
A Coding-Theoretic Approach to Recovering
Noisy RSA Keys

Kenneth G. Paterson, Antigoni Polychroniadou, and Dale L. Sibborn

Information Security Group, Royal Holloway, University of London

Abstract. Inspired by cold boot attacks, Heninger and Shacham (Crypto
2009) initiated the study of the problem of how to recover an RSA pri-
vate key from a noisy version of that key. They gave an algorithm for
the case where some bits of the private key are known with certainty.
Their ideas were extended by Henecka, May and Meurer (Crypto 2010)
to produce an algorithm that works when all the key bits are subject to
error. In this paper, we bring a coding-theoretic viewpoint to bear on the
problem of noisy RSA key recovery. This viewpoint allows us to cast the
previous work as part of a more general framework. In turn, this enables
us to explain why the previous algorithms do not solve the motivating
cold boot problem, and to design a new algorithm that does (and more).
In addition, we are able to use concepts and tools from coding theory
– channel capacity, list decoding algorithms, and random coding tech-
niques – to derive bounds on the performance of the previous and our
new algorithm.

1 Introduction

Cold boot attacks [6, 7] are a class of attacks wherein memory remanence effects
are exploited to extract data from a computer’s memory. The idea is that modern
computer memories retain data for periods of time after power is removed, so an
attacker with physical access to a machine may be able to recover, for example,
cryptographic key information. The time during which data is retained can be
increased by cooling the memory chips. However, because the memory gradually
degrades over time once power is removed, only a noisy version of the data may
be recoverable. The question then naturally arises: given a noisy version of a
cryptographic key, is it possible to reconstruct the original key?

This question was addressed for broad classes of cryptosystems, both sym-
metric and asymmetric, by Halderman et al. in [6, 7] and specifically for RSA
private keys in [8,9]. Similar problems arise in the context of side-channel anal-
ysis of cryptographic implementations, where noisy key information may leak
through power consumption [11] or timing [2]. The question is also linked to the
classical cryptanalysis problem of recovering an RSA private key when some bits
of the key are known, for example the most or least significant bits, or contigu-
ous bits spread over a number of blocks (see, for example, the surveys in [1, 12]
and [10]).



Heninger and Shacham (HS) [9] considered the setting where a random
fraction of the RSA private key bits is known with certainty. Their approach
exploits the fact that the individual bits of an RSA private key of the form
sk = (p, q, d, dp, dq) must satisfy certain algebraic relations. This enables the re-
covery of the private key in a bit-by-bit fashion, starting with the least significant
bits, by growing a search tree. It is easy to prune the search tree to remove partial
solutions which do not match with the known key bits. The resulting algorithm
will always succeed in recovering the private key, since the pruning process will
never remove a partial version of the correct solution. On the other hand, when
only few bits are known, the search tree may grow very large, and the HS al-
gorithm will blow up. It was proved in [9] that, under reasonable assumptions
concerning randomness of incorrect solutions, the HS algorithm will efficiently
recover an n-bit RSA private key in time O(n2) with probability 1−1/n2 when a
random fraction of at least 0.27 of the private key bits are known with certainty.
These theoretical results are well-matched by experiments reported in [9]. These
experiments also confirm that the HS algorithm has good performance when the
known fraction is as small as 0.24, and the analysis of [9] extends to cases where
the RSA private key sk is of the form (p, q, d) or (p, q).

Henecka, May and Meurer (HMM) [8] took the ideas of [9] and developed
them further to address the situation where no key bits are known with certainty.
They consider the symmetric case where the two possible bit flips 0→ 1, 1→ 0
have equal probability δ. Their main idea was to consider t bit-slices at a time of
possible solutions to the equations relating the bits of sk, instead of single bits
at a time as in the HS algorithm. In the formulation where sk = (p, q, d, dp, dq),
this yields 2t candidate solutions on 5t new private key bits for each starting
candidate at each stage of the algorithm. The HMM algorithm then computes the
Hamming distance between the candidate solutions and the noisy key, keeping
all candidates for which this metric is less than some carefully chosen threshold
C. This replaces the procedure of looking for exact matches used in the HS
algorithm. Of course, now the correct solution may fail this statistical test and
be rejected; moreover the number of candidate solutions retained may explode if
C is set too loosely. Nevertheless, it was shown in [8] that the HMM algorithm is
efficient and has reasonable success in outputting the correct solution provided
that δ < 0.237. Again, the analysis depends on assumptions concerning the
random behaviour of wrong solutions. To support the analysis, [8] reports the
results of experiments for different noise levels and algorithmic parameters. For
example, the algorithm can cope with δ = 0.20.

In recent work independent of ours, Sarkar and Maitra [13] revisited the work
of [8], applying the HMM algorithm to break Chinese Remainder implementa-
tions of RSA with low weight decryption exponents and giving ad hoc heuristics
to improve the algorithm.

Limitations of previous work and open questions: Although inspired by
cold boot attacks, it transpires that neither the HS algorithm nor the HMM
algorithm actually solve the motivating cold boot problem. Let us see why.



One observation made in [6, 7] is that for a given region of memory, the
decay of memory bits is overwhelmingly either 0→ 1 or 1→ 0, while the decay
direction in a given region can be inferred by comparing the number of 0s and
1s (since for an uncorrupted private key, we expect these to be roughly equal).
Thus, in a 1 → 0 region, a 1 bit in the noisy version of the key is known (with
high probability) to correspond to a 1 bit in the original key.

