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Abstract. We provide a framework enabling the construction of IBE
schemes that are secure under related-key attacks (RKAs). Specific in-
stantiations of the framework yield RKA-secure IBE schemes for sets of
related key derivation functions that are non-linear, thus overcoming a
current barrier in RKA security. In particular, we obtain IBE schemes
that are RKA secure for sets consisting of all affine functions and all poly-
nomial functions of bounded degree. Based on this we obtain the first
constructions of RKA-secure schemes for the same sets for the following
primitives: CCA-secure public-key encryption, CCA-secure symmetric
encryption and Signatures. All our results are in the standard model
and hold under reasonable hardness assumptions.

1 Introduction

Related-key attacks (RKAs) were first conceived as tools for the cryptanalysis
of blockciphers [22, 9]. However, the ability of attackers to modify keys stored
in memory via tampering [13, 10] raises concerns that RKAs can actually be
mounted in practice. The key could be an IBE master key, a signing key of a
certificate authority, or a decryption key, making RKA security important for a
wide variety of primitives.

Provably achieving security against RKAs, however, has proven extremely
challenging. This paper aims to advance the theory with new feasibility results
showing achievability of security under richer classes of attacks than previously
known across a variety of primitives.

Contributions in brief. The primitive we target in this paper is IBE. RKA
security for this primitive was defined by Bellare, Cash, and Miller [4]. As per the
founding theoretical treatment of RKAs by Bellare and Kohno [5], the definition
is parameterized by the class Φ of functions that the adversary is allowed to
apply to the target key. (With no restrictions, security is unachievable.) For
future reference we define a few relevant classes of functions over the space S of
master keys. The set Φc = {φc}c∈S with φc(s) = c is the set of constant functions.
If S is a group under an operation ∗ then Φlin = {φa}a∈S with φa(s) = a ∗ s is
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the class of linear functions. (Here ∗ could be multiplication or addition.) If S
is a field we let Φaff = {φa,b}a,b∈S with φa,b(s) = as + b be the class of affine
functions and Φpoly(d) = {φq}q∈Sd[x] with φq(s) = q(s) the class of polynomial
functions, where q ranges over the set Sd[x] of polynomials over S of degree at
most d. RKA security increases and is a more ambitious target as we move from
Φlin to Φaff to Φpoly(d).

The choice of IBE as a primitive is not arbitrary. First, IBE is seeing a lot of
deployment, and compromise of the master secret key would cause widespread
damage, so we are well motivated to protect it against side-channel attacks.
Second, IBE was shown in [4] to be an enabling primitive in the RKA domain:
achieving RKA-secure IBE for any class Φ immediately yields Φ-RKA-secure
CCA-PKE (CCA-secure public-key encryption) and Sig (signature) schemes.
These results were obtained by noting that the CHK [12] IBE-to-CCA-PKE
transform and the Naor IBE-to-Sig transform both preserve RKA security. Thus,
results for IBE would immediately have wide impact.

We begin by presenting attacks showing that existing IBE schemes such as
those of Boneh-Franklin [14] and Waters [25] are not RKA secure, even for Φlin.
This means we must seek new designs.

We present a framework for constructing RKA-secure IBE schemes. It is an
adaptation of the framework of Bellare and Cash [3] that builds RKA-secure
PRFs based on key-malleable PRFs and fingerprinting. Our framework has two
corresponding components. First, we require a starting IBE scheme that has a
key-malleability property relative to our target class Φ of related-key deriving
functions. Second, we require the IBE scheme to support what we call collision-
resistant identity renaming. We provide a simple and efficient way to transform
any IBE scheme with these properties into one that is Φ-RKA secure.

To exploit the framework, we must find key-malleable IBE schemes. Some-
what paradoxically, we show that the very attack strategies that broke the RKA
security of existing IBE schemes can be used to show that these schemes are
Φ-key-malleable, not just for Φ = Φlin but even for Φ = Φaff . We additionally
show that these schemes support efficient collision-resistant identity renaming.
As a consequence we obtain Φaff -RKA-secure IBE schemes based on the same
assumptions used to prove standard IBE security of the base IBE schemes.

From the practical perspective, the attraction of these results is that our
schemes modify the known ones in a very small and local way limited only
to the way identities are hashed. They thus not only preserve the efficiency of
the base schemes, but implementing them would require minimal and modular
software changes, so that non-trivial RKA security may be added without much
increase in cost. From the theoretical perspective, the step of importance here
is to be able to achieve RKA security for non-linear functions, and this without
extra computational assumptions. As we will see below, linear RKAs, meaning
Φlin-RKA security, has so far been a barrier for most primitives.

However, we can go further, providing a Φpoly(d)-RKA-secure IBE scheme.
Our scheme is an extension of Waters’ scheme [25]. The proof is under a q-
type hardness assumption that we show holds in the generic group model. The
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significance of this result is to show that for IBE we can go well beyond linear
RKAs, something not known for PRFs.

As indicated above, we immediately get Φ-RKA-secure CCA-PKE and Sig
schemes for any class Φ for which we obtained Φ-RKA-secure IBE schemes,
and under the same assumptions. When the base IBE scheme has a further
malleability property, the CCA-PKE scheme so obtained can be converted into a
Φ-RKA-secure CCA-SE (CCA-secure symmetric encryption) scheme. This yields
the first RKA secure schemes for the primitives Sig, CCA-PKE, and CCA-SE
for non-linear RKAs, meaning beyond Φlin.

Background and context. The theoretical foundations of RKA security were
laid by Bellare and Kohno [5], who treated the case of PRFs and PRPs. Research
then expanded to consider other primitives [20, 2, 21, 4]. In particular, Bellare,
Cash and Miller [4] provide a comprehensive treatment including strong def-
initions for many primitives and ways to transfer Φ-RKA security from one
primitive to another.

RKA-security is finding applications beyond providing protection against
tampering-based sidechannel attacks [19], including instantiating random oracles
in higher-level protocols and improving efficiency [2, 1].

