminaries

Sequential aggregate signature security. The security definition for aggre-
gate signatures (both original [BGLS03] and sequential [LMRS04]) is designed
to capture the following intuition: each signer is individually secure against exis-
tential forgery following an adaptive chosen-message attack [GMR88] regardless
of what all the other signers do. In fact, we will allow the adversary to give
the attacked signer arbitrary—perhaps meaningless—aggregate-so-far signatures
during the signature queries, thus making them adaptive “chosen-message-and-
aggregate” queries. We also allow the adversary, which we call “the forger,” to
choose the public keys of all the other signers and to place the single signer who
is under attack anywhere in the signature chain in the attempted forgery. This
single attacked signer does not know any public keys other than its own and
does not verify any aggregate-so-far given by the attacker.

Our formal definition, presented in the full version [BGR11b], is almost ver-
batim from [LMRS04], with one important difference needed to enable lazy ver-
ification: the public keys and messages of previous signers are not input to the
signing algorithm. Therefore, each signer, by signing a message, is attesting only
to that message, not to the prior signers’ messages and public keys. At a tech-
nical level, this change implies that in security game the forger, in its query
to ith signer, is required to supply only the aggregate-so-far signature allegedly
produced by the first i − 1 signers, but not the messages or public keys with
respect to which this aggregate was allegedly produced. And, of course, to be
considered successful, the forger must use a new message—in other words, it is
not enough to change a public key or message of someone else in the chain be-
fore the attacked signer (because such public keys and messages may not even be
well defined during the attack). This definition is exactly the one that is satisfied

8 K. Brogle, S. Goldberg, L. Reyzin

by the trivial solution of concatenating n individual signatures (and therefore
suffices, in particular, for BGPsec).

Fischlin, Lehmann, and Schröder [FLS11] propose a stronger security def-
inition for their “history-free” signatures (building on history-free MACs of
[EFG+10]), which prevents certain reordering and recombining of signatures.
Their definition thus has a security property that the trivial solution of concate-
nating n individual signatures does not have. Although this security property
is not needed in many applications (for example, in BGPsec reordering and
recombining of signatures is prevented simply by the protocol message struc-
ture, where each message must, for the purposes of functionality, include all
the signed information contained in previous messages), our signature scheme
in fact also prevents reordering and recombining that are of concern to [FLS11]:
see [BGR11b].

Cryptographic primitives. We will use pseudorandom functions [GGM86];
the definition is omitted here because it is standard, but is presented in [BGR11b]
for the sake of completeness. We will denote by εPRF(q, t) the maximum insecurity
of PRF against any distinguisher who asks at most q queries and runs in time t.

We assume the reader is familiar with the trapdoor and claw-free permuta-
tions; we will denote by π the easy direction of the trapdoor permutation, by
π−1 the hard direction, and by ρ the function such that it is hard to find a
“claw” x, z with π(x) = ρ(z).

3 Our basic signature scheme

The intuition behind our construction is as follows. Like [Nev08], we use a
random-oracle-based signature with message recovery, similar to PSS-R [BR96],
as a basic building block. Signatures with message recovery embed a portion of
the message into the signature, so it can be recovered on verification and does
not need to be sent explicitly. In our case, the signature outputs two values: the
output x of a trapdoor permutation and an additional hash value h. The ith

signer receives (xi−1, hi−1) from the previous signer and wants to sign a message
mi. To enable aggregation, we view (xi−1,mi) together as a “message” to be
signed with message recovery: we apply the signature with message recovery to
this pair, so that xi−1 is embedded into the signature and does not have to be
sent explicitly. The h portions of the signatures are exclusive-ored together for
aggregation.

So far, what we described is a slightly simplified version of the scheme
from [Nev08]. Note that verifying before signing is necessary in this scheme,
because the transformation from (xi−1, hi−1) to (xi, hi) is deterministic, invert-
ible, and can be performed by the adversary, except for the inversion of the
trapdoor permutation performed at the last step. As we show in [BGR11b], no
scheme constructed in this manner can permit lazy verification while protecting
against a chosen message attack. Thus, to enable lazy verification, we require
each signer to add a random string to the message, and concatenate and append
these strings to the signature. Because the adversary lacks a priori knowledge

Sequential Aggregate Signatures with Lazy Verification 9

about these random strings, the chosen message attack becomes useless and we
can prove that this is sufficient to enable lazy verification.

Notation. We now describe the scheme precisely, using the following notation:

– Let mi be the message signed by signer i.
– Let trapdoor permutation πi be the public key of signer i and π−1i be the cor-

responding secret key. We assume all permutations operate on bit strings of
length `π, i.e., have domain and range {0, 1}`π . (In the full version [BGR11b]
we remove the assumption that all permutations operate on the same do-
main. Section 6 uses this to instantiate π from the RSA assumption, where πi
is the easy direction, and π−1i is the hard direction of the RSA permutation.)