In the case of [9], the assumption is made that a certain fraction of the RSA
private key bits – both 0s and 1s – is known with certainty. But, in the cold boot
scenario, only 1 (or 0) bits are known, and not a mixture of both. Fortunately,
the authors of [9] have informed us that their algorithm does still work when
only 0 or only 1 bits are known, but this is not the case it was designed for,
and, formally, the performance guarantees obtained in [9] do not apply in this
case. Furthermore, in a real cold boot attack, bits are never known with absolute
certainty, because even in a 1 → 0 region, say, bit flips in the reverse direction
can occur. Halderman et al. report rates of 0.05% to 0.1% for this event. Such
an event will completely derail the HS algorithm, as it will result in the correct
solution being eliminated from the search tree. Based on an occurrence rate of
0.1%, this kind of fatal event can be expected to arise around 2.5 to 5 times in
a real key recovery attack for 1024-bit RSA moduli with sk = (p, q, d, dp, dq).
Thus, the HS algorithm really only applies to an “idealised” cold boot setting,
where some bits are known for sure.

The HMM algorithm is designed to work for the symmetric case where the
two possible bit flips have equal probability δ. Yet, in a cold boot attack, in a
1 → 0 region say, α := Pr(0 → 1) will be very small (though non-zero), while
β := Pr(1 → 0) may be relatively large, and perhaps even greater than 0.5 in
a very degraded case. The use of Hamming distance as a metric for comparison
and the setting of the threshold C are closely tied to the symmetric case, and it
is not immediately clear how one can generalise the HMM approach to handle
the type of errors occurring in real cold boot attacks. So it does not solve the
cold boot problem for RSA keys.

Intriguing features of the work in [8,9] are the constants 0.27 and 0.237, which
bound the fraction of known bits/noise rate the HS and HMM algorithms can
handle. One can trace through the relevant analysis to see how these numbers
emerge, but it would be more satisfying to have a deeper, unifying explanation.
One might also wonder if these bounds are best possible or whether significant
improvements might yet be forthcoming. Is there any ultimate limit to the noise
level that these kinds of algorithms can deal with? And can we design an algo-
rithm that works in the true cold boot setting, or for fully general noise models
that might be expected to occur in other types of side channel attack?

Our contributions: We show how to recast the problem of noisy RSA key recovery
as a problem in coding theory. That such a connection exists should be no
surprise: after all, we are in a situation where bits are only known with certain
probabilities and we wish to recover the true bits. However, this connection opens
up the opportunity to apply to our problem the full gamut of sophisticated tools



that have been developed by coding theorists over the last 60 years. We sketch
this connection and its main consequences next.

Recall that in the HMM algorithm, we generate from each solution so far a
set of 2t candidate solutions on 5t new bits. We now view the set of 2t candidates
as being a code, with one codeword s (representing bits of the true private key)
being selected and transmitted over a noisy channel, resulting in a received word
r (representing 5t bits of the noisy version of the key). In the HMM case, the
noise is realised via bit flipping with probability δ. The HS algorithm can be
seen as arising from the special case t = 1, where the noise now corresponds
to erasing a fraction of key bits instead of flipping them. Alternatively, we can
consider a generalisation of the HS algorithm which considers 5t bits at a time,
generated just as in the HMM algorithm, and which then filters the resulting 2t

candidates based on matching with known key bits. Because filtering is based on
exact matching, this algorithm has the same output as the original HS algorithm.
This brings the two algorithms under a single umbrella.

In general, in coding theory, the way in which s is transformed into r depends
on the channel model, which in its full generality defines the probabilities Pr(r|s)
over all possible pairs (s, r). In the case of [9], the assumption is that particular
bits are known with certainty and others are not known at all, with the bits all
being treated independently. The appropriate channel model is then an erasure
channel, meaning that bits are independently either erased or transmitted cor-
rectly over the channel, with the receiver knowing the positions of the erasures.
In the case of [8], the appropriate channel model is the binary symmetric channel
with cross-over probability δ. It also emerges that the appropriate channel model
for the true cold boot setting is a binary non-symmetric channel with cross-over
probabilities (α, β). In general, the problem we are faced with is to decode r,
with the aim being to reproduce s with high probability.

When couched in this language, it becomes obvious that the HS and HMM
algorithms do not solve the original cold boot problem – simply put these al-
gorithms use inappropriate channel models for that specific problem. We can
also use this viewpoint to derive limits on the performance of any procedure for
selecting which candidate solutions to keep in an HMM-style algorithm. To see
why, we recall that the converse to Shannon’s noisy-channel coding theorem [14]
states that no combination of code and decoding procedure can jointly achieve
arbitrarily reliable decoding when the code rate exceeds the (Shannon) capac-
ity of the channel. Moreover, there are analogues of the converse of Shannon’s
theorem for so-called list decoding that essentially show that channel capacity is
also the barrier to any efficient algorithm outputting lists of candidates, as the
HS and HMM algorithms do.

When sk is of the form (p, q, d, dp, dq), for example, the code rate is fixed
at 1/5 (we have 2t codewords and length 5t). The channel capacity can be
calculated as a function of the channel model and its parameters. For example,
for the erasure channel with erasure probability ρ (meaning that a fraction 1−ρ
of the bits are known with certainty), the capacity is simply 1− ρ. Then we see
that the limiting value is ρ = 0.8, meaning that the fraction of known bits must



be at least 0.2 to achieve arbitrarily reliable, efficient decoding. The analysis in [9]
needs that fraction to be at least 0.27, though a fraction as low as 0.24 could be
handled in practice. Thus a capacity analysis suggests that there should be room
to improve the HS algorithm further, but capacity shows that it is impossible
go below a fraction 0.2 of known bits with an efficient algorithm. See Section 3
for further details on list decoding and its application to the analysis of the HS
and HMM algorithms.

Informed by our coding-theoretic viewpoint, we derive a new key recovery
algorithm that works for any (memoryless) binary channel and therefore is ap-
plicable to the cold boot setting (and more). In essence, we modify the HMM
algorithm to use a likelihood statistic in place of the Hamming metric when
selecting from the candidate codewords. We keep the L codewords having the
highest values of this likelihood statistic and reject the others. An important
consequence of this algorithmic choice is that our algorithm has deterministic
running time O(L2tn/t) and, when implemented using a stack, deterministic
memory consumption O(L+ t). This stands in contrast to the running time and
memory usage of the HS and HMM algorithms, which may blow up when the
erasure/error rates are high. We note that private RSA keys are big enough that
they may cross regions when stored in memory. We can handle this by chang-
ing the likelihood statistic used in our algorithm at the appropriate transition
points, requiring only a simple modification to our approach. In the full version,
we give an analysis of the success probability of our new algorithm, under dif-
ferent randomness hypotheses, using coding-theoretic tools. Essentially, we are
able to show that, as t → ∞, its success probability tends to 1 provided the
code rate (1/5 when sk = (p, q, d, dp, dq)) remains below the channel capacity.
Moreover, from the converse to Shannon’s theorem, we are unlikely to be able
to improve this result if reliable key recovery is required.

