
Program Obfuscation with Leaky Hardware

Nir Bitansky1?, Ran Canetti1,2?, Shafi Goldwasser3, Shai Halevi4, Yael
Tauman Kalai5, and Guy N. Rothblum5??

1 Tel Aviv University
2 Boston University

3 MIT and Weizmann Institute of Science
4 IBM T.J. Watson Research Center

5 Microsoft Research

Abstract. We consider general program obfuscation mechanisms using
“somewhat trusted” hardware devices, with the goal of minimizing the
usage of the hardware, its complexity, and the required trust. Specifically,
our solution has the following properties:

(i) The obfuscation remains secure even if all the hardware devices in
use are leaky. That is, the adversary can obtain the result of evaluating
any function on the local state of the device, as long as this function has
short output. In addition the adversary also controls the communication
between the devices.

(ii) The number of hardware devices used in an obfuscation and the
amount of work they perform are polynomial in the security parameter
independently of the obfuscated function’s complexity.

(iii) A (universal) set of hardware components, owned by the user, is
initialized only once and from that point on can be used with multiple
“software-based” obfuscations sent by different vendors.

1 Introduction

Program obfuscation is the process of making a program unintelligible while pre-
serving its functionality. (For example, we may want to publish an encryption
program that allows anyone to encrypt messages without giving away the secret
key.) The goal of general program obfuscation is to devise a generic transforma-
tion that can be used to obfuscate any arbitrary input program.

It is known from prior work that general program obfuscation is possible
with the help of a completely trusted hardware device (e.g., [7, 28, 19]). On the
other hand, Barak et al. proved that software-only general program obfuscation
is impossible, even for a very weak notion of obfuscation [6]. In this work we

? Supported by the Check Point Institute for Information Security, a Marie Curie
reintegration grant and an ISF grant.

?? Most of this work was done while the author was at the Department of Computer
Science at Princeton University and Supported by NSF Grant CCF-0832797 and by
a Computing Innovation Fellowship.

consider an intermediate setting, where we can use hardware devices but these
devices are not completely trusted. Specifically, we consider using leaky hard-
ware devices, where an adversary controlling the devices is able to learn some
information about their secret state, but not all of it.

We observe that the impossibility result of Barak et al. implies that hardware-
assisted obfuscation using a single leaky device is also impossible, even if the
hardware device leaks only a single bit (but this bit can be an arbitrary function
of the device’s state). See Section 1.3. Consequently, we consider a model in
which several hardware devices are used, where each device can be locally leaky
but the adversary cannot obtain leakage from the global state of all the devices
together. Importantly, in addition to the leakage from the separate devices, our
model also gives the adversary full control over the communication between
them.

The outline of our solution is as follows: Starting from any hardware-assisted
obfuscation solution that uses a completely trusted device (e.g., [19, 25]), we first
transform that device into a system that resists leakage in the Micali-Reyzin
model of “only computation leaks” (OCL) [29] (or actually in a slightly aug-
mented OCL model). In principle, this can be done using OCL-compilers from
the literature [27, 24, 22] (but see discussion in Section 1.4 about properties of
these compilers). The result is a system that emulates the functionality of the
original trusted device; however, now the system is made of several components
and can resists leakage from each of the components separately.

This still does not solve our problem since the system that we get from OCL-
compilers only resists leakage if the different components can interact with each
other over secret and authenticated channels (see discussion in Section 1.3).
We therefore show how to realize secure communication channels over inse-
cure network in a leakage-resilient manner. This construction, which uses non-
committing encryption [12] and information theoretic MACs (e.g., [33, 3]), is the
main technical novelty in the current work. See Section 1.4.

The transformation above provides an adequate level of security, but it is not
as efficient and flexible as one would want. For one thing, the OCL-compilers in
the literature [27, 24, 22] produce systems with roughly as many components as
there are gates in the underlying trusted hardware device. We show that using
fully homomorphic encryption [31, 18] and universal arguments [4] we can get a
system where the number of components depends only on the security parameter
and is (almost) independent of the complexity of the trusted hardware device
that we are emulating. See Section 1.1.

Another drawback of the solution above is that it requires a new set of
hardware devices for every program that we want to obfuscate. Instead, we would
like to have just one set of devices, which are initialized once and thereafter can
be used to obfuscate many programs. We show how to achieve such a reusable
obfuscation system using a simple trick based on CCA-secure encryption, see
Section 1.2.

We now proceed to provide more details on the various components of our
solution.

1.1 Minimally Hardware-Assisted Obfuscation

Forgetting for the moment about leakage-resilience, we begin by describing a
hardware-assisted obfuscating mechanism where the amount of work done by
the trusted hardware is (almost) independent of the complexity of the program
being obfuscated. The basic idea is folklore: The obfuscator encrypts the program
f using a fully homomorphic encryption scheme [31, 18], gives the encrypted
program to the evaluator and installs the decryption key in the trusted hardware
device. Then, the evaluator can evaluate the program homomorphically on inputs
of its choice and ask the device to decrypt.

Of course, the above does not quite work as is, since the hardware device can
be used for unrestricted decryption (so in particular it can be used to decrypt the
function f itself). To solve this, we make the evaluator prove to the device that
the ciphertext to be decrypted was indeed computed by applying the homomor-
phic evaluation procedure on the encrypted program and some input. Note that
to this end we must add the encrypted program itself or a short hash of it to the
device (so as to make “the encrypted program” a well-defined quantity). To keep
the device from doing a lot of work, the proof should be verifiable much more
efficiently than the computation itself, e.g., using the “universal arguments” of
Barak and Goldreich [4]. We formalize this idea and show that this obfuscation
scheme satisfies a strong notion of simulation based obfuscation. It can even be
implemented using stateless hardware with no source of internal randomness (so
it is secure against concurrent executions and reset attacks). See Section 2 for
more details.

