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Abstract. This paper presents efficient structure-preserving signature schemes based on
assumptions as simple as Decisional-Linear. We first give two general frameworks for
constructing fully secure signature schemes from weaker building blocks such as varia-
tions of one-time signatures and random-message secure signatures. They can be seen as
refinements of the Even-Goldreich-Micali framework, and preserve many desirable prop-
erties of the underlying schemes such as constant signature size and structure preserva-
tion. We then instantiate them based on simple (i.e., not q-type) assumptions over sym-
metric and asymmetric bilinear groups. The resulting schemes are structure-preserving
and yield constant-size signatures consisting of 11 to 17 group elements, which com-
pares favorably to existing schemes relying on q-type assumptions for their security.

Keywords. Structure-preserving signatures, One-time signatures, Groth-Sahai proof sys-
tem, Random message attacks

1 Introduction

A structure-preserving signature (SPS) scheme [1] is a digital signature scheme with two struc-
tural properties (i) the verification keys, messages, and signatures are all elements of a bilinear
group; and (ii) the verification algorithm checks a conjunction of pairing product equations
over the key, the message and the signature. This makes them compatible with the efficient
non-interactive proof system for pairing-product equations by Groth and Sahai (GS) [30].
Structure-preserving cryptographic primitives promise to combine the advantages of optimized
number theoretic non-blackbox constructions with the modularity and insight of protocols that
use only generic cryptographic building blocks.

Indeed the instantiation of known generic constructions with a SPS scheme and the GS
proof system has led to many new and more efficient schemes: Groth [29] showed how to
construct an efficient simulation-sound zero-knowledge proof system (ss-NIZK) building on
generic constructions of [17, 39, 34]. Abe et al. [4] show how to obtain efficient round-optimal
blind signatures by instantiating a framework by Fischlin [20]. SPS are also important build-
ing blocks for a wide range of cryptographic functionalities such as anonymous proxy signa-
tures [22], delegatable anonymous credentials [6], transferable e-cash [23] and compact ver-
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ifiable shuffles [16]. Most recently, [31] show how to construct a structure preserving tree-
based signature scheme with a tight security reduction following the approach of [26, 18]. This
signature scheme is then used to build a ss-NIZK which in turn is used with the Naor-Yung-
Sahai [35, 38] paradigm to build the first CCA secure public-key encryption scheme with a
tight security reduction. Examples for other schemes that benefit from efficient SPS are [7, 11,
8, 32, 27, 5, 37, 24, 21, 28].

Because properties (i) and (ii) are the only dependencies on the SPS scheme made by these
constructions, any structure-preserving signature scheme can be used as a drop-in replacement.
Unfortunately, all known efficient instantiations of SPS [4, 1, 2] are based on so-called q-type
or interactive assumptions that are primarily justified based on the Generic Group model. An
open question since Groth’s seminal work [29] (only partially answered by [15]) is to construct
a SPS scheme that is both efficient – in particular constant-size in the number of signed group
elements – and that is based on assumptions that are as weak as those required by the GS proof
system itself.
Our contribution. Our first contribution consists of two generic constructions for chosen mes-
sage attack (CMA) secure signatures that combine variations of one-time signatures and signa-
tures secure against random message attacks (RMA). Both constructions inherit the structure-
preserving and constant-size properties from the underlying components. The second contri-
bution consists in the concrete instantiations of these components which result in constant-size
structure-preserving signature schemes that produce signatures consisting of only 11 to 17
group elements and that rely only on basic assumptions such as Decisional-Linear (DLIN) for
symmetric bilinear groups and analogues of DDH and DLIN for asymmetric bilinear groups.
To our knowledge, these are the first constant-size structure-preserving signature schemes that
eliminate the use of q-type assumptions while achieving reasonable efficiency.

We instantiate the first generic construction for symmetric (Type-I) and the second for
asymmetric (Type-III) pairing groups. See Table 1 in Section 7 for the summary of efficiency
of the resulting schemes. We give more details on our generic constructions and their instanti-
ations:

– The first generic construction (SIG1) combines a new variation of one-time signatures
which we call tagged one-time signatures and signatures secure against random message
attacks (RMA). A tagged one-time signature scheme, denoted by TOS, is a signature
scheme that attaches a fresh tag to a signature. It is unforgeable with respect to tags that
are used only once. In our construction, a message is signed with our TOS scheme using
a fresh random tag, and then the tag is signed with the second signature scheme, denoted
by rSIG. Since the rSIG scheme only signs random tags, RMA-security is sufficient.

– The second generic construction (SIG2) combines partial one-time signatures and sig-
natures secure against extended random message attacks (XRMA). The latter is a novel
notion that we explain below. Partial one-time signatures, denoted by POS, are one-time
signatures for which only a part of the one-time key is renewed for every signing oper-
ation. They were first introduced by Bellare and Shoup [9] under the name of two-tier
signatures. In our construction, a message is signed with the POS scheme and then the
random one-time public-key is certified by the second signature scheme, denoted by xSIG.
The difference between a TOS scheme and a POS scheme is that a one-time public-key is
associated with a one-time secret-key. Since the one-time secret-key is needed for signing,
it must be known to the reduction in the security proof. XRMA-security guarantees that
xSIG is unforgeable even if the adversary is given auxiliary information associated with
the randomly chosen messages (it is a random coin used for selecting the message). The
auxiliary information facilitates access to the one-time secret-key by the reduction.
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– To instantiate SIG1, we construct structure-preserving TOS and rSIG signature schemes
based on DLIN over Type-I bilinear groups. Our TOS scheme yields constant-size sig-
natures and tags. The resulting SIG1 scheme is structure-preserving, produces signatures
consisting of 17 group elements, and relies solely on the DLIN assumption.

– To instantiate SIG2, we construct structure-preserving POS and xSIG signature schemes
based on assumptions that are analogues of DDH and DLIN in Type-III bilinear groups.
The resulting SIG2 scheme is structure-preserving, produces signatures consisting of 11
group elements for uniliteral messages in a base group or 14 group elements for biliteral
messages from both base groups.

The role of partial one-time signatures is to compress a message into a constant num-
ber of random group elements. This observation is interesting in light of [3] that implies the
impossibility of constructing collision resistant and shrinking structure-preserving hash func-
tions, which could immediately yield constant-size signatures. Our (extended) RMA-secure
signature schemes are structure-preserving variants of Waters’ dual-signature scheme [41]. In
general, the difficulty of constructing CMA-secure SPS arises from the fact that the exponents
of the group elements chosen by the adversary as a message are not known to the reduction in
the security proof. On the other hand, for RMA security, it is the challenger that chooses the
message and therefore the exponents can be known in reductions. This is the crucial advan-
tage for constructing (extended) RMA-secure structure-preserving signature schemes based on
Waters’ dual-signature scheme.

Finally, we mention a few new applications. Among these is the achievement of a drastic
performance improvement when using our partial one-time signatures in the work by Hofheinz
and Jager [31] to construct CCA-secure public-key encryption schemes with a proof of security
that tightly reduces to DLIN or SXDH.

Related Works. Even, Goldreich and Micali [19] proposed a generic framework (the EGM
framework) that combines a one-time signature scheme and a signature scheme that is secure
against non-adaptive chosen message attacks (NACMA) to construct a signature scheme that
is secure against adaptive chosen message attacks (CMA).