We include the results of extensive experiments using our new algorithm.
These demonstrate that our approach matches or outperforms the HS and HMM
algorithms in the cases they are designed for, and achieves results close to the
limits imposed by our capacity analysis more generally. For example, in the
symmetric case with δ = 0.20, we can achieve a 20% success rate in recovering
keys for t = 18 and L = 32. This is comparable to the results of [8]. Furthermore,
for the same t and L we achieve a 4% success rate for δ = 0.22, whilst [8] does
not report any experiments for an error rate this high. As another example, our
algorithm can handle the idealised cold boot scenario by setting α = 0 (in which
case all the 1 bits in r are known with certainty, i.e. we are in a 1 → 0 region).
Here, our capacity analysis puts a bound of 0.666 on β for reliable key recovery.
Using our algorithm, we can recover keys for β = 0.6 with a 13% success rate
using t = 18 and L = 32, whereas the HS algorithm can only reach β = 0.52
(and this under the assumption that the experimental results reported in [9] for
a mixture of known 0 and 1 bits do translate to the same performance for the
case where only 1 bits are known). In the same setting, we can even recover keys
up to β = 0.63 with a non-zero success rate. We also have similar experimental



results for the ‘true’ cold boot setting where both α and β are non-zero, and for
the situation where sk is of the form (p, q, d) or (p, q).

Paper Organisation: The remainder of this paper is organised as follows. In the
next section, we give further background on the algorithms of [8,9]. In Section 3,
we develop the connection with coding theory and explain how to use it to derive
limits on the performance of noisy RSA key recovery algorithms. Section 4 de-
scribes our new maximum likelihood list decoding algorithm. Section 5 presents
our experimental results. Finally, Section 6 contains some closing remarks and
open problems.

2 The HS and HMM Algorithms

Let (N, e) be the RSA public key, where N = pq is an n-bit RSA modulus,
and p, q are balanced primes. As with [8, 9], we assume throughout that e is
small, say e = 3 or e = 216 + 1; for empirical justification of this assumption,
see [15]. We start by assuming that private keys sk follow the PKCS#1 standard
and so are of the form (N, p, q, e, d, dp, dq, q

−1
p ), where d is the decryption key,

dp = d mod p − 1, dq = d mod q − 1 and qp = q−1 mod p. However, neither
the algorithms of [8, 9] nor ours make use of q−1p , so we henceforth omit this
information. Furthermore, we assume N and e are publicly known, so we work
only with the tuple sk = (p, q, d, dp, dq). We will also consider attacks where the
private key contains less information – either sk = (p, q, d) or sk = (p, q).

Now assume we are given a degraded version of the key s̃k = (p̃, q̃, d̃, d̃p, d̃q).
We start with the four RSA equations:

N = pq (1)

ed = k(N − p− q + 1) + 1 (2)

edp = kp(p− 1) + 1 (3)

edq = kq(q − 1) + 1. (4)

where k, kp and kq are integers to be determined. A method for doing so is given
in [9]: first it is shown that 0 < k < e; then, since e is small, we may enumerate

d(k′) :=

⌊
k′(N + 1) + 1

e

⌋
for all 0 < k′ < e. We then find the k′ such that d(k′) is “closest” to d̃ in the most
significant half of the bits. Simple procedures for doing this are given in [8, 9].
In the more general setting where bit flips can occur in both directions and
with different probabilities, we proceed as follows. First, we estimate parameters
α = Pr(0→ 1) and β = Pr(1→ 0) from known bits, e.g. from a noisy version of
N that is adjacent in memory to the private key. Second, we compute for each
k′ an approximate log-likelihood using the expression

n01 logα+ n00 log(1− α) + n10 log β + n11 log(1− β)



where n01 is the number of positions in the most significant half where a 0
appears in d(k′) and a 1 appears in d̃, etc. Finally, we select the k′ that provides
the highest log-likelihood.

At the end of this procedure, with high probability we will have k′ = k and
we will have recovered the most significant half of the bits of d. Now we wish to
find kp and kq. By manipulating the above equations we see that

k2p − (k(N − 1) + 1)kp − k ≡ 0 mod e

If e is prime (as in the most common case e = 216 + 1) there will only be two
solutions to this equation. One will be kp and the other kq. If e is not prime we
will have to try all possible pairs of solutions in the remainder of the algorithm.

Now, for integers x, we define τ(x) := max{i ∈ N : 2i | x}. Then it is easy to
see that 2τ(kp)+1 divides kp(p−1), 2τ(kq)+1 divides kq(q−1) and 2τ(k)+2 divides
kφ(N). These facts, along with relations (2) – (4), allow us to see that

dp ≡ e−1 mod 2τ(kp)+1

dq ≡ e−1 mod 2τ(kq)+1

d ≡ e−1 mod 2τ(k)+2.

This allows us to correct the least significant bits of d, dp and dq. Furthermore
we can calculate slice(0), where we define

slice(i) := (p[i], q[i], d[i+ τ(k)], dp[i+ τ(kp)], dq[i+ τ(kq)]).

with x[i] denoting the i-th bit of the string x.
Now we are ready to explain the main idea behind the algorithm of [9].