1.2 Obfuscation using universal hardware devices

A side-effect of the above solution is that the trusted hardware device must be
specialized for the particular program that we want to protect (e.g., by hard-
wiring in it a hash of the encrypted program), so that it has a well-defined
assertion to verify before decryption. Instead, we would like the end user to use
a single universal hardware device to run all the obfuscated programs that it
receives (possibly from different vendors).

We obtain this goal using a surprisingly simple mechanism: The trusted hard-
ware device is installed with a secret decryption key of a CCA-secure cryptosys-
tem, whose public key is known to all vendors. Obfuscation is done as before,
except that the homomorphic decryption key and the hash of the encrypted
program are encrypted using the CCA-secure public key and appended to the
obfuscation. This results in a universal (or “sendable”) obfuscation, the device
is only initialized once and then everyone can use it to obfuscate their programs.
See more details in Section 3.

1.3 Dealing With Leaky Hardware

The more fundamental problem with the hardware-assisted obfuscation is that
the hardware must be fully leak-free and can only provide security as long as it is

accessed as a black box. This assumption is not true in many deployments, so we
replace it by the weaker assumption that our hardware components are “honest-
but-leaky”. Namely, in our model an obfuscated program consists of software
that is entirely in the clear, combined with some leaky hardware components.
Our goal is therefore to design an obfuscator that transforms any circuit with
secrets into a system of software and hardware components that achieves strong
black-box obfuscation even if the components can leak.

We remark that the impossibility of universal obfuscation [6] implies that
more than one hardware component is necessary. To see this, observe that if we
had a single hardware component that resists (even one-bit) arbitrary leakage
then we immediately get a no-hardware obfuscation in the sense of Barak et al.
[6]: The obfuscated program consists of our software and a full description of
the hardware component (including all the embedded secrets). This must be a
good obfuscation since any predicate that we can evaluate on this description
can be seen as a one-bit leakage function evaluated on the state of the hardware
component. If the device was resilient to arbitrary one-bit leakage, it would mean
that any such leakage/predicate can be computed by a simulator that only has
black-box access to the function; hence, we have a proper obfuscator.

The model of leaky distributed systems. Given the impossibility result for a
single leaky hardware component, we concentrate on solutions that use multiple
components. Namely, we have (polynomially) many hardware components, all of
which are leaky. The adversary in our model can freely choose the inputs to the
hardware components and obtain leakage by repeatedly choosing one component
at a time and evaluating an arbitrary (polynomial-size) leakage function on the
current state and randomness of that component. We place no restriction on the
order or the number of times that components can be chosen to leak, so long as
the total rate of leakage from each component is not too high.

In more detail, we consider continual leakage, where the lifetime of the system
is partitioned into time units and within each time unit we have some bound on
the number of leakage bits that the adversary can ask for. The components are
running a randomized refresh protocol at the end of each time unit and erase
their previous state.6 A unique feature of our model is that the adversary sees
and has complete control over all the communication between these components
(including the communication needed for the refresh protocol). We term our
leakage model the leaky distributed system model (LDS), indeed this is just the
standard model of a distributed system with adversarially controlled communi-
cation, when we add to it the fact that the individual parties are leaky.

We stress that this model seems realistic: the different components can be
implemented by physically (and even geographically) separated machines, amply
justifying the assumption on separate leakage. We also note that a similar (but
somewhat weaker) model was suggested recently by Akavia et al. [1], in the
context of leakage-resilient encryption.

6 This is reminiscent to the proactive security literature [30, 13].

Only-computation-leaks vs. leaky distributed systems. Our leakage model shares
some similarities to the “only computation leaks” (OCL) model, in that the ad-
versary can get leakage from different parts of the global state separately but
not from the entire global state at once. These two models are nonetheless fun-
damentally different, for two reasons. One difference is that in the OCL the
different components “interact” directly by writing to and reading from mem-
ory, and communication is neither controlled by nor visible to the adversary. In
the LDS model, on the other hand, the adversary sees and controls the entire
communication. Another difference is that in the OCL model, the adversary can
only get leakage from the components in the order in which they perform the
computation, whereas in LDS model, it can get leakage in any order.

An intermediate model, that we use as a technical tool in this work, is where
the adversary can get leakage from the components in any order (as in the LDS
model), but the components communicate securely as in the OCL model. For
lack of a better name, we call this intermediate model the OCL+ model. Clearly,
resilience to leakage in the model of leaky distributed systems is strictly harder
than in the OCL or OCL+ models and every solution secure in our model will
automatically be secure also in the two weaker models.

1.4 From OCL+ to LDS

We present a transformation that takes any circuit secure in the OCL+ model
and converts it into a system of components that maintains the functionality
and is secure in the model of leaky distributed systems. Recently, Goldwasser-
Rothblum [22] constructed a universal compiler, which transforms any circuit
into one that is secure in the OCL+ model. (Unlike previous compilers [17, 24, 27],
the [22] compiler does not require a leak-free hardware component.) Combining
the compiler with our transformation, we obtain a compiler that takes any cir-
cuit and produces a system of components with the same functionality that is
secure in the LDS model. The number of components in the resulting system
is essentially the size of the original circuit, assuming we use the underlying
Goldwasser-Rothblum compiler. However, as we explain in Section 1.5 below,
we can reduce the number of components to be independent of the circuit size,
by first applying the hardware-assisted obfuscator from Section 1.1.