In fact, our generic constructions can be seen as refinements of the EGM framework. There
are two reasons why the original framework falls short for our purpose. The first is that relaxing
to NACMA does not seem a big help in constructing efficient structure-preserving signatures
since the messages are still under the control of the adversary and the exponents of the mes-
sages are not known to the reduction algorithm in the security proof. As mentioned above,
resorting to (extended) RMA is a great help in this regard. In [19], they also showed that
CMA-secure signatures exist iff RMA-secure signatures exist. The proof, however, does not
follow their framework and their impractical construction is mainly a feasibility result. In fact,
we argue that RMA-security alone is not sufficient for the original EGM framework. As men-
tioned above, the necessity of XRMA security arises in the reduction that uses RMA-security
to argue security of the ordinary signature scheme, as the reduction not only needs to know
the random one-time public-keys, but also their corresponding one-time secret keys in order to
generate the one-time signature components of the signatures. The auxiliary information in the
XRMA definition facilitates access to these secret keys. Similarly, tagged one-time signatures
avoid this problem as tags do not have associated secret values. The second reason that the
EGM approach is not quite suited to our task is that the EGM framework produces signatures
that are linear in the public-key size of the one-time signature scheme. Here, tagged or partial
one-time signature schemes come in handy as they allow the signature size to be only linear in
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the size of the part of the public key that is updated. Thus, to obtain constant-size signatures,
we require the one-time part to be constant-size.

Hofheinz and Jager [31] constructed a SPS scheme by following the EGM framework. The
resulting scheme allows tight security reduction to DLIN but the size of signatures depends log-
arithmically to the number of signing operation as their NACMA-secure scheme is tree-based
like the Goldwasser-Micali-Rivest signature scheme [26]. Chase and Kohlweiss [15] and Ca-
menisch, Dubovitskaya, and Haralambiev [13] constructed SPS schemes with security based
on DLIN that improve the performance of Groth’s scheme [29] by several orders of magnitude.
The size of the resulting signatures, however, are still linear in the number of signed group ele-
ments, and an order of magnitude larger than in our constructions. Camenisch, Dubovitskaya,
and Haralambiev constructed a constant-size SPS scheme based on simple assumptions over
composite-order groups [12].
Full Version. In this extended abstract, we do not have enough space to write complete proofs,
so we omitted them. Please see a full version on Cryptology ePrint Archive (2012/285).

2 Preliminaries
Notation. Appending element y to a sequence X = (x1, . . . , xn) is denoted by (X, y), i.e.,
(X, y) = (x1, . . . , xn, y). When algorithm A is defined for input x and output y, notation
y ← A(x) for x := {x1, . . . , xn} means that yi ← A(xi) is executed for i = 1, . . . , n and y
is set as y := (y1, . . . , yn). For set X , notation a ← X denote a uniform sampling from X .
Independent multiple sampling from the same set X is denoted by a, b, c, ..← X .
Bilinear groups. Let G be a bilinear group generator that takes security parameter 1λ and
outputs a description of bilinear groups Λ := (p,G1,G2,GT , e), where G1, G2 and GT are
groups of prime order p, and e is an efficient and non-degenerating bilinear map G1 × G2 →
GT . Following the terminology in [25] this is a Type-III pairing. In the Type-III setting G1 6=
G2 and there are no efficient mapping between the groups in either direction. In the Type-III
setting, we often use twin group elements, (Ga, Ĝa) ∈ G1 ×G2 for some bases G and Ĝ. For
X in G1, notation X̂ denotes for an element in G2 that logX = log X̂ where logarithms are
with respect to default bases that are uniformly chosen once for all and implicitly associated to
Λ. Should their relation be explicitly stated, we write X ∼ X̂ . We count the number of group
elements to measure the size of cryptographic objects such as keys, messages, and signatures.
For Type-III groups, we denote the size by (x, y) when it consists of x and y elements from
G1 and G2, respectively. We refer to the Type-I setting when G1 = G2 (i.e., there are efficient
mappings in both directions). This is also called the symmetric setting. In this case, we define
Λ := (p,G,GT , e). When we need to be specific, the group description yielded by G will be
written as Λasym and Λsym.
Assumptions. We first define computational and decisional Diffie-Hellman assumptions (CDH1,
DDH1) and decisional linear assumption (DLIN1) for Type-III bilinear groups. Corresponding
more standard assumptions, CDH, DDH, and DLIN, in Type-I groups are obtained by setting
G1 = G2 and G = Ĝ in the respective definitions.

Definition 1 (Computation co-Diffie-Hellman Assumption: CDH1).
The CDH1 assumption holds if, for any p.p.t. algorithm A, the probability Advco-cdh

G,A (λ) :=

Pr[Z = Gxy |Λ← G(1λ);x, y ← Zp;Z ← A(Λ,G,Gx, Gy, Ĝ, Ĝx, Ĝy) ] is negligible in λ.

Definition 2 (Decisional Diffie-Hellman Assumption in G1: DDH1).
Given Λ ← G(1λ), G ← G∗1, (Gx, Gy, Zb) ∈ G1

3 where Z1 = Gx+y , Z0 ← G1 for random
x and y, any p.p.t. algorithm A decides whether b = 1 or 0 only with advantage AdvDDH1

G,A (λ)
that is negligible in λ.
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Definition 3 (Decisional Linear Assumption in G1: DLIN1).
Given Λ ← G(1λ), (G1, G2, G3) ← G∗1

3 and (Gx1 , G
y
2, Zb) where Z1 = Gx+y3 and Z0 =

Gz3 for random x, y, z ∈ Zp, any p.p.t. algorithm A decides whether b = 1 or 0 only with
advantage Advdlin1G,A (λ) that is negligible in λ.

For DDH1 and DLIN1, we define an analogous assumption in G2 (DDH2) by swap-
ping G1 and G2 in the respective definitions. In Type-III bilinear groups, it is assumed that
both DDH1 and DDH2 hold simultaneously. The assumption is called the symmetric exter-
nal Diffie-Hellman assumption (SXDH), and we define advantage Advsxdh

G,C by Advsxdh
G,C (λ) :=

Advddh1
G,A (λ) + Advddh2G,B (λ). We extend DLIN in a similar manner as DDH, and SXDH.

Definition 4 (External Decision Linear Assumption in G1: XDLIN1).
Given Λ ← G(1λ), (G1, G2, G3) ← G∗1

3 and (Gx1 , G
y
2, Ĝ1, Ĝ2, Ĝ3, Ĝ

x
1 , Ĝ

y
2, Zb) where

(G1, G2, G3) ∼ (Ĝ1, Ĝ2, Ĝ3), Z1 = Gx+y3 , and Z0 = Gz3 for random x, y, z ∈ Zp, any
p.p.t. algorithm A decides whether b = 1 or 0 only with advantage Advxdlin

G,A(λ) that is negligi-
ble in λ.

The XDLIN1 assumption is equivalent to the DLIN1 assumption in the generic bilin-
ear group model [40, 10] where one can simulate the extra elements, Ĝ1, Ĝ2, Ĝ3, Ĝ

x
1 , Ĝ

y
2 , in

XDLIN1 fromG1, G2, G3, G
x
1 , G

y
2 in DLIN1. We define the XDLIN2 assumption analogously

by giving Ĝx+y3 or Ĝz3 as Zb, to A instead. Then we define the simultaneous external DLIN
assumption, SXDLIN, that assumes that both XDLIN1 and XDLIN2 hold at the same time.
By Advxdlin2G,A (Advsxdlin

G,A , resp.), we denote the advantage function for XDLIN2 (and SXDLIN,
resp.).

Definition 5 (Double Pairing Assumption in G1 [4]:DBP1).
Given Λ ← G(1λ) and (Gz, Gr) ← G∗1

2, any p.p.t. algorithm A outputs (Z,R) ∈ G∗2
2 that

satisfies 1 = e(Gz, Z) e(Gr, R) only with probability Advdbp1G,A (λ) that is negligible in λ.