Suppose we have a solution (p′, q′, d′, d′p, d
′
q) from slice(0) to slice(i−1). Then [9]

uses a multivariate version of Hensel’s Lemma to show that the bits involved in
slice(i) must satisfy the following congruences:

p[i] + q[i] = (N − p′q′)[i] mod 2

d[i+ τ(k)] + p[i] + q[i] = (k(N + 1) + 1− k(p′ + q′)− ed′)[i+ τ(k)] mod 2

dp[i+ τ(kp)] + p[i] = (kp(p
′ − 1) + 1− ed′p)[i+ τ(kp)] mod 2

dq[i+ τ(kq)] + q[i] = (kq(q
′ − 1) + 1− ed′q)[i+ τ(kq)] mod 2.

Because we have 4 constraints on 5 unknowns, there are exactly 2 possible solu-
tions for slice(i), rather than 32. This is then used in [9] as the basis of building
a search tree for the unknown private key bits. At each node in the tree, rep-
resenting a partial solution up to slice(i − 1), at most two successor nodes are
added by the above procedure. Moreover, since a random fraction of the bits
is assumed to be known with certainty, the tree can be pruned of any partial
solutions that are not consistent with these known bits. Clearly, if the fraction of
known bits is large enough, then the tree will be highly pruned and the number
of nodes in the tree will be small. The analysis of [9] shows that if the fraction of
known bits is at least 0.27, then the tree’s size remains close to linear in n, the



size of the RSA modulus, meaning that an efficient algorithm results. A similar
algorithm and analysis can be given for the case where sk is of the form (p, q, d)
or (p, q); in each case, there are exactly 2 possible solutions for each slice(i).

Instead of doing Hensel lifting bit-by-bit and pruning on each bit, the HMM
algorithm performs t Hensel lifts for some parameter t, yielding, for each surviv-
ing candidate solution on slice(0) to slice(i − 1), a tree of depth t whose 2t leaf
nodes represent candidate solutions on slices slice(0) to slice(i+ t− 1), involving
5t new bits (in slice(i) to slice(i+ t−1)). A solution is kept for the next iteration
if the Hamming distance between the 5t new bits and the corresponding vector
of noisy bits is less than some threshold C. Clearly the HS algorithm could also
be modified in this way, lifting t times and then doing pruning based on match-
ing known key bits. Alternatively, one can view the HS algorithm as being the
special case t = 1 of the HMM algorithm (with a different pruning procedure).
The HMM algorithm can also be adapted to work with sk of the form (p, q, d)
or (p, q). Henecka et al. [8] showed how to select C and t so as to guarantee that
their algorithm is efficient and produces the correct solution with a reasonable
success rate. In particular, they were able to show that this is the case provided
the probability of a bit flip δ is at most 0.237.

At each stage in the HMM algorithm, candidate solutions on t new slices
are constructed. Then roughly n/2t iterations or stages of the algorithm are
needed, since all the quantities being recovered contain at most n/2 bits. As
pointed out in [8], only half this number of stages is required since once we have
the least significant half of the bits of the private key, the entire private key
can be recovered using a result of Coppersmith [3]. At their conclusion, the HS
and HMM algorithms outputs lists of candidate solutions rather than a single
solution. But it is easy to verify the correctness of each candidate by using a
trial encryption and decryption, say. Thus the success rate of the algorithms is
defined to be the probability that the correct solution is on the output list. We
adopt the same measure of success in the remainder of the paper.

3 The Coding-Theoretic Viewpoint

In this section, we develop our coding-theoretic viewpoint on the HS and HMM
algorithms, using it to derive limits on the performance of these and similar
algorithms. In particular, we will explain how channel capacity plays a crucial
role in setting these limits.

We begin by defining the parameterm. We setm = 5 when sk = (p, q, d, dp, dq),
m = 3 when sk = (p, q, d), and m = 2 when sk = (p, q). Consider a stage of the
HMM algorithm, commencing with M partial solutions that have survived the
previous stage’s pruning step. The HMM algorithm produces a total of M2t

candidate solutions on mt bits, prior to pruning. We label these s1, . . . , sM2t , let
C denote the set of all M2t candidates, and use r to denote the corresponding
vector of mt noisy bits in sk.

Now we think of C as being a code. This code has rate R ≥ 1/m, but its
other standard parameters such as its minimum distance are unknown (and



immaterial to our analysis). The problem of recovering the correct candidate
sj given r is clearly just the problem of decoding this code. Now both the HS
and HMM algorithms have pruning steps that output lists of candidates for the
correct solution, with the list size being dynamic in both cases and depending on
the number of candidates surviving the relevant filtering process (based either
on exact matches for the HS algorithm or on Hamming distance for the HMM
algorithm). In this sense, the HS and HMM algorithms are performing types
of list decoding, an alternative to the usual unique decoding of codes that was
originally proposed by Elias [4].

To complete the picture, we need to discuss what error and channel models
are used in [8, 9], and what models are appropriate to the cold boot setting. As
noted in the introduction, [9] assumes that some bits of r are known exactly,
while no information at all is known about the other bits. This corresponds to
an erasure model for errors, and an erasure channel. Usually, this is defined in
terms of a parameter ρ representing the fraction of erasures. So 1− ρ represents
the fraction of known bits, a parameter denoted δ in [9]. On the other hand, [8]
assumes that all bits of r are obtained from the correct sj by independent bit flip-
ping with probability δ. In standard coding terminology, we have a (memoryless)
binary symmetric channel with crossover probability δ. From the experimental
data reported in [6,7], an appropriate model for the cold boot setting would be a
binary non-symmetric channel with crossover probabilities (α, β), with α being
small and β being significantly larger in a 1 → 0 region (and vice-versa in a
0 → 1 region). In an idealised cold boot case, we could assume α = 0, meaning
that a 0 → 1 bit flip can never occur, so that all 1 bits in r are known with
certainty. This is better known as a Z-channel in the coding-theoretic literature.