The main gap between the OCL+ model and our model of leaky distributed
systems, is that in the former, communication between the components is com-
pletely secure, whereas in the latter it is adversarially controlled. In the heart of
our transformation stands an implementation of leakage-tolerant communication
channels that bridges the above gap, based on the following tools:

Non-Committing Encryption. Our main technical observation is that secret
communication in the face of leakage can be obtained very simply using non-
committing encryption [12]. Recall that non-committing encryption is a (poten-
tially interactive) encryption scheme such that a simulator can generate a fake
transcript, which can later be “opened” as either an encryption of zero or as
an encryption of one. This holds even when the simulator needs to generate

the randomness of both the sender and the receiver. In our context, the dis-
tributed components use non-committing encryption to preserve the privacy of
their messages. The observation is that non-committing encryption can be used
to implement “leakage resilient channels”, in the sense that any leakage query
on the state of the communicating parties could be transformed into a leakage
query on the underlying message alone (see Section 4).

Leakage-resilient MACs. In addition to secrecy, we also need to ensure authen-
ticity of the communication between the components. We observe that this can
be done easily using information-theoretic MAC schemes based on universal-
hashing [33, 3]. Roughly, each pair of components will maintain rolling MAC
keys that are only used Θ(1) times. To authenticate a message, they will use the
MAC key sent with the prior message and will send a new MAC key to be used
for the next message. (We use a short MAC key to authenticate a much longer
message, so the additional bandwidth needed for sending future MAC keys is
tolerable.) Since these MAC schemes offer information-theoretic security, it is
very easy to prove that they can also tolerate bounded leakage. Authenticating
the communication assures that secrecy is kept (e.g. the adversary cannot have a
component encrypt a secret message under an unauthentic key) and also ensures
that the components remain “synchronized” (see Section 4).

1.5 The End-Result: Obfuscation with Leaky Hardware

To obfuscate a program, we first apply the hardware-assisted obfuscator from
Section 1.1, thus obtaining a universal hardware device, whose size and amount
of computation (per input) depend only on the security parameter, and which
can be used to evaluate obfuscated programs from various vendors. We next ap-
ply the Goldwasser-Rothblum compiler [22], together with our transformation
from Section 1.4, to the code of the hardware device, resulting in a system of
components that can still be used for obfuscation in exactly the same way (as
the universal device), but is now guaranteed to remain secure even if the com-
ponents are leaky and even if the communication between them is adversarially
controlled.

To obfuscate a program f using this system, the obfuscator generates keys for
the FHE scheme and encrypts f under these keys. In addition, it uses the public
CCA2 key generated with the original universal device to encrypt the secret FHE
key together with a hash of the encrypted program. The encrypted program and
parameters are then sent to the user. Evaluating the obfuscated program consists
of running the FHE evaluation procedure and then interacting with the system
of components (in a universal argument) to decrypt the resulting ciphertext. The
system verifies the proof in a leakage-resilient manner and returns the decrypted
result.

We remark that our transformation from any circuit/device to a leaky system
of components, as well as our transformation from circuit-specific obfuscation
schemes to general-purpose ones, are generic and can be applied to any device-
assisted obfuscation scheme, such as the schemes of [19, 25]. When doing so, the

end result will inherit the properties of the underlying scheme. In particular,
when instantiated with [19, 25], the amount of work performed by the devices is
proportional to the size of the entire computation (the hardware used for each
gate in the obfuscated circuit).

1.6 Related Work

Research on formal notions of obfuscation essentially started with the work
of Barak et. al. [6], who proved that software-only obfuscation is impossible
in general. This was followed by other negative results [20] and some posi-
tive results for obfuscating very simple classes of functions (e.g., point func-
tions) [32, 11, 15]. The sweeping negative results for software-only obfuscation
motivated researchers to consider relaxed notions where some interesting special
cases can be obfuscated (e.g., [23, 26, 8]).

In contrast, the early works of Best [7], Kent [28] and Goldreich and Ostro-
vsky [19] addressed the software-protection problem using a physically shielded
full-blown CPU. The work of Goyal et. al. [25] showed that the same can be
achieved also with small stateless hardware tokens. These solutions only con-
sider perfectly opaque hardware. Furthermore, in these works the amount of
work performed by the secure hardware device during the evaluation of one
input is proportional to the size of the entire computation.7

The work by Goldwasser et. al. [21] on one-time programs shows that pro-
grams can be obfuscated using very simple hardware devices that do very little
work. However, their resulting obfuscated program can be run only once.

Our focus on obfuscation with leaky hardware follows a large corpus of recent
works addressing leakage-resilience cryptography (see, e.g., [16, 2] and references
within). In particular, our construction uses results of Goldwasser and Roth-
blum [24, 22], which show how to convert circuits into ones that are secure in
only computation leaks model of Micali and Reyzin [29] (or even in the stronger
OCL+ model described above).

Our construction of leakage-tolerant secure channels and the relation between
leakage-tolerance and adaptive security were further investigated and generalized
in [10], who consider general universally composable leaky protocols.

Organization In Section 2 we construct a hardware-assisted obfuscation scheme
where the amount of work done by the hardware is minimal (polynomial in the
security parameter). In Section 3 we show how to transform any “circuit-specific”
scheme, such as the one constructed in Section 2, to a “general-purpose” scheme
where the same hardware device can be used for multiple obfuscated programs.
In Section 4 we show how to transform any hardware-assisted obfuscation, such
as the above, to a leakage-resilient scheme. The full details and proofs as well as
some of the secondary results can be found in the full version of this paper [9].

7 On the other hand, the solutions in [19, 25] can be based on one-way functions, while
our solution requires stronger tools such as FHE and universal arguments.

2 Hardware Assisted Obfuscation

In this section we construct a hardware assisted obfuscation scheme. The basic
model and definitions are presented in Section 2.1. An overview of the construc-
tion is presented in Section 2.2. The detailed construction and its analysis can
be found in the full version of this paper[9].

2.1 The Model

In the setting of hardware assisted obfuscation, a circuit C (taken from a family
Cn of poly-size circuits) is obfuscated in two stages. First, the PPT obfuscation
algorithm O is applied to C, producing the “software part” of the obfuscation
obf, together with (secret) parameters params for device initialization. At the
second stage, the hardware device HW is initialized with params. The evalu-
ator is given obf and black-box access to the initialized device HWparams. In
our security definition, we consider a setting in which the adversary is given
t = poly (n) independent obfuscations of t circuits, where obfuscation i consists
of a corresponding device HWparamsi and obfuscated data obfi. In this model each
obfuscated circuit may have its own specialized device.