With regard to achieving security, early efforts were able to find PRFs with
proven RKA security only for limited Φ or under very strong assumptions. Even-
tually, using new techniques, Bellare and Cash [3] were able to present DDH-
based PRFs secure against linear RKAs (Φ = Φlin). But it is not clear how to
take their techniques further to handle larger RKA sets Φ.

Fig. 1 summarizes the broad position. Primitives for which efforts have now
been made to achieve RKA security include CPA-SE (CPA secure symmetric
encryption), CCA-SE (CCA secure symmetric encryption), CCA-PKE (CCA
secure public-key encryption4) Sig (Signatures), and IBE (CPA secure identity-
based encryption). Schemes proven secure under a variety of assumptions have
been provided. But the salient fact that stands out is that prior to our work,
results were all for linear RKAs with the one exception of CPA-SE where a
scheme secure against polynomial (and thus affine) RKAs was provided by [21].

In more detail, Bellare, Cash and Miller [4] show how to transfer RKA se-
curity from PRF to any other primitive, assuming an existing standard-secure
instance of the primitive. Combining this with [3] yields DDH-based schemes
secure against linear RKAs for all the primitives, indicated by a “[4]+[3]” table
entry. Applebaum, Harnik and Ishai [2] present LPN and LWE-based CPA-
SE schemes secure against linear RKAs. Wee [26] presents CCA-PKE secure
schemes for linear RKAs. Goyal, O’Neill and Rao [21] gave a CPA-SE scheme
secure against polynomial RKAs. (We note that their result statement should
be amended to exclude constant RKD functions, for no symmetric primitive can
be secure under these.) Wee [26] (based on a communication of Wichs) remarks
that AMD codes [18] may be used to achieve RKA security for CCA-PKE, a

4 RKAs are interesting for symmetric encryption already in the CPA case because
encryption depends on the secret key, but for public-key encryption they are only
interesting for the CCA case because encryption does not depend on the secret key.
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Primitive Linear Affine Polynomial

IBE [4]+[3] X X

Sig [4]+[3] X X

CCA-PKE [26], [4]+[3] X X

CPA-SE [2], [4]+[3] [21] [21]

CCA-SE [4]+[3] X X
∗

PRF [3] – –

Fig. 1. Rows are indexed by primitives. Columns are indexed by the class Φ of related-
key derivation functions, Φlin, Φaff and Φpoly(d) respectively. Entries indicate work
achieving Φ-RKA security for the primitive in question. Checkmarks indicate results
from this paper that bring many primitives all the way to security under polynomial
RKAs in one step. The table only considers achieving the strong, adaptive notions of
security from [4]; non-adaptively secure signature schemes for non-linear RKAs were
provided in [21]. Note that symmetric key primitives cannot be RKA secure against
constant RKD functions, so affine and polynomial RKA security for the last three rows
is with respect to the RKD sets Φaff \Φc and Φpoly(d)\Φc. The “∗” in the CCA-SE row is
because our CCA-SE construction is insecure against RKD functions where the linear
coefficient is zero, so does not achieve RKA security against the full set Φpoly(d) \ Φc.
See the full version for details.

method that extends to other primitives including IBE (but not PRF), but with
current constructions of these codes [18], the results continue to be restricted to
linear RKAs. We note that we are interested in the stronger, adaptive versions
of the definitions as given in [4], but non-adaptively secure signature schemes
for non-linear RKAs were provided in [21].

In summary, a basic theoretical question that emerges is how to go beyond
linear RKAs. A concrete target here is to bring other primitives to parity with
CPA-SE by achieving security for affine and polynomial RKAs. Ideally, we would
like approaches that are general, meaning each primitive does not have to be
treated separately. As discussed above, we are able to reach these goals with
IBE as a starting point.

A closer look. Informally, key-malleability means that user-level private keys
obtained by running the IBE scheme’s key derivation algorithm K using a mod-
ified master secret key φ(s) (where φ ∈ Φ and s ∈ S, the space of master secret
keys) can alternatively be computed by running K using the original master se-
cret key s , followed by a suitable transformation. A collision-resistant identity
renaming transform maps identities from the to-be-constructed RKA-secure IBE
scheme back into identities in the starting IBE scheme in such a way as to “sep-
arate” the sets of identities coming from different values of φ(s). By modifying
the starting IBE scheme to use renamed identities instead of the original ones,
we obtain a means to handle otherwise difficult key extraction queries in the
RKA setting.
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To show that the framework is applicable to the Boneh-Franklin [14] and
Waters [25] IBE schemes with Φ = Φaff (the space of master keys here is Zp), we
exploit specific algebraic properties of the starting IBE schemes. In the Waters
case, we obtain an efficient, Φaff -RKA-secure IBE scheme in the standard model,
under the Decisional Bilinear Diffie-Hellman (DBDH) assumption. In the Boneh-
Franklin case, we obtain an efficient, Φaff -RKA-secure IBE scheme under the
Bilinear Diffie-Hellman (BDH) assumption with more compact public keys at
the expense of working in the Random Oracle Model. Going further, we exhibit
a simple modification of the Waters scheme which allows us to handle related key
attacks for Φpoly(d), this being the set of polynomial functions of bounded degree
d. This requires the inclusion of an extra 2d − 2 elements in the master public
key, and a modified, q-type hardness assumption. We show that this assumption
holds in the generic group model.