The double pairing assumption in G2 (DBP2) is defined in the same manner by swapping
G1 and G2. It is known that DBP1 (DBP2, resp.) is implied by DDH1 (DDH2, resp.) and the
reduction is tight [4]. Note that the double pairing assumption does not hold in Type-I groups
since Z = Gr, R = G−1z is a trivial solution. The following analogous assumption will be
useful in Type-I groups.

Definition 6 (Simultaneous Double Pairing Assumption [14]: SDP).
Given Λ← G(1λ) and (Gz, Gr, Hz, Hs)← G∗4, any p.p.t. algorithm A outputs (Z,R, S) ∈
G∗3 that satisfies 1 = e(Gz, Z) e(Gr, R) ∧ 1 = e(Hz, Z) e(Hs, S) only with probability
Advsdp

G,A(λ) that is negligible in λ.

As shown in [14] for the Type-I setting, the simultaneous double pairing assumption holds
for G if the decisional linear assumption holds for G.

3 Definitions
Common setup. All building blocks make use of a common setup algorithm Setup that takes
the security parameter 1λ and outputs a global parameters gk that is given to all other algo-
rithms. Usually gk consists of a description Λ of a bilinear group setup and a default generator
for each group. In this paper, we include several additional generators in gk for technical rea-
sons. Note that when the resulting signature scheme is used in multi-user applications different
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additional generators need to be assigned to individual users or one needs to fall back on the
common reference string model, whereas Λ and the default generators can be shared. Thus
we count the size of gk when we assess the efficiency of concrete instantiations. For ease of
notation, we make gk implicit except w.r.t. key generation algorithms.
Signature schemes. We use the following syntax for signature schemes suitable for the multi-
user and multi-algorithm setting. The key generation function takes global parameter gk gener-
ated by Setup (usually it takes security parameter 1λ), and the message spaceM is determined
solely from gk (usually it is determined from a public-key).

Definition 7 (Signature Scheme). A signature scheme SIG is a tuple of three polynomial-time
algorithms (Key,Sign,Vrf) that;

– SIG.Key(gk) generates a long-term public-key vk and a secret-key sk.
– SIG.Sign(sk,msg) takes sk and message msg and outputs signature σ.
– SIG.Vrf(vk,msg, σ) outputs 1 for acceptance or 0 for rejection.

Correctness requires that 1 = SIG.Vrf(vk,msg, σ) holds for any gk generated by Setup,
any keys generated as (vk, sk) ← SIG.Key(gk), any message msg ∈ M, and any signature
σ ← SIG.Sign(sk,msg).

Definition 8 (Attack Game(ATK)). LetOsig be an oracle andA be an oracle algorithm. We
define a meta attack game as a sequence of execution of algorithms as follows: ATK(A, λ) =[

gk ← Setup(1λ), pre← A(gk), (vk, sk)← SIG.Key(gk), (σ†,msg†)← AOsig(vk)
]

Adversary A commits to pre, which is typically a set of messages, in the first run. This formu-
lation is to capture non-adaptive attacks. It is implicit that a state information is passed to the
second run ofA. Let Qm be a set of messages, for whichA requests signatures from its oracle
before outputting the resulting forgery. The output of ATK is (vk, σ†,msg†, Qm).

Definition 9 (Adaptive Chosen-Message Attack (CMA)). Adaptive chosen message attack
security is defined by the attack game ATK where pre is empty and oracle Osig is the signing
oracle that, on receiving a message msg, performs σ ← SIG.Sign(sk,msg), and returns σ.

Definition 10 (Random Message Attack (RMA)[19]). Random message attack security is
defined by the attack game ATK where pre is empty and oracle Osig is the following: on
receiving a request, it chooses msg uniformly from M defined by gk, computes signature
σ ← SIG.Sign(sk,msg), and returns (σ,msg).

Let MSGGen be a uniform message generator. It is a probabilistic algorithm that takes gk
and outputs msg ∈ M that distributes uniformly over M. Furthermore, MSGGen outputs
auxiliary information aux that may give a hint about the random coins used for selecting msg.

Definition 11 (Extended Random Message Attack (XRMA)). Extended random message
attack is attack game ATK where pre is empty and oracleOsig is the following. On receiving a
request, it runs (msg, aux) ← MSGGen(gk), computes σ ← SIG.Sign(sk,msg), and returns
(σ,msg, aux).

Definition 12 (Unforgeability against ATK). Signature scheme SIG is unforgeable against
attack ATK (UF-ATK) where ATK ∈ {CMA,RMA,XRMA}, if for all p.p.t. oracle algorithm A
the advantage function Advuf-atk

SIG,A := Pr
[
msg† 6∈ Qm ∧ 1 = SIG.Vrf(vk, σ†,msg†)

∣∣ (vk,
σ†,msg†, Qm)← ATK(A, λ)

]
is negligibel in λ.

Fact 1. UF-CMA⇒UF-XRMA⇒UF-RMA, i.e., Advuf-cma
SIG,A (λ)≥Advuf-xrma

SIG,A (λ)≥Advuf-rma
SIG,A (λ).
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Partial one-time and tagged one-time signatures. Partial one-time signatures, also known as
two-tier signatures [9], are a variation of one-time signatures where only part of the public-key
must be updated for every signing, while the remaining part can be persistent.

Definition 13 (Partial One-Time Signature Scheme [9]). A partial one-time signatures scheme
POS is a set of polynomial-time algorithms POS.{Key,Update,Sign,Vrf}.

– POS.Key(gk) generates a long-term public-key pk and a secret-key sk . The message space
Mo is associated with pk . (Recall that we require thatMo be completely defined by gk.)

– POS.Update() takes gk as implicit input, and outputs a pair of one-time keys (opk , osk).
We denote the space for opk by Kopk .

– POS.Sign(sk ,msg, osk) outputs a signature σ on message msg based on sk and osk .
– POS.Vrf(pk , opk ,msg, σ) outputs 1 for acceptance, or 0 for rejection.

For correctness, it is required that 1 = POS.Vrf(pk , opk ,msg, σ) holds except for neg-
ligible probability for any gk, pk , opk , σ, and msg ∈ Mo, such that gk ← Setup(1λ),
(pk , sk)← POS.Key(gk), (opk , osk)← POS.Update(), σ ← POS.Sign(sk ,msg, osk).

A tagged one-time signature scheme is a signature scheme whose signing function in addi-
tion to the long-term secret key takes a tag as input. A tag is one-time, i.e., it must be different
for every signing.

Definition 14 (Tagged One-Time Signature Scheme). A tagged one-time signature scheme
TOS is a set of polynomial-time algorithms TOS.{Key,Tag,Sign,Vrf}.

– TOS.Key(gk) generates a long-term public-key pk and a secret-key sk . The message space
Mt is associated with pk .

– TOS.Tag() takes gk as implicit input and outputs tag . By T , we denote the space for tag .
– TOS.Sign(sk ,msg, tag) outputs signature σ for message msg based on sk and tag .
– TOS.Vrf(pk , tag ,msg, σ) outputs 1 for acceptance, or 0 for rejection.

Correctness requires that 1 = TOS.Vrf(pk , tag ,msg, σ) holds except for negligible prob-
ability for any gk, pk , tag , σ, and msg ∈ Mt, such that gk ← Setup(1λ), (pk , sk) ←
TOS.Key(gk), tag ← TOS.Tag(), σ ← TOS.Sign(sk ,msg, tag).

A TOS scheme is POS scheme for which tag = osk = opk . We can thus give a security
notion for POS schemes that also applies to TOS schemes by reading Update = Tag and
tag = osk = opk .

