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Abstract. In the last years the use of large matrices and their alge-
braic properties proved to be useful to instantiate new cryptographic
primitives like Lossy Trapdoor Functions and encryption schemes with
improved security, like Key Dependent Message resilience. In these con-
structions the rank of a matrix is assumed to be hard to guess when
the matrix is hidden by elementwise exponentiation. This problem, that
we call here the Rank Problem, is known to be related to the Decisional
Diffie-Hellman problem, but in the known reductions between both prob-
lems there appears a loss-factor in the advantage which grows linearly
with the rank of the matrix.
In this paper, we give a new and better reduction between the Rank prob-
lem and the Decisional Diffie-Hellman problem, such that the reduction
loss-factor depends logarithmically in the rank. This new reduction can
be applied to a number of cryptographic constructions, improving their
efficiency. The main idea in the reduction is to build from a DDH tuple
a matrix which rank shifts from r to 2r, and then apply a hybrid argu-
ment to deal with the general case. In particular this technique widens
the range of possible values of the ranks that are tightly related to DDH.
On the other hand, the new reduction is optimal as we show the nonexis-
tence of more efficient reductions in a wide class containing all the “nat-
ural” ones (i.e., black-box and algebraic). The result is twofold: there is
no (natural) way to build a matrix which rank shifts from r to 2r+α for
α > 0, and no hybrid argument can improve the logarithmic loss-factor
obtained in the new reduction.
The techniques used in the paper extend naturally to other “algebraic”
problems like the Decisional Linear or the Decisional 3-Party Diffie-
Hellman problems, also obtaining reductions of logarithmic complexity.

Keywords: Rank Problem, Decisional Diffie-Hellman Problem, Black-Box Re-
ductions, Algebraic Reductions, Decision Linear Problem

1 Introduction

Motivation. In the last years the use of large matrices and their algebraic
properties proved to be useful to instantiate new cryptographic primitives like
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Lossy Trapdoor Functions [7, 8, 12, 13] and encryption schemes with improved
security, like Key Dependent Message [2]. In these constructions the rank of a
matrix is assumed to be hard to guess when the matrix is hidden by elementwise
exponentiation. This problem, that we call here the Rank Problem, is known to
be related to the Decisional Diffie-Hellman (DDH) problem, but in the known
reductions between both problems there appears a loss-factor in the adversary’s
advantage which grows linearly with the rank of the matrix. The Rank Problem
first appeared in some papers under the names Matrix-DDH [2] and Matrix
d-Linear [10].

In the cryptographic constructions mentioned above, some secret values (mes-
sages or keys) are encoded as group element vectors and then hidden by multi-
plying them by an invertible matrix. The secret value is recovered by inverting
the operations: first multiplying by the inverse matrix and then inverting the
encoding as group elements. This last step requires to encode a few bits (typi-
cally, a single bit) in each group element, forcing the length of the vector and the
rank of the matrix to be comparable to the binary length of the secret. Security
of these schemes is related to the indistinguishability of full-rank matrices from
low-rank (e.g., rank 1) matrices: If the invertible matrix is replaced by a low rank
one, the secret value is information-theoretically hidden. Therefore, the security
of these schemes is related to the hardness of the Rank problem for matrices of
large rank (e.g., 320 or 1024).

Reductions of the DDH problem to the Rank problem are based in the ob-
vious relationship between them in the case of 2 × 2 matrices. Namely, from

a DDH problem tuple (g, gx, gy, gz) one can build a matrix gM =
(
g gx

gy gz

)
,

which is the elementwise exponentiation of the Zq matrix M =
(

1 x
y z

)
. For a

0-instance of DDH (i.e., z = xy), detM = 0, while for a 1-instance (i.e., z 6= xy),
detM 6= 0, and therefore, the rank of M shifts from 1 to 2 depending on the
DDH instance. This technique can be applied to larger (even non-square) matri-
ces by just padding the previous 2× 2 block with some ones in the diagonal and
zeroes elsewhere, just increasing the rank from 1 or 2 to r + 1 or r + 2, where r
is the number of ones added to the diagonal.

Now, a general reduction of DDH to any instance of the rank problem (i.e.,
telling apart hidden matrices of ranks r1 and r2) is obtained by applying a hybrid
argument, incurring into a loss-factor in the adversary’s advantage which grows
linearly in the rank difference r2 − r1.

This loss-factor has an extra impact on the efficiency of the cryptographic
schemes based on matrices: For the same security level the size of the group has
to be increased, and therefore the sizes of public keys, ciphertexts, etc. increase
accordingly.

Until now it was an open problem to find a tighter reduction of DDH to the
Rank problem. To face this kind of problems one can choose between building
new tighter reductions or showing impossibility results. However, most of the
known impossibility results are quite limited because they only claim the nonex-



istence of reductions of certain type (e.g., black-box, algebraic, etc.). But still
these negative results have some value since they capture all possible ‘natural’
reductions between computational problems, at least in the generic case (e.g.,
without using specific properties of certain groups and their representation).

Main Results. In this paper, we give a new and better reduction between
the Rank and the DDH problems, such that the reduction loss-factor grows
logarithmically with the rank of the matrices. This new reduction can be applied
to a number of cryptographic constructions improving their efficiency. The main
idea in the reduction is to build a matrix from a DDH tuple which rank shifts
from r to 2r, and then apply a hybrid argument to deal with the general case.

On the other hand, the new reduction is optimal: We show the nonexistence
of more efficient reductions in a wide class containing all the “natural” ones
(i.e., black-box and algebraic). The result is twofold: There is no (natural) way
to build a matrix which rank shifts from r to 2r + α for α > 0, and no hybrid
argument can improve the logarithmic loss-factor obtained in the new reduction.

Basically, the new reduction achieves the following result.