Definition 2.1 (Circuit-specific hardware-assisted obfuscation (CSHO)).
(O,HW,Eval) is a CSHO scheme for a circuit ensemble C = {Cn}, if it satisfies:

– Functional Correctness. Eval is a poly-time oracle aided TM , such that
for any n ∈ N, C ∈ Cn and input v for C: EvalHWparams

(
1|C|, obf, v

)
= C (v),

where (obf, params)← O (C).
– Circuit-Independent Efficiency. The size of HWparams is poly(n), in-
dependently of |C|, where (params, obf) ← O(C). Also, during each run of
EvalHWparams

(
1|C|, obf, v

)
on any input v, the total amount of work performed

by HWparams is poly(n), independently of |C|.
– Polynomial Slowdown. O is a PPT algorithm. In particular, there is a
polynomial q, such that for any n ∈ N and C ∈ Cn, |obf| ≤ q (|C|).

– t-Composable Virtual Black Box (VBB). Any adversary, given t ob-
fuscations, can be simulated, given oracle access to the corresponding circuits.
That is, for any PPT A (with arbitrary output) there is a PPT S such that:{

AHW1,...,HWt (z, obf1, . . . , obft)
}
≈c

{
SC1,...,Ct (z, 1n, |C1|, . . . , |Ct|)

}
,

where C1 . . . Ct ∈ Cn, z ∈ {0, 1}poly(n) is an arbitrary auxiliary input, HWi =
HWparamsi and (obfi, paramsi)← O (Ci).
We say that the scheme is stand-alone VBB if it is 1-composable. We say
that the scheme is composable if its t-composable for any polynomial t.

While previous solutions [19, 25] satisfy the correctness and security require-
ments of Definition 2.1, they require that the total amount of work performed
by the device for a single evaluation is proportional to |C|, the size of the en-
tire circuit. Namely, they do not achieve circuit-independent efficiency. In this
section we show that how to construct schemes which do achieve this feature,
based on a different approach. The main result is given by Theorem 2.1.

Theorem 2.1. Assuming fully homomorphic encryption, there exists a compos-
able CSHO scheme for all polynomial size circuit ensembles C = {Cn}.

2.2 The Construction

We next overview the main aspects of the constructions.

The main ideas. Informally, given a FHE scheme E , we obfuscate a circuit C by
sampling (sk, pk) ← Gen (1n), encrypting Ĉ = Encpk (C) and creating a “proof-
checking decryption device” HW = HWsk which is meant to decrypt “proper
evaluations”. The obfuscation consists of obf = (Ĉ, pk) and oracle access to HW.
To evaluate the obfuscation on input v, compute e = Evalpk(Ĉ, Us,v), where
Us,v is a universal circuit that given a circuit C of size s outputs C (v).8 Then,

“prove” to HW that indeed e = Evalpk(Ĉ, Us,v). In case HW is “convinced”, it
decrypts C (v) = Decsk (e) and returns the result to the evaluator. Intuitively,
the semantic security of E and the soundness of the proof system in use should
prevent the evaluator from learning anything about the original circuit C other
than its input-output behavior.

We briefly point out the main technical issues that arise when applying the
above approach and the way we deal with these issues.

– Minimizing the device’s workload. Proving the validity of an evalu-
ated ciphertext e w.r.t. an encrypted circuit Ĉ amounts to proving that a
poly(|C|)-long computation was performed correctly. However, the running
time of our device should be independent of |C| and hence cannot process
such a computation. In fact, it cannot even process the assertion itself as it
includes the poly(|C|)-long encryption Ĉ. To overcome this, we use univer-
sal arguments (UA’s) that also have a proof of knowledge property [4]and
collision resistant hashing. Specifically, the device only stores a (short) hash
h(Ĉ) and the evaluator proves it “knows” an encrypted circuit Ĉ ′ with the
same hash and that the evaluated ciphertext is the result of applying Evalpk
to Ĉ ′ and the universal circuit Us,v (corresponding to some input v).

– Using a stateless device with no fresh randomness. Our device can
be implemented as a boolean circuit that need not maintain a state between
evaluator calls nor generate fresh randomness; in particular, it should with-
stand concurrent proof attempts and “reset attacks” (as termed by [14]). To
enable this, we use similar techniques to those in [5]. Informally, these tech-
niques allow transforming the UA protocol we use to a “resettable” protocol,
where the verifier’s randomness is fixed to some pseudo random function. 9

8 Abusing notation, we denote by Eval both evaluation algorithms EvalHWparams(obf, v)
and Evalpk. To distinguish between the two, we always denote the evaluation algo-
rithm of the FHE scheme by Evalpk .

9 The mentioned techniques essentially transform any public-coin constant-round pro-
tocol to a “resettable” one.

3 General-Purpose (Sendable) Obfuscation

In this section we show how to convert any circuit-specific obfuscation scheme,
such as the one in Section 2, to a scheme which uses a single universal (general-
purpose) hardware device. The basic model and definitions are presented in
Section 3.1, the transformation is presented in Section 3.2 and analyzed in the
full version of this paper [9].

3.1 The Model

In circuit-specific obfuscation, the obfuscator gives the user a device that depends
on the obfuscated circuit C. More precisely, the “specifying parameters” params,
produced by O (C), depend on C and are hardwired into the device before it is
sent to the user. Thus, each device supports only a single obfuscated circuit.