Applying the results of [4] to these IBE schemes, we obtain the first con-
structions of RKA-secure CCA-PKE and signature schemes for Φaff and Φpoly(d).
Again, our schemes are efficient and our results hold in the standard model un-
der reasonable hardness assumptions. The CCA-PKE schemes, being derived via
the CHK transform [12], just involve the addition of a one-time signature and
verification key to the IBE ciphertexts and so incur little additional overhead for
RKA security. As an auxiliary result that improves on the corresponding result
of [4], we show in the full version [6] that the more efficient MAC-based transform
of [15, 12] can be used in place of the CHK transform. The signature schemes
arise from the Naor trick, wherein identities are mapped to messages, IBE user
private keys are used as signatures, and a trial encryption and decryption on a
random plaintext are used to verify the correctness of a signature. This generic
construction can often be improved by tweaking the verification procedure, and
the same is true here: for example, for the Waters-based signature scheme, we
can base security on the CDH assumption instead of DBDH, and can achieve
more efficient verification. We stress that our signature schemes are provably
unforgeable in a fully adaptive related-key setting, in contrast to the recently
proposed signatures in [21].

Note that RKA-secure PRFs for sets Φaff and Φpoly(d) cannot exist, since
these sets contain constant functions, and we know that no PRF can be RKA-
secure in this case [5]. Thus we are able to show stronger results for IBE,
CCA-PKE and Sig than are possible for PRF. Also, although Bellare, Cash
and Miller [4] showed that Φ-RKA security for PRF implies Φ-RKA security for
Sig and CCA-PKE, the observation just made means we cannot use this result
to get Φaff or Φpoly(d) RKA-secure IBE, CCA-PKE or Sig schemes. This provides
further motivation for starting from RKA-secure IBE as we do, rather than from
RKA-secure PRF.

Finally we note that even for linear RKAs where IBE schemes were known
via [4]+[3], our schemes are significantly more efficient.

Further contributions. In the full version [6], as a combination of the re-
sults of [4] and [24], we provide definitions for RKA security in the joint security
setting, where the same key pair is used for both signature and encryption func-
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tions, and show that a Φ-RKA-secure IBE scheme can be used to build a Φ-RKA
and jointly secure combined signature and encryption scheme. This construction
can be instantiated using any of our specific IBE schemes, by which we obtain
the first concrete jointly secure combined signature and encryption schemes for
the RKA setting.

We also show in [6] how to adapt the KEM-DEM (or hybrid encryption)
paradigm to the RKA setting, and describe a highly efficient, Φaff -RKA-secure
CCA-KEM that is inspired by our IBE framework and is based on the scheme
of Boyen, Mei and Waters [17]. Our CCA-KEM’s security rests on the hardness
of the DBDH problem for asymmetric pairings e : G1 × G2 → GT ; its cipher-
texts consist of 2 group elements (one in G1 and one in G2), public keys are 3
group elements (two in G2 and one in GT ), encryption is pairing-free, and the
decryption cost is dominated by 3 pairing operations.

The final contribution (also in [6]) is an extension of our framework that lets
us build an RKA-secure CCA-SE scheme from any IBE scheme satisfying an
additional master public key malleability property. Such an IBE scheme, when
subjected to our transformation, meets a notion of strong Φ-RKA security [4]
where the challenge encryption is also subject to RKA. Applying the CHK trans-
form gives a strong Φ-RKA-secure CCA-PKE scheme which can be converted
into a Φ-RKA-secure CCA-SE scheme in the natural way.

Paper organization. Section 2 contains preliminaries, Section 3 describes
some IBE schemes and RKA attacks on them, while Section 4 presents our frame-
work for constructing RKA-secure IBE schemes. Section 5 applies the framework
to specific schemes, and sketches the CCA-PKE and signature schemes that re-
sult from applying the techniques of [4].

2 Preliminaries

Notation. For sets X,Y let Fun(X,Y ) be the set of all functions mapping X
to Y . If S is a set then |S| denotes its size and s←$ S the operation of picking a
random element of S and denoting it by s. Unless otherwise indicated, an algo-
rithm may be randomized. An adversary is an algorithm. By y←$ A(x1, x2, . . .)
we denote the operation of running A on inputs x1, x2, . . . and letting y denote
the outcome. We denote by [A(x1, x2, . . . , xn)] the set of all possible outputs of
A on inputs x1, x2, . . . , xn.

Games. Some of our definitions and proofs are expressed through code-based
games [8]. Recall that such a game consists of an Initialize procedure, proce-
dures to respond to adversary oracle queries, and a Finalize procedure. A game
G is executed with an adversary A as follows. First, Initialize executes and its
output is the input to A. Then A executes, its oracle queries being answered by
the corresponding procedures of G. When A terminates, its output becomes the
input to the Finalize procedure. The output of the latter is called the output
of the game. We let GA denote the event that this game output takes value true.
The running time of an adversary, by convention, is the worst case time for the
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execution of the adversary with any of the games defining its security, so that
the time of the called game procedures is included.

RKD functions and classes. We say that φ is a related-key deriving (RKD)
function over a set S if φ ∈ Fun(S,S). We say that Φ is a class of RKD functions
over S if Φ ⊆ Fun(S,S) and id ∈ Φ where id is the identity function on S. In our
constructs, S will have an algebraic structure, such as being a group, ring or field.
In the last case, for a, b ∈ S we define φ+

b , φ
∗
a, φ

aff
a,b ∈ Fun(S,S) via φ+

b (s) = s+ b,

φ∗
a(s) = as , and φaff

a,b(s) = as + b for all s ∈ S. For a polynomial q over field S,

we define φpoly
q (s) = q(s) for all s ∈ S. We let Φ+ = { φ+

b : b ∈ S } be the class
of additive RKD functions, Φ∗ = { φ∗

a : a ∈ S } be the class of multiplicative
RKD functions, Φaff = { φaff

a,b : a, b ∈ S } the class of affine RKD functions, and

for any fixed positive integer d, we let Φpoly(d) = { φpoly
q : deg q ≤ d } be the set

of polynomial RKD functions of bounded degree d.

If φ 6= φ′ are distinct functions in a class Φ there is of course by definition an
s such that φ(s) 6= φ′(s), but there could also be keys s on which φ(s) = φ′(s).
We say that a class Φ is claw-free if the latter does not happen, meaning for all
distinct φ 6= φ′ in Φ we have φ(s) 6= φ′(s) for all s ∈ S. With the exception of [21],
all previous constructions of Φ-RKA-secure primitives with proofs of security
have been for claw-free classes [5, 23, 20, 3, 4, 26]. In particular, key fingerprints
are defined in [3] in such a way that their assumption of a Φ-key fingerprint
automatically implies that Φ is claw-free.