(Informal) Theorem 1 For any `1, `2, r1, r2 such that 1 ≤ r1 < r2 ≤ min(`1, `2)
there is a reduction of the DDH problem to the Rank problem for `1×`2 matrices
of rank either r1 or r2, where the advantage of the problem solvers fulfil

AdvRank(G, `1, `2, r1, r2; t) ≤
⌈

log2

r2
r1

⌉
AdvDDH(G; t′)

and their running times t and t′ are essentially equal.

In particular, our reduction relates the DDH Problem to the hardness of
telling apart ` × ` full rank matrices from rank 1 matrices with a loss-factor of
only log2(`), instead of the factor ` obtained in previous reductions. Moreover,
the previous reductions are tight only for ranks r1 and r2 such that r2 = r1 + 1,
while our results show that there exists a tight reduction for r1 < r2 ≤ 2r1.

At this point, it arises the natural question of whether a tight reduction exists
for a wider range of the ranks r1 and r2. However, we show the optimality of the
new reduction by the following negative result.

(Informal) Theorem 2 For any `1, `2, r1, r2 such that 1 ≤ r1 < r2 ≤ min(`1, `2)
and any ‘natural’ reduction R of DDH to the Rank problem, the advantages of
the Rank problem solver A and the DDH solver R([A]) fulfil

AdvRankR[A](G, `1, `2, r1, r2; t) ≥
⌈

log2

r2
r1

⌉
AdvDDHA(G; t′)− ε

where the running times t, t′ are similar and ε is a negligible quantity.

Here, ‘natural reduction’ basically means a black-box reduction which trans-
forms a DDH tuple into a hidden matrix by performing only (probabilistic)



algebraic manipulations, which are essentially linear combinations of the expo-
nents with known integer coefficients, depending on the random coins of the
reduction.

All generic reductions from computational problems based on cyclic groups
fall into this category. Therefore, this result has to be interpreted as one can-
not expect finding a tighter reduction for a large class of groups unless a new
(non-black-box or not algebraic) technique is used. Nevertheless, falsifying this
negative result would imply an improvement on the efficiency of the cryptosys-
tems based on matrices, or even the discovery of a new reduction technique.

The techniques used in the paper extend naturally to other “algebraic” prob-
lems like the Decisional Linear (DLin) or the Decisional 3-Party Diffie-Hellman
(D3DH) problems, also obtaining reductions with logarithmic complexity. Actu-
ally, these reductions recently appeared in [4] and [5].

(Informal) Theorem 3 For any `1, `2, r1, r2 such that 2 ≤ r1 < r2 ≤ min(`1, `2)
there is a reduction of the DLin problem to the Rank problem for `1×`2 matrices
of rank either r1 or r2, where the advantage of the problem solvers fulfil

AdvRank(G, `1, `2, r1, r2; t) ≤
⌈

1.71 log2

r2
r1 − 1

⌉
AdvDLin(G; t′)

and their running times t and t′ are essentially equal.

(Informal) Theorem 4 For any `1, `2, r1, r2 such that 2 ≤ r1 < r2 ≤ min(`1, `2)
there is a reduction of the D3DH problem to the Rank problem for `1×`2 matrices
of rank either r1 or r2, where the advantage of the problem solvers fulfil

AdvRank(G, `1, `2, r1, r2; t) ≤
⌈

1.71 log2

r2
r1 − 1

⌉
AdvD3DH(G; t′)

and their running times t and t′ are essentially equal.

Negative results similar to Theorem 2 are also given, but in these two cases
the reductions are shown to be optimal up to a constant factor of 1.71.

Further Research. Some of the ideas and techniques used in the paper suggest
that the problem of the optimality of certain type of reductions for a class of
decisional assumptions can be studied under the Algebraic Geometric point of
view. In particular, this could help to close the gap in the loss-factor between
the reduction and the lower bound when reducing DLin or D3DH to Rank, and
could made possible to obtain similar results for a broad class of computational
problems. A second open problem is how the techniques and results adapt to the
case of composite order groups, specially when the factorization of the order, or
the order itself is unknown.

Roadmap. The paper starts with some notation and basic lemmas, in Section 2.
Then the Rank Problem and the new reduction of DDH is presented in Section 3.
The optimality of the reduction is studied in Section 4. In the last section of the
paper, the previous results are extended to other “algebraic” decisional problems
like DLin or D3DH.



2 Notation and Basic Lemmas

Let G be a group of prime order q, and let g be a random generator of G. For
convenience we will use additive notation for all groups. In particular, 0G denotes
the neutral element in G, whereas 1G denotes the generator g. Analogously, x1G ,
or simply xG , denotes the result of gx, for any integer x ∈ Zq. The additive nota-
tion extends to vectors and matrices of elements in G, in the natural way. That
is, given a vector x = (x1, . . . , x`) ∈ Z`q, we will write xG = ((x1)G , . . . , (x`)G),
and the same for matrices. Zq`1×`2 denotes the set of all `1 × `2 matrices, and
Zq`1×`2;r is used for the subset of those matrices with rank r. In the special
case of invertible matrices we will write GL`(Zq) = Zq`×`;`. The sets of matrices
with entries in G, which we write G`1×`2 , G`1×`2;r and GL`(G), are defined in
the natural way by replacing every matrix M by MG . Notice that the sets are
independent of the choice of the group generator 1G .

An element xG = x1G ∈ G and an integer a ∈ Zq can be operated together:
axG = (ax mod q)1G = (ax)G = xaG . These operations extend to vectors and
matrices in the natural way. Therefore, for any two matrices A ∈ Zq`1×`2 and
B ∈ Zq`2×`3 , we have AGB = ABG = (AB)G .

For convenience we will use the notation A⊕B for block matrix concatena-
tion:

A⊕B =
(
A 0
0 B

)
In addition, I` and 0`1×`2 respectively denote the neutral element in GL`(Zq) and
the null matrix in Zq`1×`2 . The shorthand 0` = 0`×` is also used. Given a matrix
A ∈ Zq`1×`2 , the transpose of A is denoted by A>, and the vector subspace
spanned by the columns of A is denoted by SpanA ⊆ Z`1q , which dimension
equals rankA.