We consider a more natural setting in which different parties can send ob-
fuscations to each other online, without the need of exchanging devices per each
obfuscation. Informally, in this setting we assume that a trusted manufacturer
creates devices, where each device is associated with private and public param-
eters (prv, pub). The private parameters are hardwired into the device and are
never revealed (they can be destroyed), while the public ones are published to-
gether with the “identity” of the device (e.g., on the manufacturer’s web page
www.obfuscationdevices.com). Any user, who wishes to send an obfuscation of
a circuit C to another user who holds such a device, retrieves the corresponding
public parameters and sends the required obfuscation.

Concretely, a general-purpose obfuscation scheme consists of two randomized
algorithms (Gen,O) and a device HW. First, Gen (1n) generates private and pub-
lic parameters (prv, pub) (independently of any circuit). Then, HW is initialized
with prv and the initialized device HWprv is given to the user. The corresponding
pub are published. Anyone in hold of pub can obfuscate a circuit C by computing
obf ← O (C, pub) and sending obf to the user holding the device.

Definition 3.1 (General-purpose hardware-assisted obfuscation (GPHO)).
(O,Gen,HW,Eval) is a GPHO scheme for C = {Cn} if it satisfies:

– Functional Correctness. Eval is a polynomial-time oracle aided TM, such
that for any n ∈ N, C ∈ Cn and input v for C: EvalHWprv

(
1|C|, obf, v

)
= C (v),

where (prv, pub)← Gen (1n) and obf ← O (C, pub).
– Circuit-Independent Efficiency. The size of HWprv is polynomial in n,
independent of |C|, where (prv, pub) ← Gen (1n). Moreover, during each run
of EvalHWprv

(
1|C|, obf, v

)
on any input v, the total amount of work performed

by HWprv is polynomial in n, independent of |C|.
– Polynomial Slowdown. O and Gen are PPT algorithms. In particular,
there is a polynomial q such that for any n ∈ N, C ∈ Cn, |pub, prv| ≤ q (n)
and |obf| ≤ q (|C|).

– Virtual Black Box (VBB). For any PPT adversary A and polynomial t
there is a PPT simulator S such that:{

AHWprv (z, obf1, . . . , obft)
}
≈c

{
SC1,...,Ct (z, 1n, |C1|, . . . |Ct|)

}
,

where C1 . . . Ct ∈ Cn, z ∈ {0, 1}poly(n) is an arbitrary auxiliary input (prv, pub)←
Gen (1n) and obfi ← O (Ci, pub).

3.2 The Transformation

Essentially, we wish to avoid restricting the device to a specific circuit C (like
hard-wiring h(Ĉ) into the device as done in our circuit-specific scheme). Instead,
we would like to have the user “initialize” his device with the required parameters
params for each obfuscation he wishes to evaluate. However, params cannot be
explicitly given to the evaluator as they contain sensitive information.

For this purpose, we simply use a CCA2 public key encryption scheme. That
is, the obfuscator will generate params, but instead of hard-wiring them into the
hardware device (which will make the device circuit-specific), he will encrypt
params and send the resulting ciphertext to the user. The fact that the underlying
encryption scheme is CCA2 secure implies that the user can neither gain any
information about params nor change it to related parameters params′.

More formally, the new general-purpose device HW′ is manufactured together
with a pair of CCA2 keys (prv, pub) = (sk, pk). The secret key sk is hardwired
into the device (and destroyed), while pk is published. Each device call is ap-
pended with the CCA2 encryption of params. The device HW′ answers its calls by
first decrypting the encrypted parameters params and then applying the device
HWparams of the underlying circuit-specific scheme (e.g. the scheme in Section 2).
In the full version [9] we present the detailed construction and show:

Theorem 3.1. Given a CCA2 encryption scheme, any circuit-specific obfusca-
tion scheme as in Definition 2.1 can be transformed to a general-purpose one as
in Definition 3.1.

Corollary 3.1 (of Theorems 2.1,3.1). Assume that there exists a fully ho-
momorphic encryption scheme and a CCA2 encryption scheme, then there exists
a general-purpose obfuscation scheme.

Remark 3.1. The above transformation would also work (as is) for schemes with
no circuit-independent efficiency. The amount of work performed by the general-
purpose device is essentially inherited from the underlying scheme (with the fixed
overhead of CCA2 decryption). In particular, we can apply it to the scheme of
[25] and get a general-purpose solution that is based solely on the existence of
CCA2 schemes, but which makes poly(|C|) device calls.

4 Obfuscation with Leaky Hardware

We now turn to the task of dealing with leaky hardware. As we explained in the
introduction, if we allow arbitrary leakage functions (even with small output)
then it is impossible to obfuscate using a single leaky hardware device. Hence, our
goal is to show how to use many leaky hardware devices to achieve obfuscation.

We first show how to obfuscate any function f using leaky hardware devices,
where the number of devices is proportional to the size of the circuit computing f .
Then, when we apply this obfuscator to the function computed by the hard-
ware device from Section 2 (or Section 3, respectively), to get circuit-specific (or
general-purpose, respectively) obfuscation with leaky hardware devices, where
the number of devices is polynomial in the security parameter, independent of
the function being obfuscated.

4.1 An Overview

In what follows, we give an informal definition of obfuscation with leaky hardware
and a high-level overview of our construction. The formal definitions and detailed
construction are given in Sections 4.2 and 4.3. The security analysis can be found
in the full version of this paper [9].

The leaky distributed system (LDS) model. In the LDS model a functionality
f (with secrets) is implemented by a system of multiple hardware components
(HW1,HW2, . . . ,HWm). The components can maintain a state and generate fresh
randomness. To evaluate the functionality f , an input v is given to HW1 and the
components communicate to jointly compute f(v), which is eventually outputted
by HWm. The adversary (evaluator) in our model can freely choose the inputs
to the computation and is given full control over the communication between
the components. In addition, the adversary can choose one component at a time
and evaluate a leakage function on its inner state and randomness.