– Let H (resp. G) be a cryptographic hash function (modeled as a random
oracle) that outputs `H -bit (resp. `π-bit) strings.

– Let `r be a parameter denoting the length of the randomness appended by
each signer.

– Let the notation ai denote a vector of values (a1, a2, ..., ai).
– Let ⊕ to denote bitwise exclusive-or. Exclusive-or is not the only operation

that can be used; any efficiently computable group operation with efficient
inverse can be used here.

– ε is a special character denoting the empty string; we assume ε⊕ x = x for
any x.

Sign: The ith Signer’s algorithm

Require:
πi, π

−1
i ,mi, xi−1, hi−1

(where xi−1, hi−1 = ε, ε if
i = 1).

1: Draw ri
R← {0, 1}`r

2: ηi ← H(πi,mi, ri, xi−1)
3: hi ← hi−1 ⊕ ηi
4: gi ← G(hi)
5: yi = gi ⊕ xi−1
6: xi ← π−1i (yi)
7: return ri, xi, hi {Note that
xi and hi go to the next
signer; all the ri values go to
the verifier, but only the last
signer’s xi and hi do.}

VerH,G: The Verification Algo-
rithm

Require: πn,mn, rn, xn, hn
1: for i = n, n− 1,, 2 do
2: yi ← πi(xi)
3: gi ← G(hi)
4: xi−1 ← gi ⊕ yi
5: ηi ← H(πi,mi, ri, xi−1)
6: hi−1 ← hi ⊕ ηi
7: if h1 = H(π1, r1,m1, ε) and
π1(x1) = G(h1) then

8: return 1
9: else

10: return 0

The ith signer’s signing algorithm has no dependency on the number of sign-
ers; it takes in only the ith signers’ own public key and message and the aggre-
gated portion of the signature xi−1, hi−1. Moreover, the aggregated signature
need not be verified before it is signed. For verification, only a single xi and
hi—namely, the one from the last signer—is needed. However, every ri, from
the first signer to the last, is needed.

10 K. Brogle, S. Goldberg, L. Reyzin

4 Security proof

We prove our scheme secure if G and H are modeled as random oracles and π
is a trapdoor permutation. The proof is easier to understand if π is additionally
claw-free (in particular, any homorphic permutation, such as RSA, is claw-free if
it is trapdoor). We therefore present the proof for the claw-free case. The more
general case is addressed in the full version [BGR11b]. Our proof shows how a
forger F on the aggregate signature scheme can be used to construct a reduction
R that finds a claw in claw-free pair (π∗, ρ∗). R has F forge a signature for victim
signer that uses permutation π∗, and then uses the resulting forgery to find the
claw in the claw-free pair. The structure of our reduction is similar to [Nev08];
however, while [Nev08] constructs a “sequential forger” from forger F and then
constructs reduction R from the sequential forger, our reduction must proceed
in one step (since the notion of a sequential forger is undefined if hash queries
do not include previous signers public keys).

F ’s queries. We review what forger F expects to see on each one of its queries:

– H-Query. F asks query Q = (π,m, r, x) (where x may be ε) and expects to
see H(Q) = η.

– G-query. F asks query h, and expects to see g = G(h).
– Sign Query. F asks query (m,h, x) to be signed by π∗, and expects to see
r, h′, x′ back, where r looks uniform, h′ = h ⊕H(π∗,m, r, x), and π∗(x

′) =
G(h′)⊕ x.

– Forgery. Finally, F outputs a forgery, σ = πn,mn, rn, xn, hn where πn =
π∗. (Value n is chosen by F).

Simplifying assumptions about the forger F . The following simplifies our
proof:

– We assume that the forger F forges the last signature in the signature chain;
in other words, πn = π∗ and mn is a new message never queried by F to the
signing oracle (whose public key is π∗). Indeed, any F can be easily modified
to do so: if π∗ and a new message mn′ are present in πn but at location
n′ < n, then we can run the verification algorithm loop for n− n′ iterations
to obtain xn′ , hn′ and output σ′ = πn′ ,mn′ , rn′ , xn′ , hn′ as the new forgery,
which will be valid if an only if σ was valid. Note that we do not assume
that π∗ (or any other public key) is present in the signature chain only once.

– We assume that before forger F outputs its forgery and halts, it makes hash
queries on all the hashes that will be computed during the verification of
its forgery. Moreover, we assume that the forger does not output an invalid
forgery; instead, it halts and outputs ⊥. Indeed, any F can be modified to
do so; simply run the verification algorithm upon producing the forgery, and
check that mn is different from every message asked in a sign query.

4.1 Description of the reduction R

Data structures used by R HT and GT tables. The reduction R uses ‘pro-
grammable random oracles’, i.e., it chooses answers for random oracle queries.