This viewpoint highlights the exact differences between the settings consid-
ered in [8,9] and the cold boot setting. It also reveals that, while the HS algorithm
can be applied for the Z-channel seen in the idealised cold boot setting, there is
no guarantee that the performance proven for it in [9] for the erasure channel
will transfer to the Z-channel. Moreover, one might hope for substantial improve-
ments to the HS algorithm if one could somehow take into account the (partial)
information known about 0 bits as well as the exact information known about 1
bits.

3.1 The Link to Channel Capacity

We can use this coding viewpoint to derive limits on the performance of any
procedure for selecting which candidate solutions to keep in the HS and HMM
algorithms. To see why, we recall that the converse to Shannon’s noisy-channel
coding theorem [14] states that no combination of code and decoding procedure
can jointly achieve arbitrarily reliable decoding when the code rate exceeds the
capacity of the channel. Our code rate is at least 1/m where m = 2, 3 or 5 and
the channel capacity can be calculated as a function of the channel model and
its parameters.

Two caveats must be made here. Firstly, capacity only puts limits on reliable
decoding, and even decoding with low success probability is of interest in crypt-



analysis. Secondly, Shannon’s result applies only to decoding algorithms that
output a single codeword s, while both the HS and HMM algorithms are per-
mitted to output many candidates at each stage, with the final output list only
being required to contain the correct private key. Perhaps such list-outputting
algorithms can surpass the bounds imposed by Shannon’s theorem? Indeed, the
HS algorithm is guaranteed to output the correct key provided the algorithm
terminates. Similarly, the threshold C in the HMM algorithm can always be set
to a value that ensures that every candidate passes the test and is kept for the
next stage, thus guaranteeing that the algorithm is always successful. However,
neither of these variants would be efficient and in fact there are analogues of the
converse of Shannon’s noisy-channel coding theorem that essentially show that
capacity is the barrier for efficient list decoding too.

For the binary symmetric channel, it is shown in [5, Theorem 3.4] that if C
is any code of length n and rate 1 −H2(δ) + ε for some ε > 0, then some word
r is such that the Hamming sphere of radius δn around r contains at least 2εn/2

codewords. Here H2(·) is the binary entropy function:

H2(x) = −x log2(x)− (1− x) log2(1− x)

and 1−H2(δ) is just the capacity of the channel. The proof also shows that, over
a random choice of r, the average number of codewords in a sphere of radius δn
around r is 2εn/2. Since the expected number of errors in r is δn, we expect the
correct codeword to be in this sphere, along with 2εn/2 other codewords. This
implies that, if the rate of the code exceeds the channel capacity 1−H2(δ) by a
constant amount ε, then C cannot be list decoded using a polynomial-sized list,
either in the worst case or on average, as n→∞.

An analogous result can be proved for the erasure channel, based on a simi-
larly simple counting argument as was used in the proof of [5, Theorem 3.4]: if
ρ is the erasure probability and C is any code of rate 1− ρ+ ε (i.e. ε above the
erasure channel’s capacity), then it can be shown that on average there will be
2εn codewords that differ from r in its erasure positions, assuming r contains ρn
erasure symbols. Hence reliable list decoding for C cannot be achieved using a
polynomial-sized list.

In the next sub-section, we will examine in more detail the implications of
these results on list decoding for the HS and HMM algorithms.

3.2 Implications of the Capacity Analysis

The Binary Symmetric Channel and the HMM Algorithm If the HMM
algorithm is to have reasonable success probability in recovering the key, then
at each stage, it must set the threshold C in such a way that all words si ∈ C
with dH(si, r) ≈ δmt are accepted by the algorithm. This is because δmt is the
expected number of errors occurring in r, and if the threshold is set below this
value, then the correct codeword is highly likely to be rejected by the algorithm.
(In fact, the HMM algorithm sets C to be slightly higher than this, which makes
good sense given that there is an even chance of there being more than δmt



errors.) Recall that we have rate R ≥ 1/m. Now suppose δ is such that R =
1 −H2(δ) + ε for some ε > 0, i.e. δ is chosen so that that the code rate is just
above capacity. Then the argument above shows that there will be on average
at least 2εmt/2 codewords on the output list at each stage. Thus, as soon as δ
is such that R exceeds capacity by a constant amount ε, then there must be a
blow-up in the algorithm’s output size at each stage, and the algorithm will be
inefficient asymptotically.

We write CBSC(δ) = 1 − H2(δ) for the capacity of the binary symmetric
channel. Table 1 shows that CBSC(δ) = 0.2 when δ = 0.243. Thus what our
capacity analysis shows is that the best error rate one could hope to deal with
in the HMM algorithm when m = 5 is δ = 0.243. Notice that this value is rather
close to, but slightly higher than, the corresponding value of 0.237 arising from
the analysis in [8]. The same is true for the other entries in this table. This means
that significantly improving the theoretical performance of the HMM algorithm
(or indeed any HMM-style algorithm) whilst keeping the algorithm efficient will
not be possible. The experimental work in [8] gives results up to a maximum δ
of 0.20; compared to the capacity bound of 0.243, it appears that there is some
room for practical improvement in the symmetric case.

The Erasure Channel and the HS Algorithm As noted above, for the
erasure channel, the capacity is 1 − ρ, where ρ is the fraction of bits erased by
the channel. Note that the list output by the HS algorithm is independent of
whether pruning is done after each lift or in one pass at the end (but obviously
doing so on a lift-by-lift basis is more efficient in terms of the total number of
candidates examined). Then considering the HS algorithm in its entirety (i.e.
over n/2 Hensel lifts), we see that it acts as nothing more than a list decoder
for the erasure channel, with the code C being the set of all 2n/2 words on mn/2
bits generated by doing n/2 Hensel lifts without any pruning, and the received
word r being the noisy version of the entire private key sk.