Uniform sampling of a set S is written as x ∈R S. In addition, sampling
from a probability distribution D which support is included in S is denoted by
x← D, while x← A(a) denotes that x is the result of running a (probabilistic)
algorithm A on some input a.

As it is usual, a positive function f : Z+ → R+ is called negligible if f(λ)
decreases faster than λ−c for any positive constant c. We denote this by f(λ) ∈
negl(λ). Similarly, f(λ) > negl(λ) denotes that f(λ) is non negligible in λ.

Lemma 1. The following three natural group actions are transitive:1

1. the left-action of GL`1(Zq) on Zq`1×`2;`2 , for `1 ≥ `2, defined by A 7→ UA,
where U ∈ GL`1(Zq) and A ∈ Zq`1×`2;`2 ,

2. the right-action of GL`2(Zq) on Zq`1×`2;`1 , for `1 ≤ `2, defined by A 7→ AV ,
where V ∈ GL`2(Zq) and A ∈ Zq`1×`2;`1 ,

1 The action of a group G on a set A is transitive if for any a, b ∈ A there exists g ∈ G
such that b = g · a. As a consequence, if g ∈R G then for any a ∈ A, g · a is uniform
in A.



3. the left-right-action of GL`1(Zq) × GL`2(Zq) on Zq`1×`2;r, defined by A 7→
UAV , where U ∈ GL`1(Zq), V ∈ GL`2(Zq) and A ∈ Zq`1×`2;r.

Lemma 2 (Rank Decomposition). Given any matrix A ∈ Zq`1×`2;r, there
exist matrices L ∈ Zq`1×r;r and R ∈ Zqr×`2;r such that A = LR.

3 The Rank Problem and The New Reduction of DDH
to Rank

We consider an assumption related to matrices, which is weaker than some well-
known assumptions like the Decisional Diffie-Hellman, the Decisional Linear [1]
and the Decisional 3-Party Diffie-Hellman [3, 6, 9] assumptions. Given an (addi-
tive) cyclic group G of prime order q of binary length λ, the Rank(G, `1, `2, r1, r2)
problem informally consists of distinguishing if a given matrix in Zq`1×`2 has ei-
ther rank r1 or rank r2, for given integers r1 < r2. The problem is formally
defined through the following two experiments between a challenger and a dis-
tinguisher A.

Experiment ExpRankbA(G, `1, `2, r1, r2) is defined as follows, for b = 0, 1.

1. If b = 0, the challenger chooses M ∈R Zq`1×`2;r1 and sends MG to A.
If b = 1, the challenger chooses M ∈R Zq`1×`2;r2 and sends MG to A.

2. The distinguisher A outputs a bit b′ ∈ {0, 1}.

Let Ωb be the event that A outputs b′ = 1 in ExpRankbA(G, `1, `2, r1, r2).
The advantage of A is defined as AdvRankA(G, `1, `2, r1, r2) = |Pr[Ω0] −
Pr[Ω1]|. We can then define

AdvRank(G, `1, `2, r1, r2; t) = max
A
{AdvRankA(G, `1, `2, r1, r2)}

where the maximum is taken over all A running within time t.

Definition 1. The Rank(G, `1, `2, r1, r2) assumption in a group G states that
AdvRank(G, `1, `2, r1, r2; t) is negligible in λ = log |G| for any value of t that is
polynomial in λ.

The Rank assumption appeared in recent papers under the names Matrix-
DDH [2] and Matrix d-Linear [10]. However, the reduction given in the next
proposition substantially improves the reductions previously known. Namely,
the loss factor in the new reduction grows no longer linearly but logarithmically
in the rank.

Firstly, note that the Rank(G, `1, `2, r1, r2) problem is random self-reducible,
since by Lemma 1 given M0 ∈ Zq`1×`2;k, for random L ∈R GL`1(Zq) and R ∈R

GL`2(Zq) the product LM0R is uniformly distributed in Zq`1×`2;k.

Lemma 3. Any distinguisher for Rank(G, `1, `2, k − δ, k), `1, `2 ≥ 2, k ≥ 2,
1 ≤ δ ≤

⌊
k
2

⌋
can be converted into a distinguisher for the Decisional Diffie-

Hellman (DDH) problem, with the same advantage and with essentially the same
running time.



Proof. Given a DDH instance (1, x, y, z)G , the DDH distinguisher builds the
`1 × `2 matrix

MG =
(

1 x
y z

)
G
⊕ · · · ⊕

(
1 x
y z

)
G︸ ︷︷ ︸

δ times

⊕Ik−2δG ⊕ 0(`1−k)×(`2−k)G

and submits the randomized matrix LMGR to the Rank(G, `1, `2, k − δ, k) dis-
tinguisher, where L ∈R GL`1(Zq) and R ∈R GL`2(Zq). Notice that if z = xy
mod q then the resulting matrix is a random matrix in G`1×`2;k−δ. Otherwise, it
is a random matrix in G`1×`2;k. ut

Theorem 1. For any `1, `2, r1, r2 such that 1 ≤ r1 < r2 ≤ min(`1, `2) we have,

AdvRank(G, `1, `2, r1, r2; t) ≤
⌈

log2

r2
r1

⌉
AdvDDH(G; t′)

where t′ = t+O(`1`2(`1 + `2)), taking the cost of a scalar multiplication in G as
one time unit.