Sequential Aggregate Signatures with Lazy Verification 11

R keeps track of queries whose answers have already been decided in two tables:
HT for H and GT for G. We say HT(Q) = η if HT stores η as the answer to a
query Q, and HT(Q) = ⊥ if HT has no answer for Q (similar for GT).

The HTree. The key challenge for the reduction is programming G, since G-
queries are made on sums of H-query answers, rather than on individual H-query
answers. Thus the reduction keeps an additional data structure, the HTree, that
records responses to H-queries that may eventually be used as part of forger F ’s
forgery. (HTree is inspired by the graph G in [Nev08, Lemma 5.3].)

The HTree is a tree of labeled nodes that stores a subset of the queries in
HT. Each node in HTree (except the root) corresponds to an H-query that could
potentially appear in the forger F ’s final forgery σ; the queries asked during
verification of σ will appear on a path from one of the leaf nodes to the root
(unless a very unlikely event occurs). The HTree has a designated root node that
stores the value h0 = 0. We consider the root to be at depth 0. A node Ni at
depth i > 0 stores:

– a pointer to its parent node
– a query Qi = (πi,mi, ri, xi−1) (where xi−1 = ε if and only if i = 1),
– the ‘hash-response’ values ηi and hi (hi is the XOR of the values η1, . . . , ηi

on the path from the root to the node Ni; equivalently, hi−1⊕ηi, where hi−1
is stored in the parent node),

– an auxiliary value yi that is used to determine how future queries are added
to the HTree, computed as G(hi)⊕ xi−1 (note that yi is the value to which
the signer would apply π−1i),

– if πi = π∗, an auxiliary value z that may be used to find a claw in (π∗, ρ∗).

Every node at depth i = 2 or deeper satisfies the relation πi−1(xi−1) = yi−1,
where πi−1 and yi−1 are stored at the node’s parent. New H-queries Q are added
as nodes to the HTree if they can satisfy this relation; we say that such a query
can be tethered to an existing node in the HTree. Intuitively, a query tethered
to Ni becomes a child of Ni in the HTree:

Definition 1 (Tethered queries). An H-query Q containing x 6= ε is tethered
to node Ni in the HTree if Ni stores πi, yi such that πi(x) = yi. If x = ε, then Q
is tethered to the root of the HTree.

The HTree’s Lookup function determines the HTree node to which query Q can
be tethered. We can argue that Lookup finds at most one node with high proba-
bility.) The HTree is populated via the Sim-H algorithm. The reduction R adds
an H-query Q to the HTree if and only if it is tethered to some node in the HTree
at the time that forger F makes the H-query. It is possible that some query Q is
not tethered at the time it is made, but becomes tethered at at later time (after
some new nodes are added to the HTree). However, we show that this is highly
unlikely.

Algorithms used used by R The reduction R uses the following algorithms,
which are formally specified in the full version [BGR11b].

12 K. Brogle, S. Goldberg, L. Reyzin

G-queries. R answers these queries using a simple algorithm Sim-G. Sim-G
returns GT(h) if it is already defined, or, if not, returns a fresh random value
and records it in the GT.

Sign-queries The reduction R answers queries (m,h, x) to be signed by π∗
using Sim-S. Since the reduction does not know the inverse of the challenge
permutation π−1∗ , it ‘fakes’ a valid signature by carefully assigning certain entries
in random oracle tables HT,GT, and ABORTS if these entries in HT,GT have
been previously assigned. We are able to argue that Sim-S is unlikely to abort,
since the entries added to HT,GT by Sim-S depend on a fresh random value r
chosen as part of each signature query.

H-queries The reduction R answers these queries Q = (π,m, r, x) using Sim-H.
If there is an entry for Q in the HT, then Sim-H returns it. Otherwise, it assigns
a fresh random value η as HT(Q). Next, Sim-H needs to prepare for the event
that Q could lead to a forgery by the forger F , and thus needs to be stored
in the HTree. To do this, Sim-H uses the Lookup function to check if Q can be
tethered and thus should be added to the HTree. If Q can be tethered, Sim-H
adds a new node to the HTree containing Q, its hash response η, and an auxiliary
value y that is used by the Lookup function to tether future H-queries. In order
to ensure that HTree is a tree, it is important to ensure that y is a fresh random
value; Sim-H aborts if that’s not the case. Finally, if Q contains the challenge
permutation π∗, Sim-H adds a value z to the HTree node that FindClaw will
use to derive a claw from a valid forgery output by the forger F . To prepare
these values, Sim-H behaves almost as if it is ‘faking’ the answer to a sign-query,
except that instead of using the usual challenge permutation π∗ (as in Sim-S), it
uses the challenge permutation ρ∗ applied to z (so as to benefit from forger F ’s
forgery, which would invert π∗ on the output of ρ∗(z), thus producing a claw).
As in Sim-S, this involves carefully assigning certain entries in GT, and aborting
if these entries are already assigned. We are able to show that Sim-H is unlikely
to abort.