IBE syntax. We specify an IBE scheme IBE = (S,P ,K, E ,D) by first specify-
ing a non-empty set S called the master-key space from which the master secret
key s is drawn at random. The master public key π ← P(s) is then produced
by applying to s a deterministic master public key generation algorithm P . A
decryption key for an identity u is produced via dku ←$K(s , u). A ciphertext
C encrypting a message M for u is generated via C←$ E(π, u,M). A cipher-
text C is deterministically decrypted via M ← D(dk , C). Correctness requires
that D(K(s , u), E(π, u,M)) = M with probability one for all M ∈ MSp and
all u ∈ USp where MSp,USp are, respectively, the message and identity spaces
associated to IBE .

The usual IBE syntax specifies a single parameter generation algorithm that
produces s , π together, and although there is of course a space from which the
master secret key is drawn, it is not explicitly named. But RKD functions will
have domain the space of master keys of the IBE scheme, which is why it is
convenient in our context to make it explicit in the syntax. Saying the master
public key is a deterministic function of the master secret key is not strictly
necessary for us, but it helps make some things a little simpler and is true in all
known schemes, so we assume it.

We make an important distinction between parameters and the master pub-
lic key, namely that the former may not depend on s while the latter might.
Parameters will be groups, group generators, pairings and the like. They will be
fixed and available to all algorithms without being named as explicit inputs.
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proc Initialize

s←$ S ;π ← P(s)
b←$ {0, 1}
u∗ ← ⊥ ; I ← ∅
Ret π

proc Finalize(b′)

Ret (b = b′)

proc KD(φ, u)

s ′ ← φ(s)
If (s ′ = s) I ← I ∪ {u}
If (u∗ ∈ I) Ret ⊥
Ret dk ←$ K(s ′, u)

proc LR(u,M0,M1)

If (|M0| 6= |M1|) Ret ⊥
u∗ ← u

If (u∗ ∈ I) Ret ⊥
Ret C←$ E(π,u∗,Mb)

Fig. 2. Game IBE defining Φ-RKA-security of IBE scheme IBE = (S ,P ,K, E ,D).

P(s):

π ← gs

Ret π

K(s, u):

dk ← H1(u)
s

Ret dk

E(π,u,M):

t←$ Zp

C1 ← gt

C2 ← H2(e(π,H1(u))
t)⊕M

Ret (C1,C2)

D(dk ,C ):

M ← C2 ⊕H2(e(dk ,C1))
Ret M

P(s):

π ← gs

Ret π

K(s, u):

r←$ Zp

dk1 ← gs1 ·H(u)r

dk2 ← gr

Ret (dk1, dk2)

E(π,u,M):

t←$ Zp

C1 ← gt

C2 ← H(u)t

C3 ← e(π, g1)
t ·M

Ret (C1,C2,C3)

D(dk ,C ):

M ← C3 ·
e(dk2,C2)
e(dk1,C1)

Ret M

Fig. 3. Boneh-Franklin IBE scheme on the left, Waters IBE scheme on the right.

RKA-secure IBE. We define Φ-RKA security of IBE schemes following [4].
Game IBE of Fig. 2 is associated to IBE = (S,P ,K, E ,D) and a class Φ of
RKD functions over S. An adversary is allowed only one query to LR. Let
Adv

ibe−rka
IBE ,Φ (A) equal 2 Pr[IBEA]−1. A feature of the definition we draw attention

to is that the key derivation oracle KD refuses to act only when the identity
it is given matches the challenge one and the derived key equals the real one.
This not only creates a strong security requirement but one that is challenging to
achieve because a simulator, not knowing s , cannot check whether or not the IBE
adversary succeeded. This difficulty is easily resolved if Φ is claw-free but not
otherwise. We consider this particular RKA security definition as, in addition to
its strength, it is the level of RKA security required of an IBE scheme so that
application of the CHK and Naor transforms results in RKA-secure CCA-PKE
and signature schemes.

3 Existing IBE schemes and RKA attacks on them

The algorithms of the Boneh-Franklin BasicIdent IBE scheme [14] are given in
Figure 3. The parameters of the scheme are groups G1,GT of prime order p, a
symmetric pairing e : G1 × G1 → GT , a generator g of G1 and hash functions
H1 : {0, 1}∗ → G1, H2 : GT → {0, 1}n which are modeled as random oracles in
the security analysis. Formally, these are output by a pairing parameter generator
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on input 1k. This scheme is IND-CPA secure in the usual model for IBE security,
under the Bilinear Diffie-Hellman (BDH) assumption.

The algorithms of the Waters IBE scheme [25] are also given in Figure 3.
The parameters of the scheme are groups G1,GT of prime order p, a symmetric
pairing e : G1×G1 → GT , generators g, g1 of G1 and group elements h0, . . . , hn ∈
G1 specifying the hash function H(u) = h0

∏
i∈u hi. The Waters IBE scheme is

also IND-CPA secure in the usual model for IBE security, under the DBDH
assumption.

The Waters IBE scheme is not RKA secure if Φ includes a function φ∗
a(s) =

as. A call to the key derivation oracle with any such φ yields a user secret
key (dk1, dk2) = (gas1 · H(u)

r
, gr). Raising this to a−1 gives (dk ′

1, dk
′

2) = (gs1 ·

H(u)ra
−1

, gra
−1

), so that (dk ′

1, dk
′

2) is a user secret key for identity u under
the original master secret key with randomness r′ = ra−1. An RKA adversary
can thus obtain the user secret key for any identity of his choosing and hence
break the RKA security of the Waters scheme. A similar attack applies to the
Boneh-Franklin scheme.