We consider a continual leakage model, where the lifetime of each component
HWi is partitioned into time periods (that are set according to the inputs that
HWi receives). At the end of each time period, HWi “refreshes” its inner state
by applying an Update procedure (that erases the previous state). The Update
procedures performed at different components are coordinated by exchange of
messages. As the rest of the computation, the Update procedure is also exposed to
leakage and the adversary controls the exchange of messages during the update.

We place no restriction on the order and timing of the adversary’s interaction
with the system. In particular, it can pass messages to any component at any
time and get leakage on any component at any time (which can depend on
previous leakage and messages).

Constructing secure leaky distributed systems (LDS). Our goal is to compile (or
“obfuscate”) any functionality, given by some circuit C (with hardwired secrets),
into an LDS that perfectly protects C, as long as the leakage from each HWi

in each time period is bounded. In the terminology of obfuscation, the LDS
should perform as a virtual black-box: The view of any adversary A attacking
the LDS can be simulated by a simulator S which can only access C as a black-
box. In particular, S should simulate on its own the communication between the
components and all the leakage. We achieve this goal in two main steps:

1. We apply the Goldwasser-Rothblum compiler to the circuit C to get a circuit
that is secure in the (augmented) only computation leaks (OCL+) model.

2. Then, we provide a general transformation that takes any OCL+-secure cir-
cuit and transforms it to a secure LDS.

Hence, our main goal is to show that an adversary in the LDS model can be
simulated by an adversary in the OCL+ model (that does not witness the com-
munication between the modules). Then, by the OCL+-security (implied by the
GR compiler), we can deduce that simulation can be done only with black-box
access to the underlying functionality.

In the heart of our transformation stands an implementation of leakage toler-
ant communication channels. We first explain the main ideas required to achieve
secrecy and then explain how to get authenticity.

Leaky secret channels from non-committing encryption. In the OCL+ model, the
components can securely exchange messages. Still, the adversary might get some
leakage on the contents of these messages as the (leaky) state of the components
includes the messages at some point. The OCL+ security guarantee implies,
however, that a bounded amount of leakage does not compromise the security
of the entire system.

To enhance OCL+-security to LDS-security we implement the secure com-
munication channels. As explained above, we assume for now that the adversary
delivers all messages intact and deal only with secrecy. The standard solution
for secret channels would be to encrypt all communication between the com-
ponents; however, in the face of leakage this approach encounters the following
difficulty: Consider a sender component HWS in the LDS model that wishes to
communicate a message M to a receiver component HWR (using some encryp-
tion scheme). Note that the adversary can obtain arbitrary (bounded) leakage
on the state of both HWS ,HWR, including leakage on both the plaintext M and
the randomness rS , rR used to encrypt/decrypt. Moreover, the leakage function
can depend on the corresponding ciphers which were already sent. This implies
that naively simulating the communication (by say encryptions of 0) won’t work.

Our main technical observation is that the above obstacle can be overcome
using non-committing encryption (NCE) [12]. NCE schemes (which can poten-
tially be interactive) allow simulating a fake cipher (or transcript) c together
with two optional random strings (r0S , r

1
S), (r0R, r

1
R) for both the sender S and

the receiver R. The simulated cipher can later be “opened” as an encryption of
either 1 or 0 (using the suitable randomness).10 This tool allows us to show that
the view of an attacker A in the LDS model can be simulated by an attacker A′

in the OCL+ model, provided that the components communicate using NCE.

10 NCE was so far mainly used in the setting of multi-party-computation as a tool
for dealing with adaptive corruptions. Indeed, leakage can be viewed as a restricted
form of “honest but curious” corruption, where the adversary learns part of the
state, whereas in full corruption, it learns the entire state. In both cases, the choice
of leakage/corruption is done adaptively according to the view of the adversary so
far. The relation between leakage-tolerant protocols and adaptively secure protocols
is further generalized in [10].

Specifically, for any single bit message, the OCL+ adversary A′ (which does
not see any communication) will use the NCE to generate fake communication
with corresponding randomness r̄ = (r0S , r

1
S), (r0R, r

1
R). Then, when the simulated

A performs a leakage query L to be evaluated on both the plaintext b and the
encryption’s randomness, A′ can translate it to a new leakage query L′ which
will only be evaluated on the plaintext message. The leakage function L′

will have the simulated randomness r̄ hardwired into it and will choose which
randomness to use according to the plaintext b.

Leakage resilient MACs. To deal with adversaries that interfere with message
delivery we use leakage-resilient c-time MAC schemes. Informally, each two com-
ponents maintain rolling MAC keys that are used at most c = O(1) times. After
c− 1 times the components run the Update protocol to regain fresh MAC keys.
The communication during the update is done using NCE as described above,
while authentication is done using the c-th application of the previous key.

4.2 The LDS Model

Our leakage model postulates an adversary A that interacts with a system of
distributed leaky hardware components. Each component maintains a state and
is capable of producing fresh randomness. At the onset of the interaction, the
components are pre-loaded with some secret state and thereafter they can receive
messages, send messages and leak information to the attacker. In our model all
the I/O of the components and their communication is done via the attacker A.

Definition 4.1 (Single-input leakage). In a distributed single-input λ-leakage
attack a PPT adversary A interacts with hardware components (HW1, . . . ,HWm)
and can do the following (in any order, possibly in an interleaving manner):

1. Feed O(C) a single input of his choice.
2. Interact with each component, sending it messages and receiving the resulting

outputs and replies. These devices are message-driven, so they are activated
by receiving messages from the attacker, then they compute and send the
result, then wait for more messages.

3. Adaptively send up to λ 1-bit leakage queries to each of the hardware com-
ponents. Each leakage query is modeled as a poly-size Boolean circuit and
is applied to the entire state of a single hardware device. Without loss of
generality, we can think of the state of the device as it was in the last time
that the device was activated, including all the randomness that the device
generated in order to deal with the last activation.