Finding a claw. Finally, forger F outputs a forgery πn,mn, rn, xn, hn, where
πn = π∗. Recall that our simplifying assumptions mean that the forgery is
valid. The reduction R uses FindClaw to find a claw from the forgery. Because
we assumed all the queries for verifying σ have already been asked, the query
(π∗,mn, rn, xn−1) is in HT. Moreover, if the forgery is valid, then with high prob-
ability it is in the HTree as a child of the node storing (πn−1,mn−1, rn−1, xn−2),
which is in turn a child of the node storing (πn−2,mn−2, rn−2, xn−3), etc. This
holds because in a valid forgery, each H-query made during verification is teth-
ered to the next one, and all tethered queries are in the HTree with high proba-
bility. The value xn (from the forgery σ) and value zn (from HTree node of the
query Q = (π∗,mn, rn, xn−1)) constitute a claw.

Sequential Aggregate Signatures with Lazy Verification 13

4.2 Analysis of the reduction

Theorem 1. If a forger F succeeds with probability ε, then the reduction R finds
a claw for (π∗, ρ∗) in about the same running time as F with probability

ε− (qS + qH)(qS + qG + qH)2−`H − qS(qS + qH)2−`r − q2H2−`π (1)

where qH is the number of H-hash queries, qG is the number of G-hash queries,
and qS is the number of sign queries made by the forger F .

We prove this theorem in full version of the paper [BGR11b]. The proof hinges
on two key statements about the HTree. First, the probability that Lookup(x)
finds more than one HTree node is low (even though Lookup uses the functions π
stored in the nodes of the HTree, which do not have to be permutations, because
they are adversarially supplied and not certified like in [LMRS04]). Second, an
H-query that was not added to HTree is unlikely to become tethered at some
later time. Both statements rely on the fact that each time a query is placed on
the HTree, its y value is random and independent of every other y value.

5 Shorter signatures via input-dependent randomness

To shorten our signature, we now show how to reduce `r (the length of the ran-
domness appended by each signer). To do this, we replace the truly random r
from our basic scheme with an r that is computed as a function of the inputs to
the signer, and argue that it can be made shorter than the random r. Intuitively,
we are able to maintain security with a shorter r because a given signer never
produces two different signatures on the same input, thus limiting the informa-
tion that an adversary can see and exploit. Of course, this input-dependent r
need not be truly random; it suffices for a r to be a pseudorandom function of
the input.

5.1 Modifying the scheme

We now compute r as a pseudorandom function (PRF) over the input (mi,
hi−1, xi−1) received by that signer i. Let PRFseed : {0, 1}∗ → {0, 1}`r be a PRF
with seed seed and insecurity εPRF(q, t) against adversaries asking q queries and
running in time t. Add a uniformly chosen seed to the secret key of the signer
and replace line 1 of the signing algorithm with r ← PRFseed(m,h, x).

In the previous section, we found that `r must be long enough to tolerate
a security loss of qS(qH + qS)2−`r (Theorem 1). As we show below, `r in the
modified scheme can be shorter, since it needs only to allow for a security loss of
approximately (qG + qH + qS + `Hq

2
S)2−`r . This is an improvement if we assume

that qH ≈ qG (since both H and G are hash functions) and qS � qH (since in
practice hash queries can be made offline, while signing queries need access to
an actual signer).

14 K. Brogle, S. Goldberg, L. Reyzin

5.2 Key insight for the security proof

Using the reduction of Section 4, we had to choose r long enough to make
it unlikely that when a forger makes a sign query on (π∗,mi, xi−1, hi−1), the
algorithm Sim-S draws a random ri that collides with a previously made H-
query Qi = (π∗,mi, ri, xi−1). Indeed, if Qi was answered by ηi and the forger
chooses hi−1 so that hi (which is computes as hi−1⊕ηi) has already been queried
to G, then when r collides, the reduction would be prevented from programming
the random oracle G(hi). Making r depend on the forger’s input to the signer
means that the forger gets only one chance (rather than qS chances) to make this
happen for a given Qi, hi−1, and hi, because subsequent attemps by the forger
will use the same r.

We show in the full version [BGR11b] that the problem of proving this mod-
ified scheme secure hinges on the following combinatorial problem.

Combinatorial problem. Suppose β values η1, . . . , ηβ are chosen uniformly at
random as `H -bit strings and given to an adversary, who then chooses α distinct
values h′1, . . . , h

′
α. The α× β-matrix ζ is constructed by XORing the η and the

h′ values. A collision in ζ is a set of entries that are all equal. What is the total
number of entries in the γ biggest collisions?