Proof. We proceed by applying a hybrid argument. Let us consider the sequence
of integers {ni} defined by ni = r12i, and let k be the smallest index such
that nk ≥ r2, that is k = dlog2 r2 − log2 r1e. Then define a sequence of random
matrices {MiG}, where Mi ∈R Zq`1×`2;ni for i = 0, . . . , k − 1, and Mk ∈R

Zq`1×`2;r2 . For any distinguisher ARank with running time upper bounded by t,
let pi = Pr[1← ARank(MiG)]. By Lemma 3,

|pi+1 − pi| = AdvRankARank
(G, `1, `2, ni, ni+1) ≤ AdvDDH(G; t′)

for i = 0, . . . , k − 2, and

|pk − pk−1| = AdvRankARank
(G, `1, `2, nk−1, r2) ≤ AdvDDH(G; t′)

Therefore,

AdvRankARank
(G, `1, `2, r1, r2) = |pk − p0| ≤ |p1 − p0|+ . . .+ |pk − pk−1| ≤

≤ k ·AdvDDH(G; t′)

which leads to the desired result. ut

4 Optimality of the Reduction

In this section we show that there does not exist any reduction of DDH to the
Rank problem that improves the result in Theorem 1, unless it falls out of the
class of reductions that we call black-box algebraic reductions.



4.1 Black-Box Algebraic Reductions

Formally, a reduction R of a computational problem P1 to a problem P2 effi-
ciently transforms any probabilistic polynomial time algorithm A2 solving P2

with a non-negligible advantage ε2 into another probabilistic polynomial time
algorithm A1 = R[A2] solving P1 with a non-negligible advantage ε1. The reduc-
tion R is called black-box if A1 is just a probabilistic polynomial time algorithm
with oracle access to A2.

In this paper we focus on the optimality of a reduction, measured in terms of
the advantages of A1 and A2. However, to be meaningful we need to add another
requirement to the reduction: The running times of A1 and A2 are similar.
Otherwise, one can arbitrarily increase the advantage of A1 by repetition, thus
making more than one oracle call to A2. We must add a qualifier and say that
the reduction is then time-preserving black-box. However, for simplicity we will
omit it and simply refer to black-box reductions.

Following [11], we say that R is algebraic with respect to a group G if it
only performs group operations on the elements of G (i.e., group operation,
inversion and comparison for equality), while there is no limitation in the opera-
tions performed on other data types. Although the notion of black-box algebraic
reduction is theoretically very limited, it captures all the ‘natural’ reductions,
since all known reductions between problems related to the discrete logarithm in
cyclic groups fall into this category. See [11] for a deeper discussion on algebraic
reductions and their relation with the generic group model.

In the definition of an algebraic algorithm R it is assumed that there exists
an efficient extractor that, from the inputs of R (including the random tape) and
the code of R, it extracts a representation of every group element in R’s output
as a multiexponentiation of the base formed by the group elements in the input
of R. However, here we only require that for every value of the random tape of
R there exists such representation, and it is independent of the group elements
on the input of R. More precisely, if g1, . . . , gm ∈ G are the group elements in
the input of R and h1, . . . , hn ∈ G are the group elements in the output, then
for any choice of the other inputs and the random tape, there exist coefficients
αij ∈ Zq such that hi = αi1g1 + . . . + αimgm, for i = 1, . . . , n. Notice that this
is true as long as R performs only group operations on the group elements.

We insist in the possible existence of reductions using more intricate opera-
tions other than the group operations defined in G. However, there is little hope
to be able to control the rank of the manipulated matrices, except for the trivial
fact that a random matrix has maximal rank with overwhelming probability.

4.2 Canonical Solvers

In this paper, we consider only reductions R of some decisional problem (like
DDH) to the Rank problem (say Rank(G, `1, `2, r1, r2)). Therefore, in a (time-
preserving) black-box reduction, having oracle access to a solver A2 of Rank
exactly means that R computes some matrix in G`1×`2 , and uses it as input of



A1, then obtaining a bit b′ ∈ {0, 1} as its output. Therefore, R is nothing more
than a way to obtain a matrix from a DDH instance by an algebraic function.

As Rank problem is random self-reducible, one can consider the notion of a
canonical solver A for Rank(G, `1, `2, r1, r2). In a first stage, a canonical solver,
on the input of a matrix MG ∈ G`1×`2 , computes the randomized matrix M ′G =
LMGR for randomly chosen L ∈ GL`1(Zq) and R ∈ GL`2(Zq), and then uses
it as input of the second stage. Observe that MG and M ′G have always the
same rank, and they are nearly independent. Indeed MG and M ′G conditioned
to any specific value of the rank r are independent random variables, and M ′G is
uniformly distributed in G`1×`2;r.

Moreover, for any solver A of Rank(G, `1, `2, r1, r2) we build a canonical
solver A from A with the same advantage, by just inserting the initial random-
ization step. As a consequence, to obtain a negative result about the existence
of black-box reductions of some problem to Rank(G, `1, `2, r1, r2), we only need
to consider how the reduction works for canonical solvers of Rank(G, `1, `2, r1,
r2).

Finally, it should be noticed that a canonical solver is completely character-
ized by a probability vector pA = (pA,i)i∈Z+ , where pA,i = Pr[1 ← A(MG) :
MG ∈R G`1×`2;i]. The advantage of a canonical solver is then AdvRankA =
|pA,r2 − pA,r1 |. Dealing with all canonical solvers of Rank(G, `1, `2, r1, r2) means
considering all possible probability vectors pA such that |pA,r2 − pA,r1 | is non-
negligible.

4.3 More Linear Algebra

Let us see the implications of restricting the reductions to be algebraic. Since here
we reduce the decisional problem DDH to the Rank(G, `1, `2, r1, r2) problem, the
reduction R will receive as input either a 0-instance (i.e., (1G , xG , yG , xyG)) or a
1-instance (i.e., (1G , xG , yG , (xy+s)G)) of the decisional problem (where x, y, s ∈R

Zq). In spite of the instance received, R will compute a matrix MG ∈ G`1×`2 that
depends ‘algebraically’ on the input group elements. Therefore, for any value of
the random tape of R there exist matrices B1, B2, B3, B4 ∈ Zq`1×`2 such that
M = B1 + xB2 + yB3 + (xy + s)B4, where either s = 0 or s ∈R Zq, depending
on the type of instance received by R.