Then our analysis above applies to show that the HS algorithm will produce
an exponentially large output list, and will therefore be inefficient, when the
rate (which in this case is exactly 1/m) exceeds the capacity 1− ρ. For m = 5,
we have rate 0.2 and so our analysis shows that the HS algorithm will produce
an exponentially large output list whenever ρ exceeds 0.8. Now [9] reports good
results (in the sense of having a reasonable running time) for ρ as high as 0.76
(corresponding to Heninger and Shacham’s parameter δ being equal to 0.24),
leaving a gap between the experimental performance and the theoretical bound.
Similar remarks apply for the cases m = 2, 3: for m = 2, the HS algorithm should
be successful for ρ = 0.43 (δ = 0.57), while the bound from capacity is 0.50; for
m = 3, we have ρ = 0.58 (δ = 0.42) and the capacity bound is 0.67. Hence,
further improvements for m = 2, 3 are not ruled out by the capacity analysis.

The Z-channel We may also apply the above capacity analysis to the idealised
cold boot setting, where the crossover probabilities are of the form (0, β). Here



sk R δ

(p, q, d, dp, dq) 1/5 0.243
(p, q, d) 1/3 0.174
(p, q) 1/2 0.110

Table 1. Private key-type, equivalent
rate R, and maximum crossover prob-
ability δ allowing reliable key recovery,
symmetric channel case.

sk R β

(p, q, d, dp, dq) 1/5 0.666
(p, q, d) 1/3 0.486
(p, q) 1/2 0.304

Table 2. Private key-type, equivalent
rate R, and maximum error probabil-
ity ρ allowing reliable key recovery, Z-
channel case.

we have a Z-channel, whose capacity can be written as:

CZ(β) = log2(1 + (1− β)β
β

1−β ).

Solving the equation CZ(β) = R for R = 1/5, 1/3, 1/2 gives us the entries in
Table 2. We point out the large gap between these figures and what we would
expect to obtain both theoretically and experimentally if we were to directly
apply the HS algorithm to the idealised cold boot setting. For example, when
m = 5, the analysis of [9] suggests that key recovery should be successful provided
that β does not exceed 0.46 (the value of δ = 0.27 translates into a β value of
0.46 using the formula δ = (1− β)/2 given in [9]), whereas the capacity analysis
suggests a maximum β value of 0.666. This illustrates that the HS algorithm
is not well-matched to the Z-channel. Our new algorithm will close this gap
substantially.

The True Cold Boot Setting For the true cold boot setting, we must consider
the general case of a memoryless, binary channel with crossover probabilities
(α, β). We can calculate the capacity C(α, β) of this channel and obtain the
regions for which C(α, β) > R for R = 1/5, 1/3, 1/2. The results are shown in
Figure 1. Notice that these plots include as special cases the data from Tables
1 and 2. If we set α = 0.001, say, we see that the maximum achievable β is
quite close to that in the idealised cold boot setting. Note also that the plots are
symmetric about the lines y = x and y = 1−x, reflecting the fact that capacity is
preserved under the transformations (α, β)→ (β, α) and (α, β)→ (1−α, 1−β).

However, we must caution that capacity-based bounds for list decoding for
the general binary non-symmetric channel (including the Z-channel) are not
known in the coding-theoretic literature. Strictly speaking, then, our capacity
analysis for this case does not bound the performance of key recovery algorithms
that are allowed to output many key candidates, but only the limited class of
algorithms that output a single key candidate. This said, our capacity analysis
sets a target for our new algorithm, which follows.

4 The New Algorithm and its Analysis

In this section, we give our new algorithm for noisy RSA key recovery that
works for any memoryless, binary channel, as characterised by the cross-over



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 1. Plots showing achievable (α, β) pairs for private keys containing 5, 3 and 2
components, respectively. The vertical axis is β, the horizontal axis is α. The shaded
area in each case represents the unachievable region.

probabilities (α, β). Our algorithm has the same basic structure as the HMM
algorithm but uses a different procedure to decide which candidate solutions to
retain and which to reject. Specifically, we use a likelihood measure in place of
Hamming distance.

Recall that we label the M2t candidate solutions on mt bits arising at some
stage in the HMM algorithm s1, . . . , sM2t and let us name the corresponding
vector of mt noisy bits in the RSA private key r. Then the Maximum Likelihood
(ML) estimate for the correct candidate solution is simply:

arg max
1≤i≤M2t

Pr(si|r).

that is, the choice of i that maximises the conditional probability Pr(si|r). Using
Bayes’ theorem, this can be rewritten as:

arg max
1≤i≤M2t

Pr(r|si) Pr(si)

Pr(r)
.

Here, Pr(r) is a constant for a given set of bits r. Let us make the further
mild assumption that Pr(si) is also a constant, independent of i. Then the ML
estimate is obtained from

arg max
1≤i≤M2t

(Pr(r|si)) = arg max
1≤i≤M2t

(
(1− α)n

i
00αn

i
01(1− β)n

i
11βn

i
10

)
where α = Pr(0 → 1) and β = Pr(1 → 0) are the crossover probabilities, ni00
denotes the number of positions where si and r both have 0 bits, ni01 denotes the
number of positions where si has a 0 and r has a 1, and so on.

Equivalently, we may maximise the log of these probabilities, and so we seek:

arg max
1≤i≤M2t

(log Pr(r|si))

= arg max
1≤i≤M2t

(
ni00 log(1− α) + ni01 logα+ ni11 log(1− β) + ni10 log β

)
which provides us with a simpler form for computational purposes.



Algorithm 1: Pseudo-code for the maximum likelihood list decoding al-
gorithm for reconstructing RSA private keys.

list← slice(0);
for stage = 1 to n/2t do

Replace each entry in list with a set of 2t candidate solutions obtained by
Hensel lifting;
Calculate the log-likelihood log Pr(r|si) for each entry si on list;
Keep the L entries in list having the highest log-likelihoods and delete the
remainder;

Output list;

Then our proposed algorithm is simply this: select at each stage from the
candidates generated by Hensel lifting those L candidates si which produce the
highest values of the log-likelihood log Pr(r|si) as in the equation above. These
candidates are then passed to the next stage. So at each stage except the first
we will generate a total of L2t candidates and keep the best L. We may then
test each entry in the final list by trial encryption and decryption to recover a
single candidate for the private key. Pseudo-code for this algorithm is shown in
Algorithm 1. Note that here we assume there are n/2t stages; this number can
be halved as in the HS and HMM algorithms.