Definition 15 (Unforgeability against One-Time Adapative Chosen-Message Attacks). A
partial one-time signature scheme is unforgeable against one-time adaptive chosen message
attacks (OT-CMA) if for all p.p.t. oracle algorithm A the advantage function Advot-cma

POS,A is
negligible in λ, where Advot-cma

POS,A(λ) :=

Pr

∃(opk ,msg, σ) ∈ Qm s.t.
opk† = opk ∧ msg† 6= msg ∧
1 = POS.Vrf(pk , opk†, σ†,msg†)

∣∣∣∣∣∣
gk ← Setup(1λ),
(pk , sk)← POS.Key(gk),

(opk†, σ†,msg†)← AOt,Osig(pk)

 .
Qm is initially an empty list. Ot is the one-time key generation oracle that on receiving a
request invokes a fresh session j, performs (opk j , osk j)← POS.Update(), and returns opk j .
Osig is the signing oracle that, on receiving a message msgj for session j, performs σj ←
POS.Sign(sk ,msgj , osk j), returns σj to A, and records (opk j ,msgj , σj) to the list Qm.
Osig works only once for every session. Strong unforgeability is defined as well by replacing
condition msg† 6= msg with (msg†, σ†) 6= (msg, σ).
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We define a non-adaptive variant (OT-NACMA) of the above notion by integrating Ot into
Osig so that opk j and σj are returned to A at the same time. Namely, A must submit msgj
before seeing opk j . If a scheme is secure in the sense of OT-CMA, the scheme is also secure
in the sense of OT-NACMA. If a scheme is strongly unforgeable, it is unforgeable as well. By
Advot-nacma

POS,A (λ) we denote the advantage of A in this non-adaptive case. For TOS, we use the
same notations, OT-CMA and OT-NACMA, and define advantage functions Advot-cma

TOS,A and
Advot-nacma

TOS,A accordingly. For strong unforgeabiltiy, we use label sot-cma and sot-nacma.
We define a condition that is relevant for coupling random message secure signature schemes

with partial one-time and tagged one-time signature schemes in later sections.

Definition 16 (Tag/One-time Public-Key Uniformity). TOS is called uniform-tag if TOS.Tag
outputs tag that uniformly distributes over tag space T . Similarly, POS is called uniform-key
if POS.Update outputs opk that uniformly distributes over key space Kopk .

Structure-preserving signatures. A signature scheme is structure-preserving over a bilinear
group Λ, if public-keys, signatures, and messages are all base group elements of Λ, and the
verification only evaluates pairing product equations. Similarly, POS schemes are structure-
preserving if their public-keys, signatures, messages, and tags or one-time public-keys consist
of base group elements and the verification only evaluates pairing product equations.

4 Generic Constructions

4.1 SIG1: Combining tagged one-time and RMA-secure signatures

Let rSIG be a signature scheme with message spaceMr, and TOS be a tagged one-time signa-
ture scheme with tag space T such thatMr = T . We construct a signature scheme SIG1 from
rSIG and TOS. Let gk be a global parameter generated by Setup(1λ).

– SIG1.Key(gk): Run (pk t, sk t) ← TOS.Key(gk), (vkr, skr) ← rSIG.Key(gk). Output
vk := (pk t, vkr) and sk := (sk t, skr).

– SIG1.Sign(sk,msg): Parse sk into (sk t, skr). Run tag ← TOS.Tag(), σt ← TOS.Sign(
sk t,msg, tag), σr ← rSIG.Sign(skr, tag). Output σ := (tag , σt, σr).

– SIG1.Vrf(vk, σ,msg): Parse vk and σ accordingly. Output 1, if 1 = TOS.Vrf(pk t, tag , σt,
msg) and 1 = rSIG.Vrf(vkr, σr, tag). Output 0, otherwise.

We prove the above scheme is secure by showing a reduction to the security of each compo-
nent. As our reductions are efficient in their running time, we only relate success probabilities.

Theorem 17. SIG1 is UF-CMA if TOS is uniform-tag and OT-NACMA, and rSIG is UF-RMA.
In particular, Advuf-cma

SIG1,A(λ) ≤ Advot-nacma
TOS,B (λ) + Advuf-rma

rSIG,C(λ).

Proof. Any signature that is accepted by the verification algorithm must either reuse an existing
tag, or sign a new tag. The success probability Advuf-cma

SIG1,A(λ) of an attacker on SIG1 is bounded
by the sum of the success probabilities Advot-nacma

TOS,B (λ) of an attacker on TOS and the success
probability Advuf-rma

rSIG,C(λ) of an attacker on rSIG.

Game 0: The actual Unforgeability game. Pr[Game 0] = Advuf-cma
SIG1,A(λ).

Game 1: The real security game except that the winning condition is changed to no longer
accept repetition of tags.
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Lemma 18. |Pr[Game 0]− Pr[Game 1]| ≤ Advot-nacma
TOS,B (λ)

Game 2: The fully idealized game. The winning condition is changed to reject all signatures.
Lemma 19. |Pr[Game 1]− Pr[Game 2]| ≤ Advuf-rma

rSIG,C(λ)

Thus Advuf-cma
SIG1,A(λ) = Pr[Game 0] ≤ Advot-nacma

TOS,B (λ) + Advuf-rma
rSIG,C(λ) as claimed.

Theorem 20. If TOS.Tag produces constant-size tags and signatures in the size of input mes-
sages, the resulting SIG1 produces constant-size signatures as well. Furthermore, if TOS and
rSIG are structure-preserving, so is SIG1.

We omit the proof of Theorem 20 as it is done simply by examining the construction.

4.2 SIG2: Combining partial one-time and XRMA-secure signatures

Let xSIG be a signature scheme with message spaceMx, and POS be a partial one-time sig-
nature scheme with one-time public-key space Kopk such that Mx = Kopk . We construct
a signature scheme SIG2 from xSIG and POS. Let gk be a global parameter generated by
Setup(1λ).

– SIG2.Key(gk): Run (pkp, skp) ← POS.Key(gk), (vkx, skx) ← xSIG.Key(gk). Output
vk := (pkp, vkx) and sk := (skp, skx).

– SIG2.Sign(sk,msg): Parse sk into (skp, skx). Run (opk , osk) ← POS.Update(), σp ←
POS.Sign(skp,msg, osk), σx ← xSIG.Sign(skx, opk). Output σ := (opk , σp, σx).

– SIG2.Vrf(vk, σ,msg): Parse vk and σ accordingly. Output 1 if 1 = POS.Vrf(pkp, opk , σp,
msg), and 1 = xSIG.Vrf(vkx, σx, opk). Output 0, otherwise.

Theorem 21. SIG2 is UF-CMA if POS is uniform-key and OT-NACMA, and xSIG is UF-XRMA
w.r.t. POS.Update as the message generator. In particular, Advuf-cma

SIG2,A(λ) ≤ Advot-nacma
POS,B (λ) +

Advuf-xrma
xSIG,C (λ).

Proof. The proof is almost the same as that for Theorem 17. The only difference appears in
constructing C in the second step. Since POS.Update is used as the extended random message
generator, the pair (msg, aux) is in fact (opk , osk). Given (opk , osk), adversary C can run
POS.Sign(sk ,msg, osk) to yield legitimate signatures.

Theorem 22. If POS produces constant-size one-time public-keys and signatures in the size
of input messages, resulting SIG2 produces constant-size signatures as well. Furthermore, if
POS and xSIG are structure-preserving, so is SIG2.

5 Instantiating SIG1

We instantiate the building blocks TOS and rSIG of our first generic construction to obtain our
first SPS scheme. We do so in Type-I bilinear group setting. The resulting SIG1 scheme is an
efficient structure-preserving signature scheme based only on the DLIN assumption.
Setup for Type-I groups. The following setup procedure is common for all instantiations in this
section. The global parameter gk is given to all functions implicitly.

Setup(1λ): RunΛ = (p,G,GT , e)← G(1λ) and pick random generators (G,C, F, U1, U2)←
G∗5. Output gk := (Λ,G,C, F, U1, U2).