Therefore, we need some properties of the sets of matrices that are linear
combinations of some fixed matrices with coefficients that are multivariate poly-
nomials. The following lemma informally states that matrices in a linear variety
of Zq`×` (of any dimension) are invertible with either zero or overwhelming
probability.

Lemma 4. Let M be a coset of a Zq-vector subspace of Zq`×`, that is, there
exist matrices A,B1, . . . , Bk ∈ Zq`×` for some integer k such that M = {A +
x1B1 + . . .+ xkBk | x1, . . . , xk ∈ Zq}. If GL`(Zq) ∩M 6= ∅ then,

νM =
|GL`(Zq) ∩M|

|M|
> 1− `

q − 1



Proof. 2 Let us choose A ∈ GL`(Zq) ∩ M and let {B1, . . . , Bk} be a base of
the vector space M − A. In any line L ⊂ M containing A there can be at
most ` matrices M ∈ L such that rankM < ` (i.e., detM = 0). Indeed, for
any line L there is a nonzero vector x = (x1, . . . , xk) ∈ Zkq such that L =
{A+µ(x1B1 + . . .+xkBk) | µ ∈ Zq}. Therefore the polynomial equation det(A+
µ(x1B1+. . .+xkBk)) = 0, which is equivalent to Qx(µ) = det(I`+µ(x1B1A

−1+
. . .+xkBkA

−1)) = 0, has at most ` roots because Qx(0) = 1 and λ−`Qx(1/λ) =
det(λI` + x1B1A

−1 + . . . + xkBkA
−1) = 0 if and only if λ is an eigenvalue of

x1B1A
−1 + . . . + xkBkA

−1. Finally, since there are exactly
∣∣PZk−1

q

∣∣ = qk−1
q−1

different lines in M containing A,

νF ≥ 1− `(qk − 1)/(q − 1)
qk

> 1− `

q − 1

as k is the dimension of the vector space M−A, and then |M| = qk. ut

This lemma can be easily generalized to parametrical subsets of linear vari-
eties by replacing each variable xj , j = 1, . . . , k, by a multivariate polynomial
pj(y1, . . . , yn) ∈ Zq[y1, . . . , yn] (or simply, M is now the range of a multivariate
polynomial with matrix coefficients). Here we cannot ensure that the mapping
between the parameter vector y = (y1, . . . , yn) and the matrices in M is one-
to-one. Therefore we will define νM as the probability of obtaining a full-rank
matrix when y ∈R Znq is sampled with the uniform distribution.

Lemma 5. Let M be a subset of Zq`×` defined as M = {p1(y)B1 + . . . +
pk(y)Bk | y ∈ Znq }, where p1(y), . . . , pk(y) ∈ Zq[y] are multivariate polynomials
of total degree at most d, and B1, . . . , Bk ∈ Zq`×` for some integer k. If GL`(Zq)∩
M 6= ∅ then,

νM = Pr[M ∈ GL`(Zq) : M = p1(y)B1 + . . .+ pk(y)Bk, y ∈R Znq ] ≥

≥ 1− `d

q − 1
qn − 1
qn

> 1− `d

q − 1

Proof. The proof is similar, but now we choose A = p1(y0)B1 + . . .+pk(y0)Bk ∈
GL`(Zq) ∩M and define the new polynomials qi(z) = pi(y0 + z) − pi(y0) for
i = 1, . . . k. Now, M \ {A} is partitioned into subsets L∗ = {A + q1(µz)B1 +
. . . + qk(µz)Bk) | µ ∈ Z×q }, where z ∈ Znq \ {0}, each one containing at most
`d singular matrices, since the polynomial Qz(µ) = det(I` + q1(µz)B1A

−1 +
. . . + qk(µz)BkA−1) is nonzero (as Qz(0) = 1), and it has degree at most d`.
Finally, the claimed inequality follows from the fact that there are (qn−1)/(q−1)
different subsets L∗. ut

The above lemmas refer only to invertible matrices but a similar result applies
to (even rectangular) matrices with respect to a specific value of the rank.

2 This lemma and the following one can alternatively be proved by using the Schwartz
lemma [15] (also referred to as Schwartz-Zippel lemma).



Lemma 6. Let M be a subset of Zq`1×`2 defined as M = {p1(y)B1 + . . . +
pk(y)Bk | y ∈ Znq }, where p1(y), . . . , pk(y) ∈ Zq[y] are multivariate polynomials
of total degree at most d, and B1, . . . , Bk ∈ Zq`1×`2 for some integer k. If rm =
maxm∈M rankM then,

νM = Pr[rankM = rm : M = p1(y)B1 + . . .+ pk(y)Bk, y ∈R Znq ] > 1− rmd

q − 1

Proof. We just apply the previous lemma to a projection of the set M. Firstly
choose M0 ∈M such that rankM0 = rm and find matrices L ∈ Zqrm×`1;rm and
R ∈ Zq`2×rm;rm such that rankLM0R = rm, that is LM0R ∈ GLrm

(Zq). This
matrices are really easy to build, since by Lemma 2 there exist L0 ∈ Zq`1×rm;rm

and R0 ∈ Zqrm×`2;rm such that M0 = L0R0. Therefore, we take any L such that
LL0 ∈ GLrm(Zq). For instance, take L as a the all-zero matrix and put rm ones
in its main diagonal, in positions corresponding to rm linearly independent rows
of L0. We similarly proceed with R0 and R.

Now, the projected set M′ = {LMR | M ∈ M} fulfils the conditions of
Lemma 5 and it contains at least one invertible matrix LM0R. Thus,

νM′ = Pr[M ′ ∈ GLrm(Zq) : M ′ = L(p1(y)B1 + . . .+ pk(y)Bk)R, y ∈R Znq ] >

> 1− `rm
q − 1

Moreover, since rank(LMR) ≤ rankM ≤ rm for allM ∈M, then rank(LMR) =
rm implies rankM = rm, and

Pr[rankM = rm : M = p1(y)B1 + . . .+ pk(y)Bk, y ∈R Znq ] ≥ νM′ > 1− `rm
q − 1

ut

This lemma basically says that in a set M defined and sampled as above the
matrices have a specific rank (the maximal rank in the set) with overwhelm-
ing probability, and ranks below the maximal one occur only with negligible
probability.