Theorem 2. With probability at least 1− β22`H , the total size of the γ biggest
collisions in ζ is at most α+ (`h + 2)γ2.

The proof of this theorem, as well as the entire security analysis of the mod-
ified scheme, are found in [BGR11b]

6 Implementation and Evaluation

In the full version of the paper [BGR11b] we present details of instantiating
our scheme with RSA (these include, in particular, dealing with the problem of
slightly different domains for each signer’s permutation). We implemented the
input-dependent-r version as a module in OpenSSL [ope]. The code is available
from [BGR11a].

Overview of our implementation. We instantiate the permutation π with
2048-bit RSA with public exponent 65537, hash H with SHA-256, full-domain
hash G with the industry-standard Mask Generating Function (MGF) using
SHA-256 [RSA02], and the pseudorandom function PRF with HMAC-SHA-256
[BCK96]. Instead of hashing the permutation π as-is inside the hash function
H, we replace it with a short fingerprint of the RSA public key computed using
SHA-256. Thus, we have parameters `π = 2048, `h = 256, and `r = 128; the `r
value is per signer, and each signer also adds one bit of information to deal with
the problem that RSA gives each signer a slightly different domain. Therefore,
the length of the aggregate signature for n signers is 2048 + 256 + 129n bits long
(see Table 1). We justify this choice of parameters in [BGR11b].

Evaluation. We compare the implementation described in the previous para-
graph to other signature schemes that allow for lazy verification. Table 1 contains

Sequential Aggregate Signatures with Lazy Verification 15

2048-bit RSA Our scheme 256-bit ECDSA 256-bit BGLS

Signature length (bits) 2048n 2304 + 129n 512n 257

Length for n = 4.5 9216 2885 2304 257

Length for n = 7 14336 3207 3584 257

Sign time (ms) 11.8 11.9 2.3 1.9

Verify time (ms) 0.3n 0.3n 2.8n ≈ 18.9 + 6.6n

Verify time for n = 4.5 1.3 1.3 12.5 47.6

Verify time for n = 7 2.1 2.1 19.4 64.8
Table 1. Benchmark results for n signers. Computed on a laptop with a Core i3
processor at 2.4GHz and 2GB RAM, running Ubuntu. The first three schemes were
implemented using OpenSSL [ope] (with SHA-256 hashing and RSA public exponent of
65537); the BGLS scheme was implemented using MIRACL [Sco11] (with the curve BN-
128 [BN05] and with precomputation on the curve generator but not on the public keys;
further precomputation on the public keys seems to improve verification performance
by up to 20% at the cost of additional storage). Results for specific values of n are not
exactly in proportion due to rounding.

data on our scheme as well as the “trivial” solution of using n RSA signatures, the
solution of similarly using n ECDSA [Van92,IEE02] signatures (which are cur-
rent contenders for adoption in BGPsec [Sri12, Section 4.1]), and the aggregate
scheme of [BGLS03] (we do not compare against [FLS11], because it is a more
complicated version of [BGLS03], so [BGLS03] performs better than [FLS11],
anyway). In addition to providing formulas in terms of the number n of signers,
we show results for specific values of n = 4.5 and n = 7. The value of 4.5 was cho-
sen because it is roughly the average length of an AS path for a well-connected
router on the Internet today (average length fluctuates with time and vantage
point—see, e.g., here [Smi12]). We should note, however, that performance for
higher than average values of n is particularly important: transition to BGPsec
is expected to be particularly problematic for weaker routers, which are more
likely to be located to in the less well-connected portions of the Internet, and
that experience longer than average paths. We therefore also show results for
n = 7.

The table shows that the [BGLS03] scheme is a clear winner in terms of
signature length and signing time, but has considerably slower verification6.
It should be noted, however, that it is not being considered for the BGPsec
standard at this stage [Sri12, Section 4.1]: schemes relying on bilinear Diffie-
Hellman are not considered ready for worldwide deployment on the internet
backbone by the BGPsec working group, because a consensus has not emerged
on which curves provide the right tradeoff between security and efficiency (for
example, there is not a NIST-approved set of curves such as the one contained
in [NIS09, Appendix D] for non-pairing-based elliptic-curve cryptography). It
is also important to note that the time required to compute group operations
and bilinear pairings depends very heavily on the curve used; improvements for
various curves are produced frequently, and there is no generally accepted set of

6 A more efficient pairing-based scheme of [WM08] with a constant total number of
pairings was shown insecure by [SVS+09].

16 K. Brogle, S. Goldberg, L. Reyzin

curves or algorithms at this point. We believe that, assuming continued progress
to speed-up pairings on specific curves and sufficient confidence in the security
of bilinear Diffie-Hellman on these curves, the scheme of [BGLS03] (as improved
by [BNN07]) should be considered for real applications.