4 Framework for deriving RKA-secure IBE schemes

In the previous section we saw that the Boneh-Franklin and Waters schemes are
not RKA secure. Here we will show how to modify these and other schemes to be
RKA secure by taking advantage, in part, of the very algebra that leads to the
attacks. We describe a general framework for creating RKA-secure IBE schemes
and then apply it obtain several such schemes.

We target a very particular type of framework, one that allows us to reduce
RKA security of a modified IBE scheme directly to the normal IBE security
of a base IBE scheme. This will allow us to exploit known results on IBE in a
blackbox way and avoid re-entering the often complex security proofs of the base
IBE schemes.

Key-malleability.We say that an IBE scheme IBE = (S,P ,K, E ,D) is Φ-key-
malleable if there is an algorithm T , called the key simulator, which, given π, an
identity u, a decryption key dk ′←$K(s , u) for u under s and an RKD function
φ ∈ Φ, outputs a decryption key dk for u under master secret key φ(s) that
is distributed identically to the output of K(φ(s), u). The formalization takes a
little more care for in talking about two objects being identically distributed one
needs to be precise about relative to what other known information this is true.
A simple and rigorous definition here can be made using games. We ask that

Pr[KMRealM
IBE ,Φ] = Pr[KMSimM

IBE ,Φ,T ]

for all (not necessarily computationally bounded) adversaries M , where the
games are as follows. The Initialize procedure of both picks s at random from S
and returns π ← P(s) to the adversary. In game KMRealIBE ,Φ, oracle KD(φ, u)
returns dk ←$K(φ(s), u) but in game KMSimIBE ,Φ,T it lets dk ′←$K(s , u) and
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returns T (π, u, dk ′, φ). There are no other oracles, and Finalize(b′) returns
(b′ = 1).

Using KM. Intuitively, key-malleability allows us to simulate a Φ-RKA adver-
sary via a normal adversary and would thus seem to be enough to prove Φ-RKA
security of IBE based on its normal security. Let us see how this argument
goes and then see the catches that motivate a transformation of the scheme via
collision-resistant identity renaming. Letting A be an adversary attacking the
Φ-RKA security of IBE , we aim to build an adversary A such that

Adv
ibe−rka
IBE ,Φ (A) ≤ Adv

ibe
IBE (A) . (1)

On input π, adversary A runs A(π). When the latter makes a KD(φ, u) query,
A lets dk ← KD(id, u), where KD is A’s own key derivation oracle. It then
lets dk ← T (π, u, dk , φ) and returns dk to A. Key-malleability tells us that dk
is distributed identically to an output of KD(φ, u), so the response provided
by A is perfectly correct. When A makes a LR(u,M0,M1) query, A lets C ←
LR(u,M0,M1) and returns C to A. Finally when A halts with output a bit b′,
adversary A does the same.

The simulation seems perfect, so we appear to have established Equation (1).
What’s the catch? The problem is avoiding challenge key derivation. Suppose A
made a KD(φ, u) query for a φ such that φ(s) 6= s ; then made a LR(u,M0,M1)
query; and finally, given C, correctly computed b. It would win its game, be-
cause the condition φ(s) 6= s means that identity u may legitimately be used
both in a key derivation query and in the challenge LR query. But our con-
structed adversary A, in the simulation, would make query KD(id, u) to answer
A’s KD(φ, u) query, and then make query LR(u,M0,M1). A would thus have
queried the challenge identity u to the key-extraction oracle and would not win.

This issue is dealt with by transforming the base scheme via what we call
identity renaming, so that Φ-RKA security of the transformed scheme can be
proved based on the Φ-key-malleability of the base scheme.

Identity renaming. Renaming is a way to map identities in the new scheme
back to identities of the given, base scheme. Let us now say how renaming works
more precisely and then define the modified scheme.

Let IBE = (S,P ,K, E ,D) denote the given, base IBE scheme, and let USp

be its identity space. A renaming scheme is a pair (SI,PI) of functions where
SI: S × USp → USp and PI: [P(S)] × USp × Φ → USp where USp, implicitly
specified by the renaming scheme, will be the identity space of the new scheme we
will soon define. The first function SI, called the secret renaming function, uses
the master secret key, while its counterpart public renaming function PI uses
the master public key. We require that SI(φ(s), u) = PI(π, u, φ) for all s ∈ S, all
π ∈ [P(s)], all u ∈ USp and all φ ∈ Φ. This compatibility condition says that the
two functions arrive, in different ways, at the same outcome.

The transform. The above is all we need to specify our Identity Renaming
Transform IRT that maps a base IBE scheme IBE = (S,P ,K, E ,D) to a new
IBE scheme IBE = (S,P ,K, E ,D). As the notation indicates, the master key
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space, master public key generation algorithm and decryption algorithm are
unchanged. The other algorithms are defined by

K(s , u) = K(s , SI(s , u)) and E(π, u,M) = E(π,PI(π, u, id),M) .

We clarify that algorithms of the new IBE scheme do not, and cannot, have as
input the RKD functions φ used by the attacker. We are defining an IBE scheme,
and algorithm inputs must follow the syntax of IBE schemes. When the new en-
cryption algorithm invokes PI, it sets φ to the identity function id. (Looking
ahead, the simulation will call the renaming functions with φ emanating from
the adversary attacking the new IBE scheme.) The key derivation algorithm has
s but not π (recall we cannot give it π because otherwise it becomes subject
to the RKA) and thus uses the secret renaming function. On the other hand
the encryption algorithm has π but obviously not s and thus uses the public
renaming function. This explains why we need two, compatible renaming func-
tions. The new scheme has the same message space as the old one. Its identity
space is inherited from the renaming scheme, being the space USp from which
the renaming functions draw their identity inputs.

The above compatibility requirement implies that SI(s , u) = PI(π, u, id).
From this it follows that IBE preserves the correctness of IBE . We now go on
to specifying properties of the base IBE scheme and the renaming functions that
suffice to prove Φ-RKA security of the new scheme.