The parameters gk fix the message spaceMr := {(Cm1 , Cm2 , Fm1 , Fm2 , Um1
1 , Um2

2 ) ∈
G6 | (m1,m2) ∈ Z2

p} for the RMA-secure signature scheme defined below. For our generic
framework to work, the tagged one-time signature schemes should have the same tag space.
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Tagged one-time signature scheme. Basically, a tag in our scheme consists of a pair of elements
in G. However, due to a constraint from rSIG we show in the next section, the tags will have
to be in an extended form. We therefore parameterize the one-time key generation function
Update with a flag mode ∈ {normal, extended} so that it outputs a key in the original or
extended form. Although mode is given to Update as input, it should be considered as a fixed
system-wide parameter that is common for every invocation of Update and the key space is
fixed throughout the use of the scheme. Accordingly, this extension does not affect the security
model at all.

TOS.Key(gk): Parse gk = (Λ,G,C, F, U1, U2). Pick random xr, yr, xs, ys, xt, yt, x1, y1,
. . . , xk, yk in Zp such that such that xrys 6= xsyr and compute Gr := Gxr , Hr :=
Gyr , Gs := Gxs , Hs := Gys , Gt := Gxt , Ht := Gyt , G0 := Gx0 , H0 := Gy0 , . . . , Gk :=
Gxk , Hk := Gyk . Output pk := (Gr, Gs, Gt, Hr, Hs, Ht, G0, . . . , Gk, H0, . . . ,Hk) and
sk := (xr, xs, xt, yr, ys, yt, x0, . . . , xk, y0, . . . , yk)

TOS.Tag(): Take generators G,C, F, U1, U2 from gk. Choose w1, w2 ← Z∗p and compute
tag := (Cw1 , Cw2 , Fw1 , Fw2 , Uw1

1 , Uw2
2 ). Output tag .

TOS.Sign(sk ,msg, tag): Parse msg to (M1, . . . ,Mk) and tag to (T1, T2, . . . ). Parse sk ac-
cordingly. Choose random m ← Zp and let value M0 := Gm

∏k
i=1M

−1
i . (This is uni-

formly distributed.) Compute A := G−xtT−m1

∏k
i=0M

−xi
i and B := G−ytT−m2

∏k
i=0

M−yii . Since xrys 6= xsyr we can compute
(
α β
γ δ

)
= ( xr xsyr ys )

−1. (The determinant is

nonzero.) Compute Z := AαBβ and W := AγBδ . Output σ := (Z,W,M0).
TOS.Vrf(pk , tag ,msg, σ): Accept if the following equalities hold:

e(Gr, Z) · e(Gs,W ) · e(Gt, G)
k∏
i=0

e(GiT1,Mi) = 1

e(Hr, Z) · e(Hs,W ) · e(Ht, G)

k∏
i=0

e(HiT2,Mi) = 1

We remark that the correctness of the extended tag (T3, . . . , T6) is not examined within
this scheme. (We only need to show that the extended part is simulatable in the security proof.)
Since the tag is given to SIGr as a message, it is the verification function of SIGr that verifies the
correctness with respect to its message space, which is the same as the tag space. The scheme
is obviously structure-preserving and the correctness is easily verified by simple calculation.

Theorem 23. The above TOS scheme is OT-CMA under the SDP. In particular, for any A
that makes at most qs signing queries, Advot-cma

TOS,A(λ) ≤ qs · AdvsdpG,B(λ) + 1/p holds.

Proof. We show a reduction algorithm that simulates the one-time adaptive chosen message at-
tack game for the adversary. The reduction gets an instance of the simultaneous double pairing
assumption, Λ,Gr, Gs, Hr, Hs, and proceeds as follows.

Setup and Key Generation. It chooses ξ, η, µ and sets Gt := GξrG
η
s , and Ht := Hξ

rH
µ
s . It

choosesG ∈ G and random ω, ν, ν1, ν2, and computes gk = (Λ,C, F, U1, U2) = (Λ,Gω, Gων ,
Gων1 , Gων2). It chooses random ρi, σi, τi, computes Gi = Gρir G

σi
s G

τi
t = Gρi+ξτir Gσi+ητis

andHi = Hρi
r H

σi
s H

τi
t = Hρi+ξτi

r Hσi+µτi
s for i = 0 . . . k, and sets pk = (G,Gr, Gs, Gt, Hr,

Hs, Ht, G0, . . . Gk, H0, . . . ,Hk). (Note that Gi, Hi are correctly distributed and give no in-
formation about τi.) It sends pk , gk to the adversary. The reduction will pick a random session
j∗, and assume that the adversary will try to reuse tag from that session.
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Queries to oracleOt. When the adversary makes a query to the tag oracleOt, choose the next
new session index j.

– For session j 6= j∗: Pick random values ρ, σ, τ ← Zp. Compute (T1, T2) = (GρrG
σ
sG

τ
t ,

Hρ
rH

σ
sH

τ
t ) = (Gρ+ξτr Gσ+ητs , Hρ+ξτ

r Hσ+µτ
s ), and set T = (T1, T2, T

ν
1 , T

ν
2 , T

ν1
1 , T ν22 ).

Store (j, ρ, σ, τ), and return T to the adversary.
– For session j∗. Pick random values ρ, σ ← Zp. Compute (T1, T2) = (GρrG

σ
s , H

ρ
rH

σ
s ). Let

T = (T1, T2, T
ν
1 , T

ν
2 , T

ν1
1 , T ν22 ). Store (j∗, ρ, σ), and return T to the adversary.

Queries to oracleOsig. When the adversary queriesOsig for messageM = (M1, . . . ,Mk) ∈
Gk and session j, proceed as follows.

– If the Ot has not yet produced a tag for session j, or Osig has already been queried for
session j, return ⊥.

– For session j 6= j∗: Look up the stored tuple (j, ρ, σ, τ). Compute M0 = (G
∏k
i=1

Mτ+τi
i )−

1
τ0+τ . Note that for this choice of M0, it will be the case that e(Gt, G)

∏k
i=0 e(

Gτi+τt ,Mi) = e(Gt,M
τ0+τ
0 G

∏k
i=1M

τi+τ
i ) = 1 and similarly e(Ht, G)

∏k
i=0 e(H

τi+τ
t ,

Mi) = e(Ht,M
τ0+τ
0 G

∏k
i=1M

τi+τ
i ) = 1. Note also that the tag is independent of τ , and

since τ is uniformly distributed, then M0 is independent of τ0, . . . , τk even given tag . (To
see this, let m0, . . . ,mk be the discrete logarithms of M0, . . . ,Mk respectively and note
that for any choice ofm1, . . . ,mk, τ0, . . . , τk and for anym0 such thatm0 6= −

∑k
i=1mi,

there is a 1
q chance that we will choose τ =

−1−
∑k
i=0miτi∑k

i=0mi
which will yield M0 =

(G
∏k
i=1M

τi+τ
i )−

1
τ0+τ .) Now compute Z =

∏k
i=0M

−ρi−ρ
i and W =

∏k
i=0M

−σi−σ
i

and output the signature (Z,W,M0).
Note that these are the unique values such that e(Gr, Z)·e(Gs,W )·e(Gt, G)

∏k
i=0 e(GiT1,

Mi) = 1 and similarly e(Hr, Z) · e(Hs,W ) · e(Ht, G)
∏k
i=0 e(HiT2,Mi) = 1. Thus,

Z,W are uniquely determined by M0,M1, . . . ,Mk, tag , and pk . M1, . . . ,Mk are pro-
vided by the adversary and, as we have argued, M0, tag , pk are statistically independent
of τ0, . . . , τk. We conclude that Z,W reveal no additional information about τ0, . . . , τk
even given the rest of the adversary’s view.