4.4 The Case of DDH

Now let us consider the specific case of the sets M0 and M1 generated by a
black-box algebraic reduction R from a DDH 0-tuple or 1-tuple, respectively, for
a fixed random tape of R. More precisely,MDDH-0 = {B0 +xB1 + yB2 +xyB3 |
x, y ∈ Zq}, while MDDH-1 = {B0 + xB1 + yB2 + (xy + s)B3 | x, y, s ∈ Zq}, for
some matrices B0, B1, B2, B3 ∈ Zq`1×`2 that could depend on the random tape.
Let rm0 and rm1 be the maximal ranks respectively in MDDH-0 and MDDH-1.
Since the former is a subset of the latter, rm0 ≤ rm1. In addition, it is clear
that rankB0 ≤ rm0, but one can also prove that rankB3 ≤ rm0 and therefore
rm1 ≤ 2rm0, as claimed in the following lemma.



Lemma 7. Let rm0 and rm1 be the maximal ranks respectively in MDDH-0 and
MDDH-1. Then rm0 ≤ rm1 ≤ 2rm0.

Proof. The left inequality is trivial, as mentioned above. To prove the right
one we firstly use Lemma 6 to show that rankB3 ≤ rm0. Indeed, the sub-
set M∗DDH-0 = {B0 + xB1 + yB2 + xyB3 | x, y ∈ Z×q } differs from MDDH-0

in that a negligible fraction of it has been removed. Therefore, the probabil-
ity distributions on both sets (induced by uniformly sampling x and y) are
statistically close. Since for all x, y ∈ Z×q , rank(B0 + xB1 + yB2 + xyB3) =
rank( 1

xyB0 + 1
yB1 + 1

xB2 + B3), and the inversion map x 7→ 1/x is a bijection

in Z×q , the probability distributions of the ranks in M∗DDH-0 and in M∗DDH-0 =
{B3 + xB2 + yB1 + xyB0 | x, y ∈ Z×q } are identical. Therefore, matrices in
MDDH-0 = {B3 +xB2 +yB1 +xyB0 | x, y ∈ Zq} have rank rm0 with overwhelm-
ing probability. Moreover, by Lemma 6, rm0 is precisely the maximal rank in
MDDH-0 and then, rankB3 ≤ rm0.3

Finally, observe that for any M ∈ MDDH-1, M = B0 + xB1 + yB2 + (xy +
s)B3 = (B0 + xB1 + yB2 + xyB3) + sB3 and rankM ≤ rank(B0 + xB1 + yB2 +
xyB3) + rank(sB3) ≤ 2rm0, because B0 + xB1 + yB2 + xyB3 ∈MDDH-0. ut

The previous discussion deals with a fixed arbitrary random tape of the re-
duction R. However, the overall performance of R depends on the aggregation of
the contributions of all possible values of the random tape. Technically, given a
particular canonical solver A of Rank(G, `1, `2, r1, r2), described by its probabil-
ity vector pA as defined in Section 4.2, the advantage of R[A] can be computed
as

AdvDDHR[A](G) =

∣∣∣∣∣∣
min(`1,`2)∑

r=0

(π0,r − π1,r)pAr

∣∣∣∣∣∣ = |(π0 − π1) · pA|

where

π0,r = Pr[rankM = r : M ← R(1G , xG , yG , xyG), x, y ∈R Zq]

and

π1,r = Pr[rankM = r : M ← R(1G , xG , yG , (xy + s)G), x, y, s ∈R Zq]

For convenience, we also introduce the cumulative probabilitiesΠb,r =
∑r
i=0 πb,i,

b ∈ {0, 1}.
Since the reduction R must work for any successful solver A, for every prob-

ability vector pA such that |pAr1 − pAr2 | = AdvRankA(G, `1, `2, r1, r2) is non-
negligible, the advantage AdvDDHR[A](G) must be also non-negligible. This
implies the existence of α > negl(λ) such that4

|π0,r − π1,r| ∈ negl(λ) ∀r 6∈ {r1, r2}
3 A very similar trick also shows that rankB1 and rankB2 ar at most rm0. However,

it is not clear how to extend this argument to arbitrary multivariate polynomials.
4 To prove it, consider the fact that there cannot exist any probability vector pA

orthogonal to π0 − π1 such that |pAr1 − pAr2 | > negl(λ).



|π0,r1 − π1,r1 | = α
|π0,r2 − π1,r2 | = α± negl(λ) (1)

Moreover,

AdvDDHR[A](G) ≤ |pAr1 − pAr2 |α+ negl(λ) =
= αAdvRankA(G, `1, `2, r1, r2) + negl(λ)

All that remains is to find an upper bound of the reduction loss-factor α.
By Lemma 6 we know that for every value of the random tape, Pr[rankM <

rmb : M ← MDDH-b] ∈ neglλ for b ∈ {0, 1}, and by definition of rmb,
Pr[rankM ≤ rmb : M ← MDDH-b] = 1. Therefore, considering all values of
the random tape of R,5

Πb,i = Pr[rmb ≤ i] + negl(λ) b ∈ {0, 1} (2)

where now rm0 and rm1 are random variables. By Lemma 7, rm0 ≤ rm1 ≤ 2rm0,
which implies6 Pr[rm1 ≤ i] ≤ Pr[rm0 ≤ i] ≤ Pr[rm1 ≤ 2i], for arbitrary i, and
by (2),

Π1,i − negl(λ) ≤ Π0,i ≤ Π1,2i + negl(λ) (3)

Now, using left hand side of (3) for i = r1 we get Π1,r1 ≤ Π0,r1 +negl(λ), and
combined with (1), we obtain π0,r1 = π1,r1 + α and π1,r2 ≤ π0,r2 + α+ negl(λ).
In addition, for any i such that r1 ≤ i < r2,