Our algorithm has fixed running time O(L2t) for each of the n/2t stages,
and fixed memory consumption O(L2t). This is a consequence of choosing to
keep the L best candidates at each stage in place of all candidates surpassing
some threshold as in the HMM algorithm. The memory consumption can be
reduced to O(L+t) by using a depth-first approach to generating and filtering the
candidates. The main overhead is then the Hensel lifting to generate candidate
solutions; the subsequent computation of log-likelihoods for each candidate is
relatively cheap. Notice that if α = 0 (as in the Z-channel for an idealised cold
boot setting), then any instance of a 0→ 1 bit flip is very heavily penalised by
the log-likelihood statistic – it adds a −∞ term to log Pr(r|si). In practice, for
α = 0, we just reject any solution containing a 0→ 1 transition. For the erasure
channel, we reject any candidate solution that does not match r in the known
bits.

A special case of our algorithm arises when L = 1 and corresponds to just
keeping the single ML candidate at each stage. This algorithm then corresponds
to Maximum Likelihood (ML) decoding. However, at a given stage, it is likely
that the correct solution will be rejected because a wrong solution happens to
have the highest likelihood. This is especially so in view of how similar some
candidates will be to the correct solution. Therefore, ML decoding is likely to
go awry at some stage of the algorithm.



4.1 Remarks on the Asymptotic Analysis of Our Algorithm

In the full version, we give two analyses of our algorithm, using tools from coding
theory to assist us. The first analysis uses a strong randomness assumption, that
the L2t candidates si generated at each stage of Algorithm 1 are independent and
uniformly random mt-bit vectors. It shows that, asymptotically, our algorithm
will be successful in recovering the RSA private key provided 1/m is less than the
capacity of the memoryless, binary channel with crossover probabilities (α, β).
In fact, this result follows as a simple application of Shannon’s noisy-channel
coding theorem [14], which states that, asymptotically, the use of random codes
in combination with Maximum Likelihood (ML) decoding achieves arbitrarily
small decoding error probability, provided that the code rate stays below the
capacity of the channel. Unfortunately, it is easy to see that our strong random-
ness assumption is in fact not true for the codes C generated in our algorithm,
because of the iterative nature of the Hensel lifting. The second analysis proves
a similar result for the symmetric case under weaker randomness assumptions
for which we have good experimental evidence. Details can be found in the full
version.

5 Experimental Results

For our experiments, we used a multi-threaded implementation based on Java
code kindly supplied by the authors of [8]. We ran our code on an 8x virtual
CPU hosted on a 2x Intel Xeon X5650, clocked at 2.67 GHz (IBM BladeCenter
HS22V). Except where noted below, our experiments were run for 100 trials using
a randomly-generated RSA key for each trial. Except where noted, our results
refer to private keys of the form sk = (p, q, d, dp, dq) and are all for 1024-bit RSA
moduli.

We have conducted extensive experiments for the symmetric case considered
in [8]. Our results are shown in Table 3. For small values of δ, we achieve a
success rate of 1 or very close to 1 using only moderate amounts of computation.
By contrast the HMM algorithm does not achieve such high success rate for
small δ. This cannot be solved by increasing t in the HMM algorithm because
this leads to a blow-up in running time. For larger δ, the success rate of our
algorithm is comparable to that of [8] for similar values of t. We were able to
obtain a non-zero success rate for δ = 0.22, while [8] only reached δ = 0.20. The
bound from capacity is 0.243.

For the idealised cold boot setting where α = 0, our experimental results are
shown in Table 4. Recall that the HS algorithm can also be applied to this case.
Translating the fraction of known bits (1− ρ) to the idealised cold boot setting,
and assuming the HS algorithm works just as well when only 1 bits are known
(instead of a mixture of 0 and 1 bits), the maximum value of β that could be
handled by the HS algorithm theoretically would be 0.46 (though results reported
in [9] would allow β as high as 0.52). Our algorithm still has a reasonable success
rate for β as high as 0.6 and non-zero success rate even for β = 0.63, beating the
HS algorithm by some margin. Our capacity analysis for this case suggests that



δ 0.08 0.10 0.12 0.14 0.16 0.18 0.19 0.2 0.21 0.22

t 6 8 10 12 16 18 18 18 18 18
L 4 4 8 32 32 32 32 32 32 64

Success rate 1 0.921 0.932 0.963 0.84 0.60 0.38 0.20 0.08 0.04
Time per trial (ms) 113 98 474 4323 85662 395069 399451 380139 377342 722341

Table 3. Success probabilities for the symmetric case ((α, β) = (δ, δ)). Experiments
with δ ≤ 0.16 are based on 500 trials. Capacity bound on δ is 0.243.

ρ 0.1 0.2 0.3 0.4 0.46 0.5 0.55 0.6 0.62 0.63

t 6 6 8 12 16 18 18 18 18 18
L 4 4 8 8 8 16 16 16 64 64

Success rate 1 1 1 0.98 0.87 0.81 0.43 0.13 0.07 0.03
Time per trial (ms) 69 88 147 1518 22349 292834 282235 290254 692532 683421

Table 4. Success probabilities for the idealised cold boot case (α = 0). Capacity bound
on β is 0.666.

the maximum value of β will be 0.666. Thus our algorithm is operating within
5% of capacity here.

We present experimental results for the true cold boot setting in Table 5.
Given α = 0.001, it follows from our asymptotic analysis that the theoretical
maximum value of β which can be handled by our algorithms is 0.658. Our
algorithm still has a non-zero success rate for β as high as 0.61. We reiterate
that this true cold boot setting is not handled by any of the algorithms previously
reported in the literature.