– For session j∗: Look up the stored tuple (j, ρ, σ). LetM0 = (G
∏k
i=1M

τi
i )−

1
τ0 ). Note that

for this choice of M0, it will be the case that e(Gt, G)
∏k
i=0 e(G

τi
t ,Mi) = e(Gt,M

τ0
0 G∏k

i=1M
τi
i ) = 1 and similarly e(Ht, G)

∏k
i=0 e(H

τi
t ,Mi) = e(Ht,M

τ0
0 G

∏k
i=1M

τi
i ) =

1. Note that T1, T2 are correctly distributed, that M0 is statistically close to uniform since
τ0, . . . , τk are chosen at random, and furthermore that the only information revealed about
τ0, . . . , τk is that G

∏k
i=0M

τi
i = 1. Now, compute Z =

∏k
i=0M

−ρi−ρ
i and W =∏k

i=0M
−σi−σ
i , and output the signature (Z,W,M0). Again all values are independent of

τ0, . . . , τk with the exception now of M0, which is chosen so G
∏k
i=0M

τi
i = 1.

Processing the adversary’s forgery. Now, suppose that the adversary produces (M†1 , . . .M
†
k)

and (Z†,W †,M†0 , T ) for T = (T1, T2, . . . ) used in the j∗th query. Look up the stored tuple
(j∗, ρ, σ). Then with non-negligible probability (whenever the adversary succeeds) we have
TOS.Vrf(pk , T, (M†1 , . . . ,M

†
k), (Z

†,W †,M†0 )) = 1. This means

1 = e(Gr, Z
†Gξ

k∏
i=0

(M†i )
ρi+ρ+ξτi)e(Gs,W

†Gη
k∏
i=0

(M†i )
σi+σ+ητi), and

1 = e(Hr, Z
†Gξ

k∏
i=0

(M†i )
ρi+ρ+ξτi)e(Hs,W

†Gµ
k∏
i=0

(M†i )
σi+σ+µτi).
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So if Z†Gξ
∏k
i=0(M

†
i )
ρi+ρ+ξτi 6= 1, then

(Z?, R?, S?) := (Z†Gξ
k∏
i=0

(M†i )
ρi+ρ+ξτi ,W †Gη

k∏
i=0

(M†i )
σi+σ+ητi ,W †Gµ

k∏
i=0

(M†i )
σi+σ+µτi)

is a valid solution for the simultaneous double pairing assumption.
Z†Gξ

∏k
i=0(M

†
i )
ρi+ρ+ξτi = Z†

∏k
i=0(M

†
i )
ρi+ρ(G

∏k
i=0(M

†
i )
τi)ξ, and a part ofZ†

∏k
i=0

(M†i )
ρi+ρ is information theoretically hiding. Note that the only information that the adversary

has about τ0, . . . , τ1 is that in the j∗th sessionM0 was chosen so thatG
∏k
i=0M

τi
i = 1 (where

M = (M1, . . . ,Mk) is the message signed in the j∗th session). If M†i 6=Mi for at least one i,
then the probability that G

∏k
i=0(M

†
i )
τi = 1 conditioned on the fact that G

∏k
i=0M

τi
i = 1 is

1/p. As a result, the probability that Z†Gξ
∏k
i=0(M

†
i )
ρi+ρ+ξτi = 1 is 1/p.

Thus, if the guess for j∗ is right, we succeed with all but probability 1/p wheneverA does.
We therefore have Advot-cma

TOS,A(λ) ≤ qs · AdvsdpG,B(λ) + 1/p.

RMA-secure signature scheme. For our random message signature scheme we will use a con-
struction based on the dual system signature proposed in [41]. While the original scheme is
CMA-secure under the DLIN assumption, the security proof makes use of a trapdoor commit-
ment to elements in Zp and consequently messages are elements in Zp rather than G. Our con-
struction below resorts to RMA-security and removes this commitment to allows messages to
be a sequence of random group elements satisfying a particular relation. As mentioned above,
the message spaceMx := {(Cm1 , Cm2 , Fm1 , Fm2 , Um1

1 , Um2
2 ) ∈ G6 | (m1,m2) ∈ Z2

p} is
defined by generators (C,F, U1, U2) in gk.

rSIG.Key(gk): Given gk := (Λ,G,C, F, U1, U2) as input, uniformly select V, V1, V2, H from
G∗ and a1, a2, b, α, and ρ from Z∗p. Then compute and output vk := (B,A1, A2, B1, B2, R1,
R2,W1,W2, V, V1, V2, H,X1, X2) and sk := (vk,K1,K2) where

B := Gb, A1 := Ga1 , A2 := Ga2 , B1 := Gb·a1 , B2 := Gb·a2

R1 := V V a11 , R2 := V V a22 , W1 := Rb1, W2 := Rb2,

X1 := Gρ, X2 := Gα·a1·b/ρ, K1 := Gα, K2 := Gα·a1 .

rSIG.Sign(sk,msg): Parsemsg into (M1,M2,M3,M4,M5,M6). Pick random r1, r2, z1, z2 ∈
Zp. Let r = r1 + r2. Compute and output signature σ := (S0, S1, . . . S7) where

S0 := (M5M6H)r1 , S1 := K2V
r, S2 := K−11 V r1 G

z1 , S3 := B−z1 ,

S4 := V r2 G
z2 , S5 := B−z2 , S6 := Br2 , S7 := Gr1 .

rSIG.Vrf(vk, σ,msg): Parsemsg into (M1,M2,M3,M4,M5,M6) and σ into (S0, S1, . . . , S7).
Also parse vk accordingly. Verify the following pairing product equations:

e(S7,M5M6H) = e(G,S0)

e(S1, B) e(S2, B1) e(S3, A1) = e(S6, R1) e(S7,W1)

e(S1, B) e(S4, B2) e(S5, A2) = e(S6, R2) e(S7,W2) e(X1, X2)

e(F,M1)=e(C,M3), e(F,M2)=e(C,M4), e(U1,M1)=e(C,M5), e(U2,M2) = e(C,M6)

The scheme is structure-preserving by construction and the correctness is easily verified.
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Theorem 24. The above rSIG scheme is UF-RMA under the DLIN assumption. In particular,
for any p.p.t. adversaryA against rSIG that makes at most qs signing queries, there exists p.p.t.
algorithm B for DLIN such that Advuf-rma

rSIG,A(λ) ≤ (qs + 2) · Advdlin
G,B(λ).

Proof. We refer to the signatures output by the signing algorithm as a normal signature. In the
proof we will consider an additional type of signatures to which we refer to as simulation-
type signatures that are computationally indistinguishable but easier to simulate. For γ ∈
Zp, simulation-type signatures are of the form σ = (S0, S

′
1 = S1 · G−a1a2γ , S′2 = S2 ·

Ga2γ , S3, S
′
4 = S4 ·Ga1γ , S5, . . . , S7). We give the outline of the proof using some lemmas.

Lemma 25. Any signature that is accepted by the verification algorithm must be formed either
as a normal signature, or a simulation-type signature.

We consider a sequence of games. Let pi be the probability that the adversary succeeds in
Game i, and pnorm

i (λ) and psim
i (λ) that he succeeds with a normal-type respectively simulation-

type forgery. Then by Lemma 25, pi(λ) = pnorm
i (λ) + psim

i (λ) for all i.

Game 0: The actual Unforgeability under Random Message Attacks game.

Lemma 26. There exists an adversary B1 such that psim
0 (λ) = AdvdlinG,B1

(λ).

Game i: The real security game except that the first i signatures that are given by the oracle
are simulation-type signatures.