We denote the output of A in such attack by A[λ : HW1, . . . ,HWm].

Definition 4.2 (Continual leakage). A continual λ-leakage attack is an at-
tack where a PPT adversary A repeats a single-input λ-leakage attack poly many
times, where between any two consecutive attacks the devices’ secret state is up-
dated by applying a PPT algorithm Update to the state of each HWi separately. A

obtains leakage during the Update procedure, where the leakage function takes as
input both the current secret state of HWi and the randomness used by Update.

We denote by time period t at device HWi the time period between the begin-
ning of the (t− 1)st Update procedure and the end of the t-th Update procedure
(note that these time periods are overlapping).11 We allow the adversary A to
leak at most λ bits from each HWi during each (local) time period.

We denote the output of A in such attack by A[λ : HW1, . . . ,HWm : Update].

Below we consider an obfuscator O that takes as input a circuit C and outputs an
“obfuscated” version of C that uses leaky hardware devices as above. Namely,
we have (HW1, . . . ,HWm) ← O(C), where the HWi’s are the leaky hardware
devices, initialized with the appropriate circuits.

Remark 4.1. In Definitions 2.1 and 3.1, the obfuscator O outputs a “software
part” obf and parameters params for initializing the hardware. In the current
setting, the obfuscation does not contain a software part. The simplified nota-
tion (HW1, . . . ,HWm)← O(C), should be interpreted as sampling {paramsi} ←
O(C) (where paramsi corresponds to the i-th sub-computation)and initializing
the hardware devices {HWi} accordingly.

Definition 4.3. We say that O is an LDS-obfuscator with continual λ-leaky
hardware if for any circuit C and (HW1, . . . ,HWm) ← O(C), the distributed
system (HW1, . . . ,HWm) maintains the functionality of C when all the messages
between them are delivered intact and in addition we have the following:

For any PPT attacker A, executing a continual λ-bit leakage attack, there
exists a PPT simulator S, such that for any ensemble of poly-size circuits {Cn}:

{A(z)[λ : HW1, . . . ,HWm : Update]} n∈N,C∈Cn

z∈{0,1}poly(n)

≈c

{
SC(z, 1|C|)

}
n∈N,C∈Cn

z∈{0,1}poly(n)

,

where (HW1, . . . ,HWm)← O(C) and z is an arbitrary auxiliary input.

4.3 The Construction

We build our solution using a compiler C that is secure in the continual λ-
OCL+ model. Namely, C converts any circuit C into a collection of leaky sub-
components (sub1, . . . , subm) (that also have an update procedure, Update′) that
is secure long as the adversary can only get λ leakage from each component in
each time unit and cannot see or influence the communication between them. In
our model, however, the communication is under the control of the adversary.
To secure the communication, we use non-committing encryption and c-time
leakage resilient MACs (as described in the overview).

11 Intuitively, time period t is the entire period where the t-th updated secret states
can be leaked. During the t-th Update procedure, both the (t− 1)st secret state and
the t-th secret state may leak, which is why the time periods are overlapping.

The construction. Given a circuit C, the obfuscator O does the following:

1. Apply the λ-OCL+ compiler C to C and obtain a circuit C ′ = (sub1, . . . , subm)
and an Update′ procedure, such that (C ′,Update′) is secure in the continual
λ-OCL+ model.
We assume for simplicity that: (a) sub1 is the input module, that takes as
input the “original” input x ∈ {0, 1}n and passes it to the relevant subj ’s.
(b) subm generates the final output. (c) The exchanged messages between
the modules are all of the same size ` = `(n).

2. Put each module subi in a separate hardware component HWi.
3. For every two communicating modules i, j ∈ [m], generate a random key
Ki,j ← {0, 1}t for a λ-leakage-resilient MAC scheme (MAC,Vrfy), with keys
of length t = Θ(λ). For every i ∈ [m], hard-wire in HWi the set of keys
{(j,Ki,j)}, for every j such that subj and subi communicate.

4. For every i ∈ {1, . . . ,m − 1} and every j ∈ {2, . . . ,m}, whenever subi is
supposed to send a message M = (M1, . . . ,M`) to subj , the corresponding
hardware HWi sends M to HWj using a non-committing encryption scheme
(NCGen,NCEnc,NCDec). Moreover, all the communication in this process
is authenticated using the MAC scheme (MAC,Vrfy). More specifically, the
hardware devices HWi and HWj communicate as follows:

(a) Hardware HWj does the following:
i. For each k ∈ [`], sample a random rG,k ∈ {0, 1}poly(n) and compute

(ek, dk) = NCGen(1n; rG,k). Henceforth, let e = (e1, . . . , e`),d =
(d1, . . . , d`).

ii. Compute σe = MAC(e;Ki,j).
iii. Send (e, σe) to HWi and keep d as part of the secret state.

(b) Hardware HWi does the following:
i. Verify that Vrfy(e, σe;Ki,j) = 1 and verify that (e, σe) was not al-

ready sent by HWj during this time period. If this check fails then
discard the message e.

ii. If the check passes, for each k ∈ [`] choose a random rE,k ∈ {0, 1}poly(n),
compute ck = NCEnc(Mk, ek; rE,k). Henceforth, let c = (c1, . . . , c`).

iii. Compute σc = MAC(c;Ki,j).
iv. Send (c, σc) to HWj .

(c) Hardware HWj does the following:
i. Verify that Vrfy(c, σc;Ki,j) = 1 and verify that (c, σc) wasn’t already

sent by HWi. If this check fails then discard the message c.
ii. If the check passes, compute for each k ∈ [`], Mi = NCDec(ci, di).

Once HWj gets M, it runs subj on input M (unless subj is waiting for
additional inputs).