A trivial renaming scheme is obtained by setting SI(s , u) = u = PI(π, u, φ).
This satisfies the compatibility condition. However, the transformed IBE scheme
IBE ends up identical to the base IBE and thus this trivial renaming cannot
aid in getting security. We now turn to putting a non-trivial condition on the
renaming scheme that we will show suffices.

Collision-resistance. The renaming scheme (SI,PI) will be required to have
a collision-resistance property. In its simplest and strongest form the requirement
is that

(φ(s), u1) 6= (s , u2) ⇒ SI(φ(s), u1) 6= SI(s , u2)

for all s ∈ S, all u1, u2 ∈ USp and all φ ∈ Φ. This statistical collision-resistance
will be enough to prove that IBE is Φ-RKA secure if IBE is Φ-key-malleable
(cf. Theorem 1). We will now see how this goes. Then we will instantiate these
ideas to get concrete Φ-RKA-secure schemes for many interesting classes Φ in-
cluding Φaff and Φpoly(d).

Theorem 1. Let IBE = (S,P ,K, E ,D) be a Φ-key-malleable IBE scheme with
key simulator T . Let IBE = (S,P ,K, E ,D) be obtained from IBE and renaming
scheme (SI,PI) via the transform IRT described above. Assume the renaming
scheme is statistically collision-resistant. Let A be a Φ-RKA adversary against
IBE that makes q key derivation queries. Then there is an adversary A making
q key derivation queries such that

Adv
ibe−rka

IBE ,Φ
(A) ≤ Adv

ibe
IBE (A) . (2)
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proc Initialize //G0

000 s←$ S ; π ← P(s)
001 b←$ {0, 1} ; u∗ ← ⊥
002 I ← ∅
003Ret π

proc Initialize //G1,G2,G3

100 s←$ S ; π ← P(s)
101 b←$ {0, 1} ; u∗ ← ⊥
102 I ← ∅
103Ret π

proc KD(φ, u) //G0

010 s ′ ← φ(s)

011 If (s ′ = s) I ← I ∪ {u}
012 If (u∗ ∈ I) Ret ⊥
013 u ← SI(s ′, u)

014Ret dk ←$ K(s ′, u)

proc KD(φ, u) //G1

110 s ′ ← φ(s)
111 u ← SI(s ′, u)
112 I ← I ∪ {u}
113 If (u∗ ∈ I) Ret ⊥
114Ret dk ←$K(s ′, u)

proc KD(φ, u) //G2

210 u ← PI(π,u, φ)
211 I ← I ∪ {u}
212 If (u∗ ∈ I) Ret ⊥
213Ret dk ←$K(φ(s), u)

proc KD(φ, u) //G3

310 u ← PI(π,u, φ)
311 I ← I ∪ {u}
312 If (u∗ ∈ I) Ret ⊥
313 dk ←$K(s, u)
314Ret dk ← T (π,u, dk , φ)

proc LR(u,M0,M1) //G0

020 If (|M0| 6= |M1|) Ret ⊥
021 u∗ ← u

022 If (u∗ ∈ I) Ret ⊥
023 u∗ ← SI(s, u∗)
024 Ret C←$ E(π,u∗,Mb)

proc LR(u,M0,M1) //G1

120 If (|M0| 6= |M1|) Ret ⊥
121 u∗ ← SI(s, u)
122 If (u∗ ∈ I) Ret ⊥
123 Ret C←$ E(π,u∗,Mb)

proc LR(u,M0,M1) //G2,G3

220 If (|M0| 6= |M1|) Ret ⊥
221 u∗ ← PI(π, u, id)
222 If (u∗ ∈ I) Ret ⊥
223 Ret C←$ E(π,u∗,Mb)

proc Finalize(b′) //All

030 Ret (b = b′)

Fig. 4. Games for proof of Theorem 1.

Furthermore, the running time of A is that of A plus the time for q executions
of T and q + 1 executions of PI.

Proof (Theorem 1). Consider the games of Fig. 4. Game G0 is written to be
equivalent to game IBE

IBE
, so that

Adv
ibe−rka

IBE ,Φ
(A) = 2Pr[GA

0 ]− 1 . (3)

In answering a KD(φ, u) query, G0 must use the key-generation algorithm K of
the new scheme IBE but with master secret key s ′ = φ(s). From the definition
of K, it follows that not only is the key-generation at line 014 done under s ′,
but also the identity renaming at line 013. LR, correspondingly, should use E ,
and thus the public renaming function PI. The compatibility property however
allows us at line 023 to use SI instead. This will be useful in exploiting statistical
collision-resistance in the next step, after which we will revert back to PI.

The adversary A we aim to construct will not know s . A central difficulty
in the simulation is thus lines 011, 012 of G0 where the response provided to A
depends on the result of a test involving s , a test that A cannot perform. Before
we can design A we must get rid of this test. Statistical collision-resistance is
what will allow us to do so. KD of game G1 moves the identity renaming up
before the list of queried identities is updated to line 111 and then, at line 112,
adds the transformed identity to the list. LR is likewise modified so its test now
involves the transformed (rather than original) identities. We claim this makes
no difference, meaning

Pr[GA
0 ] = Pr[GA

1 ] . (4)
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Indeed, statistical collision-resistance tell us that (s ′, u) = (s , u∗) iff SI(s ′, u) =
SI(s , u∗). This means that lines 011, 012 and lines 112, 113 are equivalent.

Compatibility is invoked to use PI in place of SI in both KD and in LR in
G2, so that

Pr[GA
1 ] = Pr[GA

2 ] . (5)

Rather than use s ′ for key generation as at 213, G3 uses s at 313 and then
applies the key simulator T . We claim the key-malleability implies

Pr[GA
2 ] = Pr[GA

3 ] . (6)

To justify this we show that there is an adversary M such that

Pr[KMRealMIBE ,Φ] = Pr[GA
2 ] and Pr[KMSimM

IBE ,Φ,T ] = Pr[GA
3 ] .