Lemma 27. There exists an adversary B2 such that |pnorm
i−1 (λ)− pnorm

i (λ)| = Advdlin
G,B2

(λ).

Game q: All sigantures that given by the oracle are simulation-type signatures.

Lemma 28. There exists an adversary B3 such that pnorm
q (λ) = AdvcdhG,B3

(λ).

We have shown that in Game q, A can output a normal-type forgery with at most negligible
probability. Thus, by Lemma 27 we can conclude that the same is true in Game 0 and it holds

Advuf-rma
rSIG,A(λ) = p0(λ) = psim

0 (λ) + pnorm
0 (λ) ≤ psim

0 (λ) +

q∑
i=1

|pnorm
i−1 (λ)− pnorm

i (λ)|+ pnorm
q (λ)

≤ AdvdlinG,B1
(λ) + qAdvdlin

G,B2
(λ) + Advcdh

G,B3
(λ) ≤ (q + 2) · AdvdlinG,B(λ) .

Let MSGGen be an extended random message generator that first chooses aux = (m1,m2)
randomly from Z2

p and then computes msg = (Cm1 , Cm2 , Fm1 , Fm2 , Um1
1 , Um2

2 ). Note that
this is what the reduction algorithm does in the proof of Theorem 24. Therefore, the same
reduction algorithm works for the case of extended random message attacks with respect to
message generator MSGGen. We thus have the following.

Corollary 29. Under the DLIN assumption, rSIG scheme is UF-XRMA w.r.t. the message gen-
erator that provides aux = (m1,m2) for every messagemsg = (Cm1 , Cm2 , Fm1 , Fm2 , Um1

1 ,
Um2
2 ). In particular, for any p.p.t. adversaryA against rSIG that is given at most qs signatures,

there exists p.p.t. algorithm B such that Advuf-xrma
rSIG,A (λ) ≤ (qs + 2) · Advdlin

G,B(λ).

Security and efficiency of resulting SIG1. Let SIG1 be the signature scheme obtained from
TOS (with mode = extended) and rSIG by following the first generic construction in Section 4.
From Theorem 17, 20, 23, and 24, the following is immediate.

Theorem 30. SIG1 is a structure-preserving signature scheme that yields constant-size sig-
natures, and is UF-CMA under the DLIN assumption. In particular, for any p.p.t. adver-
sary A for SIG1 making at most qs signing queries, there exists p.p.t. algorithm B such that
Advuf-cma

SIG1,A(λ) ≤ (qs + 3) · Advdlin
G,B(λ) + 1/p.
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6 Instantiating SIG2

We instantiate the POS and xSIG building blocks of our second generic construction to obtain
our second SPS scheme. Here we choose the Type-III bilinear group setting. The resulting SIG2
scheme is an efficient structure-preserving signature scheme based on SXDH and XDLIN.

Setup for Type-III groups. The following setup procedure is common for all building blocks
in this section. The global parameter gk is given to all functions implicitly.

– Setup(1λ): Run Λ = (p,G1,G2,GT , e) ← G(1λ) and choose generators G ∈ G∗1 and
Ĝ ∈ G∗2. Also choose u, f2, f3 randomly from Z∗p, compute F2 := Gf2 , F3 := Gf3 , F̂2 :=

Ĝf2 , F̂3 := Ĝf3 , U := Gu, Û := Ĝu, and output gk := (Λ,G, Ĝ, F2, F3, F̂2, F̂3, U, Û).

A gk defines a message spaceMx = {(F̂m2 , F̂m3 , Ûm) ∈ G∗2 | m ∈ Zp} for the signature
scheme in this section. For our generic construction to work, the partial one-time signature
scheme should have the same key space.

Partial one-time signatures for uniliteral messages. We construct a partial one-time signature
scheme POSu2 for messages in Gk2 for k > 0. The suffix ”u2” indicates that the scheme
is uniliteral and messages are taken from G2. Correspondingly, POSu1 refers to the scheme
whose messages belong to G1, which is obtained by swapping G2 and G1 in the following
description. Our POSu2 scheme is a minor refinement of the one-time signature scheme intro-
duced in [4]. It comes, however, with a security proof for the new security model.

Basically, a one-time public-key in our scheme consists of one element in the base group
G1 that is the opposite of the group G2 messages belong to. This property is very useful to
construct a POS scheme for signing bilateral messages. As well as tags of TOS in Section 5,
the one-time public-keys of POS will have to be in an extended form to meet the constraint
from xSIG presented in the sequel. We use mode ∈ {normal, extended} for this purpose again.

– POSu2.Key(gk): Take generators U and Û from gk . Choose wr randomly from Z∗p and
compute Gr := Uwr . For i = 1, . . . , k, uniformly choose χi and γi from Zp and compute
Gi := UχiGγir . Output pk :=(Gr, G1, ..., Gk) ∈ Gk+1

1 and sk :=(χ1, γ1, ..., χk, γk, wr).
– POSu2.Update(mode): Take F2, F3, U from gk . Choose a ← Zp and output opk :=
Ua ∈ G1 if mode = normal or opk := (F a2 , F

a
3 , U

a) ∈ G3
1 if mode = extended. Also

output osk := a.
– POSu2.Sign(sk ,msg, osk): Parse msg into (M̂1, . . . , M̂k) ∈ Gk2 . Take a and wr from
osk and sk , respectively. Choose ρ randomly from Zp and compute ζ := a− ρwr mod p.
Then compute and output σ := (Ẑ, R̂) ∈ G2

2 as the signature, where Ẑ := Ûζ
∏k
i=1 M̂

−χi
i

and R̂ := Ûρ
∏k
i=1 M̂

−γi
i

– POSu2.Vrf(pk , σ,msg, opk): Parse σ as (Ẑ, R̂) ∈ G2
2, msg as (M̂1, . . . , M̂k) ∈ Gk2 , and

opk as (A2, A3, A) or A depending on mode. Return 1, if e(A, Û) = e(U, Ẑ) e(Gr, R̂)∏k
i=1 e(Gi, M̂i) holds. Return 0, otherwise.

Scheme POSu2 is structure-preserving and has uniform one-time public-key property from
the construction. We can easily verify that it is correct by simple calculation.

Theorem 31. POSu2 is strongly unforgeable against OT-CMA if DBP1 holds. In particular,
Advsot-cma

POSu2,A(λ) ≤ Advdbp1G,B (λ) + 1/p.
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Partial one-time signatures for bilateral messages. Using POSu1 for msg ∈ Gk1+1
1 and

POSu2 for msg ∈ Gk22 , we construct a POSb scheme for signing bilateral messages (msg1,
msg2) ∈ Gk11 × Gk22 . The scheme is a simple two-story construction where msg2 is signed
by POSu2 with one-time secret-key osk2 ∈ G1 and then the one-time public-key opk2 is
attached to msg1 and signed by POSu1. Public-key opk2 is included in the signature, and
opk1 is output as a one-time public-key for POSb.

– POSb.Key(gk): Run (pk1, sk1) ← POSu1.Key(gk) and (pk2, sk2) ← POSu2.Key(gk).
Set pk := (pk1, pk2) and sk := (sk1, sk2), and output (pk , sk).

– POSb.Update(mode): Run (opk , osk)← POSu1(mode) and output (opk , osk).
– POSb.Sign(sk ,msg, osk): Parse msg into (msg1,msg2) ∈ Gk11 × Gk22 , and sk into

(sk1, sk2). Run (opk2, osk2)←POSu2.Update(normal), and compute σ2←POSu2.Sign(
sk2,msg2, osk2) and σ1 ← POSu1.Sign(sk1, (msg1, opk2), osk). Output σ := (σ1, σ2,
opk2).