As far as the remaining three schemes are concerned, we observe that ECDSA
provides the shortest signatures when n < 6, while our scheme dominates the
three for n > 6 (as we already mentioned, performance for higher than average
n is particularly important.) We also observe that our scheme has computa-
tion time almost identical to simple RSA while having much shorter signatures
(RSA signature length is listed as a particular concern in [Sri12, Section 4.1.2]).
While ECSDA has the fastest signing time, the verification times for RSA and
our scheme are an order of magnitude faster than those of ECDSA. Note that,
for a router, the time required to sign does not depend on n, but the time re-
quired to verify grows linearly with n, so verification times are also of particular
importance to weaker routers at the edge of the network.

Thus, if one is interested in a scheme based on the standard assumption of
trapdoor permutations (albeit in the random oracle model), then our proposal
fits the bill. Moreover, even if one is willing to accept security of ECDSA (which
is not known to follow from any standard assumptions), our scheme may be
preferable based on fast verify times and comparable-length signatures. Our
scheme also has much faster verifying that pairing-based BGLS.

Acknowledgements

We thank Anna Lysyanskaya for help with the early stages of this work, Hovav
Shacham and Craig Costello for helpful pointers and explanations, and the DHS
S&T CSD Secure Routing project for many useful discussions that informed the
design of our schemes. We thank anonymous referees for helping us improve our
presentation and for pointing out related work. This work was supported by NSF
Grants 1017907, 0546614, 0831281, 1012910, 1012798, and a gift from Cisco.

References

AGH10. Jae Hyun Ahn, Matthew Green, and Susan Hohenberger. Synchronized
aggregate signatures: new definitions, constructions and applications. In
ACM Conference on Computer and Communications Security, 2010.

BCK96. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for
message authentication. In Neal Koblitz, editor, CRYPTO, volume 1109 of
Lecture Notes in Computer Science, pages 1–15. Springer, 1996.

BGLS03. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In Eli Biham, edi-
tor, Advances in Cryptology—EUROCRYPT 2003, volume 2656 of Lecture
Notes in Computer Science, pages 416–32. Springer, 2003.

BGOY07. Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum.
Ordered multisignatures and identity-based sequential aggregate signa-
tures, with applications to secure routing. In ACM Conference on Computer
and Communications Security, pages 276–285. ACM, 2007.

Sequential Aggregate Signatures with Lazy Verification 17

BGR11a. Kyle Brogle, Sharon Goldberg, and Leonid Reyzin. Implementation of se-
quential aggregate signatures with lazy verification, 2011. Available from
http://www.cs.bu.edu/fac/goldbe/papers/bgpsec-sigs.html.

BGR11b. Kyle Brogle, Sharon Goldberg, and Leonid Reyzin. Sequential aggre-
gate signatures with lazy verification, 2011. Full version and implemen-
tation code, available from http://www.cs.bu.edu/fac/goldbe/papers/

bgpsec-sigs.html.
BHMT09. Zied Ben Houidi, Mickael Meulle, and Renata Teixeira. Understanding slow

bgp routing table transfers. In Proc. ACM SIGCOMM Internet measure-
ment conference, pages 350–355, New York, NY, USA, 2009. ACM.

BJ10. Ali Bagherzandi and Stanislaw Jarecki. Identity-based aggregate and
multi-signature schemes based on rsa. In Phong Q. Nguyen and David
Pointcheval, editors, Public Key Cryptography, volume 6056 of Lecture
Notes in Computer Science, pages 480–498. Springer, 2010.

BN05. Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves
of prime order. In Bart Preneel and Stafford E. Tavares, editors, Selected
Areas in Cryptography, volume 3897 of Lecture Notes in Computer Science,
pages 319–331. Springer, 2005.

BNN07. Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted
aggregate signatures. In Lars Arge, Christian Cachin, Tomasz Jurdzinski,
and Andrzej Tarlecki, editors, ICALP, volume 4596 of Lecture Notes in
Computer Science, pages 411–422. Springer, 2007.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In ACM Conference on Com-
puter and Communications Security, pages 62–73, 1993.

BR96. Mihir Bellare and Phillip Rogaway. The exact security of digital signatures:
How to sign with RSA and Rabin. In Ueli Maurer, editor, Advances in
Cryptology—EUROCRYPT 96, volume 1070 of Lecture Notes in Computer
Science, pages 399–416. Springer, 12–16 May 1996.

CHKM10. Sanjit Chatterjee, Darrel Hankerson, Edward Knapp, and Alfred Menezes.
Comparing two pairing-based aggregate signature schemes. Des. Codes
Cryptography, 55(2-3):141–167, 2010.