Adversary M , on input π, begins with the initializations u∗ ← ⊥ ; I ← ∅ ;
b←$ {0, 1} and then runs A on input π. When A makes a KD(φ, u) query, M
does the following:

u ← PI(π, u , φ) ; I ← I ∪ {u} ; If (u∗ ∈ I) Ret ⊥ ; dk ← KD(φ, u).

If M is playing game KMReal then its KD oracle will behave as line 213 in game
G2, while ifM is playing game KMSim its KD oracle will behave as lines 313,314
in game G3. When A makes its LR(u ,M0,M1) query M sets u∗ ← PI(π, u, id)
and checks if u∗ ∈ I, returning ⊥ if so. M then computes C←$ E(π, u∗,Mb)
which it returns to A. When A halts with output b′, M returns the result of
(b′ = b). If M is playing game KMReal then game G2 is perfectly simulated,
while if M is playing KMSim then game G3 is perfectly simulated, so M returns
1 with the same probability that A wins in each case and by the key-malleability
of IBE Equation (6) holds.

Finally, we design A so that

Adv
ibe
IBE

(A) = 2Pr[GA
3 ]− 1 . (7)

On input π, adversaryA runs A(π). When the latter makes aKD(φ, u) query,
A does the following:

u ← PI(π, u , φ) ; dk ← KD(id, u) ; dk ← T (π, u, dk , φ).

It then returns dk to A. The KD invoked in this code is A’s own oracle. Com-
patibility tells us that u = SI(φ(s), u) and thus from the definition of IBE , the
response to A’s query is distributed according to K(φ(s), u). But key-malleability
then tells us that dk is distributed identically to this, so the response provided
by A is perfectly correct. When A makes a LR(u ,M0,M1) query, A does the
following:

u ← PI(π, u , id) ; C ← LR(u,M0,M1).

It then returns C to A. The LR invoked in this code is A’s own oracle. The
definition of IBE implies that the response provided by A is again perfectly
correct. Finally when A halts with output a bit b′, adversary A does the same.
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5 Applying the framework

Affine RKD functions for Boneh-Franklin and Waters. We show how
the framework can be instantiated with the IBE schemes of Boneh-Franklin and
Waters to achieve IBE schemes secure against affine related-key attacks. First
we look at key-malleability. Keys in the Boneh-Franklin IBE scheme are of the
form dk ′ = H1(u)

s , so the algorithm T is as follows:

T (π, u, dk ′, φa,b): dk ← dk ′a ·H1(u)
b; Ret dk

The output of T is a valid key for user u under master secret key φa,b(s), since:
dk ′a ·H1(u)

b = H1(u)
sa ·H1(u)

b = H1(u)
as+b. Since the key derivation algorithm

is deterministic, the keys output by T are distributed identically to the keys
output by K(φ(s), u), and so the Boneh-Franklin IBE scheme is key-malleable.

Keys in the Waters IBE scheme are of the form (dk ′

1, dk
′

2) = (gs1 ·H(u)
r
, gr)

for some r in Zp, so the algorithm T is as follows:

T (π, u, dk ′, φa,b):
If (a = 0) then r←$ Zp ; dk1 ← gb1 ·H(u)

r
; dk2 ← gr

Else dk1 ← dk ′a
1 · g

b
1 ; dk2 ← dk ′a

2

Ret (dk1, dk2)

When the RKD function is a constant function, T behaves exactly as the key
derivation algorithm under master secret key b, so its output is valid and correctly
distributed. Otherwise, the output of T is still a valid key for user u under master
secret key φa,b(s), now under randomness ra, since:

dk ′a
1 · g

b
1 = (gs1 ·H(u)r)

a · gb1 = gas+b
1 H(u)ra dk ′a

2 = gra .

Since r is uniformly distributed in Zp, ra is also uniformly distributed in Zp and
so the keys output by T are distributed identically to those output by K(φ(s), u).
Hence the Waters IBE scheme is key-malleable.

The same identity renaming scheme can be used for both IBE schemes.
Namely, SI(s , u) returns u||gs and PI(π, u, φa,b) returns u||πa · gb. The com-
patibility requirement is satisfied and the renaming scheme is clearly collision-
resistant since u1||gφ(s) = u2||gs ⇒ u1 = u2 ∧ φ(s) = s . Thus the IBE schemes
of Boneh-Franklin and Waters are key-malleable and admit a suitable identity
renaming scheme, and so satisfy the requirements of Theorem 1. Notice that in
the Waters case, we must increase the parameter n by the bit length of elements
of G1 (and hence increase the size of the description of the scheme parameters)
to allow identities of the form u||gs to be used in the renaming scheme.

The following theorem is obtained by combining Theorem 1 with [14], and
the running time of B below may be obtained in the same way.

Theorem 2. Let IBE = (S,P ,K, E ,D) be the Boneh-Franklin IBE scheme
shown in Fig. 3 under the above identity renaming transform. Let A be a Φaff-
RKA adversary against IBE making qKD key derivation queries and qH2 queries
to random oracle H2. Then there is an algorithm B solving the Decision Bilinear
Diffie-Hellman problem such that

Adv
ibe−rka

IBE ,Φaff
(A) ≤

e(1 + qKD )qH2

2
·Adv

dbdh(B) . (8)
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The following theorem is obtained by combining Theorem 1 with [25], and the
running time of B below may be obtained in the same way. Concrete-security
improvements would be obtained by using instead the analysis of Waters’ scheme
from [7].