5. Finally, HWm sends an output message (assuming subm is the sub-computation
that generates the outputs).

6. For each HWi, after each “valid” activation (i.e., after it did its share in a
computation), HWi erases all its computations and updates its secret state,
using an update procedure Update, defined as follows.
(a) Apply the Update′ procedure to update the state of subi.

(b) Refresh the MAC keys by choosing new random MAC keys K ′
i,j for every

j > i such that HWi and HWj communicate. Then send K ′
i,j to HWj .

(c) Erase the previous MAC keys Ki,j .
(d) Communication: All the communication within the update procedure

is done as in step 4. Namely, for each message, repeat steps 4(a)− 4(c),
where the MACs are w.r.t. the previous MAC key Ki,j .

Theorem 4.1. Assuming the compiler C used in the above construction is secure
in the λ-OCL+ model. Then the above construction yields an LDS-obfuscator with
continual λ-leaky hardware HW1, . . . ,HWm.

The proof of Theorem 4.1 is given in the full version of this paper [9].

References

[1] Adi Akavia, Shafi Goldwasser, and Carmit Hazay. Distributed Public Key En-
cryption Schemes. manuscript, 2010.

[2] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore
bits and cryptography against memory attacks. In Omer Reingold, editor, Theory
of Cryptography - TCC 2009, volume 5444 of Lecture Notes in Computer Science,
pages 474–495. Springer, 2009.

[3] Mustafa Atici and Douglas R. Stinson. Universal hashing and multiple authenti-
cation. In CRYPTO, pages 16–30, 1996.

[4] Boaz Barak and Oded Goldreich. Universal arguments and their applications.
SIAM J. Comput., 38(5):1661–1694, 2008.

[5] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell. Resettably-
sound zero-knowledge and its applications. In FOCS, pages 116–125, 2001.

[6] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
In CRYPTO, pages 1–18, 2001.

[7] Robert M. Best. Microprocessor for executing enciphered programs. US Patent
4168396, 1979.

[8] Nir Bitansky and Ran Canetti. On strong simulation and composable point ob-
fuscation. In Advances in Cryptology - CRYPTO 2010, pages 520–537, 2010.

[9] Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, and Guy Rothblum.
Obfuscation with leaky hardware, 2011. Long Version on http://eprint.iacr.org.

[10] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage tolerant interactive proto-
cols. Manuscript, 2011. http://eprint.iacr.org/2011/204.

[11] Ran Canetti and Ronny Ramzi Dakdouk. Obfuscating point functions with multi-
bit output. In EUROCRYPT’08, pages 489–508, 2008.

[12] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptively Secure
Multi-party Computation. In 28th Annual ACM Symposium on the Theory of
Computing - STOC’96, pages 639–648, Philadelphia, PA, May 1996. ACM.

[13] Ran Canetti, Rosario Gennaro, Amir Herzberg, and Dalit Naor. Proactive secu-
rity: Long-term Protection against break-ins. CryptoBytes, 3(1), 1997.

[14] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable
zero-knowledge (extended abstract). In STOC, pages 235–244, 2000.

[15] Ran Canetti, Guy N. Rothblum, and Mayank Varia. Obfuscation of hyperplane
membership. In TCC, pages 72–89, 2010.

[16] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In
49th FOCS - 2008, pages 293–302. IEEE Computer Society, 2008.

[17] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikun-
tanathan. Protecting circuits from leakage: the computationally-bounded and
noisy cases. In EUROCRYPT, pages 135–156, 2010.

[18] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings
of the 41st ACM Symposium on Theory of Computing – STOC 2009, pages 169–
178. ACM, 2009.

[19] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on
oblivious rams. J. ACM, 43(3):431–473, 1996.

[20] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation
with auxiliary input. In 46th FOCS, pages 553–562. IEEE Computer Society,
2005.

[21] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs.
In David Wagner, editor, Advances in Cryptology - CRYPTO 2008, volume 5157
of Lecture Notes in Computer Science, pages 39–56. Springer, 2008.

[22] Shafi Goldwasser and Guy Rothblum. Unconditionally securing general compu-
tation against continuous only-computation leakage. Manuscript, 2011.

[23] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In
TCC’07, pages 194–213, 2007.

[24] Shafi Goldwasser and Guy N Rothblum. Securing computation against continuous
leakage. In Tal Rabin, editor, Advances in Cryptology - CRYPTO 2010, volume
6223 of Lecture Notes in Computer Science, pages 59–79. Springer, 2010.

[25] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay
Wadia. Founding cryptography on tamper-proof hardware tokens. In TCC, pages
308–326, 2010.

[26] Dennis Hofheinz, John Malone-Lee, and Martijn Stam. Obfuscation for crypto-
graphic purposes. In TCC’07, pages 214–232, 2007.

[27] Ali Juma and Yevgeniy Vahlis. Protecting Cryptographic Keys against Continual
Leakage. In Tal Rabin, editor, Advances in Cryptology - CRYPTO 2010, volume
6223 of Lecture Notes in Computer Science, pages 41–58. Springer, 2010.

[28] Stephen Thomas Kent. Protecting externally supplied software in small computers.
PhD thesis, Massachusetts Institute of Technology, 1981.

[29] Silvio Micali and Leonid Reyzin. Physically observable cryptography. In TCC’04,
volume 2951 of Lecture Notes in Computer Science, pages 278–296. Springer, 2004.

[30] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks. In
10th Annual ACM Symposium on Principles of Distributed Computing, PODC’91,
pages 51–59. ”ACM”, 1991.

[31] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomor-
phisms. In Foundations of Secure Computation, pages 169–177. Academic Press,
1978.

[32] Hoeteck Wee. On obfuscating point functions. In STOC’05, pages 523–532, 2005.
[33] M. Wegman and L. Carter. New hash functions and their use in authentication

and set equality. In J. of Computer and System Sciences, volume 22, pages 265–
279, 1981.