CID. The CIDR report. http://www.cidr-report.org.
CLGW06. Xiangguo Cheng, Jingmei Liu, Lifeng Guo, and Xinmei Wang. Identity-

based multisignature and aggregate signature schemes from m-torsion
groups. Journal of Electronics (China), 23(4), July 2006.

CLW05. Xiangguo Cheng, Jingmei Liu, and Xinmei Wang. Identity-based aggregate
and verifiably encrypted signatures from bilinear pairing. In Osvaldo Ger-
vasi et al., editors, ICCSA (4), volume 3483 of Lecture Notes in Computer
Science, pages 1046–1054. Springer, 2005.

Cor02. Jean-Sébastian Coron. Optimal security proofs for PSS and other signature
schemes. In Lars Knudsen, editor, Advances in Cryptology—EUROCRYPT
2002, volume 2332 of Lecture Notes in Computer Science, pages 272–287.
Springer, 28 April–2 May 2002.

COZ08. Ying-Ju Chi, Ricardo Oliveira, and Lixia Zhang. Cyclops: The Internet
AS-level observatory. ACM SIGCOMM CCR, 2008.

CSC09. Saikat Chakrabarti 0002, Santosh Chandrasekhar, Mukesh Singhal, and
Kenneth L. Calvert. An efficient and scalable quasi-aggregate signature
scheme based on lfsr sequences. IEEE Trans. Parallel Distrib. Syst.,
20(7):1059–1072, 2009.

http://www.cs.bu.edu/fac/goldbe/papers/bgpsec-sigs.html
http://www.cs.bu.edu/fac/goldbe/papers/bgpsec-sigs.html
http://www.cs.bu.edu/fac/goldbe/papers/bgpsec-sigs.html
http://www.cidr-report.org

18 K. Brogle, S. Goldberg, L. Reyzin

DHS. Department of Homeland Security, Science and Technology Directorate, Cy-
ber Security Division, Secure Protocols for Routing Infrastructure project.
Personal Communication.

EFG+10. Oliver Eikemeier, Marc Fischlin, Jens-Fabian Götzmann, Anja Lehmann,
Dominique Schröder, Peter Schröder, and Daniel Wagner. History-free ag-
gregate message authentication codes. In Juan A. Garay and Roberto De
Prisco, editors, SCN, volume 6280 of Lecture Notes in Computer Science,
pages 309–328. Springer, 2010.

FLS11. Marc Fischlin, Anja Lehmann, and Dominique Schröder. History-free se-
quential aggregate signatures. Technical Report 2011/231, Cryptology
ePrint archive, http://eprint.iacr.org, 2011.

GGM86. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 33(4):792–807, 1986.

GMR88. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM J. Comput.,
17(2):281–308, 1988.

GR06. Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In
Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Pub-
lic Key Cryptography, volume 3958 of Lecture Notes in Computer Science,
pages 257–273. Springer, 2006.

Her06. Javier Herranz. Deterministic identity-based signatures for partial aggre-
gation. Comput. J., 49(3):322–330, 2006.

HLY09. Jung Yeon Hwang, Dong Hoon Lee, and Moti Yung. Universal forgery
of the identity-based sequential aggregate signature scheme. In Wanqing
Li, Willy Susilo, Udaya Kiran Tupakula, Reihaneh Safavi-Naini, and Vijay
Varadharajan, editors, ASIACCS, pages 157–160. ACM, 2009.

Hus12. G. Huston, editor. The Profile for Algorithms and Key Sizes for Use in the
Resource Public Key Infrastructure (RPKI). IETF RFC 6485, February
2012. Available from http://tools.ietf.org/html/rfc6485.

IEE02. IEEE Std 1363-2000. IEEE standard specifications for public-key cryptog-
raphy, 2002.

KLS00. S Kent, C Lynn, and K Seo. Secure border gateway protocol (S-BGP). J.
Selected Areas in Communications, 18(4):582–592, April 2000.

KR06. Elliott Karpilovsky and Jennifer Rexford. Using forgetful routing to con-
trol bgp table size. In Proceedings of the 2006 ACM CoNEXT conference,
CoNEXT ’06, pages 2:1–2:12, New York, NY, USA, 2006. ACM.

KW03. Jonathan Katz and Nan Wang. Efficiency improvements for signature
schemes with tight security reductions. In Sushil Jajodia, Vijayalakshmi
Atluri, and Trent Jaeger, editors, ACM Conference on Computer and Com-
munications Security, pages 155–164. ACM, 2003.

Lep12. M. Lepinski, editor. BGPSEC Protocol Specification. IETF Network Work-
ing Group, Internet-Draft, July 2012. Available from http://tools.ietf.

org/html/draft-ietf-sidr-bgpsec-protocol-04.
LMRS04. Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Se-

quential aggregate signatures from trapdoor permutations. In Christian
Cachin and Jan Camenisch, editors, EUROCRYPT, volume 3027 of Lec-
ture Notes in Computer Science, pages 74–90. Springer, 2004.