Theorem 3. Let IBE = (S,P ,K, E ,D) be the Waters scheme shown in Fig. 3
under the above identity renaming transform. Let A be a Φaff-RKA adversary
against IBE making qKD key derivation queries. Then there is an algorithm B
solving the Decision Bilinear Diffie-Hellman problem such that

Adv
ibe−rka

IBE ,Φaff
(A) ≤ 32(n+ 1) · qKD ·Adv

dbdh(B) . (9)

We recall from [4] that, given a Φ-RKA-secure IBE scheme, the CHK trans-
form [12] yields a Φ-RKA-secure CCA-PKE scheme at the cost of adding a
strongly unforgeable one-time secure signature and its verification key to the
IBE ciphertexts. In the full version [6] we show that the more efficient Boneh-
Katz transform [12] can also be used to the same effect. We omit the details of
the Φaff -RKA-secure CCA-PKE schemes that result from applying these trans-
forms to the above IBE schemes. We simply note that the resulting CCA-PKE
schemes are as efficient as the pairing-based schemes of Wee [26], which are only
Φlin-RKA-secure. Similarly, using a result of [4], we may apply the Naor trans-
form to these IBE schemes to obtain Φaff -RKA-secure signature schemes that are
closely related to (and as efficient as) the Boneh-Lynn-Shacham [16] and Waters
[25] signature schemes. The verification algorithms of these signature schemes
can be improved by replacing Naor’s trial encryption and decryption procedure
by bespoke algorithms, exactly as in [16, 25].

An IBE scheme handling RKAs for bounded degree polynomials.

We show how to construct an IBE scheme that is RKA secure when the RKD
function set equals Φpoly(d), the set of all polynomials of degree at most d,
for an arbitrary d chosen at the time of master key generation. The scheme
is obtained through a simple extension of the IBE scheme of Waters com-
bined with the identity renaming transform used above. The only change we
make to the Waters scheme is in the master public key, where we add the ex-

tra elements gs
2

, . . . , gs
d

, g1
s
2

, . . . , g1
s
d

alongside gs . These elements assist in
achieving key-malleability for the set Φpoly(d). The master public-key genera-
tion algorithm P of the extended Waters scheme, on input s , returns π ←

(gs , gs
2

, . . . , gs
d

, (g1)
s
2

, . . . , (g1)
s
d

). The other algorithms and keys remain un-
changed; in particular, key derivation does not make use of these new elements.
This extended Waters IBE scheme is secure (in the usual IND-CPA sense for
IBE) under the q-type extension of the standard DBDH assumption captured
by the game in Fig. 5. We define the advantage of an adversary A against the
problem as Adv

q-edbdh(A) = 2Pr[q-EDBDHA]− 1.

Theorem 4. Let IBE = (S,P ,K, E ,D) be the extended Waters scheme. Let A
be an adversary against IBE making qKD key derivation queries. Then there is
an algorithm B solving the q-Extended Decision Bilinear Diffie-Hellman problem
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proc Initialize

g←$ G1 ; x, y, z←$ Zp ; b←$ {0, 1}
If (b = 1) T ← e(g, g)xyz

Else T ←$ GT

Ret g, gx, gx
2

, . . . , gx
q

, gy, g(x
2)y, g(x

3)y, . . . , g(x
q)y , gz, T

proc Finalize(b′)

Ret (b = b′)

Fig. 5. q-Extended Decision Bilinear Diffie-Hellman (q-EDBDH) game.

for q = d such that

Adv
ibe
IBE

(A) ≤ 32(n+ 1) · qKD ·Adv
q-edbdh(B) . (10)

To see this, observe that the original proof of security for Waters’ scheme [25, 7]
also goes through for the extended scheme, using the elements g, gx, gy, T from
the q-EDBDH problem to run the simulation as in the original proof and using
the additional elements from the q-EDBDH problem to set up the master public
key in the extended scheme.

We give evidence for the validity of the q-EDBDH assumption by examining
the difficulty of the problem in the generic group model. The problem falls within
the framework of the generic group model “master theorem” of Boneh, Boyen and
Goh [11]. In their notation, we have P = {1, x, x2, . . . , xq, y, x2y, . . . , xqy, z},Q =
1, and f = xyz. It is clear by inspection that P,Q and f meet the independence
requirement of the master theorem, and it gives a lower bound on an adversary’s
advantage of solving the q-EDBDH problem in a generic group of the form
(q + 1)(qξ + 4q + 6)2/p where qξ is a bound on the number of queries made by
the adversary to the oracles computing the group operations in G,GT . While a
lower bound in the generic group model does not rule out an efficient algorithm
when the group is instantiated, it lends heuristic support to our assumption.

The extended Waters IBE scheme is Φpoly(d)-key malleable with algorithm T
as follows:

T (π, u, dk ′, φa0,a1,...,ad
):

If (a0 = 0) then r←$ Zp ; dk1 ← ga0
1 ·H(u)r · (g1s

2

)
a2

· · · (g1s
d

)
ad

; dk2 ← gr

Else dk1 ← ga0
1 · dk

′a1
1 · (g1

s2)
a2

· · · (g1s
d

)
ad

; dk2 ← dk ′a1
2

Ret (dk1, dk2)

The identity renaming scheme is then defined via

SI(s , u) = u||gs and PI(π, u , φa0,a1,...,ad
) = u||ga0 · πa1 · (gs

2

)
a2

· · · (gs
d

)
ad

which clearly meets the compatibility and collision-resistance requirements. Com-
bining Theorem 1 with Theorem 4 gives the following theorem.

Theorem 5. Let IBE = (S,P ,K, E ,D) be the extended Waters scheme un-
der the above identity renaming transform. Let A be a Φpoly(d)-RKA adversary
against IBE making qKD key derivation queries. Then there is an algorithm B
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solving the q-Extended Decision Bilinear Diffie-Hellman problem for q = d such
that

Adv
ibe−rka

IBE ,Φpoly(d)
(A) ≤ 32(n+ 1) · qKD ·Adv

q-edbdh(B) . (11)

As in the affine case, we may apply results of [4] to obtain a Φpoly(d)-RKA-
secure CCA-PKE scheme and a Φpoly(d)-RKA-secure signature scheme. We omit
the detailed but obvious description of these schemes, noting merely that they
are efficient and secure in the standard model under the q-EDBDH assumption.
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