Π0,i = Π1,i + α± negl(λ) (4)

Let us assume now that r2 > 2kr1 for some k ≥ 1. Then, applying the right
hand side of (3) and (4),

Π0,2kr1 = Π1,2kr1 + α± negl(λ) ≥ Π0,2k−1r1 + α− negl(λ)

and by induction,

Π0,2kr1 ≥ Π0,r1 + kα− negl(λ) ≥ (k + 1)α− negl(λ)

where (4) is used again in the last step.
Finally, since the leftmost sum is upper bounded by 1,

α ≤ 1 + negl(λ)
k + 1

for any k < log2 r2 − log2 r1. Therefore,

α ≤ 1 + negl(λ)
dlog2 r2 − log2 r1e

The above discussion proves the following theorem.
5 If rmb ≤ i then rankM ≤ i with probability 1. Otherwise, rankM ≤ i only with

negligible probability.
6 Observe that rm1 ≤ i ⇒ rm0 ≤ i ⇒ rm1 ≤ 2i.



Theorem 2. For any `1, `2, r1, r2 such that 1 ≤ r1 < r2 ≤ min(`1, `2) and any
time-preserving black-box algebraic reduction R of DDH(G) to the Rank(G, `1,
`2, r1, r2) problem, any canonical Rank solver A and the corresponding DDH
solver R([A]) fulfil

AdvRankR[A](G, `1, `2, r1, r2; t) ≥
⌈

log2

r2
r1

⌉
AdvDDHA(G; t′)− negl(λ)

where the running times t, t′ are similar.
ut

5 Reductions of Other Decisional Problems

We consider now other well-known computational problems, namely the Deci-
sional Linear (DLin) [1] and the Decisional 3-Party Diffie-Hellman (D3DH) [3,
6, 9] problems.

The techniques described above can be applied to these problems by defining
a suitable basic matrix block M (of suitable size) where the problem instance
is embedded, and use as many copies of it as possible. More precisely, we call
algebraic to any decisional problem (such as DDH, DLin or D3DH) in which the
problem instance is defined by a tuple of elements in a (cyclic) group which dis-
crete logarithms fulfil or not a specific algebraic equation. The way the problem
instance is embedded into the matrix M is by rewriting the algebraic equation
as detM = 0.

5.1 The Decisional Linear Problem

The Decisional Linear problem consists on distinguishing between the distribu-
tions (xG , yG , zG , tG , (x−1z + y−1t)G) ∈ G5 and (xG , yG , zG , tG , uG) ∈ G5, where
x, y, z, t, u ∈R Zq are chosen independently and uniformly at random. More for-
mally, we consider the following two experiments between a challenger and a
distinguisher A.

Experiment ExpDLinbA(G) is defined as follows, for b = 0, 1.

1. The challenger chooses random x, y, z, t, u ∈R Zq. If b = 0, the challenger
sends the tuple (1G , xG , yG , zG , tG , (x−1z + y−1t)G) ∈ G6 to A. Otherwise, it
sends the tuple (1G , xG , yG , zG , tG , uG) ∈ G6.

2. The distinguisher A outputs a bit b′ ∈ {0, 1}.

Let Ωb be the event that A outputs b′ = 1 in ExpDLinbA(G). The advantage
ofA is AdvDLinA(G) = |Pr[Ω0]−Pr[Ω1]|. We can then define AdvDLin(G; t) =
maxA {AdvDLinA(G)}, where the maximum is taken over all A running within
time t.

Definition 2 (DLin). The Decisional Linear assumption in a group G states
that AdvDLin(G; t) is negligible in λ = log |G| for any value of t that is polyno-
mial in λ.



Lemma 8. Any distinguisher for Rank(G, `1, `2, k − δ, k), `1, `2 ≥ 3, k ≥ 3,
1 ≤ δ ≤

⌊
k
3

⌋
can be converted into a distinguisher for the Decisional Linear

(DLin) problem, with the same advantage and running essentially within the
same time.

Proof. Given a DLin instance (1, x, y, z, t, u)G the DLin distinguisher builds the
`1 × `2 matrix

MG =

x 0 1
0 y t
z 1 u


G

⊕ · · · ⊕

x 0 1
0 y t
z 1 u


G︸ ︷︷ ︸

δ times

⊕Ik−3δG ⊕ 0(m−k)×(n−k)G

and submits the randomized matrix LMGR to the Rank(G, `1, `2, k − δ, k) dis-
tinguisher, where L ∈R GL`1(Zq) and R ∈R GL`2(Zq). Notice that if u =
x−1z+ y−1t mod q then the resulting matrix is a random matrix in G`1×`2;k−δ.
Otherwise, it is a random matrix in G`1×`2;k. ut

Theorem 3. For any `1, `2, r1, r2 such that 2 ≤ r1 < r2 ≤ min(`1, `2),

AdvRank(G, `1, `2, r1, r2; t) ≤
⌈

log(3r2)− log(3r1 − 2)
log 3− log 2

⌉
AdvDLin(G; t′) ≤

≤
⌈

1.71 log2

r2
r1 − 1

⌉
AdvDLin(G; t′)

Proof. We can apply a hybrid argument similar to the one used in Theorem 1. Let
us consider the sequence of integers {ni} defined by the recurrence n0 = r1 and
ni+1 =

⌊
3ni

2

⌋
, and let k be the smallest index such that nk ≥ r2. Then define a

sequence of random matrices {MiG}, where Mi ∈R Zq`1×`2;ni for i = 0, . . . , k−1,
and Mk ∈R Zq`1×`2;r2 . For any distinguisher ARank with running time upper
bounded by t, let pi = Pr[1← ARank(MiG)]. By Lemma 8,

|pi+1 − pi| = AdvRankARank
(G, `1, `2, ni, ni+1) ≤ AdvDLin(G; t′)

for i = 0, . . . , k − 2, and

|pk − pk−1| = AdvRankARank
(G, `1, `2, nk−1, r2) ≤ AdvDLin(G; t′)

Therefore,

AdvRankARank
(G, `1, `2, r1, r2) = |pk − p0| ≤ |p1 − p0|+ . . .+ |pk − pk−1| ≤

≤ k ·AdvDLin(G; t′)

On the other hand, as
⌊

3x
2

⌋
≥ 3x−1

2 then nk ≥
(

3
2

)k (
r1 − 2

3

)
which implies that

k ≤ log(3r2)−log(3r1−2)
log 3−log 2 . ut

The optimality of the reduction presented above can be analyzed with the
same tools described in Section 4, but adapting some parts of Subsection 4.4.