Furthermore, for private keys of the form sk = (p, q, d) and sk = (p, q), our
algorithm performs very well in the true cold boot setting. For sk = (p, q, d), the
maximum value of β suggested by our capacity analysis is 0.479. With β = 0.4,
t = 20 and L = 16 our success rate is 0.12 and we have non-zero success rate
even with β = 0.43. Similarly, when sk = (p, q) our capacity analysis shows that
the maximum β is 0.298. When β = 0.2, t = 18 and L = 16 we still have a
success rate of 0.29, but we can even recover keys with non-zero success rate for
β as high as 0.26. Tables 6 and 7 show our results for these cases.

In the full version, we report further results for the erasure channel that
improve on the results of [9] and nearly close the gap to our capacity bound. For
example, when m = 5, we can achieve reliable key recovery up to an erasure rate
of 0.79 for this channel, where the bound from capacity is 0.80. By contrast, the
best result reported in [9] is for erasure rate 0.76. These and other improvements
are obtained using an optimised ‘C’ implementation of a depth-first search.

6 Conclusions

We have introduced an coding-theoretic viewpoint to the problem of recovering
an RSA private key from a noisy version of the key. This provides new insights
on the HS and HMM algorithms and leads to a new algorithm which is efficiently
implementable and enjoys good performance at high error rates. In particular,



β 0.1 0.2 0.3 0.4 0.5 0.55 0.6 0.61

t 6 6 8 12 16 18 18 18
L 4 4 8 8 16 32 64 64

Success rate 1 1 0.97 0.97 0.66 0.31 0.09 0.04
Time per trial (ms) 80 80 273 4268 42732 384262 740244 735169

Table 5. Success probabilities for the true cold-boot case with α = 0.001. Capacity
bound on β is 0.658.

β 0.1 0.15 0.20 0.25 0.30 0.35 0.40 0.43

t 6 10 14 16 18 18 18 18
L 4 16 16 16 16 16 32 64

Success rate 0.99 0.99 0.98 0.96 0.63 0.55 0.12 0.04
Time per trial (ms) 46 371 4441 19906 117502 108523 165418 301457

Table 6. Success probabilities for the true cold-boot case with α = 0.001 and sk =
(p, q, d). Capacity bound on β is 0.479.

ours is the first algorithm that works for the true cold boot case, where both
Pr(0→ 1) and Pr(1→ 0) are non-zero. Our algorithm is amenable to asymptotic
analysis, and our experimental results indicate that this analysis provides a good
guide to what is actually achievable with reasonable computing resources. Open
problems include:

1. Developing a rigorous asymptotic analysis of our algorithm in the general
case. However, in view of the state-of-the-art in list decoding, this seems to
be hard to obtain.

2. Generalising our approach to the situation where soft information is available
about the private key bits, for example reliability estimates of the bits. In
general, and by analogy with the situation in the coding theory literature, one
would expect to achieve better performance by exploiting such information.

Acknowledgements

The first and third authors were supported by EPSRC Leadership Fellowship,
EP/H005455/1. The second author was supported by the Lilian Voudouri Foun-
dation. We thank Mihir Bellare and the referees of Crypto 2012 for thought-
provoking comments on an earlier version of this paper.

β 0.05 0.1 0.15 0.20 0.26

t 10 12 16 18 18
L 8 8 16 32 64

Success rate 0.95 0.83 0.68 0.29 0.06
Time per trial (ms) 404 904 9492 87273 217214

Table 7. Success probabilities for the true cold-boot case with α = 0.001 and sk =
(p, q). Capacity bound on β is 0.298.



References

1. Dan Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the
American Mathematical Society, 46(2):203–313, 1999.

2. David Brumley and Dan Boneh. Remote timing attacks are practical. Computer
Networks, 48(5):701–716, 2005.

3. Don Coppersmith. Small solutions to polynomial equations, and low exponent
RSA vulnerabilities. J. Cryptology, 10(4):233–260, 1997.

4. Peter Elias. List decoding for noisy channels. Technical Report 335, Research
Laboratory of Electronics, MIT, 1957.

5. Venkatesan Guruswami. Algorithmic results in list decoding. Foundations and
Trends in Theoretical Computer Science, 2(2), 2006.

6. J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. Lest we remember: Cold boot attacks on encryption keys. In Paul C. van
Oorschot, editor, USENIX Security Symposium, pages 45–60. USENIX Associa-
tion, 2008.

7. J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. Lest we remember: cold-boot attacks on encryption keys. Commun. ACM,
52(5):91–98, 2009.

8. Wilko Henecka, Alexander May, and Alexander Meurer. Correcting errors in RSA
private keys. In Tal Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in
Computer Science, pages 351–369. Springer, 2010.

9. Nadia Heninger and Hovav Shacham. Reconstructing RSA private keys from ran-
dom key bits. In Shai Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in
Computer Science, pages 1–17. Springer, 2009.

10. Mathias Herrmann and Alexander May. Solving linear equations modulo divisors:
On factoring given any bits. In Josef Pieprzyk, editor, ASIACRYPT, volume 5350
of Lecture Notes in Computer Science, pages 406–424. Springer, 2008.

11. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Neal Koblitz, editor, CRYPTO, volume 1109 of Lecture
Notes in Computer Science, pages 104–113. Springer, 1996.

12. Alexander May. Using LLL-reduction for solving RSA and factorization problems:
A survey. In Phong Nguyen, editor, Proceedings of LLL+25, page 3, June 2007.

13. Santanu Sarkar and Subhamoy Maitra. More on correcting errors in RSA private
keys: Breaking CRT-RSA with low weight decryption exponents. Cryptology ePrint
Archive, Report 2012/106, 2012. To appear at CHES 2012.

14. Claude E. Shannon. A mathematical theory of communication. Bell System Tech-
nical Journal, 27:379–423 and 623–656, July and October 1948.

15. Scott Yilek, Eric Rescorla, Hovav Shacham, Brandon Enright, and Stefan Savage.
When private keys are public: results from the 2008 Debian OpenSSL vulnerability.
In Anja Feldmann and Laurent Mathy, editors, Internet Measurement Conference,
pages 15–27. ACM, 2009.