– POSb.Vrf(pk , opk , σ,msg): Parse msg into (msg1,msg2) ∈ Gk11 × Gk22 , and σ into
(σ1, σ2, opk2). If 1 = POSu1.Vrf(pk1, opk , σ1, (msg1, opk2)) = POSu2.Vrf(pk2, opk2,
σ2,msg2), output 1. Otherwise, output 0.

For a message in Gk11 ×G
k2
2 , the above POSb uses a public-key of size (k+2, k+1), yields

a one-time public-key of size (0, 1) (for mode = normal) or (0, 3) (for mode = extended), and
a signature of size (3, 2). Verification requires 2 pairing product equations. A one-time public-
key in extended mode, which is treated as a message to xSIG in this section, is of the form
opk = (F̂ a2 , F̂

a
3 , Û

a) ∈ G3
2. Structure-preservance and uniform public-key property are taken

over from the underlying POSu1 and POSu2.

Theorem 32. Scheme POSb is unforgeable against OT-CMA if SXDH holds. In particular,
Advot-cma

POSb,A(λ) ≤ Advsxdh
G,B (λ)+2/p.

XRMA-secure signature scheme. Our construction bases on a variant of Waters’ dual system
encryption proposed by Ramanna, Chatterjee, and Sarkar [36]. Recall that gk = (Λ,G, Ĝ, F2,
F3, F̂2, F̂3, U, Û) with Λ = (p,G1,G2,GT , e) is generated by Setup(1λ) in advance.

xSIG.Gen(gk): On input gk, select generators V, V ′, H ← G1, V̂ , V̂ ′, Ĥ ∈ G2 such that
V ∼ V̂ , V ′ ∼ V̂ ′, H ∼ Ĥ, F2 ∼ F̂2, F3 ∼ F̂3 and exponent a, b, α ← Zp and ρ ← Z∗p,
compute R := V (V ′)a, R̂ := V̂ (V̂ ′)a, and set vk := (gk, Ĝb, Ĝa, Ĝba, R̂, R̂b, sk :=
(V K,Gα, Ga, Gb).

xSIG.Sign(sk,msg): On input message msg = (M̂1, M̂2, M̂0) = (F̂m2 , F̂
m
3 , Û

m) ∈ G3
2

(m ∈ Zp), select r1, r2 ← Zp, set r := r1 + r2, compute σ0 := (M̂0Ĥ)r1 , σ1 :=
GαV r, σ2 := (V ′)rG−z , σ3 := (Gb)z , σ4 := (Gb)r2 , and σ5 := Gr1 , and output σ :=
(σ0, σ1, . . . , σ5) ∈ G2 ×G5

1.
xSIG.Vrfy(vk, σ,msg): On input vk,msg = (M̂1, M̂2, M̂0), and signature σ, compute

e(F2, M̂0) = e(U, M̂1), e(F3, M̂0) = e(U, M̂2), e(σ5, M̂0Ĥ) = e(G, σ0)

e(σ1, Ĝ
b)e(σ2, Ĝ

ba)e(σ3, Ĝ
a) = e(σ4, R̂)e(σ5, R̂

b)e(Gρ, Ĝαb/ρ).

The scheme is structure-preserving by the construction. We can easily verify the correctness.

Theorem 33. If the DDH2 and XDLIN1 assumptions hold, then above xSIG scheme is UF-
XRMA with respect to the message generator that returns aux = m for every random mes-
sage msg = (F̂m2 , F̂

m
3 , Û

m). In particular for any p.p.t. adversary A for xSIG making at
most q signing queries, there exist p.p.t. algorithms B1,B2,B3 such that Advuf-xrma

xSIG,A (λ) <

Advddh2G,B1
(λ) + qAdvxdlin1

G,B2
(λ) + Advco-cdh

G,B3
(λ).
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Table 1. Efficiency of our schemes (SIG1 and SIG2) and comparison to other schemes with constant-size
signatures. The top section is for the Type I variant, the middle section is for unilateral messages and the
lower section is for bilateral messages. Notation (x, y) represents x elements in G1 and y in G2.

Schemes |msg| |gk|+ |vk| |σ| #(PPE) Assumptions
AHO10 k 2k + 12 7 2 q-SFP
SIG1 k 2k + 25 17 9 DLIN
AHO10 (k1, 0) (4, 2k1 + 8) (5, 2) 2 q-SFP
AGHO11 (k1, 0) (1, k1 + 4) (3, 1) 2 q-type
SIG2 : POSu1 + xSIG (k1, 0) (7, k1 + 13) (7, 4) 5 SXDH, XDLIN1

POSb + AHO10 (k1, k2) (k2 + 5, k1 + 12) (10, 3) 3 q-SFP
AGHO11 (k1, k2) (k2 + 3, k1 + 4) (3, 3) 2 q-type
SIG2 : POSb + xSIG (k1, k2) (k2 + 8, k1 + 14) (8, 6) 6 SXDH, XDLIN1

Security and efficiency of resulting SIG2. Let SIG2 be the scheme obtained from POSb (with
mode = extended) and xSIG. SIG2 is structure-preserving as vk, σ, and msg consist of group
elements from G1 and G2, and SIG2.Vrf evaluates pairing product equations. From Theo-
rem 21, 32, and 33, we obtain the following theorem.

Theorem 34. SIG2 is a structure-preserving signature scheme that is unforgeable against
adaptive chosen message attacks if SXDH and XDLIN1 hold for G.

7 Efficiency, Applications & Open Questions
Efficiency. Table 1 summarizes the efficiency of SIG1 and SIG2. For SIG2 we consider both
uniliteral and biliteral messages. We count the number of group elements excluding a default
generator for each group in gk, and distinguish between G1 and G2 and use k1 and k2 for
the number of message elements in G1 and G2, respectively. For comparison, we include the
efficiency of the schemes in [4] and [2]. For bilateral messages, AHO10 is combined with
POSb from Section 6.
Applications. Structure-preserving signatures (SPS) have become a mainstay in cryptographic
protocol design in recent years. From the many applications that benefit from efficient SPS
based on simple assumptions, we list only a few recent examples. Using our SIG1 scheme
from Section 5 both the construction of a group signature scheme with efficient revocation by
Libert, Peters and Yung [33] and the construction of compact verifiable shuffles by Chase et
al. [16] can be proven purely under the DLIN assumption. All other building blocks already
have efficient instantiations based on DLIN.

Hofheinz and Jager [31] construct a structure-preserving one-time signature scheme and
use it to build a tree-based SPS scheme, say tSIG. Instead, we propose to use our partial one-
time scheme to construct tSIG. As the resulting tSIG is secure against non-adaptive chosen
message attacks, it is secure against extended random message attacks as well. We then com-
bine the POSb scheme and the new tSIG scheme according to our second generic construction.
As confirmed with the authors of [31], the resulting signature scheme is significantly more
efficient than [31] and is a SPS scheme with a tight security reduction to SXDH. One can do
the same in Type-I groups by using the tagged one-time signature scheme in Section 5 whose
security tightly reduced to DLIN.

As also shown by [31], SPS schemes allow to implement simulation-sound NIZK proofs
based on the Groth-Sahai proof system. Following the Naor-Yung-Sahai [35, 38] paradigm,
one obtains structure-preserving CCA-secure public-key encryption in a modular fashion.
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Open Questions. 1) Can we have (X)RMA-secure schemes with a message space that is a
simple Cartesian product of groups without sacrificing on efficiency? 2) The RMA-secure sig-
nature schemes developed in this paper are in fact XRMA-secure. Can we have more efficient
schemes by resorting to RMA-security? 3) Can we have tagged one-time signature schemes
with tight reduction to the underlying simple assumptions? 4) What is the exact lower bound
for the size of signatures under simple assumptions? Is it possible to show such a bound?
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