First of all, we can describe the 0-instances and the 1-instances for the DLin
problem in a slightly different way. Namely, MDLin-0 = {B1 + xB2 + yB3 +
xαB4 + yβB5 + (α + β)B6 | x, y, α, β ∈ Zq}, while MDLin-1 = {B1 + xB2 +
yB3 + xαB4 + yβB5 + (α + β + s)B6 | x, y, α, β, s ∈ Zq}, for some matrices
B1, B2, B3, B4, B5, B6 ∈ Zq`1×`2 that could depend on the random tape of the
reduction. By a similar trick one can manage to reprove Lemma 7 also for DLin
and the rest of the analysis works equally well. The trick in this case is excluding
the case α + β = 0 (which affects to a negligible fraction of the matrices) and
then using a more elaborate bijection which transforms B1+xB2+yB3+xαB4+
yβB5 + (α+β)B6 into γB1 +xγB2 + yγB3 +xαγB4 + y(1−αγ)B5 +B6, where
γ = 1/(α+ β).

However, the logarithmic expression (which is identical to the one in Theo-
rem 2) for the maximal loss-factor in the reduction is different from the loss-factor
in the above reduction, leaving a gap that could mean that a better ‘natural’
reduction is still possible. Nevertheless, the authors think that a more detailed
analysis of the maximal ranks rm0 and rm1 could be possible, which would im-
prove the negative result obtained here.

5.2 The D3DH Problem

The Decisional 3-Party Diffie-Hellman (D3DH) problem [3, 6, 9] consists in telling
apart the two distributions (xG , yG , zG , (xyz)G) ∈ G4 and (xG , yG , zG , tG) ∈ G4,
where x, y, z, t ∈R Zq are chosen independently at random. The problem is for-
mally defined through the following two experiments between a challenger and
a distinguisher A.

Experiment ExpD3DHb
A(G) is defined as follows, for b = 0, 1.

1. The challenger chooses random x, y, z, t ∈R Zq. If b = 0, the challenger sends
the tuple (1G , xG , yG , zG , (xyz)G) ∈ G5 to A. Otherwise, it sends the tuple
(1G , xG , yG , zG , tG) ∈ G5.

2. The distinguisher A outputs a bit b′ ∈ {0, 1}.

LetΩb be the event thatA outputs b′ = 1 in ExpD3DHb
A(G). The advantage

of A is AdvD3DHA(G) = |Pr[Ω0]−Pr[Ω1]| and we define AdvD3DH(G, t) =
maxA {AdvD3DHA(G)}, where the maximum is taken over all A running
within time t.

Definition 3. The Decisional 3-Party Diffie-Hellman assumption in a group G
states that AdvD3DH(G, t) is negligible in λ = log |G| for any value of t that
is polynomial in λ.

Similar to the Decisional Linear problem, it turns out that the D3DH problem
is easier than the Rank problem.

Theorem 4. For any `1, `2, r1, r2 such that 2 ≤ r1 < r − 2 ≤ min(`1, `2),

AdvRank(G, `1, `2, r1, r2; t) ≤
⌈

log(3r2)− log(3r1 − 2)
log 3− log 2

⌉
AdvD3DH(G; t′) ≤



≤
⌈

1.71 log2

r2
r1 − 1

⌉
AdvD3DH(G; t′)

Proof. The proof only differs from the proof of Proposition 3 in the 3× 3 blocks
built from a problem instance, in the proof of Lemma 3. Indeed, given the D3DH
instance (1, x, y, z, t)G the matrix x −1 0

0 y 1
t 0 z


has rank 2 or 3 depending on whether t = xyz mod q. ut

The analysis of the optimality of this reduction is comparable to the case of
the Decisional Linear problem. Here the sets of matrices are MD3DH-0 = {B1 +
xB2+yB3+zB4+xyzB5 | x, y, z ∈ Zq} andMD3DH-1 = {B1+xB2+yB3+zB4+
(xyz+s)B5 | x, y, z, s ∈ Zq}, for some matrices B1, B2, B3, B4, B5 ∈ Zq`1×`2 that
could depend on the random tape of the reduction. The same gap between the
constructive and negative results is obtained.

5.3 Further Generalizations

The ideas presented before, both the constructive and the negative results for
reductions of some decisional problems to the Rank problem seems to be easily
applicable to a wide class of decisional problems. On the one hand, the con-
struction of a reduction to the Rank problem only needs a way to encode the
difference the 0-instance and the 1-instance of the problem as the determinant of
a square matrix M built up from the group elements in the instances. Typically
a 0-instance corresponds to detM = 0. Following this approach, it is straight-
forward to obtain efficient reductions for instance for the family of Decisional
r-Linear Problems, with arbitrary r.

On the other hand, the negative results about the existence of efficient reduc-
tions also rely on algebraic considerations, mainly related to the sets M which
can be seen as special affine algebraic varieties. It is an open problem to obtain
a description of a wide class of algebraic decisional problems for which a general
negative result can be derived.

In this paper, only prime order groups are considered. However, it would be
interesting to investigate whether the techniques presented here can be applied to
composite order groups, where the matrices involved in the analysis are defined
over rings, and this can introduce some extra difficulties to deal with notions
like the rank and the random self-reducibility.
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