LOS+06. Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Wa-
ters. Sequential aggregate signatures and multisignatures without random
oracles. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture
Notes in Computer Science, pages 465–485. Springer, 2006.

http://eprint.iacr.org
http://tools.ietf.org/html/rfc6485
http://tools.ietf.org/html/draft-ietf-sidr-bgpsec-protocol-04
http://tools.ietf.org/html/draft-ietf-sidr-bgpsec-protocol-04

Sequential Aggregate Signatures with Lazy Verification 19

Nev08. Gregory Neven. Efficient sequential aggregate signed data. In Nigel P.
Smart, editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer
Science, pages 52–69. Springer, 2008.

NIS09. FIPS publication 186-3: Digital signature standard (DSS), June 2009. Avail-
able from http://csrc.nist.gov/publications/PubsFIPS.html.

ope. OpenSSL toolkit. http://openssl.org/.
RS09. Markus Rückert and Dominique Schröder. Aggregate and verifiably en-

crypted signatures from multilinear maps without random oracles. In
Jong Hyuk Park, Hsiao-Hwa Chen, Mohammed Atiquzzaman, Changhoon
Lee, Tai-Hoon Kim, and Sang-Soo Yeo, editors, ISA, volume 5576 of Lecture
Notes in Computer Science, pages 750–759. Springer, 2009.

RSA78. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, 1978.

RSA02. PKCS #1: RSA Encryption Standard. Version 2.1. RSA Laborato-
ries, June 2002. Available from ftp://ftp.rsasecurity.com/pub/pkcs/

pkcs-1/pkcs-1v2-1.pdf.
Sco11. Michael Scott. MIRACL library, 2011. http://www.shamus.ie/.
Smi12. Philip Smith. BGP routing table analysis, 2012. http://thyme.

rand.apnic.net/. See historical data—e.g., APNIC analysis summary
for Sep. 7, 2012 at http://thyme.apnic.net/ap-data/2012/09/07/0400/

mail-global.
Sri12. K. Sriram, editor. BGPSEC Design Choices and Summary of Sup-

porting Discussions. The Internet Engineering Task Force (IETF)
Network Working Group, July 2012. http://tools.ietf.org/html/

draft-sriram-bgpsec-design-choices-02.
SVS+09. S. Sharmila Deva Selvi, S. Sree Vivek, J. Shriram, S. Kalaivani, and

C. Pandu Rangan. Security analysis of aggregate signature and batch veri-
fication signature schemes. Technical Report 2009/290, Cryptology ePrint
archive, http://eprint.iacr.org, 2009.

SVSR10. S. Sharmila Deva Selvi, S. Sree Vivek, J. Shriram, and C. Pandu Rangan.
Identity based partial aggregate signature scheme without pairing. Report
2010/461, Cryptology ePrint archive, http://eprint.iacr.org, 2010.

Van92. Scott Vanstone. Responses to NIST’s proposal. Communications of the
ACM, 35:50–52, July 1992.

WM08. Yiling Wen and Jianfeng Ma. An aggregate signature scheme with constant
pairing operations. In CSSE (3), IEEE Computer Society, 2008.

XZF05. Jing Xu, Zhenfeng Zhang, and Dengguo Feng. Id-based aggregate signatures
from bilinear pairings. In Yvo Desmedt, Huaxiong Wang, Yi Mu, and
Yongqing Li, editors, CANS, volume 3810 of Lecture Notes in Computer
Science, pages 110–119. Springer, 2005.

YCK04. HyoJin Yoon, Jung Hee Cheon, and Yongdae Kim. Batch verifications
with id-based signatures. In Choonsik Park and Seongtaek Chee, editors,
ICISC, volume 3506 of Lecture Notes in Computer Science, pages 233–248.
Springer, 2004.

ZSN05. Meiyuan Zhao, Sean W. Smith, and David M. Nicol. Aggregated path
authentication for efficient BGP security. In ACM Conference on Computer
and Communications Security, pages 128–138. ACM, 2005.

http://csrc.nist.gov/publications/PubsFIPS.html
http://openssl.org/
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
http://www.shamus.ie/
http://thyme.rand.apnic.net/
http://thyme.rand.apnic.net/
http://thyme.apnic.net/ap-data/2012/09/07/0400/mail-global
http://thyme.apnic.net/ap-data/2012/09/07/0400/mail-global
http://tools.ietf.org/html/draft-sriram-bgpsec-design-choices-02
http://tools.ietf.org/html/draft-sriram-bgpsec-design-choices-02
http://eprint.iacr.org
http://eprint.iacr.org

	Sequential Aggregate Signatureswith Lazy Verificationfrom Trapdoor Permutations

